JP6364706B2 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP6364706B2
JP6364706B2 JP2013103919A JP2013103919A JP6364706B2 JP 6364706 B2 JP6364706 B2 JP 6364706B2 JP 2013103919 A JP2013103919 A JP 2013103919A JP 2013103919 A JP2013103919 A JP 2013103919A JP 6364706 B2 JP6364706 B2 JP 6364706B2
Authority
JP
Japan
Prior art keywords
diffraction grating
optical waveguide
crystal substrate
periodic structure
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013103919A
Other languages
Japanese (ja)
Other versions
JP2014224896A (en
Inventor
一智 門倉
一智 門倉
徳田 勝彦
勝彦 徳田
守 久光
守 久光
和哉 井上
和哉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013103919A priority Critical patent/JP6364706B2/en
Publication of JP2014224896A publication Critical patent/JP2014224896A/en
Application granted granted Critical
Publication of JP6364706B2 publication Critical patent/JP6364706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、分極反転周期構造を有する強誘電体結晶基板を備えた光導波路型回折格子および光モジュールに関する。   The present invention relates to an optical waveguide type diffraction grating and an optical module provided with a ferroelectric crystal substrate having a domain-inverted periodic structure.

強誘電体結晶の非線形光学効果や電気光学効果を利用した光導波路素子が知られている。この光導波路素子に関しては、目的とする光を得るために、入射基本波に作用する構造を光導波路に設け、波長変換や光変調を行う素子が提案されている。   An optical waveguide device using a nonlinear optical effect or an electro-optical effect of a ferroelectric crystal is known. With regard to this optical waveguide device, in order to obtain the target light, a device has been proposed in which a structure that acts on the incident fundamental wave is provided in the optical waveguide to perform wavelength conversion and light modulation.

また、分極反転周期構造が形成された強誘電体結晶基板からなる光導波路は、電気光学効果により結晶基板内部に誘起される周期的な屈折率分布を持った回折格子を構成することができ、光導波路内を伝播する光を制御することができる。例えば、DBR(Distributed bragg refrector)は、特定波長の光を導波路内でブラッグ反射し、導波路を逆方向に伝播する光に変換することができる。この一例として、特許文献1では、残留電界を利用する分極反転型回折格子を光導波路素子内に形成した波長変換素子が開示されている。   In addition, an optical waveguide composed of a ferroelectric crystal substrate with a domain-inverted periodic structure can constitute a diffraction grating having a periodic refractive index distribution induced inside the crystal substrate by the electro-optic effect, Light propagating in the optical waveguide can be controlled. For example, DBR (Distributed bragg refrector) is capable of Bragg-reflecting light of a specific wavelength in the waveguide and converting it into light propagating in the reverse direction. As an example of this, Patent Document 1 discloses a wavelength conversion element in which a polarization inversion type diffraction grating using a residual electric field is formed in an optical waveguide element.

特開平7−13008号公報JP 7-13008 A

しかし、特許文献1のように残留電界を利用する分極反転型回折格子では、光導波路の作製時における加工歪や応力等の影響により残留電界の制御が難しく、結果として回折効率がばらつくという問題がある。また、回折効率を任意に変調することができないという問題もある。   However, in the case of the polarization inversion type diffraction grating using the residual electric field as in Patent Document 1, it is difficult to control the residual electric field due to the influence of processing strain, stress, etc. during the production of the optical waveguide, and as a result, the diffraction efficiency varies. is there. Another problem is that the diffraction efficiency cannot be arbitrarily modulated.

本発明は上記課題に鑑みてなされたものであり、強誘電体結晶基板内に形成される回折格子を確実に動作させることができ、回折効率を向上させるとともに任意に変調することができる光導波路型回折格子および光モジュールを提供することを課題とする。   The present invention has been made in view of the above problems, and can reliably operate a diffraction grating formed in a ferroelectric crystal substrate, improve diffraction efficiency, and can arbitrarily modulate the optical waveguide. It is an object to provide a type diffraction grating and an optical module.

発明の一態様によれば、コア形状がリッジ型とされ、かつ、分極反転周期構造部と波長変換部とが設けられた光導波路を有する強誘電体結晶基板と、前記強誘電体結晶基板を挟むように配置された絶縁体からなるクラッド部と、前記クラッド部の外側の分極反転周期構造部を挟んだ領域のみにそれぞれ選択的に対向配置された一対の電極部からなり、前記分極反転周期構造部に電圧を印加して電界を発生させる回折格子用電極部と、を備える光モジュールが提供される。 According to one aspect of the present invention , a ferroelectric crystal substrate having an optical waveguide having a core shape of a ridge type and provided with a domain-inverted periodic structure portion and a wavelength conversion portion, and the ferroelectric crystal substrate And a pair of electrode portions selectively disposed opposite each other only in a region sandwiching the domain-inverted periodic structure portion outside the cladding unit, and the polarization inversion There is provided an optical module including a diffraction grating electrode section that generates an electric field by applying a voltage to a periodic structure section.

