JP6370147B2 - EGR device - Google Patents

EGR device Download PDF

Info

Publication number
JP6370147B2
JP6370147B2 JP2014153404A JP2014153404A JP6370147B2 JP 6370147 B2 JP6370147 B2 JP 6370147B2 JP 2014153404 A JP2014153404 A JP 2014153404A JP 2014153404 A JP2014153404 A JP 2014153404A JP 6370147 B2 JP6370147 B2 JP 6370147B2
Authority
JP
Japan
Prior art keywords
egr
condensed water
gas
system path
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014153404A
Other languages
Japanese (ja)
Other versions
JP2016031042A (en
Inventor
悦弘 舩山
悦弘 舩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2014153404A priority Critical patent/JP6370147B2/en
Publication of JP2016031042A publication Critical patent/JP2016031042A/en
Application granted granted Critical
Publication of JP6370147B2 publication Critical patent/JP6370147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、EGRガスの冷却によって発生する凝縮水を捕集除去し得るEGR装置に関する。   The present invention relates to an EGR device capable of collecting and removing condensed water generated by cooling of EGR gas.

従来、自動車のエンジン等では、排気側から排気の一部を抜き出して吸気側へと戻し、その吸気側に戻された排気でエンジン内での燃料の燃焼を抑制して燃焼温度を下げることによりNOx(窒素酸化物)の発生を低減するようにした、いわゆる排気再循環(EGR:Exhaust Gas Recirculation)が行われている。   Conventionally, in an automobile engine or the like, by extracting a part of the exhaust from the exhaust side and returning it to the intake side, by suppressing the combustion of fuel in the engine with the exhaust returned to the intake side and lowering the combustion temperature So-called exhaust gas recirculation (EGR) is performed to reduce the generation of NOx (nitrogen oxide).

通常、この種の排気再循環を行うEGR装置の場合には、排気マニホールドから排気管に至る系路の適宜位置と、吸気管から吸気マニホールドに至る系路の適宜位置との間をEGRパイプにより接続し、該EGRパイプを通して排気を再循環させるようにしている。   Normally, in the case of an EGR device that performs this type of exhaust gas recirculation, an EGR pipe is used between an appropriate position of the system path from the exhaust manifold to the exhaust pipe and an appropriate position of the system path from the intake pipe to the intake manifold. Connected to recirculate exhaust through the EGR pipe.

この際、エンジンに再循環する排気(EGRガス)を途中で冷却すると、排気の温度が下がり且つその容積が小さくなることにより、エンジンの出力をあまり低下させずに燃焼温度を低下して効果的にNOxの発生を低減させることができるため、エンジンに排気を再循環する系路の途中には、再循環される排気を冷却するためのEGRクーラが装備されるのが一般的である。   At this time, if the exhaust gas (EGR gas) recirculated to the engine is cooled in the middle, the temperature of the exhaust gas decreases and the volume of the exhaust gas decreases, thereby effectively reducing the combustion temperature without significantly reducing the engine output. Since NOx generation can be reduced, an EGR cooler for cooling the recirculated exhaust gas is generally provided in the middle of the system for recirculating the exhaust gas to the engine.

すなわち、このようなEGRクーラによりEGRガスを冷却すれば、排気自体の温度が低下して容積が小さくなり、密度が大きくなってエンジンの燃焼室への充填効率が高まる。こうして、エンジンの出力に大きな影響を及ぼすことなく排気をより多く導入することができる。   That is, if the EGR gas is cooled by such an EGR cooler, the temperature of the exhaust itself is lowered, the volume is reduced, the density is increased, and the charging efficiency into the combustion chamber of the engine is increased. In this way, more exhaust can be introduced without significantly affecting the output of the engine.

こうしたEGRクーラにおいては、燃料の燃焼により発生した水蒸気を含む排気を露点以下まで冷却することで凝縮水が発生する問題がある。凝縮水がEGR系路や吸気系路に滞留すると、EGR系路が狭くなって圧力損失が増加し、EGRを効率的に行えなくなったり、インタークーラが閉塞したり、エンジンに多量の水分が入り込んで水撃による破損を生じるなど、さまざまな不具合に繋がる虞がある。   In such an EGR cooler, there is a problem that condensed water is generated by cooling exhaust gas containing water vapor generated by fuel combustion to a dew point or lower. If condensate stays in the EGR system or intake system, the EGR system narrows and pressure loss increases, EGR cannot be performed efficiently, the intercooler is blocked, and a large amount of water enters the engine. This may lead to various problems such as damage caused by water hammer.

