JP6360752B2 - Illumination imaging device - Google Patents

Illumination imaging device Download PDF

Info

Publication number
JP6360752B2
JP6360752B2 JP2014176149A JP2014176149A JP6360752B2 JP 6360752 B2 JP6360752 B2 JP 6360752B2 JP 2014176149 A JP2014176149 A JP 2014176149A JP 2014176149 A JP2014176149 A JP 2014176149A JP 6360752 B2 JP6360752 B2 JP 6360752B2
Authority
JP
Japan
Prior art keywords
camera
light
light source
optical axis
cover plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014176149A
Other languages
Japanese (ja)
Other versions
JP2016051318A (en
Inventor
山下 龍麿
龍麿 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2014176149A priority Critical patent/JP6360752B2/en
Priority to CN201510193867.8A priority patent/CN106137117A/en
Publication of JP2016051318A publication Critical patent/JP2016051318A/en
Application granted granted Critical
Publication of JP6360752B2 publication Critical patent/JP6360752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、車の運転者その他の対象者の視線方向を検出可能な視線検出装置や、監視装置などに使用される照明撮像装置に関する。   The present invention relates to a line-of-sight detection device capable of detecting the line-of-sight direction of a driver of a car and other subjects, a lighting imaging device used for a monitoring device, and the like.

特許文献1には照明撮像装置を使用した注視点検出方法が記載されている。この注視点検出方法は、2台のカメラが対象者の目に向けられている。それぞれのカメラの周囲に2種類の光源が同心円状に配置されており、カメラに近い内側の円に沿って中心波長が850nmの光を発する光源が配置され、外側の円に沿って中心波長が950nmの光を発する光源が配置されている。850nmの光を照射することで、カメラで明瞳孔画像を取得でき、950nmの光を照射することで暗瞳孔画像が取得される。   Patent Document 1 describes a method of detecting a gazing point using an illumination imaging device. In this gaze point detection method, two cameras are directed to the eyes of the subject. Two types of light sources are concentrically arranged around each camera, a light source that emits light having a center wavelength of 850 nm is arranged along an inner circle near the camera, and a center wavelength is arranged along the outer circle. A light source emitting 950 nm light is disposed. By irradiating with 850 nm light, a bright pupil image can be acquired with a camera, and by irradiating with 950 nm light, a dark pupil image is acquired.

この注視点検出方法では、明瞳孔画像と暗瞳孔画像に基づいて瞳孔画像が取得され、暗瞳孔画像から光源の角膜反射点が取得される。この画像に基づいて、カメラと瞳孔を結ぶ基準線に垂直な平面上における対象者の角膜反射点から瞳孔までのベクトルを計算し、このベクトルをもとに各カメラの基準線に対する対象者の視線の方向を所定の関数を用いて計算する。   In this gazing point detection method, a pupil image is acquired based on the bright pupil image and the dark pupil image, and the corneal reflection point of the light source is acquired from the dark pupil image. Based on this image, a vector from the subject's cornea reflection point to the pupil on a plane perpendicular to the reference line connecting the camera and the pupil is calculated, and based on this vector, the subject's line of sight with respect to the reference line of each camera Is calculated using a predetermined function.

国際公開2012/020760号公報International Publication 2012/020760

特許文献1に記載の注視点検出方法は、カメラの周囲に2種類の光源が配置されているが、カメラと2種類の光源を空間上で露出させて配置するのは、装置の外観として好ましいものではなく、カメラの撮像方向前方と、光源の発光方向前方を共通に覆う導光性のカバー板を設けることが好ましい。   In the gaze point detection method described in Patent Document 1, two types of light sources are arranged around the camera. However, it is preferable as an appearance of the apparatus to arrange the camera and the two types of light sources so that they are exposed in space. It is preferable to provide a light guide cover plate that covers the front in the imaging direction of the camera and the front in the light emission direction of the light source.

しかしこのようなカバー板を設けると、光源から発せられた光の一部が、カバー板の内部で反射されてカメラに及び、この光成分によりカメラで取得する画像の一部が過剰露光状態となることがある。光源の近くにある光源から発せられる波長が850nmの光は、光の強度が高いため、この光がカメラに取得されると、画像の一部が明らかに過剰露出状態になりやすい。   However, when such a cover plate is provided, a part of the light emitted from the light source is reflected inside the cover plate and reaches the camera, and a part of the image acquired by the camera due to this light component is overexposed. May be. Light having a wavelength of 850 nm emitted from a light source near the light source has high light intensity. Therefore, when this light is acquired by the camera, a part of the image is clearly overexposed.

また、2つのカメラのレンズの光軸と光源の光軸とを人の顔や目に向けようとして、ガラス板の内面に対して斜めに配置すると、前記光軸と前記内面とが鈍角を成す側に配置されている光源から発せられる光がカバー板の内部で反射されてカメラのレンズに照射されやすくなる。   Further, when the optical axes of the lenses of the two cameras and the optical axis of the light source are arranged obliquely with respect to the inner surface of the glass plate so as to face the human face or eye, the optical axis and the inner surface form an obtuse angle. The light emitted from the light source arranged on the side is reflected inside the cover plate and easily irradiates the lens of the camera.

本発明は上記従来の課題を解決するものであり、カメラと光源とを共通に覆うカバー板を設け、しかもカバー板の反射によるカメラの過剰露光状態が発生するのを防止できる照明撮像装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an illumination imaging apparatus that is provided with a cover plate that covers the camera and the light source in common, and that can prevent the camera from being overexposed due to reflection of the cover plate. The purpose is to do.