本発明によれば、強誘電体結晶基板内に形成される回折格子を確実に動作させることができ、回折効率を向上させるとともに任意に変調することができる光導波路型回折格子および光モジュールを提供することができる。   According to the present invention, it is possible to provide an optical waveguide type diffraction grating and an optical module capable of reliably operating a diffraction grating formed in a ferroelectric crystal substrate, improving diffraction efficiency and arbitrarily modulating the diffraction grating. can do.

第1実施形態の光導波路型回折格子の要部を示す側面断面図である。It is side surface sectional drawing which shows the principal part of the optical waveguide type diffraction grating of 1st Embodiment. 第1実施形態の光導波路型回折格子の分極反転周期構造の構成を説明する、光導波路に直交する側面断面図である。It is side surface sectional drawing orthogonal to an optical waveguide explaining the structure of the polarization inversion periodic structure of the optical waveguide type diffraction grating of 1st Embodiment. 第2実施形態の光モジュールの要部を示す側面断面図である。It is side surface sectional drawing which shows the principal part of the optical module of 2nd Embodiment. 第3実施形態の光モジュールの構成を示す平面図である。It is a top view which shows the structure of the optical module of 3rd Embodiment. 第3実施形態の光モジュールを構成する光導波路型回折格子の分極反転周期構造を説明する、光導波路に平行な側面断面図である。It is side surface sectional drawing parallel to an optical waveguide explaining the polarization inversion periodic structure of the optical waveguide type diffraction grating which comprises the optical module of 3rd Embodiment.

以下、添付図面を参照して、本発明の実施の形態について説明する。ただし、図面は模式的なものであり、寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, it should be noted that the drawings are schematic and dimensional ratios and the like are different from actual ones. Accordingly, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, The layout is not specified as follows. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

[第1実施形態]
まず、第1実施形態について説明する。図1は、本実施形態の光導波路型回折格子の要部を示す側面断面図である。図2は、本実施形態の光導波路型回折格子の分極反転周期構造を説明する、光導波路に直交する側面断面図である。
[First Embodiment]
First, the first embodiment will be described. FIG. 1 is a side cross-sectional view showing the main part of the optical waveguide type diffraction grating of the present embodiment. FIG. 2 is a side cross-sectional view orthogonal to the optical waveguide, illustrating the polarization inversion periodic structure of the optical waveguide type diffraction grating of the present embodiment.

本実施形態の光導波路型回折格子10は、コア形状がリッジ型とされ、かつ、光路長調整部11pと分極反転周期構造部11rとを有する光導波路11gを備えた強誘電体結晶基板11と、強誘電体結晶基板11を挟むようにクラッド状に配置された絶縁層12(12a、12b)と、絶縁層12の外側に対向配置され、光路長調整部11pに電圧を印加して電界を発生させる光路長調整用電極部18(18a、18b)と、絶縁層12の外側に対向配置され、分極反転周期構造部11rに電圧を印加して電界を発生させる回折格子用電極部20(20a、20b)と、を備える。   The optical waveguide type diffraction grating 10 of the present embodiment has a ferroelectric crystal substrate 11 provided with an optical waveguide 11g having a core shape of a ridge type and having an optical path length adjusting portion 11p and a domain-inverted periodic structure portion 11r. The insulating layer 12 (12a, 12b) disposed in a clad shape so as to sandwich the ferroelectric crystal substrate 11 is opposed to the outside of the insulating layer 12, and an electric field is applied by applying a voltage to the optical path length adjusting unit 11p. A diffraction grating electrode section 20 (20a) that generates an electric field by applying a voltage to the polarization inversion periodic structure section 11r that is disposed opposite to the outside of the insulating layer 12 and the optical path length adjustment electrode section 18 (18a, 18b) to be generated. 20b).

強誘電体結晶基板11は、光路長調整部11pと、光路長調整部11pの出射光側に連続する分極反転周期構造部11rとを有しており、光導波路11gに光路長調整部11pおよび分極反転周期構造部11rが設けられた構造になっている。また、光導波路11gのコア形状はリッジ型とされている。   The ferroelectric crystal substrate 11 includes an optical path length adjusting unit 11p and a polarization inversion periodic structure unit 11r continuous on the outgoing light side of the optical path length adjusting unit 11p. The optical path length adjusting unit 11p and the optical path length adjusting unit 11p The polarization inversion periodic structure portion 11r is provided. The core shape of the optical waveguide 11g is a ridge type.

(強誘電体結晶基板)
強誘電体結晶基板11としては、ニオブ酸リチウム(LiNbO)またはタンタル酸リチウム(LiTaO)の単結晶を用いる。なお、光損傷を抑制するためには、Mg、Zn、Sc、Inの元素のうち少なくとも1つがドープされた強誘電体結晶基板を用いることが好ましい。
(Ferroelectric crystal substrate)
A single crystal of lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ) is used as the ferroelectric crystal substrate 11. In order to suppress optical damage, it is preferable to use a ferroelectric crystal substrate doped with at least one of Mg, Zn, Sc, and In.