将来的には、益々厳しくなる排ガス規制に合わせ、EGRクーラの冷却能力を更に強化してEGR効率の向上を図る必要が予想される。EGRクーラの冷却能力が強化された場合、EGRクーラ内に凝縮水が発生しやすくなることが考えられ、このため、EGR系路内に発生する凝縮水をEGRガスから分離し、除去する手段が必要とされている。   In the future, it is expected that it will be necessary to further enhance the cooling capacity of the EGR cooler and improve the EGR efficiency in accordance with exhaust gas regulations that will become increasingly strict. When the cooling capacity of the EGR cooler is strengthened, it is considered that condensed water is likely to be generated in the EGR cooler. For this reason, means for separating and removing the condensed water generated in the EGR system path from the EGR gas is provided. is necessary.

EGR系路内に発生する凝縮水を分離除去する装置としては、例えば、特許文献1〜4に記載の装置が提案されている。   As an apparatus for separating and removing condensed water generated in the EGR system path, for example, apparatuses described in Patent Documents 1 to 4 have been proposed.

特開2010−25034号公報JP 2010-25034 A 特開2013−29081号公報JP 2013-29081 A 特開2010−222980号公報JP 2010-222980 A 特開2012−188944号公報JP 2012-188944 A

しかしながら、上記特許文献1、2に記載されているEGR装置では、凝縮水の捕集はEGRパイプの管壁で排気が冷却され、凝縮水が自然に管壁に結露することによって行われるため、十分に凝縮水を捕集することができず、一層効率的に凝縮水を捕集することが求められている。また、上記特許文献3、4に記載されているEGR装置では、凝縮水を捕集する手段としての壁や板状のメッシュ等に排気を衝突させるため、EGRガスの圧力損失が大きくなってしまう問題がある。   However, in the EGR devices described in Patent Documents 1 and 2 above, the collection of condensed water is performed by cooling the exhaust gas at the tube wall of the EGR pipe, and the condensed water naturally condenses on the tube wall. Condensed water cannot be collected sufficiently, and it is required to collect condensed water more efficiently. Further, in the EGR device described in Patent Documents 3 and 4, exhaust gas collides with a wall or a plate-like mesh as a means for collecting condensed water, so that the pressure loss of EGR gas increases. There's a problem.

尚、EGR系路内に発生する凝縮水を分離除去する装置としては、上記特許文献1〜4に記載の装置のほか、EGR系路の途中にサイクロン式の気液分離装置を設置することも考えられるが、この場合も圧力損失が増大する問題がある。   In addition, as an apparatus for separating and removing condensed water generated in the EGR system path, a cyclone type gas-liquid separation apparatus may be installed in the middle of the EGR system path in addition to the apparatuses described in Patent Documents 1 to 4 above. Although it is conceivable, there is also a problem that the pressure loss increases in this case.

本発明は上述の実情に鑑みてなしたもので、EGRガスの圧力損失を抑えながら、EGRガスの冷却により発生する凝縮水を効率良く捕集し得るEGR装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an EGR device that can efficiently collect condensed water generated by cooling of the EGR gas while suppressing pressure loss of the EGR gas.