本発明は、撮像対象の画像を取得するカメラと、撮像対象に検知光を与える複数の光源と、前記カメラの撮像方向前方と前記光源の発光方向前方とを共通に覆う透光性のカバー板とを有する照明撮像装置において、
複数の前記光源が前記カメラを挟むように配置されて、前記カメラの光軸とそれぞれの前記光源の光軸とが互いに平行に延び、前記カメラの光軸と前記光源の光軸が前記カバー板の内面に斜めに入射しており、
前記カメラの撮像方向前方と前記光源の発光方向前方とを仕切る遮蔽部材が設けられ、前記遮蔽部材が、前記カメラの光軸に対して開き角度を有して前記カバー板の内面に向かって傾いて延びており、
前記カバー板の内面には、前記カメラの撮像方向前方と前記光源の発光方向前方の境界部に凹部が形成されており、前記凹部が、前記遮蔽部材の延長上またはその近傍に位置していることを特徴とするものである。
The present invention provides a camera that acquires an image of an imaging target, a plurality of light sources that provide detection light to the imaging target, and a translucent cover plate that covers in common the imaging direction front of the camera and the light emission direction front of the light source. In an illumination imaging device having:
A plurality of the light sources are arranged so as to sandwich the camera, and an optical axis of the camera and an optical axis of each of the light sources extend in parallel to each other, and the optical axis of the camera and the optical axis of the light source are the cover plate Is obliquely incident on the inner surface of
A shielding member is provided that partitions the front of the camera in the imaging direction and the light emission direction of the light source, and the shielding member is inclined toward the inner surface of the cover plate with an opening angle with respect to the optical axis of the camera. Extending,
On the inner surface of the cover plate, a recess is formed at the boundary between the camera in the imaging direction and the light source in the emission direction, and the recess is located on or near the extension of the shielding member. It is characterized by this.

本発明の照明撮像装置は、前記遮蔽部材の前記カメラ側の内面の延長線と、前記凹部の内面と、が同一線上に位置するものが好ましい。 In the illumination imaging device of the present invention, it is preferable that an extension line of the inner surface of the shielding member on the camera side and an inner surface of the concave portion are located on the same line .

本発明の照明撮像装置は、カバー板の内面に凹部を設けることで、光源から発せられた光がカバー板内に入射したとしても、カメラの方向へ伝搬するのを規制でき、光源からの光でカメラが過剰露光状態となるのを抑制できるようになる。   The illumination imaging device according to the present invention is provided with a recess on the inner surface of the cover plate, so that even if light emitted from the light source enters the cover plate, it can be prevented from propagating in the direction of the camera. Thus, the camera can be prevented from being overexposed.

本発明は、前記凹部の断面形状は、前記カバー板の前記内面から外面方向に向かうにしたがって開口幅が徐々に減少する形状であることが好ましい。 In the present invention, it is preferable that the cross-sectional shape of the recess is a shape in which the opening width gradually decreases from the inner surface toward the outer surface of the cover plate .

また、本発明は、前記凹部内に、前記光源から発せられる光を吸収する光吸収材料が充填されているものが好ましい。   In the present invention, it is preferable that the concave portion is filled with a light absorbing material that absorbs light emitted from the light source.

本発明の照明撮像装置は、前記光源が前記カメラのレンズよりも前記内面に近い位置に配置されているものにおいて有効である。 Illuminating the imaging apparatus of the present invention is effective in those previous SL light source is located closer to the inner surface than the lens of the camera.

前記照明撮像装置では、カメラの光軸と光源の光軸とをカバー板の内面に対して斜めに配置した状態でも、光源からの光がカバー板を介してカメラに取得されるのを規制できるようになる。   In the illumination imaging apparatus, even when the optical axis of the camera and the optical axis of the light source are arranged obliquely with respect to the inner surface of the cover plate, the light from the light source can be restricted from being acquired by the camera via the cover plate. It becomes like this.

本発明は、人の目の網膜で反射されやすい波長の光を発する第1光源と、前記第1光源よりも網膜で反射されにくい波長の光を発する第2光源とが設けられており、前記第1光源の発光方向前方と、前記カメラの撮像方向前方との境界部に前記凹部が形成されているものである。   The present invention includes a first light source that emits light having a wavelength that is easily reflected by the retina of a human eye, and a second light source that emits light having a wavelength that is less likely to be reflected by the retina than the first light source. The concave portion is formed at a boundary portion between the light emitting direction front of the first light source and the imaging direction front of the camera.

第1光源の光はエネルギーが高く、カメラに影響を与えやすいため、第1光源とカメラとの境界部に凹部を形成することで、第1光源からの光がカメラに与える影響を低減できる。   Since the light from the first light source is high in energy and easily affects the camera, the influence of the light from the first light source on the camera can be reduced by forming a recess at the boundary between the first light source and the camera.

本発明は、前記カメラは複数設けられ、それぞれのカメラに接近した位置に前記光源が配置されており、前記カバー板は、全てのカメラの撮像方向前方と全ての光源の発光方向前方を共通に覆っているものとして構成できる。   In the present invention, a plurality of the cameras are provided, and the light sources are arranged at positions close to the respective cameras, and the cover plate has a common front in the imaging direction of all the cameras and a front in the emission direction of all the light sources. Can be configured as covering.

全てのカメラと全ての光源を共通に覆うカバー板を設けることで、装置の外観を良好にすることができる。   By providing a cover plate that covers all cameras and all light sources in common, the appearance of the apparatus can be improved.

本発明の照明撮像装置は、カメラと光源の前方を覆うカバー板を設けた場合であっても、光源から発せられた光がカバー板内を伝搬してカメラに及ぶのを規制でき、光源からの光がカバー板を経てカメラに直接に入るのを抑制できるようになる。   Even if the illumination imaging device of the present invention is provided with a cover plate that covers the front of the camera and the light source, the light emitted from the light source can be prevented from propagating through the cover plate and reaching the camera. Can be prevented from entering the camera directly through the cover plate.

また、カメラの光軸と光源の光軸をカバー板の内面に対して斜めに配置した場合にも、光源からの光がカメラに入るのを規制できるようになる。よって、2台のカメラとこれに隣接する光源を、その光軸が撮像対象に向くように斜めに配置された構造であっても、全てのカメラと全ての光源を平面状のカバー板で覆うことができ、装置の外観を良好なものにできる。   Further, even when the optical axis of the camera and the optical axis of the light source are arranged obliquely with respect to the inner surface of the cover plate, it is possible to restrict the light from the light source from entering the camera. Therefore, even if the two cameras and the light source adjacent to the two cameras are arranged obliquely so that the optical axis thereof faces the object to be imaged, all the cameras and all the light sources are covered with a flat cover plate. And the appearance of the apparatus can be improved.

