JP6367016B2 - Evaluation of renal function based on aortic blood flow waveform analysis - Google Patents

Evaluation of renal function based on aortic blood flow waveform analysis Download PDF

Info

Publication number
JP6367016B2
JP6367016B2 JP2014118632A JP2014118632A JP6367016B2 JP 6367016 B2 JP6367016 B2 JP 6367016B2 JP 2014118632 A JP2014118632 A JP 2014118632A JP 2014118632 A JP2014118632 A JP 2014118632A JP 6367016 B2 JP6367016 B2 JP 6367016B2
Authority
JP
Japan
Prior art keywords
blood flow
renal function
index
aortic
renal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014118632A
Other languages
Japanese (ja)
Other versions
JP2015231411A (en
Inventor
潤一郎 橋本
潤一郎 橋本
Original Assignee
潤一郎 橋本
潤一郎 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潤一郎 橋本, 潤一郎 橋本 filed Critical 潤一郎 橋本
Priority to JP2014118632A priority Critical patent/JP6367016B2/en
Publication of JP2015231411A publication Critical patent/JP2015231411A/en
Application granted granted Critical
Publication of JP6367016B2 publication Critical patent/JP6367016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、大動脈血流波形分析に基づいて腎機能を評価するための装置、プログラム、及びコンピュータ記録媒体に関する。   The present invention relates to an apparatus, a program, and a computer recording medium for evaluating renal function based on aortic blood flow waveform analysis.

本願発明者は以前の研究で、独自に大動脈血流波形分析を開発し、被験者の大動脈血流波形分析に基づいて動脈の硬化度を非侵襲的に評価する手法を見出した(非特許文献1)。   The inventor of the present application originally developed an aortic blood flow waveform analysis in a previous study, and found a technique for noninvasively evaluating the degree of arterial stiffness based on the analysis of a subject's aortic blood flow waveform (Non-Patent Document 1). ).

一方、腎機能障害は加齢や大動脈硬化等の種々の要因に伴って生じることが一般に知られているが、腎機能障害と大動脈流の血行動態との関係については明らかではなかった。   On the other hand, it is generally known that renal dysfunction is caused by various factors such as aging and aortic stiffness, but the relationship between renal dysfunction and hemodynamics of aortic flow has not been clarified.

Hashimoto J et al. 2013; Sep;62(3):542-549 Published online before print June 24, 2013, doi: 10.1161/HYPERTENSIONAHA.113.01318Hashimoto J et al. 2013; Sep; 62 (3): 542-549 Published online before print June 24, 2013, doi: 10.1161 / HYPERTENSIONAHA.113.01318

非侵襲的かつ簡便な腎機能の評価が望まれている。本発明の目的は、かかる要望を満たす腎機能評価装置、プログラム、及びコンピュータ記録媒体を提供することである。   Non-invasive and simple evaluation of renal function is desired. The objective of this invention is providing the renal function evaluation apparatus, program, and computer recording medium which satisfy | fill this request.

本発明者は、腎機能障害が大動脈流の血行動態の変化に起因すると仮定して鋭意研究したところ、驚くべきことに、大動脈内の双方向性血流が腎機能障害と密接に関与することを見出し、本発明を完成するに至った。   The present inventor conducted intensive research on the assumption that renal dysfunction is caused by changes in hemodynamics of aortic flow. Surprisingly, the bidirectional blood flow in the aorta is closely related to renal dysfunction. As a result, the present invention has been completed.

すなわち、本発明は以下の通りである。
[1]被験者の大動脈の血流データに基づいて算出された大動脈血流指標に基づいて、腎機能を示す腎機能指標を算出する腎機能指標算出手段
を備えた腎機能評価装置。
[2]前記腎機能指標に基づいて、腎機能障害の有無又は程度を評価する評価手段をさらに備える項1に記載の腎機能評価装置。
[3]前記腎機能指標が、下行大動脈の逆行性血流/順行性血流比(R/F比)又は特性インピーダンスである項1又は2に記載の腎機能評価装置。
[4]前記腎機能障害が慢性腎臓病である項2又は3に記載の腎機能評価装置。
[5]コンピュータを、項1〜4のいずれか一項に記載の腎機能評価装置として機能させるためのプログラム。
[6]項5に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
That is, the present invention is as follows.
[1] A renal function evaluation apparatus including a renal function index calculating unit that calculates a renal function index indicating renal function based on an aortic blood flow index calculated based on blood flow data of a subject's aorta.
[2] The renal function evaluation apparatus according to [1], further comprising evaluation means for evaluating the presence or absence or degree of renal dysfunction based on the renal function index.
[3] The renal function evaluation apparatus according to Item 1 or 2, wherein the renal function index is a retrograde blood flow / antegrade blood flow ratio (R / F ratio) or characteristic impedance of the descending aorta.
[4] The renal function evaluation apparatus according to Item 2 or 3, wherein the renal dysfunction is chronic kidney disease.
[5] A program for causing a computer to function as the renal function evaluation device according to any one of Items 1 to 4.
[6] A computer-readable recording medium on which the program according to item 5 is recorded.

本発明によれば、ほとんどの医療機関で使用されている超音波装置を被験者の体表面にあてるのみで、簡便かつ安全な方法で大動脈の血流波形を記録し、これに基づいて腎機能障害を非侵襲的かつ簡便に評価又は予測することが可能である。   According to the present invention, the blood flow waveform of the aorta is recorded by a simple and safe method only by applying the ultrasonic device used in most medical institutions to the body surface of the subject, and based on this, renal dysfunction is recorded. Can be evaluated or predicted non-invasively and simply.

腎機能評価システムの構成を示す略図。1 is a schematic diagram showing the configuration of a renal function evaluation system. 腎機能評価装置の動作を示すフローチャート。The flowchart which shows operation | movement of a renal function evaluation apparatus. アンサンブル平均した下行大動脈血流速度のパルス波形の例。Example of pulse waveform of descending aortic blood flow velocity averaged by ensemble. 慢性腎臓病(CKD)の正常群及び慢性腎臓病群における大動脈逆流/順流比を示すグラフ。P値はt検定により評価した(P<0.001)。The graph which shows the aortic reflux / forward flow ratio in the normal group of chronic kidney disease (CKD), and a chronic kidney disease group. P value was evaluated by t test (P <0.001).

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の腎機能評価システム10の構成を示す。腎機能評価システム10は、被験者の血流を測定する血流測定装置12と、被験者の動脈の血圧を測定する血圧測定装置14と、被験者の動脈の血圧波形を計測する脈圧センサ16と、血流測定装置12、血圧測定装置14、及び脈圧センサ16から受信したデータを記憶及び処理するコンピュータ等からなる腎機能評価装置20とを備える。腎機能評価装置20は、血流測定装置12、血圧測定装置14、及び脈圧センサ16から受信した各種データ、内部で記憶又は生成したデータに基づいて演算又は判定等を行うCPU又はプロセッサである処理装置22と、各種のデータを記憶するハードディスク等の記憶装置38と、処理装置22における演算結果を表示する表示装置40とを備えている。   FIG. 1 shows the configuration of a renal function evaluation system 10 of the present invention. The renal function evaluation system 10 includes a blood flow measurement device 12 that measures the blood flow of the subject, a blood pressure measurement device 14 that measures the blood pressure of the subject's artery, a pulse pressure sensor 16 that measures the blood pressure waveform of the subject's artery, A renal function evaluation device 20 including a blood flow measurement device 12, a blood pressure measurement device 14, and a computer that stores and processes data received from the pulse pressure sensor 16; The renal function evaluation device 20 is a CPU or processor that performs calculations or determinations based on various data received from the blood flow measurement device 12, the blood pressure measurement device 14, and the pulse pressure sensor 16, and data stored or generated internally. The processing device 22 is provided with a storage device 38 such as a hard disk for storing various data, and a display device 40 for displaying the calculation results in the processing device 22.