本発明は、エンジンの排気側と吸気側との間をEGR系路により接続し、該EGR系路に備えられたEGRクーラによりEGRガスの冷却を行うEGR装置であって、前記EGRクーラの下流のEGRパイプの一部を、該EGRパイプの管壁に水抜き孔を穿設した凝縮水吸込部とし、且つ該凝縮水吸込部の外周面を取り巻くように凝縮水吸収体を備え、前記水抜き孔から前記凝縮水吸収体にEGRガス中の凝縮水を抜き出すよう構成した凝縮水分離装置を備えると共に、該凝縮水分離装置の上流のEGR系路に旋回流発生装置を備え、該旋回流発生装置と前記凝縮水分離装置とを間隔をおいて配置し、前記旋回流発生装置と前記凝縮水分離装置との間のEGR系路を助走部として構成したことを特徴とするEGR装置にかかるものである。 The present invention is an EGR device that connects an exhaust side and an intake side of an engine by an EGR system path, and cools EGR gas by an EGR cooler provided in the EGR system path, and is provided downstream of the EGR cooler. A part of the EGR pipe is a condensed water suction part having a drain hole formed in the tube wall of the EGR pipe, and a condensed water absorber is provided so as to surround the outer peripheral surface of the condensed water suction part. Rutotomoni comprising a condensate separator which is configured to a vent hole extracting condensed water in the EGR gas to the condensed water absorber, comprising a swirl flow generating device to the EGR system path upstream of said condensate separator, revolving round An EGR device characterized in that a flow generator and the condensate separator are arranged at an interval, and an EGR system path between the swirl generator and the condensate separator is configured as a running portion. It depends on.

而して、このようにすれば、圧力損失を抑えながら、凝縮水吸収体の毛細管現象により効率良くEGRガスから凝縮水を分離し得る。   Thus, the condensed water can be efficiently separated from the EGR gas by the capillary phenomenon of the condensed water absorber while suppressing the pressure loss.

また、前記凝縮水分離装置の上流のEGR系路に旋回流発生装置を備えているので、EGRガスに形成された旋回流の遠心力により、一層効率良くEGRガスから凝縮水を分離し得る。 Further, is provided with the swirling flow generator to the EGR system path upstream of said condensate separator, the centrifugal force of the swirling flow formed in the EGR gas may separate the condensate from the more efficiently EGR gas.

更に、前記旋回流発生装置と前記凝縮水分離装置とを間隔をおいて配置し、前記旋回流発生装置と前記凝縮水分離装置との間のEGR系路を助走部として構成しているので、EGRガスに形成された旋回流が助走部を流れる間に安定し、さらに効率良くEGRガスから凝縮水を分離し得る。 Furthermore, the swirl flow generator and the condensate separator are arranged at an interval, and the EGR system path between the swirl generator and the condensate separator is configured as a running part . The swirl flow formed in the EGR gas is stabilized while flowing through the runner, and the condensed water can be more efficiently separated from the EGR gas.

本発明のEGR装置によれば、EGRガスの圧力損失を抑えながら、EGRガスの冷却により発生する凝縮水を効率良く捕集し得るという優れた効果を奏し得る。   According to the EGR device of the present invention, it is possible to achieve an excellent effect that the condensed water generated by the cooling of the EGR gas can be efficiently collected while suppressing the pressure loss of the EGR gas.

本発明の実施例の全体構成を示す概略図である。It is the schematic which shows the whole structure of the Example of this invention. 本発明の実施例の要部の内部構造を拡大して示す概略図である。It is the schematic which expands and shows the internal structure of the principal part of the Example of this invention.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の実施によるEGR装置の形態の一例を示すものである。図中、1はターボチャージャ2を装備したエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通しターボチャージャ2のコンプレッサ2aへ送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へ送られて冷却され、該インタークーラ6から更に吸気マニホールド7へ吸気4が導かれてエンジン1の各気筒8(図1では直列4気筒の場合を例示している)に分配されるようになっており、また、エンジン1の各気筒8から排出された排気9は、排気マニホールド10を介しターボチャージャ2のタービン2bへ送られ、該タービン2bを駆動した後に排気管11へ送り出されるようになっている。   FIG. 1 shows an example of the form of an EGR apparatus according to the embodiment of the present invention. In the figure, reference numeral 1 denotes an engine equipped with a turbocharger 2, and intake air 4 guided from an air cleaner 3 is sent to a compressor 2 a of the turbocharger 2 through an intake pipe 5 and pressurized by the compressor 2 a. 4 is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7 to each cylinder 8 of the engine 1 (FIG. 1 illustrates the case of in-line four cylinders). The exhaust 9 discharged from each cylinder 8 of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust pipe 11 is driven after the turbine 2b is driven. To be sent out.