(A)は本発明の第1の実施形態に係る照明撮像装置の平面図、(B)はその正面図、(A) is a top view of the illumination imaging device which concerns on the 1st Embodiment of this invention, (B) is the front view, 図1(B)に示す照明撮像装置をII−II線で切断した拡大断面図、The expanded sectional view which cut | disconnected the illumination imaging device shown in FIG. 1 (B) by the II-II line | wire, 図2の一部を拡大して示す断面図、Sectional drawing which expands and shows a part of FIG. (A)(B)(C)は、カバー板に形成される凹部の変形例を示す拡大断面図、(A) (B) (C) is an enlarged sectional view showing a modified example of the recess formed in the cover plate, (A)(B)は、照明撮像装置と対象者の目との位置関係を模式的に示す説明図、(A) (B) is explanatory drawing which shows typically the positional relationship of an illumination imaging device and a subject's eyes, (A)(B)は、視線検出の計算を示す説明図、(A) (B) is explanatory drawing which shows calculation of a gaze detection, 照明撮像装置を使用した視線検出装置の構造を示すブロック図、Block diagram showing the structure of a line-of-sight detection device using an illumination imaging device, (A)は本発明の第2の実施形態に係る照明撮像装置の正面図、(B)はその側面図、(A) is the front view of the illumination imaging device which concerns on the 2nd Embodiment of this invention, (B) is the side view,

以下、本発明の実施形態に係る照明撮像装置について図面を参照しつつ詳しく説明する。この実施形態では、照明撮像装置が車載用などの視線検出装置として使用される。   Hereinafter, an illumination imaging apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. In this embodiment, the illumination imaging device is used as a line-of-sight detection device for in-vehicle use.

<照明撮像装置の構造>
図1と図2に示すように、本発明の実施の形態の照明撮像装置1は、ケース2を有している。ケース2は左右方向に細長い立方体形状であり、前方に開口部3が形成されている。開口部3の形状は長方形であり、この開口部が1枚のカバー板4で覆われている。カバー板4は、赤外光を透過することができるが可視光の波長帯域については光線透過率が低下するように着色されている。あるいは、カバー板4が透光性であり、前記光線透過率を低下させる着色シートが積層されて構成されている。したがって、図1(B)の正面図において、実際は、ケース2の内部構造をカバー板4を透過して目視することはできない。
ケース2の内部に第1受像装置10と第2受像装置20が収納されている。
<Structure of illumination imaging device>
As shown in FIGS. 1 and 2, the illumination imaging apparatus 1 according to the embodiment of the present invention has a case 2. The case 2 has a cubic shape elongated in the left-right direction, and an opening 3 is formed in the front. The shape of the opening 3 is rectangular, and this opening is covered with a single cover plate 4. The cover plate 4 can transmit infrared light, but is colored so that the light transmittance is reduced in the visible light wavelength band. Alternatively, the cover plate 4 is translucent and is configured by laminating colored sheets that reduce the light transmittance. Therefore, in the front view of FIG. 1B, the internal structure of the case 2 cannot actually be seen through the cover plate 4.
A first image receiving device 10 and a second image receiving device 20 are housed inside the case 2.

図1に示すように、第1受像装置10に設けられた第1カメラ13の光軸13cと、第2受像装置20に設けられた第2カメラ23の光軸23cは、所定距離L1だけ離間するように配置されている。カメラ13、23は、CMOS(相補型金属酸化膜半導体)やCCD(電荷結合素子)などの撮像素子を有しており、運転者の目を含む顔の画像を取得する。撮像素子では、二次元的に配列された複数の画素で光が検出される。   As shown in FIG. 1, the optical axis 13c of the first camera 13 provided in the first image receiving device 10 and the optical axis 23c of the second camera 23 provided in the second image receiving device 20 are separated by a predetermined distance L1. Are arranged to be. The cameras 13 and 23 have an image sensor such as a CMOS (complementary metal oxide semiconductor) or a CCD (charge coupled device), and acquire a face image including the driver's eyes. In the image sensor, light is detected by a plurality of pixels arranged two-dimensionally.

図1に示すように、第1受像装置10は、第1カメラ13と、第1光源11a,11bならびに第2光源12a,12bを有している。第1光源11aと第1光源11bは、それぞれ複数(2個)設けられ、第1光源11aと第1光源11bは、第1カメラ13を挟むようにして左右方向(X方向)の両側に配置されている。第2光源12aと第2光源12bも、それぞれ複数(2個)設けられている。第2光源12aと第2光源12bは、第1カメラ13の両側を挟むように左右両側に配置されている。   As shown in FIG. 1, the first image receiving device 10 includes a first camera 13, first light sources 11a and 11b, and second light sources 12a and 12b. A plurality (two) of the first light sources 11a and the first light sources 11b are provided, and the first light sources 11a and the first light sources 11b are arranged on both sides in the left-right direction (X direction) with the first camera 13 interposed therebetween. Yes. A plurality (two) of second light sources 12a and second light sources 12b are also provided. The 2nd light source 12a and the 2nd light source 12b are arrange | positioned at both right and left sides so that both sides of the 1st camera 13 may be pinched | interposed.

第1カメラ13の光軸O1と第1光源11aの光軸までの左右方向(X方向)の距離はL11aであり、前記光軸O1と第1光源11bの光軸までの左右方向の距離はL11bである。第1カメラ13の光軸O1と第2光源12aの光軸までの左右方向(X方向)の距離はL12aであり、前記光軸O1と第2光源12bの光軸までの左右方向の距離はL12bである。   The distance in the left-right direction (X direction) between the optical axis O1 of the first camera 13 and the optical axis of the first light source 11a is L11a, and the distance in the left-right direction between the optical axis O1 and the optical axis of the first light source 11b is L11b. The distance in the left-right direction (X direction) between the optical axis O1 of the first camera 13 and the optical axis of the second light source 12a is L12a, and the distance in the left-right direction between the optical axis O1 and the optical axis of the second light source 12b is L12b.