更に、入射光あるいは出射光として短波長領域(例えば、青色光やUV光)で設計する場合には、光損傷や透明波長領域の観点から、LiO/(Ta+LiO)のモル分率が0.495以上で0.505未満であり、かつMgOをドープした、単一分極にされた定比組成または定比組成に近いタンタル酸リチウムの単結晶(MgOSLT)を強誘電体結晶基板11として用いることが好ましい。 Further, when designing in the short wavelength region (for example, blue light or UV light) as the incident light or the outgoing light, Li 2 O / (Ta 2 O 5 + Li 2 O) from the viewpoint of optical damage and transparent wavelength region. The ferroelectric crystal substrate 11 is a single crystal of a single-polarized stoichiometric composition or a near-stoichiometric composition single crystal (MgOSLT) doped with MgO and having a molar fraction of 0.495 or more and less than 0.505. It is preferable to use as.

図2に示すように、光導波路11gは、伝播効率が高められるリッジ型とされており、リッジ高さH(厚み)は、強誘電体結晶基板11を薄膜化加工することにより形成することができる。なお、ダイシング等の機械加工やフォトリソグラフィを利用したドライエッチング加工によりリッジ(溝)形状に加工することもできる。また、リッジ型の光導波路11g以外に、平面型の光導波路を用いてもよい。   As shown in FIG. 2, the optical waveguide 11g is a ridge type in which the propagation efficiency is increased, and the ridge height H (thickness) can be formed by thinning the ferroelectric crystal substrate 11. it can. In addition, it can also be processed into a ridge (groove) shape by mechanical processing such as dicing or dry etching processing using photolithography. In addition to the ridge type optical waveguide 11g, a planar type optical waveguide may be used.

(電極部)
光導波路型回折格子10を構成する電極部は、光伝播方向に沿って2箇所以上に分割して配置されており、本実施形態では、光路長調整部11pを挟むように配置された光路長調整用電極部18と、分極反転周期構造部11rを挟むように配置された回折格子用電極部20とで構成されている。そして、光路長調整用電極部18と回折格子用電極部20とは、強誘電体結晶基板11のC軸方向に対向して配置されている。このように対向した配置構成とするには、例えば、片面に光路長調整用電極部18aおよび回折格子用電極部20aを形成した基板状の支持体16a、および、片面に光路長調整用電極部18bおよび回折格子用電極部20bを形成した基板状の支持体16bを用いる。このとき、電極材(光路長調整用電極部18および回折格子用電極部20)は、密着性の優れたスパッタ法で成膜可能な金属薄膜(Al、Cr、Ta等)とすることが好ましい。本実施形態では、光路長調整用電極部18および回折格子用電極部20を設けることにより、電極が光伝播方向に沿って2箇所以上に分割して配置された構造になっている。
(Electrode part)
The electrode part constituting the optical waveguide type diffraction grating 10 is divided and arranged at two or more locations along the light propagation direction, and in this embodiment, the optical path length arranged so as to sandwich the optical path length adjusting part 11p. The adjustment electrode portion 18 and the diffraction grating electrode portion 20 arranged so as to sandwich the domain-inverted periodic structure portion 11r. The optical path length adjusting electrode portion 18 and the diffraction grating electrode portion 20 are arranged to face each other in the C-axis direction of the ferroelectric crystal substrate 11. In order to achieve such an arrangement configuration facing each other, for example, a substrate-like support 16a having an optical path length adjusting electrode portion 18a and a diffraction grating electrode portion 20a formed on one side, and an optical path length adjusting electrode portion on one side. A substrate-like support 16b on which 18b and a diffraction grating electrode portion 20b are formed is used. At this time, the electrode material (the optical path length adjusting electrode portion 18 and the diffraction grating electrode portion 20) is preferably a metal thin film (Al, Cr, Ta, etc.) that can be formed by a sputtering method having excellent adhesion. . In this embodiment, by providing the optical path length adjusting electrode portion 18 and the diffraction grating electrode portion 20, the electrode is divided into two or more locations along the light propagation direction.

また、平面視で、支持体16a、16b、光路長調整用電極部18、および、回折格子用電極部20を強誘電体結晶基板11よりも大きい寸法とすることで、支持体と電極部とのコンタクト構造を容易かつ確実に形成することができている。   In addition, when the support bodies 16a and 16b, the optical path length adjusting electrode section 18, and the diffraction grating electrode section 20 are made larger than the ferroelectric crystal substrate 11 in plan view, the support body and the electrode section The contact structure can be easily and reliably formed.

分極反転周期構造部11rは、任意の周期λで分極反転周期構造が形成された構造になっており、回折格子用電極部20によって電界が印加されることで駆動する回折格子を構成している。 Polarization inversion periodic structure member 11r has a structure in which the polarization inversion period structure is formed by any period lambda 1, constitutes a diffraction grating driven by an electric field is applied by the diffraction grating electrode section 20 Yes.