処理装置22は、血流測定装置12から受信した血流データの所定期間のアンサンブル平均をとり、平均血流速度波形を生成する大動脈平均血流速度波形生成手段24と、血流測定装置12から受信した血流データ及び/又は大動脈平均血流速度波形生成手段24から受け取った波形データから大動脈の血流の状態を示す指標である大動脈血流指標を演算する大動脈血流指標演算手段26と、脈圧センサ16から受信した血圧波形データの所定期間のアンサンブル平均をとり、平均動脈波形を生成する動脈平均圧力波形生成手段28と、血圧測定装置14から受け取った血圧データ、脈圧センサ16から受信した血圧波形データ、及び/又は動脈平均圧力波形生成手段28から受け取った血圧波形データから動脈の血圧の状態を示す指標である動脈血圧指標を演算する血圧指標演算手段30と、大動脈血流指標演算手段26から受信した大動脈血流指標に基づいて、腎機能を示す腎機能指標を演算する腎機能指標算出手段32と、腎機能指標算出手段32で算出された結果に基づいて腎機能障害の有無又は程度を評価する評価手段34と、腎機能指標と腎機能障害の有無及び/又は程度を示す公知の指標との相関を分析する相関分析手段36とを備える。なお、「大動脈血流指標演算手段26から受信した大動脈血流指標に基づいて、腎機能を示す腎機能指標を演算する」とは、腎機能指標を演算するに当たって少なくとも大動脈血流指標演算手段26から受信した大動脈血流指標を用いるという意味であり、大動脈血流指標演算手段26から受信した大動脈血流指標のみに基づく場合、大動脈血流指標演算手段26から受信した大動脈血流指標と血圧指標演算手段30から受信した動脈血圧指標との両方に基づく場合、及び前記2者に加えてさらに別の指標を用いる場合を含む。   The processing device 22 takes an ensemble average of the blood flow data received from the blood flow measurement device 12 for a predetermined period, and generates an average blood flow velocity waveform from the aorta average blood flow velocity waveform generation means 24 and the blood flow measurement device 12. An aortic blood flow index calculating means 26 for calculating an aortic blood flow index that is an index indicating the state of the blood flow of the aorta from the received blood flow data and / or waveform data received from the aorta average blood flow velocity waveform generating means 24; The arterial average pressure waveform generating means 28 for taking an ensemble average of the blood pressure waveform data received from the pulse pressure sensor 16 for a predetermined period and generating an average arterial waveform, and the blood pressure data received from the blood pressure measurement device 14 and the pulse pressure sensor 16 The blood pressure waveform data and / or the blood pressure waveform data received from the arterial mean pressure waveform generating means 28 is an index indicating the state of the arterial blood pressure. A blood pressure index calculating means 30 for calculating an arterial blood pressure index, a renal function index calculating means 32 for calculating a renal function index indicating renal function based on the aortic blood flow index received from the aortic blood flow index calculating means 26, and a kidney Based on the result calculated by the function index calculating means 32, the evaluation means 34 for evaluating the presence or absence or degree of renal dysfunction is correlated with a known index indicating the presence and / or degree of renal function disorder. And a correlation analysis means 36 for analysis. “Calculating a renal function index indicating renal function based on the aortic blood flow index received from the aortic blood flow index calculating means 26” means at least the aortic blood flow index calculating means 26 in calculating the renal function index. Means that the aortic blood flow index received from the aortic blood flow index is calculated based on only the aortic blood flow index received from the aortic blood flow index calculating means 26. This includes a case based on both the arterial blood pressure index received from the calculation means 30 and a case where another index is used in addition to the two.

血流測定装置12は、大動脈の血流を測定可能な任意の装置であってよく、例えば公知の変換器付き超音波装置(例えば超音波プローブ)が挙げられる。変換器付きの超音波装置の使用により、被験者の体表面から非侵襲的に大動脈の血流データ、特には経時的な血流速度変化の波形データを収集することが可能である。血流測定装置12は一定時間(例えば5〜30秒間)血流速度ないし血流量を記録する。この記録は記憶装置38に保存され、ユーザは、表示装置40上に時系列軸上に表示された保存した血流データから、データが安定しているとユーザが判定した時間区域(例えば10秒間)を後の演算処理のために選択し得る。   The blood flow measuring device 12 may be any device capable of measuring the blood flow of the aorta, and examples thereof include a known ultrasonic device with a transducer (for example, an ultrasonic probe). By using an ultrasonic device with a transducer, it is possible to noninvasively collect blood flow data of the aorta, particularly waveform data of changes in blood flow velocity over time, from the body surface of the subject. The blood flow measuring device 12 records blood flow velocity or blood flow for a certain time (for example, 5 to 30 seconds). This record is stored in the storage device 38, and the user can select a time zone (for example, 10 seconds) in which the user determines that the data is stable from the stored blood flow data displayed on the time series axis on the display device 40. ) May be selected for later processing.

大動脈平均血流速度波形生成手段24は、血流測定装置12によって得られた瞬時血流速度をまず空間的及び量的に平均する。次いで、平均瞬時速度を時系列データとして等間隔(例えば100Hz)で補間する。さらに、収縮初期の立ち上がり(血流が最大に変化する時点)等を起点として、複数拍分の血流速度波形を重ね合わせることにより、平均化した流速脈波の波形を得ることができる。通常は呼吸変動等を考慮して約5〜20心周期または約5〜20秒間のデータをアンサンブル平均し、一拍分の平均化波形を生成する(例えばHashimoto J et al., Hypertension. 2010;56:926-933参照)。この場合、平均脈血流波形は動脈平均血流速度波形生成手段24により自動計測され、表示装置40に表示され得る。   The aortic average blood flow velocity waveform generating means 24 first averages the instantaneous blood flow velocity obtained by the blood flow measuring device 12 spatially and quantitatively. Next, the average instantaneous speed is interpolated as time series data at equal intervals (for example, 100 Hz). Furthermore, an averaged velocity pulse wave waveform can be obtained by superimposing blood flow velocity waveforms for a plurality of beats starting from the beginning of contraction (when blood flow changes to the maximum) or the like. Normally, taking into account respiratory fluctuations, etc., ensemble averaging is performed for about 5 to 20 cardiac cycles or about 5 to 20 seconds, and an average waveform for one beat is generated (for example, Hashimoto J et al., Hypertension. 2010; 56: 926-933). In this case, the average pulse blood flow waveform can be automatically measured by the arterial average blood flow velocity waveform generation unit 24 and displayed on the display device 40.