排気マニホールド10と吸気マニホールド7の入口付近の吸気管5の間は高圧ループ(EGR系路)12により接続されており、該高圧ループ12を介して排気マニホールド10から排気9の一部をEGRガス9aとして抜き出し、前記吸気マニホールド7の入口付近の吸気管5に再循環し得るようにしてある。   The exhaust manifold 10 and the intake pipe 5 in the vicinity of the inlet of the intake manifold 7 are connected by a high-pressure loop (EGR system path) 12, and a part of the exhaust 9 from the exhaust manifold 10 is EGR gas via the high-pressure loop 12. It is extracted as 9a and can be recirculated to the intake pipe 5 near the inlet of the intake manifold 7.

また、ターボチャージャ2のタービン2bより下流の排気管11と、前記ターボチャージャ2のコンプレッサ2aより上流の吸気管5との間は低圧ループ(EGR系路)13により接続されており、該低圧ループ13を介してターボチャージャ2のタービン2bより下流の排気管11から排気9の一部をEGRガス9aとして抜き出し、前記ターボチャージャ2のコンプレッサ2aより上流の吸気管5に再循環し得るようにしてある。   The exhaust pipe 11 downstream of the turbine 2b of the turbocharger 2 and the intake pipe 5 upstream of the compressor 2a of the turbocharger 2 are connected by a low-pressure loop (EGR system path) 13, and the low-pressure loop 13, a part of the exhaust gas 9 is extracted as EGR gas 9 a from the exhaust pipe 11 downstream of the turbine 2 b of the turbocharger 2 and can be recirculated to the intake pipe 5 upstream of the compressor 2 a of the turbocharger 2. is there.

ここで、前記高圧ループ12及び低圧ループ13には、排気9の再循環量を適宜に調節し得るよう開度調整可能なEGRバルブ14、15と、再循環されるEGRガス9aを冷却水との熱交換により冷却するEGRクーラ16、17とがそれぞれ装備されている。   Here, the high-pressure loop 12 and the low-pressure loop 13 include EGR valves 14 and 15 whose opening degrees can be adjusted so that the amount of recirculation of the exhaust gas 9 can be appropriately adjusted, and the recirculated EGR gas 9a as cooling water. EGR coolers 16 and 17 that are cooled by heat exchange are respectively provided.

このように、本実施例のエンジン1においては、エンジン1の排気側と吸気側との間を接続するEGR系路として、高圧ループ12に加え、低圧ループ13を併用している。これは、一般的な高圧ループ12だけでEGRガス9aの大量導入を実施しようとすると、タービン2bでの動力回収が減って過給性能が落ちてしまうからであるが、本実施例のように低圧ループ13を併用して比較的低い排気温度のEGRガス9aを再循環して冷却した場合には、低圧ループ13のEGRクーラ17に凝縮水が大量に生成される懸念があり、凝縮水への対策が必要不可欠となる。   Thus, in the engine 1 of the present embodiment, the low pressure loop 13 is used in addition to the high pressure loop 12 as an EGR system path connecting the exhaust side and the intake side of the engine 1. This is because if a large amount of EGR gas 9a is introduced only by a general high-pressure loop 12, the power recovery in the turbine 2b is reduced and the supercharging performance is lowered. When the EGR gas 9a having a relatively low exhaust temperature is recirculated and cooled by using the low-pressure loop 13 together, there is a concern that a large amount of condensed water is generated in the EGR cooler 17 of the low-pressure loop 13, and the condensed water These measures are indispensable.

このため、本実施例においては、EGRクーラ17の下流の低圧ループ(EGR系路)13に、EGRクーラ17における冷却によりEGRガス9a中に発生した凝縮水を捕集するための凝縮水捕集装置18を設置している。   Therefore, in the present embodiment, the condensed water collection for collecting the condensed water generated in the EGR gas 9 a by the cooling in the EGR cooler 17 in the low pressure loop (EGR system path) 13 downstream of the EGR cooler 17. A device 18 is installed.

凝縮水捕集装置18は、図2に拡大して示す如く、EGRクーラ17の下流の低圧ループ(EGR系路)13に設置した旋回流発生装置19と、該旋回流発生装置19の下流側に所定の間隔をおいて設置した凝縮水分離装置20とを備えてなる。   As shown in an enlarged view in FIG. 2, the condensed water collecting device 18 includes a swirling flow generator 19 installed in a low pressure loop (EGR line) 13 downstream of the EGR cooler 17, and a downstream side of the swirling flow generator 19. And a condensed water separator 20 installed at a predetermined interval.