図1に示すように、第2受像装置20は、第2カメラ23と、第1光源21a,21bならびに第2光源22a,22bを有している。第1光源21aは複数(2個)設けられ、第2カメラ23の光軸O2までの距離がL11aであり、第1光源21bは複数(2個)設けられ、第2カメラ23の光軸O2までの距離がL11bである。第2光源22aは複数(2個)設けられ、第2カメラ23の光軸O2までの距離がL12aである。第2光源22bは複数(2個)設けられ、第2カメラ23の光軸O2までの距離がL12bである。   As shown in FIG. 1, the second image receiving device 20 includes a second camera 23, first light sources 21a and 21b, and second light sources 22a and 22b. A plurality (two) of the first light sources 21a are provided, the distance to the optical axis O2 of the second camera 23 is L11a, a plurality (two) of the first light sources 21b are provided, and the optical axis O2 of the second camera 23. The distance to is L11b. A plurality of (two) second light sources 22a are provided, and the distance to the optical axis O2 of the second camera 23 is L12a. A plurality (two) of the second light sources 22b are provided, and the distance to the optical axis O2 of the second camera 23 is L12b.

第1受像装置10では、第1光源11a,11bと第1カメラ13の光軸O1までの距離L11a,L11bが、第2光源12a,12bと第1カメラ13の光軸O1までの距離L12a、L12bよりも短い。第2受像装置20では、第1光源21a,21bと第2カメラ23の光軸O2までの距離L11a,L11bが、第2光源22a,22bと第2カメラ23の光軸O2までの距離L12a、L12bよりも短い。   In the first image receiving device 10, the distances L11a and L11b between the first light sources 11a and 11b and the optical axis O1 of the first camera 13 are the distances L12a between the second light sources 12a and 12b and the optical axis O1 of the first camera 13, Shorter than L12b. In the second image receiving device 20, the distances L11a and L11b between the first light sources 21a and 21b and the optical axis O2 of the second camera 23 are the distances L12a between the second light sources 22a and 22b and the optical axis O2 of the second camera 23, Shorter than L12b.

ここで、第1カメラ13と第1光源11a,11bとの光軸間距離L11a,L11b、及び、第1カメラ13と第2光源12a,12bとの光軸間距離L12a,L12bは、照明撮像装置1と撮像対象としての運転者との距離を考慮して、第1カメラ13と第2カメラ23の光軸間距離L1に対して十分に短いため、第1光源11a,11bと第2光源12a,12bは、第1カメラ13に対して互いの光軸が実質的に同軸であるとみなすことができる。同様に、第2カメラ23と第1光源21a,21bの光軸間距離L11a,L11b、及び、第2カメラ23と第2光源22a,22bの光軸間距離L12a,L12bは、第1カメラ13と第2カメラ23の光軸間距離L1に対して十分に短いため、第1光源21a,21bと第2光源22a,22bは、第2カメラ23に対して互いの光軸が実質的に同軸であるとみなすことができる。   Here, the optical axis distances L11a and L11b between the first camera 13 and the first light sources 11a and 11b and the optical axis distances L12a and L12b between the first camera 13 and the second light sources 12a and 12b are illumination imaging. Considering the distance between the device 1 and the driver as the imaging target, the first light sources 11a and 11b and the second light source are sufficiently short with respect to the distance L1 between the optical axes of the first camera 13 and the second camera 23. The optical axes 12a and 12b can be considered to be substantially coaxial with respect to the first camera 13. Similarly, the distance L11a, L11b between the optical axes of the second camera 23 and the first light sources 21a, 21b and the distance L12a, L12b between the optical axes of the second camera 23 and the second light sources 22a, 22b are the same as those of the first camera 13. The first light sources 21a and 21b and the second light sources 22a and 22b are substantially coaxial with respect to the second camera 23 because the distance between the optical axes L1 and the second camera 23 is sufficiently short. Can be considered.

これに対して、第1カメラ13と第2カメラ23の光軸間距離L1が十分に長いため、第1光源11a,11bと第2光源12a,12bならびに第1カメラ13の各光軸と、第1光源21a,21aと第2光源22a,22bならびに第2カメラ23の各光軸とは、実質的に同軸ではない。   On the other hand, since the distance L1 between the optical axes of the first camera 13 and the second camera 23 is sufficiently long, the optical axes of the first light sources 11a and 11b, the second light sources 12a and 12b, and the first camera 13; The first light sources 21a and 21a, the second light sources 22a and 22b, and the optical axes of the second camera 23 are not substantially coaxial.

第1光源11a,12a、及び、第1光源21a,21bは、LED光源であり、検知光として波長が850nm(第1波長)の赤外光(近赤外光)を出射し、この検知光を対象者の目に与えることができるように配置されている。また、第2光源12a,12b、及び、第2光源22a,22bもLED光源であり、検知光として波長が940nm(第2波長)の赤外光を出射し、この検知光を対象者の目に与えることができるように配置されている。   The first light sources 11a and 12a and the first light sources 21a and 21b are LED light sources, and emit infrared light (near infrared light) having a wavelength of 850 nm (first wavelength) as detection light. Is arranged so that it can be given to the eyes of the subject. The second light sources 12a and 12b and the second light sources 22a and 22b are also LED light sources, and emit infrared light having a wavelength of 940 nm (second wavelength) as detection light. Arranged to be able to give to.

850nmは、人の目の眼球内での吸収率が低く、網膜で反射されやすい波長であり、940nmは、眼球での吸収率が高く網膜で反射されにくい波長である。また、第1光源11a,11b,21a,21bから発せられる波長850nmの赤外光の光量(光エネルギー)は、第2光源12a,12b,22a,22bから発せられる波長940nmの赤外光の光量(光エネルギー)よりも大きい。   850 nm is a wavelength that has a low absorption rate in the eyeball of a human eye and is easily reflected by the retina, and 940 nm is a wavelength that has a high absorption rate in the eyeball and is not easily reflected by the retina. Further, the light amount (light energy) of infrared light with a wavelength of 850 nm emitted from the first light sources 11a, 11b, 21a, and 21b is the light amount of infrared light with a wavelength of 940 nm emitted from the second light sources 12a, 12b, 22a, and 22b. Greater than (light energy).

図2は、図1(B)のII−II線の断面図であり、第1受像装置10に設けられた第1カメラ13と第1光源11a,11bならびに第2光源12a,12bの向きを示している。   2 is a cross-sectional view taken along the line II-II in FIG. 1B, and shows the orientation of the first camera 13 and the first light sources 11a and 11b and the second light sources 12a and 12b provided in the first image receiving device 10. Show.