大動脈血流指標演算手段26は、血流測定装置12又は大動脈平均血流速度波形生成手段24から受け取った血流データに基づいて、大動脈の血流の状態を示す指標又はパラメータである大動脈血流指標を演算する。そのような大動脈血流指標には収縮期順流ピーク速度(VFwd)、拡張期逆流ピーク速度(VRev)、拡張終期速度(VED)、時間平均化平均速度(VM)、順流ピーク時間 (TFwd)、逆流ピーク時間(TRev)、下行大動脈の逆行性血流/順行性血流比(R/F比。以下、単に「逆流/順流比」と称する)、及びこれらの組み合わせが含まれる。これらの大動脈血流指標は公知であり、例えばHashimoto J et al., Hypertension. 2010;56:926-933等に記載されている。
R/F比は大動脈血流の逆行の程度を示し、
The aortic blood flow index calculating means 26 is an aortic blood flow that is an index or parameter indicating the blood flow state of the aorta based on the blood flow data received from the blood flow measuring device 12 or the aortic average blood flow velocity waveform generating means 24. Calculate the index. Such aortic flow index systolic forward flow peak velocity to (V Fwd), diastolic backflow peak velocity (V Rev), end-diastolic velocity (V ED), average speed time-averaged (V M), the forward flow peak time (T Fwd ), regurgitation peak time (T Rev ), retrograde aortic retrograde blood flow / forward blood flow ratio (R / F ratio; hereinafter simply referred to as “reverse flow / forward flow ratio”), and combinations thereof Is included. These aortic blood flow indexes are known, and are described, for example, in Hashimoto J et al., Hypertension. 2010; 56: 926-933.
R / F ratio indicates the degree of retrograde aortic blood flow,

で表される。 It is represented by

血圧測定装置14は、動脈の血圧を測定可能な任意の装置であってよく、例えば公知のカフ式オシロメータが挙げられる。カフ式オシロメータで測定される動脈血圧としては、上腕動脈、橈骨動脈、及び/又は下肢動脈などの動脈の収縮期血圧、拡張期血圧、平均血圧及び/又は心拍が含まれる。かかる血圧測定法は公知技術であり、当業者には通常の技能で実施可能である。血圧測定装置14で測定した血圧の記録は、記憶装置38に保存される。通常は医師又は看護師等の医療従事者である腎機能評価システム10の使用者(以下、ユーザ)は、表示装置40上に表示された保存した血圧データから、安定しているとユーザが判定したデータを選択及び/又は平均化し、後の演算処理のために用いることができる。   The blood pressure measurement device 14 may be any device capable of measuring arterial blood pressure, such as a known cuff oscillometer. Arterial blood pressure measured with a cuff oscillometer includes systolic blood pressure, diastolic blood pressure, mean blood pressure and / or heart rate of arteries such as brachial artery, radial artery and / or lower limb artery. Such a blood pressure measurement method is a well-known technique and can be carried out by those skilled in the art with ordinary skills. A record of blood pressure measured by the blood pressure measurement device 14 is stored in the storage device 38. A user (hereinafter referred to as a user) of the renal function evaluation system 10 who is usually a medical worker such as a doctor or a nurse determines that the user is stable from the stored blood pressure data displayed on the display device 40. The selected data can be selected and / or averaged and used for later processing.

脈圧センサ16は、トノメトリ法により橈骨動脈、頚動脈、上腕動脈、大腿動脈及び/又は足背動脈などの動脈からの血圧の波形を測定することが可能なセンサである。脈圧センサ16は一定時間(例えば5〜30秒間)血圧波形を記録し、この記録は記憶装置38に保存され、ユーザは、表示装置40上に時系列軸上に表示された保存した血圧波形データから、データが安定しているとユーザが判定した時間区域(例えば10秒間)を後の演算処理のために選択し得る。   The pulse pressure sensor 16 is a sensor capable of measuring a blood pressure waveform from an artery such as the radial artery, the carotid artery, the brachial artery, the femoral artery and / or the dorsal artery by the tonometry method. The pulse pressure sensor 16 records a blood pressure waveform for a predetermined time (for example, 5 to 30 seconds), and this record is stored in the storage device 38, and the user displays the stored blood pressure waveform displayed on the time series axis on the display device 40. From the data, the time zone (eg, 10 seconds) that the user has determined that the data is stable may be selected for later computation.

動脈平均圧力波形生成手段28は伝達関数を含むプログラムであり、例えば脈圧センサ16で記録された橈骨動脈の脈動圧力信号を所定期間(通常、5〜20周期)アンサンブル平均し、大動脈圧力波形に変換する。この場合、所定期間の平均脈圧力波形は動脈平均圧力波形生成手段28により自動計測され、表示装置40に表示され得る。   The arterial average pressure waveform generating means 28 is a program including a transfer function. For example, the pulsatile pressure signal of the radial artery recorded by the pulse pressure sensor 16 is ensemble averaged for a predetermined period (usually 5 to 20 cycles) to obtain an aortic pressure waveform. Convert. In this case, the average pulse pressure waveform for a predetermined period can be automatically measured by the arterial average pressure waveform generating means 28 and displayed on the display device 40.

血圧指標演算手段30は、血圧測定装置14から受け取った血圧データ、脈圧センサ16から受信した血圧波形データ、及び/又は動脈平均圧力波形生成手段28から受け取った血圧波形データに基づいて、血圧の状態を示す指標又はパラメータである動脈血圧指標を演算する。なお、「血圧データに基づいて算出された動脈血圧指標」と言う場合の「血圧データ」には、血圧測定装置14から受け取った血圧データ、脈圧センサ16から受信した血圧波形データ、及び/又は動脈平均圧力波形生成手段28から受け取った血圧波形データが含まれる。   Based on the blood pressure data received from the blood pressure measurement device 14, the blood pressure waveform data received from the pulse pressure sensor 16, and / or the blood pressure waveform data received from the arterial mean pressure waveform generation means 28, the blood pressure index calculation means 30 An arterial blood pressure index which is an index or parameter indicating the state is calculated. The “blood pressure data” in the case of “arterial blood pressure index calculated based on blood pressure data” includes blood pressure data received from the blood pressure measurement device 14, blood pressure waveform data received from the pulse pressure sensor 16, and / or Blood pressure waveform data received from the arterial mean pressure waveform generating means 28 is included.

例えば、血圧指標演算手段30は、動脈平均圧力波形生成手段28で生成した大動脈圧力波形を上腕血圧の絶対値で較正することにより大動脈血圧の絶対値(推定値)を算出する。かかる演算結果は、表示装置40に表示され得る。   For example, the blood pressure index calculating unit 30 calculates the absolute value (estimated value) of the aortic blood pressure by calibrating the aortic pressure waveform generated by the arterial average pressure waveform generating unit 28 with the absolute value of the brachial blood pressure. The calculation result can be displayed on the display device 40.

動脈血圧指標には、大動脈収縮期血圧、大動脈脈圧(収縮期血圧と拡張期血圧の差)、大動脈増大圧、任意選択で所与の心拍に調節されてもよい大動脈増大係数、大動脈投射圧波高、大動脈−橈骨動脈間の脈圧増幅、大動脈−大腿動脈間の脈圧増幅、大動脈−大腿動脈間の脈波伝播速度(PWVC-F)、大動脈−橈骨動脈間の脈波伝播速度(PWVC-R)、大動脈−末梢の腎機能障害の勾配比であるPWVC-F対PWVC-Rの比(PWVC-F /PWVC-R)、標準化PWVC-F、及びこれらの組み合わせ含まれる。これらの動脈血圧指標は公知であり、例えば標準化PWVC-F以外の上記の動脈血圧指標は、例えばHashimoto J et al., Hypertension. 2010;56:926-933; Weber T et al., J Hypertens. 2009;27:1624-1630.; Hashimoto J et al., Hypertension. 2011;58:839-846.に記載されている通りに演算可能である。標準化PWVC-Fは公知の方法により計算可能である(Eur Heart J. 2010;31:2338-2350; Van Bortel LM et al., J Hypertens. 2012;30:445-448.)。 Arterial blood pressure indicators include aortic systolic blood pressure, aortic pulse pressure (difference between systolic and diastolic blood pressure), aortic augmentation pressure, aortic augmentation factor that may optionally be adjusted to a given heart rate, aortic projection pressure Wave height, pulse pressure amplification between the aorta and radial artery, pulse pressure amplification between the aorta and femoral artery, pulse wave velocity between the aorta and femoral artery (PWV CF ), pulse wave velocity between the aorta and radial artery (PWV CR) ), PWV CF to PWV CR ratio (PWV CF / PWV CR ), a gradient ratio of aortic-peripheral renal dysfunction, standardized PWV CF , and combinations thereof. These arterial blood pressure indices are known, for example, the above arterial blood pressure indices other than the standardized PWV CF are, for example, Hashimoto J et al., Hypertension. 2010; 56: 926-933; Weber T et al., J Hypertens. 2009 27: 1624-1630 .; Hashimoto J et al., Hypertension. 2011; 58: 839-846. Standardized PWV CF can be calculated by known methods (Eur Heart J. 2010; 31: 2338-2350; Van Bortel LM et al., J Hypertens. 2012; 30: 445-448.).