駆動原理としては、印加された電界Eにより分極反転周期と一致した回折率分布n±Δnが誘起され、回折格子が形成される。ここで、Δnは、r33(電気光学定数)を用いて以下の式で決定される値である。   As a driving principle, a diffractive index distribution n ± Δn that coincides with the polarization inversion period is induced by the applied electric field E, and a diffraction grating is formed. Here, Δn is a value determined by the following equation using r33 (electro-optic constant).

Δn=n・r33・E/2
なお、入射基本波に合わせた分極反転周期は、ミクロン〜サブミクロンの範囲のピッチであり、フォトリソグラフィ法でプロセスした電極に電圧を印加して得る方法、あるいは電子ビーム照射による分極反転手法が知られている。
Δn = n · r33 · E / 2
Note that the polarization inversion period in accordance with the incident fundamental wave has a pitch in the range of micron to submicron, and a method of applying a voltage to an electrode processed by photolithography or a method of inversion by electron beam irradiation is known. It has been.

形成する回折格子周期(すなわち分極反転周期)Λは、入射基本波波長に対し、1/4光路長あるいは1/4の奇数倍周期で形成されており、例えば、屈折率2の強誘電体結晶基板11に形成する周期は、基本波1064nmに対し、1/4周期で0.13μmとなる。ここで、回折効率は、電極への印加電圧により調整可能である。 The diffraction grating period to be formed (that is, the polarization inversion period) Λ 1 is formed with a quarter optical path length or an odd multiple of 1/4 times the incident fundamental wave wavelength. For example, a ferroelectric with a refractive index of 2 The period formed on the crystal substrate 11 is 0.13 μm with a quarter period with respect to the fundamental wave of 1064 nm. Here, the diffraction efficiency can be adjusted by the voltage applied to the electrode.

(絶縁体)
光導波路型回折格子10を構成する絶縁層12は、SiO、SiO(酸化窒素膜)、Al(酸化アルミニウム)などの透明誘電体膜、あるいは透過性の良い接着剤で構成させることができ、強誘電体結晶基板11(コア)との屈折率差により光閉じ込めを行う構成である。また、導光波の安定的かつ高い光閉じ込め効果のためにも絶縁層12の厚みを0.5μm以上とすることが好ましい。
(Insulator)
The insulating layer 12 constituting the optical waveguide type diffraction grating 10 is made of a transparent dielectric film such as SiO 2 , SiO x N y (nitrogen oxide film), Al 2 O 3 (aluminum oxide), or an adhesive having good transparency. The optical confinement is performed by the refractive index difference from the ferroelectric crystal substrate 11 (core). Moreover, it is preferable that the thickness of the insulating layer 12 is 0.5 μm or more for the stable and high light confinement effect of the guided wave.

(支持体)
上述した支持体16a、16bとしては、強誘電体結晶基板11と相似する基板を用いることが好ましい。例えばMgOSLTと相似する基板としては、CLT基板やBLT基板(CLT基板に鉄をドープしたもの)を用いることにより、素子として環境温度変化から受ける影響を小さく抑える効果が得られ、低コストで製造することが可能になる。
(Support)
As the supports 16a and 16b described above, it is preferable to use a substrate similar to the ferroelectric crystal substrate 11. For example, as a substrate similar to MgOSLT, by using a CLT substrate or a BLT substrate (a CLT substrate doped with iron), the effect of suppressing the influence of environmental temperature changes as an element can be obtained, and the device can be manufactured at low cost. It becomes possible.

(作用、効果)
以下、本実施形態の作用、効果について説明する。本実施形態の光導波路型回折格子10では、光路長調整用電極部18によって光路長調整部11pに電界を発生させ、回折格子用電極部20によって分極反転周期構造部11rに電界を発生させることができる。従って、光導波路型回折格子10をDBR(Distributed bragg refrector)として使用することが可能となっている。
(Function, effect)
Hereinafter, the operation and effect of the present embodiment will be described. In the optical waveguide type diffraction grating 10 of this embodiment, an electric field is generated in the optical path length adjusting unit 11p by the optical path length adjusting electrode unit 18, and an electric field is generated in the polarization inversion periodic structure unit 11r by the diffraction grating electrode unit 20. Can do. Therefore, the optical waveguide type diffraction grating 10 can be used as a distributed bragg refrector (DBR).