本実施形態の照明撮像装置1は、車載用の視線検出装置として使用されるものであり、その設置場所がセンターコンソールなどのように、撮像対象である運転者の視線方向に対して斜め前方に配置されることがある。このような場合に、図2に示すように、第1カメラ13の光軸O1と、第1光源11a,11bならびに第2光源12a,12bの光軸が、それぞれカバー板4の内面に直角ではなく斜めに入射される。なお、第1カメラ13の光軸O1と、第1光源11a,11bならびに第2光源12a,12bの光軸は互いに平行である。   The illumination imaging device 1 of this embodiment is used as a vehicle-mounted gaze detection device, and its installation location is obliquely forward with respect to the gaze direction of the driver that is the imaging target, such as a center console. May be placed. In such a case, as shown in FIG. 2, the optical axis O1 of the first camera 13 and the optical axes of the first light sources 11a and 11b and the second light sources 12a and 12b are not perpendicular to the inner surface of the cover plate 4, respectively. Without incident. The optical axis O1 of the first camera 13 and the optical axes of the first light sources 11a and 11b and the second light sources 12a and 12b are parallel to each other.

第1光源11aと第2光源12aは、第1カメラ13よりもカバー板4の内面4aに接近した位置にあり、第1光源11bと第2光源12bも、第1カメラ13より内面4aに接近した位置にある。光軸O1と内面4aとが成す角度はX2側で鋭角θとなっているため、X2側に位置する第1光源11bと第2光源12bは、X1側に位置する第1光源11aと第2光源12aよりも、第1カメラ13に接近している。   The first light source 11a and the second light source 12a are located closer to the inner surface 4a of the cover plate 4 than the first camera 13, and the first light source 11b and the second light source 12b are also closer to the inner surface 4a than the first camera 13. In the position. Since the angle formed between the optical axis O1 and the inner surface 4a is an acute angle θ on the X2 side, the first light source 11b and the second light source 12b located on the X2 side are the first light source 11a and the second light source 11b located on the X1 side. It is closer to the first camera 13 than the light source 12a.

図2に示すように、第1カメラ13とそれぞれの第1光源11a,11bとの間に遮蔽部材15が設けられており、遮蔽部材15によって第1のカメラ13の撮像方向前方と第1光源11a,11bの発光方向前方とが仕切られている。遮蔽部材15は、ゴム材料や発泡樹脂材料などのように遮光性があり且つ柔軟な材料で形成されている。例えば、遮蔽部材15は連続して第1カメラ13のレンズ前方を囲むようにコーン形状に形成されている。   As shown in FIG. 2, a shielding member 15 is provided between the first camera 13 and each of the first light sources 11 a and 11 b, and the shielding member 15 causes the first camera 13 to move forward in the imaging direction and the first light source. The light emission direction front of 11a, 11b is partitioned off. The shielding member 15 is made of a light-shielding and flexible material such as a rubber material or a foamed resin material. For example, the shielding member 15 is formed in a cone shape so as to continuously surround the lens front of the first camera 13.

そして、遮蔽部材15の前方延長線上に、すなわち第1カメラ13の撮像方向前方と、第1光源11a,11bの発光方向前方との境界部において、カバー板4の内面4aに凹部17が形成されている。遮蔽部材15が第1カメラ13のレンズを囲むように形成されている場合には、凹部17も前記レンズの前方を囲むように形成されている。   A recess 17 is formed on the inner surface 4a of the cover plate 4 on the front extension line of the shielding member 15, that is, at the boundary between the front of the first camera 13 in the imaging direction and the front of the first light sources 11a and 11b in the light emission direction. ing. When the shielding member 15 is formed so as to surround the lens of the first camera 13, the concave portion 17 is also formed so as to surround the front of the lens.

あるいは、図1(B)に示すように、凹部17は、第1カメラ13と第1光源11aとの境界部ならびに第1カメラ13と第1光源11bとの境界部において、図1(B)の図示上下方向に連続して形成され、すなわちカバー板4を幅方向へ横断する方向の全長に渡って直線状に形成されているものであってもよい。   Alternatively, as shown in FIG. 1B, the concave portion 17 is formed at the boundary between the first camera 13 and the first light source 11a and at the boundary between the first camera 13 and the first light source 11b. It may be formed continuously in the illustrated vertical direction, that is, formed linearly over the entire length in the direction transverse to the cover plate 4 in the width direction.

いずれにせよ、前記凹部17は、遮蔽部材15の前方延長線上の近傍に形成されている。凹部17は遮蔽部材15の内側を通過する光をなるべく妨げない位置に配置されて、第1カメラ13の画角を広く取ることが可能となっている。好ましくは、図2に示すように、遮蔽部材15のカメラ側内面の延長線と凹部17の内面とが同一線上に位置するように形成される。   In any case, the concave portion 17 is formed in the vicinity of the front extension line of the shielding member 15. The concave portion 17 is disposed at a position that does not obstruct light passing through the inside of the shielding member 15 as much as possible, so that the angle of view of the first camera 13 can be increased. Preferably, as shown in FIG. 2, the extension line of the camera-side inner surface of the shielding member 15 and the inner surface of the recess 17 are formed on the same line.

図3に拡大して示すように、凹部17の断面形状は、カバー板4の内面4aでの開口幅17aが広く、カバー板4の外面4bに向けて幅寸法が徐々に狭くなるように形成され、断面形状がV形状である。   As shown in an enlarged view in FIG. 3, the cross-sectional shape of the recess 17 is formed so that the opening width 17 a on the inner surface 4 a of the cover plate 4 is wide and the width dimension gradually decreases toward the outer surface 4 b of the cover plate 4. The cross-sectional shape is V-shaped.

図3には、第1光源11aの発光状態が説明されている。前記凹部17が形成されていない状態を想定すると、第1光源11aのLED発光源31から発せられた光33の一部は、LED発光源31の前方を覆うほぼ球面形状のケース32の内面に反射されるなどして、カバー板4の内部に斜めに入り込む。カバー板4の内部に入り込んだ光34は、カバー板4の外面4bで反射され、内面4aを透過して、遮蔽部材15よりもX2側に漏れ出る。この漏れ出た光35が第1カメラ13で取得され、第1カメラ13による撮像画像の一部が露光過剰な状態となり、撮像画像を正確に取得できなくなる。   FIG. 3 illustrates the light emission state of the first light source 11a. Assuming that the concave portion 17 is not formed, a part of the light 33 emitted from the LED light source 31 of the first light source 11a is on the inner surface of a substantially spherical case 32 covering the front of the LED light source 31. The light enters the inside of the cover plate 4 obliquely, for example, by reflection. The light 34 that has entered the inside of the cover plate 4 is reflected by the outer surface 4 b of the cover plate 4, passes through the inner surface 4 a, and leaks to the X2 side from the shielding member 15. The leaked light 35 is acquired by the first camera 13, and a part of the image captured by the first camera 13 is overexposed, and the captured image cannot be acquired accurately.