腎機能指標算出手段32は、大動脈血流指標演算手段26から受信した大動脈血流指標に基づいて、腎機能を示す指標又はパラメータである腎機能指標を算出する。腎機能指標は、大動脈血流指標演算手段26から受信した大動脈血流指標そのものであってもよいし、大動脈血流指標演算手段26から受信した大動脈血流指標の関数として腎機能指標算出手段32にて生成された指標であってもよいし、大動脈血流指標演算手段26から受信した大動脈血流指標と血圧指標演算手段30から受信した動脈血圧指標との両方の関数として腎機能指標算出手段32にて生成された指標であってもよい。   Based on the aortic blood flow index received from the aortic blood flow index calculating means 26, the renal function index calculating means 32 calculates a renal function index that is an index or parameter indicating the renal function. The renal function index may be the aortic blood flow index itself received from the aortic blood flow index calculating means 26, or the renal function index calculating means 32 as a function of the aortic blood flow index received from the aortic blood flow index calculating means 26. May be an index generated in the above, or a renal function index calculating means as a function of both the aortic blood flow index received from the aortic blood flow index calculating means 26 and the arterial blood pressure index received from the blood pressure index calculating means 30 The index generated at 32 may be used.

一つの実施形態では、腎機能指標は下行大動脈の逆行性血流/順行性血流比(R/F比)である。逆行性血流/順行性血流比(R/F比)は患者の血流データのみから取得できる点で有利であり、逆行性血流/順行性血流比(R/F比)のみでも腎機能障害を予測できることは予想外の知見である。   In one embodiment, the renal function indicator is the retrograde blood flow / antegrade blood flow ratio (R / F ratio) of the descending aorta. The retrograde blood flow / antegrade blood flow ratio (R / F ratio) is advantageous in that it can be obtained only from the blood flow data of the patient, and the retrograde blood flow / antegrade blood flow ratio (R / F ratio). It is an unexpected finding that renal dysfunction can be predicted by itself.

別の実施形態では、腎機能指標は特性インピーダンス(Z0)である。特性インピーダンス(Z0)は、 In another embodiment, the renal function indicator is characteristic impedance (Z 0 ). The characteristic impedance (Z 0 ) is

あるいは Or

で表され、大動脈順流ピーク速度(VFwd)、大動脈投射圧波高(P1h)、及び大動脈内半径(R)より時間ドメインで計算される。式(2)は血流量で定義したインピーダンス、式(3)は血流速度で定義したインピーダンスであり、いずれを用いてもよい。 And is calculated in the time domain from the aortic forward flow velocity (V Fwd ), the aortic projection pressure wave height (P 1h ), and the aortic radius (R). Equation (2) is the impedance defined by the blood flow rate, and Equation (3) is the impedance defined by the blood flow velocity, and either may be used.

評価手段34は、腎機能指標算出手段32で算出された結果に基づいて腎機能、つまり腎機能障害の有無及び/又は程度を評価する。腎機能障害には慢性腎臓病及び慢性腎不全が含まれる。一つの実施形態では、腎機能障害は慢性腎臓病である。慢性腎臓病には腎硬化症、慢性糸球体腎炎、糖尿病性腎症、及び腎炎が含まれるがこれらに限定されない。腎機能障害の程度には病期の進行度である段階(ステージ)が含まれる。   The evaluation unit 34 evaluates the renal function, that is, the presence / absence and / or degree of renal dysfunction based on the result calculated by the renal function index calculation unit 32. Renal dysfunction includes chronic kidney disease and chronic renal failure. In one embodiment, the renal dysfunction is chronic kidney disease. Chronic kidney disease includes, but is not limited to, nephrosclerosis, chronic glomerulonephritis, diabetic nephropathy, and nephritis. The degree of renal dysfunction includes a stage that is the degree of progression of the stage.

例えば、健常者又は腎機能障害を有する患者の上記腎機能指標の測定値に基づき、腎機能障害の有無及び/又は程度の判定の基準値を閾値として設定し、記憶装置38に記憶する。   For example, based on the measured value of the above-mentioned renal function index of a healthy person or a patient having renal dysfunction, a reference value for determining the presence and / or degree of renal dysfunction is set as a threshold value and stored in the storage device 38.

評価手段34は、ある被験者の腎機能指標を上記基準値と比較する比較手段と、比較結果に基づいて被験者における腎機能障害の有無及び/又は程度を判定する判定手段とをさらに備える。評価手段34は、ある被験者の腎機能指標の値が、当該基準値以上か若しくはそれより小さいか、又は当該閾値以下か若しくはそれより大きいかを判定することにより、腎機能障害の有無及び/又は程度を判定できる。   The evaluation unit 34 further includes a comparison unit that compares a renal function index of a subject with the reference value, and a determination unit that determines the presence and / or degree of renal dysfunction in the subject based on the comparison result. The evaluation means 34 determines the presence or absence of renal dysfunction and / or by determining whether the value of a renal function index of a subject is greater than or less than the reference value, or less than or greater than the threshold value. Degree can be determined.

例えば、ある被験者の腎機能指標の値を、健常者から得た腎機能障害の測定値である基準値と比較し、当該被験者の腎機能指標の値が基準値よりも統計学的に有意(P<0.05)に大きい場合、当該被験者は腎機能障害に罹患している可能性が高いと判定できる。また、ある被験者の腎機能指標の値を、ある病期のステージにある患者の測定値である基準値と比較し、当該被験者の腎機能指標の値が基準値よりも統計学的に有意(P<0.05)に大きい場合、当該被験者はその病期のステージにある可能性が高いと判定できる。   For example, the value of a renal function index of a subject is compared with a reference value that is a measured value of renal dysfunction obtained from a healthy subject, and the value of the renal function index of the subject is statistically more significant than the reference value ( When P <0.05, it can be determined that the subject is likely to suffer from renal dysfunction. In addition, the value of a renal function index of a subject is compared with a reference value that is a measurement value of a patient at a stage of a stage, and the value of the renal function index of the subject is statistically more significant than the reference value ( When P <0.05, it can be determined that the subject is likely to be in the stage of the stage.