旋回流発生装置19は、例えば、EGR系路13をなすEGRパイプ21の内部に螺旋体、例えば、金属製の捻りテープ22を配してなる。ここを通過するEGRガス9aは、螺旋体(捻りテープ)22によってEGRパイプ21の周方向に回転する流れを付与され、旋回流となって下流へと流れていく。尚、旋回流発生装置19は、EGR系路13を流れるEGRガス9aに旋回流を形成し得るものであれば良く、上述の構成に限定されない。   The swirl flow generator 19 is formed, for example, by arranging a spiral body, for example, a metal twist tape 22 inside an EGR pipe 21 forming the EGR system path 13. The EGR gas 9a passing therethrough is given a flow rotating in the circumferential direction of the EGR pipe 21 by a spiral body (twisted tape) 22 and flows downstream as a swirling flow. The swirling flow generator 19 is not limited to the above-described configuration as long as it can form a swirling flow in the EGR gas 9a flowing through the EGR system path 13.

凝縮水分離装置20は、EGR系路13をなすEGRパイプ21の一部を外側から覆うように設置したハウジング23を備え、該ハウジング23内部のEGRパイプ21は、その一部が管壁に多数の水抜き孔24aを穿設した凝縮水吸込部24として形成され、且つ該凝縮水吸込部24の外周面を取り巻くようにして凝縮水吸収体25が備えられている。凝縮水吸収体25としては、例えばグラスウール等、耐熱性を有し、且つ毛細管現象によって凝縮水を吸い込み得る多孔質材料が用いられる。   The condensate separation device 20 includes a housing 23 installed so as to cover a part of the EGR pipe 21 forming the EGR system path 13 from the outside, and many of the EGR pipes 21 inside the housing 23 are arranged on the pipe wall. A condensed water absorber 25 is provided so as to be formed as a condensed water suction portion 24 having a water drain hole 24 a and surrounding the outer peripheral surface of the condensed water suction portion 24. As the condensed water absorber 25, for example, a porous material having heat resistance and capable of sucking condensed water by a capillary phenomenon, such as glass wool, is used.

ハウジング23下側の適宜位置には、ハウジング23内部に捕集された凝縮水を下方から排水するためのドレンパイプ26が取り付けられ、該ドレンパイプ26からの排水は、該ドレンパイプ26の途中に設置された排水弁27の開閉によって制御されるようになっている。   A drain pipe 26 for draining the condensed water collected inside the housing 23 from below is attached at an appropriate position below the housing 23, and the drainage from the drain pipe 26 is in the middle of the drain pipe 26. It is controlled by opening and closing the drain valve 27 installed.

次に、上述した本実施例の作動を説明する。   Next, the operation of this embodiment will be described.

エンジン1の運転中、低圧ループ13による排気再循環を実行する際には、低圧ループ13のEGRバルブ15を開弁すると、排気管11を流通する排気9の一部がEGRガス9aとして低圧ループ13内に抜き出され、ターボチャージャ2のコンプレッサ2aより上流の吸気管5に供給される。低圧ループ(EGR系路)13を流通するEGRガス9aは、EGR系路13の途中に設けられたEGRクーラ17内で冷却され、温度を下げられるとともに密度が上昇する。このとき、EGRガス9aの温度が露点以下に下がることにより、EGRガス9a中に凝縮水が水滴として発生する。   When exhaust gas recirculation is performed by the low pressure loop 13 during operation of the engine 1, if the EGR valve 15 of the low pressure loop 13 is opened, a part of the exhaust gas 9 flowing through the exhaust pipe 11 becomes EGR gas 9 a as the low pressure loop. 13 is extracted and supplied to the intake pipe 5 upstream of the compressor 2 a of the turbocharger 2. The EGR gas 9a flowing through the low-pressure loop (EGR system path) 13 is cooled in an EGR cooler 17 provided in the middle of the EGR system path 13 so that the temperature is lowered and the density is increased. At this time, when the temperature of the EGR gas 9a falls below the dew point, condensed water is generated as water droplets in the EGR gas 9a.