そこで、図2と図3に示すように、第1カメラ13による撮像方向前方と、第1光源11aの発光方向前方との境界部に凹部17を形成することで、カバー板4の内部を伝搬する光34の経路を凹部17で遮断できるようになり、光35が第1カメラ13で取得されるのを防止できる。   Therefore, as shown in FIGS. 2 and 3, a recess 17 is formed at the boundary between the front in the imaging direction of the first camera 13 and the front in the light emission direction of the first light source 11a, so that the inside of the cover plate 4 is propagated. The path of the light 34 to be performed can be blocked by the recess 17, and the light 35 can be prevented from being acquired by the first camera 13.

仮に、第1光源11aの光軸がカバー板4の内面4aに対して垂直に向けられているとすると、第1光源11aからの多くの光の成分が、カバー板4の内面4aに垂直に近い角度で入射するため、カバー板4を透過して前方に照射される光成分が多くなる。一方で、図2と図3に示すように、第1光源11aの光軸が、カバー板4の内面4aに対して斜めに延びていると、発光源31から発せられた光が、内面4aに対して斜めに当たる確率が高くなり、光がカバー板4の内部に入り込んで伝搬されやすくなる。したがって、図2に示すように、第1カメラ13の光軸O1と光源からの光軸が内面4aに対して斜めに向けられている構造では、前記凹部17を設けることによる効果が高くなり、カバー板4内での光34の伝搬経路を遮断でき、第1カメラ13による露光過剰などの問題を解決できるようになる。   Assuming that the optical axis of the first light source 11a is oriented perpendicularly to the inner surface 4a of the cover plate 4, many light components from the first light source 11a are perpendicular to the inner surface 4a of the cover plate 4. Since the light is incident at a close angle, the light component that is transmitted forward through the cover plate 4 increases. On the other hand, as shown in FIGS. 2 and 3, when the optical axis of the first light source 11 a extends obliquely with respect to the inner surface 4 a of the cover plate 4, the light emitted from the light source 31 is converted into the inner surface 4 a. , The probability that the light hits diagonally increases, and light enters the inside of the cover plate 4 and propagates easily. Therefore, as shown in FIG. 2, in the structure in which the optical axis O1 of the first camera 13 and the optical axis from the light source are oriented obliquely with respect to the inner surface 4a, the effect of providing the concave portion 17 is increased. The propagation path of the light 34 in the cover plate 4 can be blocked, and problems such as overexposure by the first camera 13 can be solved.

これは、図2に示すX2側の第1の光源11bの照射方向前方と第1カメラ13による撮像方向前方との境界部においても同じである。第1光源11bの光軸もカバー板4の内面4aに斜めに向けられているため、第1光源11bから発せられた光が、カバー板4内を伝搬して、第1カメラ13に入り込みやすくなる。そこで、第1カメラ13と第1の光源11bとの境界部において、遮蔽部材15の延長線の前方またはその近傍に凹部17が形成されていると、第1光源11bから発せられる光が第1カメラに入り込むのを防止しやすくなる。   This also applies to the boundary between the front of the X2 side first light source 11b shown in FIG. 2 and the front of the first camera 13 in the imaging direction. Since the optical axis of the first light source 11b is also obliquely directed toward the inner surface 4a of the cover plate 4, light emitted from the first light source 11b propagates through the cover plate 4 and easily enters the first camera 13. Become. Therefore, if a recess 17 is formed in front of or in the vicinity of the extended line of the shielding member 15 at the boundary between the first camera 13 and the first light source 11b, the light emitted from the first light source 11b is the first. It becomes easy to prevent getting into the camera.

第1光源11aと第1光源11bとを比較した場合に、X2側の第1光源11bが第1カメラ13に与える影響は、X1側の第1光源11aが第1カメラ13に与える影響よりもはるかに大きい。光源11a,11b,12a,12bはカバー板4の内面4aになるべく接近させることが必要である。光源11a,11b,12a,12bが内面4aから離れていると、これら光源から発せられる光のうち内面4aで反射されてケース2の内部空間に戻ってしまう光成分が多くなるからである。   When comparing the first light source 11a and the first light source 11b, the influence of the first light source 11b on the X2 side on the first camera 13 is more than the influence of the first light source 11a on the X1 side on the first camera 13. Much bigger. The light sources 11a, 11b, 12a, and 12b need to be as close as possible to the inner surface 4a of the cover plate 4. This is because if the light sources 11a, 11b, 12a, and 12b are separated from the inner surface 4a, the light components that are reflected by the inner surface 4a and return to the internal space of the case 2 out of the light emitted from these light sources increase.

光源をカバー板4に接近させ、しかも第1カメラ13の光軸O1と各光源の光軸を内面4aに対して斜めに向けた結果、X2側の第1光源11bと第2光源12bは、X1側の第1光源11aと第2光源12aよりも、第1カメラ13に近い位置に配置されることになる。その結果、X2側の第1光源11bから発せられた光が遮蔽部材15よりもX1側に漏れ出る可能性は、X1側の第1光源11aよりも高くなり、第1カメラ13による取得画像では、第1光源11bからの洩れ光による部分的な露光過剰現象が生じやすくなっている。   As a result of bringing the light source closer to the cover plate 4 and orienting the optical axis O1 of the first camera 13 and the optical axis of each light source obliquely with respect to the inner surface 4a, the first light source 11b and the second light source 12b on the X2 side are The first light source 11a and the second light source 12a on the X1 side are arranged closer to the first camera 13. As a result, the possibility that the light emitted from the first light source 11b on the X2 side leaks to the X1 side from the shielding member 15 is higher than that of the first light source 11a on the X1 side. The partial overexposure phenomenon is likely to occur due to leakage light from the first light source 11b.