相関分析手段36は、腎機能指標と、腎機能障害の有無及び/又は程度を示す公知の指標との相関を分析する。腎機能障害の有無及び/又は程度を示す公知の指標としては例えば推定糸球体濾過率(eGFR)、糸球体濾過率(GFR)、尿素窒素(BUN)、クレアチニン(Crea)、尿酸(UA)、シスタチンCなどが挙げられる。例えば横軸に腎機能障害の有無及び/又は程度を示す公知の指標、縦軸に本願における腎機能指標をプロットし、表示装置40でグラフとして視覚化することで、医療従事者等は、2つのパラメータの相関、並びに腎機能を評価する指標としての腎機能指標の精度を検討、確認することができる。   The correlation analysis means 36 analyzes the correlation between the renal function index and a known index that indicates the presence and / or extent of renal dysfunction. Known indicators indicating the presence and / or extent of renal dysfunction include, for example, estimated glomerular filtration rate (eGFR), glomerular filtration rate (GFR), urea nitrogen (BUN), creatinine (Crea), uric acid (UA), Cystatin C and the like can be mentioned. For example, by plotting a known index indicating the presence and / or degree of renal dysfunction on the horizontal axis and the renal function index in the present application on the vertical axis and visualizing it as a graph on the display device 40, the medical staff etc. It is possible to examine and confirm the correlation between the two parameters and the accuracy of the renal function index as an index for evaluating the renal function.

図2は、腎機能評価装置10の処理装置22の主な動作を示すフローチャートである。工程S1で、大動脈平均血流速度波形生成手段24が血流測定装置12から受信した血流データから大動脈平均血流速度波形を生成する。工程S2で、大動脈血流指数演算手段26が、血流測定装置12から受信した血流データ及び/又は大動脈平均血流速度波形生成手段24から受け取った波形データから大動脈血流指標を演算する。工程S3で、腎機能指標算出手段32が、大動脈血流指数演算手段26から受信した動脈血流指標に基づいて、具体的には動脈血流指標の関数として、腎機能障害に関連する指標を演算する。工程S4で、評価手段34は、腎機能指標算出手段32で算出された腎機能指標に基づいて腎機能障害の有無及び/又は程度を判定する。   FIG. 2 is a flowchart showing main operations of the processing device 22 of the renal function evaluation device 10. In step S <b> 1, the aortic average blood flow velocity waveform generating unit 24 generates an aortic average blood flow velocity waveform from the blood flow data received from the blood flow measuring device 12. In step S <b> 2, the aortic blood flow index calculating unit 26 calculates an aortic blood flow index from the blood flow data received from the blood flow measuring device 12 and / or the waveform data received from the aortic average blood flow velocity waveform generating unit 24. In step S3, based on the arterial blood flow index received from the aortic blood flow index calculating unit 26, the renal function index calculating unit 32 calculates an index related to renal dysfunction as a function of the arterial blood flow index. Calculate. In step S <b> 4, the evaluation unit 34 determines the presence and / or extent of renal dysfunction based on the renal function index calculated by the renal function index calculation unit 32.

代替的に、腎機能指標算出手段32で腎機能関連指標を算出する際に、動脈血圧指標をも用いる場合は、工程S2の後に、工程S5で、動脈平均圧力波形生成手段28が被験者の血圧パルス波形データから平均動脈圧力波形を生成し、次に、工程S6で、動脈血圧指標演算手段30が、血圧測定装置14から受け取った血圧データ、脈圧センサ16から受け取った血圧波形データ、及び/又は動脈平均圧力波形生成手段28から受け取った波形データから動脈血圧指標を演算する。そして、工程S3で、腎機能指標算出手段32が、大動脈血流指数演算手段26から受信した動脈血流指標及び血圧指標演算手段30から受信した動脈血圧指標に基づいて、具体的には動脈血流指標及び動脈血圧指標の関数として、腎機能障害に関連する指標を演算する。工程S4で、評価手段34は、腎機能指標算出手段32で算出された腎機能指標に基づいて腎機能障害の有無及び/又は程度を判定する。   Alternatively, when the renal function index is calculated by the renal function index calculation unit 32, when the arterial blood pressure index is also used, in step S5, the arterial average pressure waveform generation unit 28 determines the blood pressure of the subject in step S2. An average arterial pressure waveform is generated from the pulse waveform data. Next, in step S6, the arterial blood pressure index calculating means 30 receives the blood pressure data received from the blood pressure measurement device 14, the blood pressure waveform data received from the pulse pressure sensor 16, and / or Alternatively, the arterial blood pressure index is calculated from the waveform data received from the arterial average pressure waveform generating means 28. In step S3, the renal function index calculating means 32 is based on the arterial blood flow index received from the aortic blood flow index calculating means 26 and the arterial blood pressure index received from the blood pressure index calculating means 30, specifically arterial blood. An index associated with renal dysfunction is calculated as a function of the flow index and the arterial blood pressure index. In step S <b> 4, the evaluation unit 34 determines the presence and / or extent of renal dysfunction based on the renal function index calculated by the renal function index calculation unit 32.

本発明は、コンピュータを上記の腎機能評価装置20として機能させるためのプログラムや、当該プログラムを記録したコンピュータ読み取り可能な記録媒体も包含する。   The present invention also includes a program for causing a computer to function as the renal function evaluation apparatus 20 and a computer-readable recording medium on which the program is recorded.

以上のように、本発明によれば、血流の分析データを腎機能障害の予防や改善のためのマーカーとして使用でき、体表面に超音波装置をあてるのみで腎機能を非侵襲的かつ簡便に評価し得る。   As described above, according to the present invention, blood flow analysis data can be used as a marker for prevention or improvement of renal dysfunction, and renal function can be non-invasively and simply performed by applying an ultrasonic device to the body surface. Can be evaluated.

また、腎機能を評価するために大動脈血流指標をさらに非侵襲的な方法で得られた血圧指標と組み合わせてもよいが、この場合も被験者の身体的及び経済的負担が極めて少ない。このように、既存の医療機器を利用して、低額のソフトウェアを組み入れるだけで簡便かつ安全に血流波形の測定及び腎機能の評価が可能となる。本発明は既存の腎疾患の診断精度を高める支援ツールとしても使用できる。また本発明によれば、腎障害の早期検出又は治療における早期介入が可能となり、患者の生命予後の改善に寄与し得る。   In addition, the aortic blood flow index may be combined with a blood pressure index obtained by a non-invasive method in order to evaluate renal function, but in this case also, the physical and economic burden on the subject is extremely small. As described above, the blood flow waveform measurement and the renal function evaluation can be performed easily and safely simply by incorporating low-cost software using an existing medical device. The present invention can also be used as a support tool for improving the diagnostic accuracy of existing renal diseases. Further, according to the present invention, early detection or treatment of renal disorder can be performed, which can contribute to improvement of the patient's life prognosis.