光導波路型回折格子10をDBRとして使用するには、光路長調整用電極部18および回折格子用電極部20に電圧を印加し、光路長調整部11pを伝播する入射基本波の一部を分極反転周期構造部11rで反射(ブラッグ反射)させ、外部共振器を形成する。このとき、所望の発振波長(共振器波長)に調整するために、光路長を電界印加によって調整する。すなわち、光路長調整用電極部18や回折格子用電極部20に印加する電圧を調整する。   In order to use the optical waveguide type diffraction grating 10 as a DBR, a voltage is applied to the optical path length adjusting electrode section 18 and the diffraction grating electrode section 20 to polarize part of the incident fundamental wave propagating through the optical path length adjusting section 11p. Reflected by the inversion periodic structure portion 11r (Bragg reflection) to form an external resonator. At this time, in order to adjust to a desired oscillation wavelength (resonator wavelength), the optical path length is adjusted by applying an electric field. That is, the voltage applied to the optical path length adjusting electrode portion 18 and the diffraction grating electrode portion 20 is adjusted.

従って、回折格子用電極20とは別の電極(光路長調整用電極部18)に任意の電圧を印加して任意の電界を発生させることができ、回折効率に影響することなく個別に光路長調整を行うことができる。よって、強誘電体結晶基板11内に形成される回折格子を確実に動作させることができ、回折効率を向上させるとともに任意に変調することができる光導波路型回折格子10が実現される。   Therefore, an arbitrary electric field can be generated by applying an arbitrary voltage to an electrode (optical path length adjusting electrode portion 18) different from the diffraction grating electrode 20, and the optical path length can be individually increased without affecting the diffraction efficiency. Adjustments can be made. Therefore, the diffraction grating 10 formed in the ferroelectric crystal substrate 11 can be reliably operated, and the optical waveguide type diffraction grating 10 that can improve the diffraction efficiency and can be arbitrarily modulated is realized.

また、光路長調整部11pの屈折率を変化させるのに必要な電圧は、強誘電体結晶基板11の薄膜化により5V以下に抑えることができるので、光導波路型回折格子10は低電力でかつ高速で動作する素子として使用され得る。   In addition, since the voltage required to change the refractive index of the optical path length adjusting unit 11p can be suppressed to 5 V or less by thinning the ferroelectric crystal substrate 11, the optical waveguide type diffraction grating 10 has low power and It can be used as a device operating at high speed.

[第2実施形態]
次に、第2実施形態について説明する。図3は、本実施形態の光モジュールの要部を示す側面断面図である。
[Second Embodiment]
Next, a second embodiment will be described. FIG. 3 is a side cross-sectional view showing the main part of the optical module of the present embodiment.

本実施形態の光モジュール30は、コア形状がリッジ型とされ、かつ、分極反転周期構造部31cと波長変換部31cとを有する光導波路31gを備えた強誘電体結晶基板31と、強誘電体結晶基板31を挟むように配置された絶縁体からなる絶縁層32(32a、32b)と、絶縁層32の外側に対向配置され、分極反転周期構造部31rに電圧を印加して電界を発生させる回折格子用電極部38(38a、38b)と、を備える。分極反転周期構造部31cは分極反転周期構造部11rと同等のものであり、絶縁層32は絶縁層12と同等のものである。   The optical module 30 of the present embodiment includes a ferroelectric crystal substrate 31 having a core shape of a ridge type, an optical waveguide 31g having a polarization inversion periodic structure portion 31c and a wavelength conversion portion 31c, and a ferroelectric material. An insulating layer 32 (32a, 32b) made of an insulator arranged so as to sandwich the crystal substrate 31 is disposed opposite to the outside of the insulating layer 32, and a voltage is applied to the domain-inverted periodic structure portion 31r to generate an electric field. And a diffraction grating electrode 38 (38a, 38b). The domain-inverted periodic structure part 31c is equivalent to the domain-inverted periodic structure part 11r, and the insulating layer 32 is equivalent to the insulating layer 12.

この構成により、回折格子で入射基本波波長の狭帯域化や波長安定化を図り、その基本波が、同一光導波路上に形成された擬似位相整合(QPM)周期Λの分極反転構造によって波長変換されて出射される。 With this configuration, the incident fundamental wave wavelength is narrowed and stabilized by the diffraction grating, and the fundamental wave is wavelength-shifted by a polarization inversion structure with a quasi phase matching (QPM) period Λ 2 formed on the same optical waveguide. It is converted and emitted.

例えば、基本波1064nmから532nmへ波長変換する場合のQPM周期Λは8μmとなり、3倍波(波長は355nm)への波長変換では、Λは2μmとなる。 For example, the QPM period Λ 2 in the case of wavelength conversion from the fundamental wave 1064 nm to 532 nm is 8 μm, and in the wavelength conversion to the third harmonic (wavelength is 355 nm), Λ 2 is 2 μm.

また、QPM次数を大きくする、あるいは強誘電体結晶基板31の板厚を薄くすることで、分極反転アスペクト比を小さく抑えることができ、分極反転周期構造部31cの均一化を図ることができる。更に、赤外光からUV光まで2段階以上の波長変換周期を同一素子に形成することにより、光モジュール30を、カスケード的(段階的)に波長変換を行う構造とすることも可能である。   Further, by increasing the QPM order or reducing the plate thickness of the ferroelectric crystal substrate 31, the polarization inversion aspect ratio can be kept small, and the polarization inversion periodic structure portion 31c can be made uniform. Furthermore, by forming two or more steps of wavelength conversion periods from infrared light to UV light in the same element, the optical module 30 can be configured to perform wavelength conversion in a cascaded (stepwise) manner.