したがって、凹部17は、少なくとも、第1カメラ13の光軸O1と内面4aとの成す角度θが鋭角となる側(X2側)に位置する第1光源11bと第1カメラ13との境界部に形成されることが好ましい。ただし、X1側の第1光源11aと第1カメラ13との境界部と、X2側の第1光源11bと第1カメラ13の境界部の双方に凹部17が形成されることがさらに好ましい。   Accordingly, the recess 17 is at least at the boundary between the first light source 11b and the first camera 13 located on the side (X2 side) where the angle θ formed by the optical axis O1 of the first camera 13 and the inner surface 4a is an acute angle. Preferably it is formed. However, it is more preferable that the recesses 17 are formed in both the boundary between the first light source 11a and the first camera 13 on the X1 side and the boundary between the first light source 11b and the first camera 13 on the X2 side.

また、第1光源11aを発光させて明瞳孔画像を得るために、第1光源11aを第1カメラ13の光軸O1に接近した位置に配置されることが好ましい。しかも第1光源11aから発せられる光の波長は850nmであり、その光のエネルギーは、第2光源12a,12bが発する波長が940nmの光よりも大きい。したがって、第1光源11aと第1カメラ13との境界部に凹部17を形成して、第1光源11aから発せられる光のカバー板4内での伝搬を遮断することで、第1カメラの部分的な過剰露出を防止できるようになる。   In order to obtain the bright pupil image by causing the first light source 11 a to emit light, the first light source 11 a is preferably disposed at a position close to the optical axis O <b> 1 of the first camera 13. In addition, the wavelength of the light emitted from the first light source 11a is 850 nm, and the energy of the light is larger than the light emitted from the second light sources 12a and 12b having a wavelength of 940 nm. Accordingly, a concave portion 17 is formed at the boundary between the first light source 11a and the first camera 13 to block the propagation of the light emitted from the first light source 11a in the cover plate 4, so that the portion of the first camera Overexposure can be prevented.

X1側に配置されている第2受像装置20の構造は、第1受像装置10と左右方向に対称である。第2カメラ23の光軸O2と光源21a,21b,22a,22bの光軸の傾き方向は、第1カメラ13の光軸O1の傾き方向と同じである。第2受像装置20においても、第2カメラ23の撮像方向前方と、第1光源21a,21bの発光方向前方との境界部に、凹部17が形成されている。   The structure of the second image receiving device 20 arranged on the X1 side is symmetrical to the first image receiving device 10 in the left-right direction. The tilt direction of the optical axis O2 of the second camera 23 and the optical axes of the light sources 21a, 21b, 22a, and 22b is the same as the tilt direction of the optical axis O1 of the first camera 13. Also in the second image receiving device 20, a recess 17 is formed at the boundary between the front of the second camera 23 in the imaging direction and the front of the first light sources 21a and 21b in the light emission direction.

<視線検出装置の構造>
図7には、視線検出装置の回路ブロック図が示されている。視線検出装置は、前記照明撮像装置1と演算制御部CCとで構成されている。
<Structure of gaze detection device>
FIG. 7 shows a circuit block diagram of the visual line detection device. The line-of-sight detection device includes the illumination imaging device 1 and a calculation control unit CC.

演算制御部CCは、コンピュータのCPUやメモリで構成されており、各ブロックの機能は、予めインストールされたソフトウエアを実行することで演算が行われる。   The arithmetic control unit CC is composed of a CPU and a memory of a computer, and the function of each block is calculated by executing preinstalled software.

演算制御部CCには、画像取得部44、45と、瞳孔画像抽出部50と、瞳孔中心算出部53と、瞳孔径算出部54と、角膜反射光中心検出部55と、視線方向算出部56とが設けられている。   The calculation control unit CC includes image acquisition units 44 and 45, a pupil image extraction unit 50, a pupil center calculation unit 53, a pupil diameter calculation unit 54, a corneal reflection light center detection unit 55, and a gaze direction calculation unit 56. And are provided.

図示しない光源制御部によって、第1光源11a,11b,21a,21bと、第2光源12a,12b,22a,22bの点灯・非点灯が制御され、カメラ13、23で取得された画像は、フレームごとに画像取得部44、45でそれぞれ取得される。   Illumination / non-lighting of the first light sources 11a, 11b, 21a, 21b and the second light sources 12a, 12b, 22a, 22b is controlled by a light source control unit (not shown), and images acquired by the cameras 13, 23 are frames. The image acquisition units 44 and 45 respectively acquire the images.

画像取得部44、45で取得された画像は、フレームごとに瞳孔画像抽出部50に読み込まれる。瞳孔画像抽出部50は、明瞳孔画像検出部51と暗瞳孔画像検出部52とを備えている。   The images acquired by the image acquisition units 44 and 45 are read into the pupil image extraction unit 50 for each frame. The pupil image extraction unit 50 includes a bright pupil image detection unit 51 and a dark pupil image detection unit 52.

図5は、対象者の目60の視線の向きとカメラ13,23の光軸O1,O2との関係を模式的に示す平面図である。図2に示すように、第1受像装置10の第1カメラ13の光軸O1と各光源の光軸がカバー板4に対して斜めに向けられ、第2受像装置20においても、第2カメラ23の光軸O2と各光源の光軸がカバー板4に対して斜めに向けられている。そのため、照明撮像装置1がセンターコンソールのように撮像対象である運転者の斜め前方に配置されていても、第1カメラ13の光軸O1と第2カメラ23の光軸O2の双方を、照明撮像装置1から所定距離離れている対象者の顔と目60に向けることが可能になっている。   FIG. 5 is a plan view schematically showing the relationship between the direction of the line of sight of the eye 60 of the subject and the optical axes O1 and O2 of the cameras 13 and 23. FIG. As shown in FIG. 2, the optical axis O1 of the first camera 13 of the first image receiving device 10 and the optical axis of each light source are directed obliquely with respect to the cover plate 4, and the second camera also in the second image receiving device 20. The optical axis O <b> 2 of 23 and the optical axis of each light source are directed obliquely with respect to the cover plate 4. Therefore, even if the illumination imaging device 1 is disposed diagonally forward of the driver who is the imaging target like the center console, both the optical axis O1 of the first camera 13 and the optical axis O2 of the second camera 23 are illuminated. It is possible to face the subject's face and eyes 60 that are separated from the imaging apparatus 1 by a predetermined distance.