凝縮水を含んだEGRガス9aはEGRクーラ17の下流へ流れ、該EGRクーラの下流のEGR系路13に設けられた旋回流発生装置19を通過することによって旋回流となり、さらに下流へと流れていく。   The EGR gas 9a containing condensed water flows downstream of the EGR cooler 17, and turns into a swirl flow by passing through a swirl flow generator 19 provided in the EGR system passage 13 downstream of the EGR cooler, and further flows downstream. To go.

ここで、上述の通り、旋回流発生装置19と凝縮水分離装置20は、EGR系路13に所定の間隔をおいて設置されている。このため、旋回流発生装置19を通過したEGRガス9aは、凝縮水分離装置20へと至るまでの距離を流れる間に旋回流としての流れが安定する。すなわち、旋回流発生装置19と凝縮水分離装置20との間のEGR系路13が、EGRガス9aの助走部28として機能する。   Here, as described above, the swirling flow generator 19 and the condensed water separator 20 are installed in the EGR system path 13 at a predetermined interval. For this reason, the EGR gas 9a that has passed through the swirling flow generator 19 stabilizes the flow as a swirling flow while flowing through the distance to the condensed water separator 20. In other words, the EGR system path 13 between the swirling flow generator 19 and the condensed water separator 20 functions as the run-up portion 28 for the EGR gas 9a.

EGRガス9aの形成する旋回流により、EGRガス9a中に水滴として含まれる凝縮水は、遠心力によってEGRパイプ21の径方向外側へ吹き飛ばされ、EGRパイプ21の内壁に付着する。そして、EGRガス9aの流れに従ってEGRパイプ21の内壁を下流へと流れ伝っていく。そして、凝縮水分離装置20の凝縮水吸込部24に到達すると、そこでEGRパイプ21の管壁に穿設された水抜き孔24aから凝縮水吸収体25に毛細管現象により吸収されることになる。   Due to the swirl flow formed by the EGR gas 9 a, the condensed water contained as water droplets in the EGR gas 9 a is blown off to the radially outer side of the EGR pipe 21 by centrifugal force and adheres to the inner wall of the EGR pipe 21. And it flows along the inner wall of the EGR pipe 21 downstream according to the flow of the EGR gas 9a. And when it reaches the condensate suction part 24 of the condensate separator 20, it is absorbed by the condensate absorber 25 from the drain hole 24 a formed in the tube wall of the EGR pipe 21 by capillary action.

凝縮水吸収体25に吸収された凝縮水は、ハウジング23内に捕集された後、適宜排水弁27を開弁することによってドレンパイプ26から排水される。   The condensed water absorbed by the condensed water absorber 25 is collected in the housing 23 and then drained from the drain pipe 26 by opening the drain valve 27 as appropriate.

而して、本実施例によれば、EGRクーラ17の下流のEGRパイプ21の一部を、該EGRパイプ21の管壁に水抜き孔24aを穿設した凝縮水吸込部24とし、且つ該凝縮水吸込部24の外周面を取り巻くように凝縮水吸収体25を備え、水抜き孔24aから凝縮水吸収体25にEGRガス9a中の凝縮水を抜き出すよう構成した凝縮水分離装置20を備えているので、圧力損失を抑えながら、凝縮水吸収体25の毛細管現象により効率良くEGRガス9aから凝縮水を分離し得る。   Thus, according to this embodiment, a part of the EGR pipe 21 downstream of the EGR cooler 17 is used as the condensed water suction portion 24 having a drain hole 24a formed in the tube wall of the EGR pipe 21, and the A condensed water absorber 25 is provided so as to surround the outer peripheral surface of the condensed water suction part 24, and a condensed water separator 20 configured to extract condensed water in the EGR gas 9a from the drain hole 24a to the condensed water absorber 25 is provided. Therefore, the condensed water can be efficiently separated from the EGR gas 9a by the capillary phenomenon of the condensed water absorber 25 while suppressing the pressure loss.