なお、上記の実施形態は、以下のように変更可能である。
○腎機能指標は、大動脈血流指標演算手段26から受信した大動脈血流指標のみに基づいて算出されてもよく、血圧測定装置14、脈圧センサ16、動脈平均圧力波形生成手段28、及び血圧指標演算手段30は省略されてもよい。
○腎機能指標算出手段32で腎機能指標を算出する場合に、大動脈血流指標演算手段26で算出された大動脈血流指標及び血圧指標演算手段30で算出された動脈血圧指標以外の指標を用いてもよい。
○血圧データ(血圧波形データを含む)及び/又は血流データ(血流波形データを含む)を測定する場合、ユーザの操作により手動で測定時間を決定してもよいが、ある一定の時間区域(例えば5〜30秒間)をプリセットとして用い、その時間区域で自動的に測定が開始及び終了されるよう、処理装置22によりすべての工程が自動計測されてもよい。また、手動と自動をユーザが切り替えられる構成であってもよい。
○上記の実施形態では、血流データと血圧データを時系列(時間ドメイン)分析で測定しているが、周波数分析(周波数ドメイン)で測定してもよい。
○血流と血圧を別個に計測する代わりに、被験者からの血流の測定と血圧の測定とを同時に行い、両データを時間的に同期させてパーソナルコンピュータに取り込んだ上で自動処理してもよい。この場合、より精密な測定が可能である。
○上記の実施形態では、大動脈平均血流速度波形生成手段24及び動脈平均圧力波形生成手段28が、大動脈血流指数演算手段26及び血圧指標演算手段30と同じ処理装置22内に存在し、腎機能指標算出手段32も大動脈血流指数演算手段26及び血圧指標演算手段30と同じ処理装置22内に存在しているが、部材24,28は部材26,30とは物理的に離れた処理装置に存在してもよく、部材26,30と腎機能指標算出手段32も物理的に離れた処理装置に存在してもよい。つまり、処理装置22内の各部材が同一の処理装置内にある場合のみならず、異なる処理装置に存在する場合も本発明の範囲に含まれる。
In addition, said embodiment can be changed as follows.
The renal function index may be calculated based only on the aortic blood flow index received from the aortic blood flow index calculating unit 26, and the blood pressure measurement device 14, the pulse pressure sensor 16, the arterial average pressure waveform generating unit 28, and the blood pressure The index calculation means 30 may be omitted.
○ When calculating the renal function index by the renal function index calculating means 32, an index other than the aortic blood flow index calculated by the aortic blood flow index calculating means 26 and the arterial blood pressure index calculated by the blood pressure index calculating means 30 is used. May be.
○ When measuring blood pressure data (including blood pressure waveform data) and / or blood flow data (including blood flow waveform data), the measurement time may be determined manually by the user's operation. All the processes may be automatically measured by the processing device 22 so that the measurement is automatically started and ended in that time zone using (for example, 5 to 30 seconds) as a preset. Moreover, the structure which a user can switch between manual and automatic may be sufficient.
In the above embodiment, blood flow data and blood pressure data are measured by time series (time domain) analysis, but may be measured by frequency analysis (frequency domain).
○ Instead of measuring blood flow and blood pressure separately, blood flow from the subject and blood pressure can be measured at the same time, and both data can be synchronized in time and taken into a personal computer for automatic processing. Good. In this case, more accurate measurement is possible.
In the above embodiment, the aortic average blood flow velocity waveform generating means 24 and the arterial average pressure waveform generating means 28 are present in the same processing device 22 as the aortic blood flow index calculating means 26 and the blood pressure index calculating means 30, and The function index calculating means 32 is also present in the same processing device 22 as the aortic blood flow index calculating means 26 and the blood pressure index calculating means 30, but the members 24 and 28 are physically separate from the members 26 and 30. The members 26 and 30 and the kidney function index calculating means 32 may also be present in a physically separated processing apparatus. That is, the present invention includes not only the case where each member in the processing apparatus 22 is in the same processing apparatus but also the case where they exist in different processing apparatuses.

本明細書中に引用されているすべての特許出願および文献の開示は、それらの全体が参照により本明細書に組み込まれるものとする。   The disclosures of all patent applications and documents cited herein are hereby incorporated by reference in their entirety.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

本発明者は、非侵襲的かつ定量的な方法(Hashimoto J et al., Hypertension. 2010;56:926-933; Hashimoto J et al., Hypertension. 2011;58:839-846.)を用いて、高血圧患者における下行大動脈の血流脈波形を評価した。本発明者の目的は、大動脈の血流動態と慢性腎臓病との間の関係の調査である。
(方法)
1.患者
東北大学病院で診察した成人高血圧患者(男女222名、平均年齢53±13歳)について調べた。除外基準は心不全、大動脈弁閉鎖不全を含む心臓弁膜疾患(超音波グレード>I゜,Omoto R et al., Jpn Heart J. 1984;25:325-340)、大動脈炎症候群、大動脈瘤、心房細動、頚動脈狭窄、症候性脳卒中の既往、及び不十分な超音波シグナルの質とした。
2.大動脈血流測定
血流速度は、3.5-MHzセクター型プローブを装備したデュプレックス(複式)超音波装置(Vivid i, GE Health care, 日本国東京)を用いて測定した。胸骨上窩アプローチを使用して近位下行大動脈から、2次元のリアルタイムBモード及び双方向パルスドップラー信号を取得した。詳細には、プローブを胸骨上窩に置き、血流に対する超音波入射角が0°になるように長軸方向から見て下行大動脈を横切るように向けた。血管の管腔にわたり流速分布はほとんど変化しないため、ドップラーシフト信号を大動脈管腔の中心でサンプリングした。できるだけ遅い血流も含まれるように、できるだけ低いウォールフィルタを選択した。5.5mmのサンプル幅内で強度で重み付けしたドップラー信号の空間平均として、瞬時速度を計算した。空間平均した瞬時平均速度を16秒間連続して記録し、さらなる分析のため時系データとして記憶した。ドップラー記録と同じ部位でBモードにより下行大動脈の内径も測定した。
The present inventor uses a non-invasive and quantitative method (Hashimoto J et al., Hypertension. 2010; 56: 926-933; Hashimoto J et al., Hypertension. 2011; 58: 839-846.) The blood flow waveform of the descending aorta in hypertensive patients was evaluated. The inventor's goal is to investigate the relationship between aortic hemodynamics and chronic kidney disease.
(Method)
1. We examined adult hypertensive patients (222 men and women, average age 53 ± 13 years) examined at Tohoku University Hospital. Exclusion criteria are heart failure, heart valve disease including aortic regurgitation (ultrasonic grade> I °, Omoto R et al., Jpn Heart J. 1984; 25: 325-340), aortitis syndrome, aortic aneurysm, atrial detail Motion, carotid stenosis, history of symptomatic stroke, and poor ultrasound signal quality.
2. Measurement of aortic blood flow Blood flow velocity was measured using a duplex ultrasonic device (Vivid i, GE Health care, Tokyo, Japan) equipped with a 3.5-MHz sector probe. Two-dimensional real-time B-mode and bidirectional pulse Doppler signals were acquired from the proximal descending aorta using the suprasternal fossa approach. Specifically, the probe was placed in the suprasternal fossa and oriented across the descending aorta as viewed from the long axis direction so that the angle of ultrasonic incidence to the blood flow was 0 °. The Doppler shift signal was sampled at the center of the aortic lumen since the flow velocity distribution hardly changed across the vessel lumen. The lowest possible wall filter was selected to include the slowest possible blood flow. The instantaneous velocity was calculated as a spatial average of Doppler signals weighted by intensity within a 5.5 mm sample width. The spatially averaged instantaneous average speed was recorded continuously for 16 seconds and stored as time series data for further analysis. The inner diameter of the descending aorta was also measured by B mode at the same site as the Doppler recording.

16秒間の血流速度データを100Hzでオフラインにて補間した(Mathematica version 4.0,Wolfram Research, 米国イリノイ州Champaign)。次に速度脈波形を、経時的な血流速度が収縮期の下から上向きに変わる立ち上がり点を基準点として用いて、10個の連続する心周期に関しアンサンブル平均した(Hashimoto J et al., Hypertension. 2010;56:926-933)。時間軸に対して、プローブに向かう速度は基準線より上に、またプローブから遠ざかる速度は基準線より下に示すようにプロットして平均流速波形を描き、以下のパラメータを計測した (図3):
収縮期順流ピーク速度(VFwd);
拡張期逆流ピーク速度(VRev);
拡張終期血流速度(VED);
時間平均化平均血流速度(VM);
順流ピーク時間 (TFwd);
逆流ピーク時間(TRev)。
16-second blood flow velocity data was interpolated off-line at 100 Hz (Mathematica version 4.0, Wolfram Research, Champaign, Illinois, USA). Next, the velocity pulse waveform was ensemble averaged over 10 consecutive cardiac cycles, using the rising point at which the blood flow velocity over time changes from the bottom to the top of the systole as a reference point (Hashimoto J et al., Hypertension 2010; 56: 926-933). Plotting the velocity toward the probe above the reference line and the velocity moving away from the probe below the reference line with respect to the time axis, the average flow velocity waveform was plotted, and the following parameters were measured (Fig. 3) :
Systolic forward flow peak velocity (V Fwd );
Diastolic backflow peak velocity (V Rev );
End-diastolic blood flow velocity (V ED );
Time-averaged mean blood flow velocity (V M );
Forward flow peak time (T Fwd );
Back flow peak time (T Rev ).