なお、第1実施形態の光導波路型回折格子10に比べ、分極反転周期構造部11r、これを挟む絶縁層部分、および、回折格子用電極部20を備え、光導波路型回折格子10のうち光路長調整部11p、これを挟む絶縁層部分、および、光路長調整用電極部18を備えない構成のものを用い、分極反転周期構造部11rを本実施形態の分極反転周期構造部31cとして用いることも可能である。   As compared with the optical waveguide type diffraction grating 10 of the first embodiment, the polarization inversion periodic structure portion 11r, the insulating layer portion sandwiching the polarization inversion periodic structure portion 11r, and the diffraction grating electrode portion 20 are provided. The length adjusting portion 11p, an insulating layer portion sandwiching the length adjusting portion 11p, and an optical path length adjusting electrode portion 18 are used, and the polarization inversion periodic structure portion 11r is used as the polarization inversion periodic structure portion 31c of the present embodiment. Is also possible.

[第3実施形態]
次に、第3実施形態について説明する。図4は、本実施形態の光モジュールの構成を示す平面図である。図5は、本実施形態の光モジュールを構成する光導波路型回折格子の分極反転周期構造を説明する、光導波路に平行な側面断面図である。
[Third Embodiment]
Next, a third embodiment will be described. FIG. 4 is a plan view showing the configuration of the optical module of the present embodiment. FIG. 5 is a side sectional view parallel to the optical waveguide for explaining the polarization inversion periodic structure of the optical waveguide type diffraction grating constituting the optical module of the present embodiment.

本実施形態の光モジュール50には、複数の光導波路型回折格子51と、各光導波路型回折格子51からの出射光を重ね合わせる合波手段52を備える。   The optical module 50 according to the present embodiment includes a plurality of optical waveguide type diffraction gratings 51 and multiplexing means 52 that superimposes the light emitted from each optical waveguide type diffraction grating 51.

光導波路型回折格子51は、第1実施形態の光導波路型回折格子10に比べ、分極反転周期構造部11r、これを挟む絶縁層部分、および、回折格子用電極部20を備え、光導波路型回折格子10のうち光路長調整部11p、これを挟む絶縁層部分、および、光路長調整用電極部18を備えない構成にされている。すなわち、光導波路型回折格子51は、光導波路11ghを形成する分極反転周期構造11rと、分極反転周期構造11rを挟むように配置された絶縁体からなる絶縁層12(12ah、12bh)と、絶縁層12の外側に対向配置され、分極反転周期構造部11rに電圧を印加して電界を発生させる回折格子用電極部20(20a、20b)とを備えている。また、光導波路型回折格子51は、回折格子用電極部20a、20bをそれぞれ片面に有する支持体16ah、16bhを備えている。   Compared with the optical waveguide type diffraction grating 10 of the first embodiment, the optical waveguide type diffraction grating 51 includes a polarization inversion periodic structure portion 11r, an insulating layer portion sandwiching the polarization inversion periodic structure portion 11r, and the diffraction grating electrode portion 20, and includes an optical waveguide type. In the diffraction grating 10, the optical path length adjusting portion 11 p, the insulating layer portion sandwiching the optical path length adjusting portion 11 p, and the optical path length adjusting electrode portion 18 are not provided. That is, the optical waveguide type diffraction grating 51 includes a domain-inverted periodic structure 11r that forms the optical waveguide 11gh, and an insulating layer 12 (12ah, 12bh) made of an insulator disposed so as to sandwich the domain-inverted periodic structure 11r. A diffraction grating electrode section 20 (20a, 20b) is provided opposite to the outer side of the layer 12 and generates an electric field by applying a voltage to the domain-inverted periodic structure section 11r. The optical waveguide type diffraction grating 51 includes supports 16ah and 16bh having diffraction grating electrode portions 20a and 20b on one side, respectively.

合波手段52は、各光導波路11ghにそれぞれ連続する連続路54と、連続路54が合流して繋がる1本の合流路56とで構成される。   The multiplexing means 52 includes a continuous path 54 that is continuous with each optical waveguide 11gh, and a single combined path 56 that the continuous paths 54 join and connect.

本実施形態の光モジュール50では、回折格子用電極部20に任意の電界を印加することにより、伝播光の回折効率を任意に可変することができるため、各光導波路型回折格子51の光導波路11ghの伝播光、すなわち分岐型光導波路の伝播光をそれぞれ所望の光強度に高速変調することができる。   In the optical module 50 of the present embodiment, the diffraction efficiency of propagating light can be arbitrarily varied by applying an arbitrary electric field to the electrode part 20 for the diffraction grating. Therefore, the optical waveguide of each optical waveguide type diffraction grating 51 The propagation light of 11 gh, that is, the propagation light of the branched optical waveguide can be modulated at a high speed to a desired light intensity.