また、本実施例によれば、凝縮水分離装置20の上流のEGR系路13に旋回流発生装置19を備えているので、EGRガス9aに形成された旋回流の遠心力により、一層効率良くEGRガス9aから凝縮水を分離し得る。   Further, according to the present embodiment, since the swirling flow generating device 19 is provided in the EGR system path 13 upstream of the condensed water separating device 20, the swirling flow centrifugal force formed in the EGR gas 9a is more efficient. The condensed water can be separated from the EGR gas 9a.

さらに、本実施例によれば、旋回流発生装置19と凝縮水分離装置20とを間隔をおいて配置し、旋回流発生装置19と凝縮水分離装置20との間のEGR系路13を助走部28として構成しているので、EGRガス9aに形成された旋回流が助走部28を流れる間に安定し、さらに効率良くEGRガス9aから凝縮水を分離し得る。   Furthermore, according to the present embodiment, the swirling flow generator 19 and the condensed water separator 20 are arranged at an interval, and the EGR path 13 between the swirling flow generator 19 and the condensed water separator 20 is run up. Since it comprises as the part 28, the swirl | vortex flow formed in the EGR gas 9a is stabilized while flowing through the runaway part 28, and condensed water can be more efficiently separated from the EGR gas 9a.

従って、本実施例のEGR装置によれば、EGRガスの圧力損失を抑えながら、EGRガスの冷却により発生する凝縮水を効率良く捕集し得る。   Therefore, according to the EGR device of the present embodiment, the condensed water generated by cooling the EGR gas can be efficiently collected while suppressing the pressure loss of the EGR gas.

尚、本発明のEGR装置は、上述の実施例にのみ限定されるものではなく、例えば、上記本実施例においては低圧ループの途中のEGRクーラの下流側に凝縮水捕集装置を設置しているが、高圧ループの途中のEGRクーラの下流側に設置しても良いこと等、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The EGR device of the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, a condensate collecting device is installed on the downstream side of the EGR cooler in the middle of the low-pressure loop. However, it goes without saying that various modifications can be made without departing from the spirit of the present invention, such as being installed downstream of the EGR cooler in the middle of the high-pressure loop.

1 エンジン
9a EGRガス
13 EGR系路(低圧ループ)
17 EGRクーラ
19 旋回流発生装置
20 凝縮水分離装置
21 EGRパイプ
24 凝縮水吸込部
24a 水抜き孔
25 凝縮水吸収体
28 助走部
1 Engine 9a EGR gas 13 EGR system (low pressure loop)
17 EGR cooler 19 Swirl generator 20 Condensate separator 21 EGR pipe 24 Condensate inlet 24 a Drain hole 25 Condensate absorber 28 Advancing part

Claims (1)

エンジンの排気側と吸気側との間をEGR系路により接続し、該EGR系路に備えられたEGRクーラによりEGRガスの冷却を行うEGR装置であって、
前記EGRクーラの下流のEGRパイプの一部を、該EGRパイプの管壁に水抜き孔を穿設した凝縮水吸込部とし、且つ該凝縮水吸込部の外周面を取り巻くように凝縮水吸収体を備え、前記水抜き孔から前記凝縮水吸収体にEGRガス中の凝縮水を抜き出すよう構成した凝縮水分離装置を備えると共に、該凝縮水分離装置の上流のEGR系路に旋回流発生装置を備え、該旋回流発生装置と前記凝縮水分離装置とを間隔をおいて配置し、前記旋回流発生装置と前記凝縮水分離装置との間のEGR系路を助走部として構成したことを特徴とするEGR装置。
An EGR device that connects an exhaust side and an intake side of an engine by an EGR system path and cools EGR gas by an EGR cooler provided in the EGR system path,
A part of the EGR pipe downstream of the EGR cooler is used as a condensed water suction portion having a drain hole formed in the tube wall of the EGR pipe, and the condensed water absorber is surrounded by the outer peripheral surface of the condensed water suction portion. wherein the water drain hole from comprises a condensate separator device configured to extract the condensed water in the EGR gas to the condensed water absorber Rutotomoni, swirl flow generating device to the EGR system path upstream of said condensate separator The swirling flow generator and the condensate separator are arranged at an interval, and the EGR system path between the swirl generator and the condensate separator is configured as a running part. A featured EGR device.
JP2014153404A 2014-07-29 2014-07-29 EGR device Active JP6370147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153404A JP6370147B2 (en) 2014-07-29 2014-07-29 EGR device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153404A JP6370147B2 (en) 2014-07-29 2014-07-29 EGR device