下行大動脈血流速度に基づく逆流/順流比(R/F比)は百分率として上記の式(1)から計算した。
3.大動脈血圧測定及び動脈機能測定
一連の血圧測定は静かな温度制御環境下で公知の方法により行った(Hashimoto J et al., Hypertension. 2010;56:926-933; Hashimoto J et al., Hypertension. 2011;58:839-846.)。簡単に説明すると、患者を20分仰臥位にした後、上腕の血圧をカフ・オシロメトリック式圧力測定装置(HEM-907, Omron Healthcare, 日本国京都)で測定した。その後、ペン型圧力センサープローブ(SPT-301, Millar Instruments, 米国テキサス州Houston)を用いて非侵襲的に橈骨動脈、頚動脈及び大腿動脈から脈動圧力信号を圧平法(トノメトリ法)で記録した。記録した橈骨動脈の脈動圧力波形を11秒間アンサンブル平均し、一般化伝達関数(SphygmoCor version 8.2, AtCor Medical、オーストラリア国Sydney)を用いて対応する大動脈圧力波形に変換した。平均化した橈骨動脈を上腕の収縮期圧及び拡張期圧で較正し、曲線下面積より平均動脈圧を決定し、それにより大動脈収縮期圧及び拡張期圧を概算し、その差から大動脈脈圧を算出した。また、較正された大動脈波形を用いて大動脈投射波高(P1h)を計算し(Hashimoto J et al., Hypertension. 2010;56:926-933; Weber T et al, J Hypertens. 2009;27:1624-1630.; Hashimoto J et al., Hypertension. 2011;58:839-846.)、特性インピーダンス(Z0)を(Dujardin JP et al., Med Biol Eng Comput. 1981;19:565-568; Lucas CL et al.; Nichols WW et al., McDonald's Blood Flow in Arteries: Theorertical, Experimental and Clinical Principles. London: Hodder Arnold; 2011)の方法を参考として上記の式(2)から決定した。
The reverse flow / forward flow ratio (R / F ratio) based on the descending aortic blood flow velocity was calculated from the above formula (1) as a percentage.
3. Aortic blood pressure measurement and arterial function measurement A series of blood pressure measurement was performed by a known method under a quiet temperature control environment (Hashimoto J et al., Hypertension. 2010; 56: 926-933; Hashimoto J et al., Hypertension. 2011; 58: 839-846.). Briefly, after placing the patient in the supine position for 20 minutes, the blood pressure of the upper arm was measured with a cuff oscillometric pressure measuring device (HEM-907, Omron Healthcare, Kyoto, Japan). Thereafter, pulsatile pressure signals were recorded from the radial artery, carotid artery and femoral artery non-invasively using a pen-type pressure sensor probe (SPT-301, Millar Instruments, Houston, Texas, USA) by the applanation method (tonometry method). The recorded radial artery pulsation pressure waveform was ensemble averaged for 11 seconds and converted to the corresponding aortic pressure waveform using a generalized transfer function (SphygmoCor version 8.2, AtCor Medical, Sydney, Australia). Calibrate the averaged radial artery with brachial systolic and diastolic pressures, determine the mean arterial pressure from the area under the curve, thereby approximating the aortic systolic and diastolic pressures, and the difference between them to determine the aortic pulse pressure Was calculated. Also, the aortic wave height (P 1h ) is calculated using the calibrated aortic waveform (Hashimoto J et al., Hypertension. 2010; 56: 926-933; Weber T et al, J Hypertens. 2009; 27: 1624 Hashimoto J et al., Hypertension. 2011; 58: 839-846.) And the characteristic impedance (Z 0 ) (Dujardin JP et al., Med Biol Eng Comput. 1981; 19: 565-568; Lucas CL et al .; Nichols WW et al., McDonald's Blood Flow in Arteries: Theorertical, Experimental and Clinical Principles. London: Hodder Arnold; 2011).

また、大動脈−橈骨動脈間の脈波伝播速度(PWVC-F)及び大動脈−大腿動脈間の脈波伝播速度(PWVC-R)を計測した(Hashimoto J et al., Hypertension. 2010;56:926-933; Weber T et al., J Hypertens. 2009;27:1624-1630.; Hashimoto J et al., Hypertension. 2011;58:839-846)。
4.推定糸球体濾過量(eGFR)の測定
上記の1.患者222人の推定糸球体濾過量(ml/min/1.73m2)を、血清クレアチニン、年齢及び性別から計算し、CKD診療ガイド2012 (日本腎臓学会、日腎会誌 2012;54(8):1031-1189)の分類に従って、患者を正常群(CKDステージがG1〜G2の者、eGFRが60ml/min/1.73m2以上、n=150)と慢性腎臓病群(CKDステージがG3〜G5の者、eGFRが60ml/min/1.73m2未満、n=72)とに分類した。
5.統計分析
値は特段明記しない限り、平均±標準偏差又はパーセンテージとして示す。適宜、t検定あるいはPearson相関係数を用いて単変量解析を行なった。独立した関連を評価するために、多変量線形回帰分析を使用した。P<0.05を統計学的に有意とみなした。
(結果)
下行大動脈の流速波形を測定したところ、222人のすべての被験者(100%)で、図3に示される、収縮期における順流(腹部大動脈方向への下向き血流)と拡張初期の逆流 (大動脈弓方向への上向き血流)から成る、正のピークと負のピークを有する双方向の波形を示した(図3)。
The pulse wave velocity between the aorta and radial artery (PWV CF ) and the pulse wave velocity between the aorta and femoral artery (PWV CR ) were measured (Hashimoto J et al., Hypertension. 2010; 56: 926-933). Weber T et al., J Hypertens. 2009; 27: 1624-1630 .; Hashimoto J et al., Hypertension. 2011; 58: 839-846).
4). Measurement of the first estimated glomerular filtration rate (eGFR). Estimated glomerular filtration rate (ml / min / 1.73m 2 ) of 222 patients was calculated from serum creatinine, age and sex, and CKD Medical Guide 2012 (Japan Nephrology Society, Journal of the Japan Kidney Society 2012; 54 (8): 1031 according to the classification -1189), who patients normal group (CKD stages of G1~G2, eGFR is 60ml / min / 1.73m 2 or more, n = 0.99) and chronic kidney disease group (CKD stage persons G3~G5 The eGFR was classified as less than 60 ml / min / 1.73 m 2 and n = 72).
5. Statistical analysis values are shown as mean ± standard deviation or percentage unless otherwise specified. Where appropriate, univariate analysis was performed using t-test or Pearson correlation coefficient. Multivariate linear regression analysis was used to assess independent associations. P <0.05 was considered statistically significant.
(result)
The flow velocity waveform of the descending aorta was measured, and all 222 subjects (100%) showed the normal flow (downward blood flow toward the abdominal aorta) and the early regurgitation (aortic arch) shown in FIG. A bidirectional waveform with positive and negative peaks (upward blood flow in the direction) was shown (FIG. 3).