この光モジュール50では、各光導波路型回折格子51に応じ、入射光L(赤色光)、L(緑色光)、L(青色光)に対する回折格子周期Λ、Λ、Λの分極反転周期構造部11rR、11rG、11rBを強誘電体結晶基板に形成し、絶縁層12を介して対向するように形成された各回折格子用電極部20への電圧値を調整することで、最終端の白色出力光をモニタしてフィードバックすることで印加電圧値へ反映させ、所望の比率強度を有する白色出力光を得ることができる。 In this optical module 50, the diffraction grating periods Λ R , Λ G , Λ B for the incident light L R (red light), L G (green light), L B (blue light) according to each optical waveguide type diffraction grating 51. Are formed on the ferroelectric crystal substrate, and the voltage values to the respective diffraction grating electrode portions 20 formed so as to face each other through the insulating layer 12 are adjusted by forming the polarization inversion periodic structure portions 11rR, 11rG, and 11rB on the ferroelectric crystal substrate. The white output light at the final end is monitored and fed back to be reflected in the applied voltage value, and white output light having a desired ratio intensity can be obtained.

この光モジュール50は、ディスプレイおよびプロジェクタ光源に使用することができ、三分岐型の光導波路11ghに赤色光、緑色光、青色光の三原色光をそれぞれ入射し、合流路56で合波させて白色出力光を得ている。このとき、入射した赤色光、緑色光、青色光の各強度比率を調整することで、バランスの良い白色出力光を得ることができる。   This optical module 50 can be used for a display and a projector light source. The three primary color lights of red light, green light, and blue light are respectively incident on a three-branch type optical waveguide 11gh, and are combined in a combined channel 56 to be white. Getting output light. At this time, a well-balanced white output light can be obtained by adjusting the intensity ratios of the incident red light, green light, and blue light.

以上、これらの実施形態では、光導波路型回折格子や光モジュールの入出力端面は光学研磨され、入出射効率を高めるためのARコーティングや、戻り光を防止するための端面カットオフ加工を実施していることが好ましい。   As described above, in these embodiments, the input / output end faces of the optical waveguide type diffraction grating and the optical module are optically polished, and the AR coating for improving the entrance / exit efficiency and the end face cut-off processing for preventing the return light are performed. It is preferable.

また、これらの実施形態で説明した光導波路型回折格子や光モジュールは、可視光やUV光を発するレーザ光源装置、ディスプレイ、プロジェクタ光源装置などに用いることができる。   In addition, the optical waveguide type diffraction grating and the optical module described in these embodiments can be used for a laser light source device, a display, a projector light source device, and the like that emit visible light and UV light.

10 光導波路型回折格子
11 強誘電体結晶基板
11g 光導波路
11gh 光導波路
11p 光路長調整部
11r 分極反転周期構造部
12、12a、12b、12ah、12bh 絶縁層(クラッド部)
18、18a、18b 光路長調整用電極部
20、20a、20b 回折格子用電極部
30 光モジュール
31 強誘電体結晶基板
31c 波長変換部
31r 分極反転周期構造部
32、32a、32b 絶縁層(クラッド部)
38、38a、38b 回折格子用電極部
50 光モジュール
51 光導波路型回折格子
52 合波手段
DESCRIPTION OF SYMBOLS 10 Optical waveguide type diffraction grating 11 Ferroelectric crystal substrate 11g Optical waveguide 11gh Optical waveguide 11p Optical path length adjustment part 11r Polarization inversion periodic structure part 12, 12a, 12b, 12ah, 12bh Insulating layer (cladding part)
18, 18a, 18b Optical path length adjusting electrode part 20, 20a, 20b Diffraction grating electrode part 30 Optical module 31 Ferroelectric crystal substrate 31c Wavelength converting part 31r Polarization inversion periodic structure parts 32, 32a, 32b Insulating layer (cladding part) )
38, 38a, 38b Diffraction grating electrode section 50 Optical module 51 Optical waveguide type diffraction grating 52 Multiplexing means

Claims (3)