Publications (2)

Publication Number Publication Date
JP2016031042A JP2016031042A (en) 2016-03-07
JP6370147B2 true JP6370147B2 (en) 2018-08-08

Family

ID=55441571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153404A Active JP6370147B2 (en) 2014-07-29 2014-07-29 EGR device

Country Status (1)

Country Link
JP (1) JP6370147B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200473A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200472A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200476A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200469A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
US11208971B2 (en) 2019-01-16 2021-12-28 Ford Global Technologies, Llc Methods and systems for mitigating condensate formation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765749B2 (en) * 2016-05-17 2020-10-07 日野自動車株式会社 Condensed water treatment equipment for EGR equipment
JP6730175B2 (en) * 2016-12-16 2020-07-29 臼井国際産業株式会社 EGR cooler
DE102017218971B4 (en) 2017-10-24 2021-12-23 Hanon Systems Exhaust gas recirculation system
JP6982463B2 (en) * 2017-10-25 2021-12-17 臼井国際産業株式会社 Gas-liquid separator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413446Y2 (en) * 1973-12-25 1979-06-08
JPS56154515U (en) * 1980-04-17 1981-11-18
JPS58183925U (en) * 1982-06-01 1983-12-07 カルソニックカンセイ株式会社 Sound absorbing silencer
JP4192777B2 (en) * 2003-12-11 2008-12-10 トヨタ自動車株式会社 Silencer
JP4905421B2 (en) * 2008-08-06 2012-03-28 トヨタ自動車株式会社 Internal combustion engine and control device therefor
JP2011021561A (en) * 2009-07-16 2011-02-03 Denso Corp Exhaust gas recirculation device for internal combustion engine
JP2011038453A (en) * 2009-08-10 2011-02-24 Denso Corp Mixing device
JP2015086722A (en) * 2013-10-28 2015-05-07 トヨタ自動車株式会社 Internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200473A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200472A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200476A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200469A1 (en) 2019-01-16 2020-07-16 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200473B4 (en) 2019-01-16 2020-08-06 Ford Global Technologies, Llc Flow channel for separating and draining condensate
DE102019200476B4 (en) 2019-01-16 2020-08-06 Ford Global Technologies, Llc Flow channel for separating and draining condensate
US11208971B2 (en) 2019-01-16 2021-12-28 Ford Global Technologies, Llc Methods and systems for mitigating condensate formation

Also Published As

Publication number Publication date
JP2016031042A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6370147B2 (en) EGR device
JP6634092B2 (en) Swirling flow generator for gas-liquid separation
CN105339624B (en) The exhaust gas re-circulation apparatus of internal combustion engine
CN107850016A (en) The low water temperature cooling device of internal combustion engine
US9616373B2 (en) Inertial separation pre-cleaner
CN108697958A (en) Gas-liquid separation device
JP6120143B2 (en) Intercooler condensate drainage device for internal combustion engine
JP2008280945A (en) Exhaust gas recirculation device for internal combustion engine
JP2006274961A (en) Exhaust gas recirculation device
JP2013011227A (en) Exhaust gas recirculation device
JP2009041551A (en) Exhaust gas recirculation device for internal combustion engine
JP2019078234A (en) Gas liquid separation device
JP6119110B2 (en) Low pressure loop EGR device
JP6459498B2 (en) Engine intake structure
KR101235296B1 (en) Heated Air Cooling Device Of Compressor Housing
EP3552685B1 (en) Gas-liquid separation device
JP6765749B2 (en) Condensed water treatment equipment for EGR equipment
KR102139573B1 (en) Condensate water discharge device of low pressure EGR system
CN203515787U (en) Intercooler for firefighting diesel engine
JP6730175B2 (en) EGR cooler
KR102668570B1 (en) gas-liquid separation device
JP2018013089A (en) EGR device
CN218235300U (en) Engine exhaust system and vehicle
KR101976878B1 (en) Device of water removal of exhaust gas for engine
JP6382636B2 (en) EGR system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180710

R150 Certificate of patent or registration of utility model

Ref document number: 6370147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250