すべての被験者の平均eGFRは66±27ml/min/1.73m2であり、eGFRは逆流/順流比(|VRev|/|VFwd|)(r=-0.25)、PWVC-F(r=-0.40)、特性インピーダンスZ0 F(r=-0.25)、及び大動脈脈圧(r=-0.30)とは有意な相関があるが、PWVC-R(r=-0.06)及び平均動脈圧(r=-0.10)とは相関がなく、逆流/順流比と大動脈脈圧のさらなる調整の結果、逆流/順流比はeGFRの最も強い決定因子であることが判明した。 The average eGFR of all subjects is 66 ± 27 ml / min / 1.73 m 2 , and eGFR is the reverse flow / forward flow ratio (| V Rev | / | V Fwd |) (r = −0.25), PWV CF (r = −0.40). ), Characteristic impedance Z 0 F (r = −0.25), and aortic pulse pressure (r = −0.30) are significantly correlated, but PWV CR (r = −0.06) and mean arterial pressure (r = −0.10) ), And further adjustment of the reflux / forward ratio and aortic pulse pressure revealed that the reflux / forward ratio was the strongest determinant of eGFR.

また、正常群(CKDステージ G1〜G2、n=150)と慢性腎臓病群(CKDステージ G3〜G5、n=72)における逆流/順流比はそれぞれ33±10%及び38±11%であり、慢性腎臓病群(CKDステージ G3〜G5、n=72)では正常群に比べて有意に高かった(P<0.001、図4)。   In addition, the reflux / forward ratios in the normal group (CKD stages G1 to G2, n = 150) and the chronic kidney disease group (CKD stages G3 to G5, n = 72) are 33 ± 10% and 38 ± 11%, respectively. The chronic kidney disease group (CKD stages G3 to G5, n = 72) was significantly higher than the normal group (P <0.001, FIG. 4).

以上の結果から、大動脈内の逆流の増加が腎機能の低下をもたらしており、逆流/順流比の測定により腎機能障害を評価できることが明らかとなった。   From the above results, it has been clarified that an increase in reflux in the aorta leads to a decrease in renal function, and renal dysfunction can be evaluated by measuring a reflux / forward flow ratio.

10…腎機能評価装置、32…腎機能指標算出手段 34…評価手段、Z0…特性インピーダンス、R/F…下行大動脈の逆流/順流比。 10 ... renal function evaluation device, 32 ... renal function index calculating means 34 ... evaluation unit, Z 0 ... characteristic impedance, reflux / down flow ratio R / F ... descending aorta.

Claims (5)

被験者の大動脈の血流データに基づいて算出された大動脈血流指標に基づいて、腎機能を示す腎機能指標を算出する腎機能指標算出手段
を備え
前記腎機能指標が、下行大動脈の逆行性血流/順行性血流比(R/F比)又は特性インピーダンス(Z o )である腎機能評価装置。
Based on the aortic blood flow index calculated based on the blood flow data of the subject's aorta, it comprises a renal function index calculating means for calculating a renal function index indicating renal function ,
A renal function evaluation apparatus , wherein the renal function index is a retrograde blood flow / antegrade blood flow ratio (R / F ratio) or characteristic impedance (Z o ) of the descending aorta .
前記腎機能指標に基づいて、腎機能障害の有無又は程度を評価する評価手段をさらに備える請求項1に記載の腎機能評価装置。   The renal function evaluation apparatus according to claim 1, further comprising an evaluation unit that evaluates the presence or absence or degree of renal dysfunction based on the renal function index. 前記腎機能障害が慢性腎臓病である請求項に記載の腎機能評価装置。 The renal function evaluation apparatus according to claim 2 , wherein the renal dysfunction is chronic kidney disease. コンピュータを、請求項1〜のいずれか一項に記載の腎機能評価装置として機能させるためのプログラム。 The program for functioning a computer as a renal function evaluation apparatus as described in any one of Claims 1-3 . 請求項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 The computer-readable recording medium which recorded the program of Claim 4 .
JP2014118632A 2014-06-09 2014-06-09 Evaluation of renal function based on aortic blood flow waveform analysis Active JP6367016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118632A JP6367016B2 (en) 2014-06-09 2014-06-09 Evaluation of renal function based on aortic blood flow waveform analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118632A JP6367016B2 (en) 2014-06-09 2014-06-09 Evaluation of renal function based on aortic blood flow waveform analysis

Publications (2)

Publication Number Publication Date
JP2015231411A JP2015231411A (en) 2015-12-24
JP6367016B2 true JP6367016B2 (en) 2018-08-01

Family

ID=54933312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118632A Active JP6367016B2 (en) 2014-06-09 2014-06-09 Evaluation of renal function based on aortic blood flow waveform analysis

Country Status (1)

Country Link
JP (1) JP6367016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190200884A1 (en) * 2016-05-20 2019-07-04 Koninklijke Philips N.V. Devices and methods for stratification of patients for renal denervation based on intravascular pressure and wall thickness measurements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814371A1 (en) * 1998-03-31 1999-10-14 Pulsion Verwaltungs Gmbh & Co Method for in-vivo determination of the compliance function and the systemic blood flow of a living being and device for carrying out the method
EP1940316B1 (en) * 2005-09-26 2015-10-21 AttenueX Technologies, Inc. Pressure attenuation device
JP2013165844A (en) * 2012-02-15 2013-08-29 Toshiba Corp Image processor and image processing method

Also Published As

Publication number Publication date
JP2015231411A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6239341B2 (en) Evaluation of arteriosclerosis degree by aortic blood flow waveform analysis
TWI669096B (en) Versatile monitoring device with a determining carotid artery pressure function
Papaioannou et al. Non-invasive methods and techniques for central blood pressure estimation: procedures, validation, reproducibility and limitations
US8328727B2 (en) Method and apparatus for assessing hemodynamic parameters within the circulatory system of a living subject
TWI667013B (en) Dynamic sensing device with a determining blood pressure function
JP6407757B2 (en) Index calculation device, index calculation system, index calculation method, and control program
WO2013061765A1 (en) Measuring device, evaluation method, and evaluation program
EP3457929B1 (en) Non-invasive system and method for measuring blood pressure variability
RU2563229C1 (en) Method for assessing growing child&#39;s cardiovascular fitness at early pathology stages
JP6367016B2 (en) Evaluation of renal function based on aortic blood flow waveform analysis
Scalise et al. The measurement of blood pressure without contact: An LDV-based technique
Torrado et al. Normal pregnancy is associated with changes in central hemodynamics and enhanced recruitable, but not resting, endothelial function
KR101918577B1 (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
Papaioannou et al. First in vivo application and evaluation of a novel method for non-invasive estimation of cardiac output
RU2582014C1 (en) Method for diagnosis of early signs of cardiovascular disease in children
Van Bortel et al. Direct measurement of local arterial stiffness and pulse pressure
US20140243691A1 (en) Measurement device, index calculating method, and index calculating program
JP2020120839A (en) Disease assessment based on analysis of carotid artery blood flow waveform
NEEDHAM Indirect assessment of arterial disease
Koohi Methods for Non-invasive trustworthy estimation of arterial blood pressure
Sohani et al. A review of commercially available non-invasive vascular screening technologies for clinical applications
Lopez et al. Continuous blood pressure measurement in daily activities
Heusinkveld et al. P125: Use of Vascular Adaptation in Response to Mechanical Loading Facilitates Personalisation of A One-Dimensional Pulse Wave Propagation Model
JP2023074113A (en) Blood pressure index or blood flow index calculation device, method and program
Sorvoja et al. Systolic blood pressure accuracy enhancement in the electronic palpation method using pulse waveform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180704

R150 Certificate of patent or registration of utility model

Ref document number: 6367016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250