コア形状がリッジ型とされ、かつ、分極反転周期構造部と波長変換部とが設けられた光導波路を有する強誘電体結晶基板と、
前記強誘電体結晶基板を挟むように配置された絶縁体からなるクラッド部と、
前記クラッド部の外側の前記分極反転周期構造部を挟んだ領域のみにそれぞれ選択的に対向配置された一対の電極部からなり、前記分極反転周期構造部に電圧を印加して電界を発生させる回折格子用電極部と、
を備えることを特徴とする光モジュール。
A ferroelectric crystal substrate having an optical waveguide in which a core shape is a ridge type, and a polarization inversion periodic structure portion and a wavelength conversion portion are provided;
A clad portion made of an insulator disposed so as to sandwich the ferroelectric crystal substrate;
Diffraction consisting of a pair of electrode portions that are selectively arranged opposite each other only in a region sandwiching the domain-inverted periodic structure portion outside the cladding unit, and applying an electric voltage to the domain-inverted periodic structure unit to generate an electric field A grid electrode;
An optical module comprising:
前記強誘電体結晶基板は、MgOをドープしたLiTaOまたはLiNbOで構成されることを特徴とする請求項1に記載の光モジュール。 2. The optical module according to claim 1, wherein the ferroelectric crystal substrate is made of MgO-doped LiTaO 3 or LiNbO 3 . 前記強誘電体結晶基板では、LiO/(Ta+LiO)のモル分率が0.495以上で0.505未満の範囲であり、かつ、MgOをドープした単一分極にされた定比組成または定比組成に近いタンタル酸リチウムの単結晶で構成されることを特徴とする請求項1又は2に記載の光モジュール。 In the ferroelectric crystal substrate, the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is in the range of 0.495 or more and less than 0.505, and a single polarization constant ratio doped with MgO. 3. The optical module according to claim 1, wherein the optical module is composed of a single crystal of lithium tantalate having a composition or a specific ratio composition.
JP2013103919A 2013-05-16 2013-05-16 Optical module Active JP6364706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103919A JP6364706B2 (en) 2013-05-16 2013-05-16 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103919A JP6364706B2 (en) 2013-05-16 2013-05-16 Optical module

Publications (2)

Publication Number Publication Date
JP2014224896A JP2014224896A (en) 2014-12-04
JP6364706B2 true JP6364706B2 (en) 2018-08-01

Family

ID=52123616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103919A Active JP6364706B2 (en) 2013-05-16 2013-05-16 Optical module

Country Status (1)

Country Link
JP (1) JP6364706B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646884B (en) * 2019-07-09 2021-01-26 华中科技大学 Polarization beam splitter with large manufacturing tolerance and high polarization extinction ratio
CN113311599A (en) * 2021-05-19 2021-08-27 清华大学 High-speed integrated optical modulator, modulation method and modulation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565346B2 (en) * 1987-06-26 1996-12-18 清水 郁子 LiNbO Lower 3 / LiTaO Lower 3 Single Crystal Piezoelectric Substrate Having Polarization Reversal Region and Manufacturing Method Thereof
JPH0651359A (en) * 1992-07-31 1994-02-25 Matsushita Electric Ind Co Ltd Wavelength conversion element, short wavelength laser device and wavelength variable laser device
US5418802A (en) * 1993-11-12 1995-05-23 Eastman Kodak Company Frequency tunable waveguide extended cavity laser
US5630004A (en) * 1994-09-09 1997-05-13 Deacon Research Controllable beam director using poled structure
JP3505123B2 (en) * 2000-03-21 2004-03-08 日本電信電話株式会社 Fabrication method of photo-induced waveguide type diffraction grating
JP3424125B2 (en) * 2000-08-25 2003-07-07 独立行政法人物質・材料研究機構 Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal
JP4865191B2 (en) * 2004-01-21 2012-02-01 株式会社島津製作所 Method for manufacturing a substrate having a periodically poled region

Also Published As

Publication number Publication date
JP2014224896A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
EP1584975B1 (en) Optical waveguide device, optical waveguide laser using same and optical apparatus having same
EP1155355B1 (en) Electrically adjustable diffraction grating
JP5082560B2 (en) Optical modulator, light source device, and driving method of optical modulator
US8620117B2 (en) Optical device, optical deflection device, and optical modulation device
US9531152B2 (en) Waveguide laser
JP6364706B2 (en) Optical module
WO2011048795A1 (en) Wavelength-tunable laser light source and image display device
JP6464886B2 (en) Optical waveguide device
JP5159783B2 (en) Wavelength conversion element and wavelength conversion laser device
TW200521509A (en) A high-efficiency multiple-pass nonlinear optical frequency converter and amplitude modulator with a built-in electro-optic phase compensator
JP2015041041A (en) Diffracting grating and optical module
JPH05249518A (en) Wavelength conversion element
US8705165B2 (en) Optical wavelength conversion element, wavelength conversion laser device, and image display device
JP5467414B2 (en) Optical functional waveguide
JP2008065104A (en) Multimode interference optical coupler
Feng et al. A bond-free PPLN thin film ridge waveguide
JP3006309B2 (en) Optical wavelength conversion element and short wavelength laser light source
JP2007187920A (en) Nonlinear optical medium and wavelength converter using the same
JP2899345B2 (en) Optical device
US20080008412A1 (en) Optical device
CN113612108B (en) Frequency converter based on chamfer nonlinear crystal ridge waveguide and preparation method thereof
JP6107397B2 (en) Wavelength conversion element and wavelength conversion laser device
JP2006208452A (en) Wavelength conversion element
Luo et al. Highly-efficient second-harmonic generation in semi-nonlinear nanophotonic waveguides
JP2004212824A (en) Interference modulator and harmonic wave light source using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6364706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151