図6は、瞳孔中心と角膜反射光の中心とから視線の向きを算出するための説明図である。図5(A)と図6(A)では、対象者の視線方向VLが第1カメラ13の光軸O1と第2カメラ23の光軸O2との中間に向けられており、図5(B)と図6(B)は視線方向VLが第2カメラ23の光軸O1方向へ向けられている。   FIG. 6 is an explanatory diagram for calculating the direction of the line of sight from the center of the pupil and the center of the corneal reflected light. 5A and 6A, the visual line direction VL of the subject is directed to the middle between the optical axis O1 of the first camera 13 and the optical axis O2 of the second camera 23. FIG. ) And FIG. 6B, the line-of-sight direction VL is directed toward the optical axis O1 of the second camera 23.

目60は前方に角膜61を有し、その後方に瞳孔62と水晶体63が位置している。そして最後部に網膜64が存在している。   The eye 60 has a cornea 61 in the front, and a pupil 62 and a crystalline lens 63 are located behind the cornea 61. The retina 64 is present at the end.

目を含む領域の画像をカメラ13,23で取得するときに、点灯させる光源を選択することで、瞳孔62の明るさが相違する画像を得ることができる。明瞳孔画像と暗瞳孔画像は、画像内の瞳孔62の明るさの違いを相対的に表した概念であり、2つの画像を比較したときに瞳孔62が明るい方の画像が明瞳孔画像であり、瞳孔62が暗い方の画像が暗瞳孔画像である。   When the image of the region including the eyes is acquired by the cameras 13 and 23, an image in which the brightness of the pupil 62 is different can be obtained by selecting a light source to be turned on. The bright pupil image and the dark pupil image are concepts that relatively represent the difference in brightness of the pupil 62 in the image, and when the two images are compared, the image with the brighter pupil 62 is the bright pupil image. The darker pupil image is the darker pupil image.

暗瞳孔画像と明瞳孔画像は、第1光源11a,11b,21a,21bの発光と、第2光源12a,12b,22a,22bの発光とを切換えることにより行われる。   The dark pupil image and the bright pupil image are performed by switching between the light emission of the first light sources 11a, 11b, 21a, and 21b and the light emission of the second light sources 12a, 12b, 22a, and 22b.

第1光源11a,11b,21a,21bの波長850nmは、網膜64で反射されやすい。そのため、第1受像装置10の第1光源11a,11bが点灯したときに、第1光源11a,11bと略同軸の第1カメラ13で取得される画像では、網膜64で反射された赤外光が瞳孔62を通じて検出され、瞳孔62が明るく見える。この画像が明瞳孔画像として明瞳孔画像検出部51で抽出される。これは、第2受像装置20において、第1光源21a,21b点灯したときに、これと略同軸の第2カメラ23で取得される画像についても同様である。   The wavelength 850 nm of the first light sources 11a, 11b, 21a, 21b is easily reflected by the retina 64. Therefore, when the first light sources 11a and 11b of the first image receiving device 10 are turned on, infrared light reflected by the retina 64 is displayed in an image acquired by the first camera 13 that is substantially coaxial with the first light sources 11a and 11b. Is detected through the pupil 62, and the pupil 62 appears bright. This image is extracted as a bright pupil image by the bright pupil image detection unit 51. The same applies to an image acquired by the second camera 23 that is substantially coaxial with the first light sources 21a and 21b when the second image receiving device 20 is turned on.

第2光源12a,12b,22a,22bの波長940nmは、網膜64上で反射されにくい。そのため、第1受像装置10の第2光源12a,12bが点灯したときに、第2光源12a,12bと略同軸の第1カメラ13で取得される画像では、網膜64から赤外光がほとんど反射されず、瞳孔62が暗く見える。この画像が暗瞳孔画像として、暗瞳孔画像検出部52で抽出される。これは、第2受像装置20において、第2光源22a,22bが点灯したときに、これと略同軸のカメラ23で取得される画像についても同様である。   The wavelength 940 nm of the second light sources 12a, 12b, 22a, and 22b is difficult to be reflected on the retina 64. Therefore, when the second light sources 12a and 12b of the first image receiving device 10 are turned on, infrared light is almost reflected from the retina 64 in the image acquired by the first camera 13 substantially coaxial with the second light sources 12a and 12b. The pupil 62 appears dark. This image is extracted as a dark pupil image by the dark pupil image detection unit 52. The same applies to the image acquired by the camera 23 that is substantially coaxial with the second light sources 22a and 22b in the second image receiving device 20 when the second light sources 22a and 22b are turned on.

第1受像装置10と第2受像装置20とで、撮像動作を交互に繰り返すことで、2つのカメラ13,23で明瞳孔画像と暗瞳孔画像を別々に取得でき、瞳孔の位置を三次元的に測定することが可能になる。   By alternately repeating the imaging operation in the first image receiving device 10 and the second image receiving device 20, the bright pupil image and the dark pupil image can be separately acquired by the two cameras 13 and 23, and the pupil position is three-dimensionally determined. It becomes possible to measure.

または、次のように点灯する光源を切換えることで、明瞳孔画像と暗瞳孔画像とを取得することも可能である。   Alternatively, it is also possible to acquire a bright pupil image and a dark pupil image by switching the light source to be turned on as follows.

図5(A)に示すように、受像装置10の光軸O1と受像装置の光軸O2は、異なる角度で対象者の目60に与えられる。   As shown in FIG. 5A, the optical axis O1 of the image receiving device 10 and the optical axis O2 of the image receiving device are given to the eye 60 of the subject at different angles.

第1受像装置10に搭載されている第1光源11a,11bを点灯したときに、第1光源11a,11bと実質的に同軸の第1のカメラ13で取得した画像では、網膜64で反射された赤外光がカメラ13に入射しやすいため、瞳孔62が明るく見える明瞳孔画像となる。この画像は明瞳孔画像として、明瞳孔画像検出部51で抽出される。これに対し、受像装置20に設けられた第2カメラ23の光軸O2は、第1受像装置10の第1光源11a,11bの光軸と非同軸となるため、第1光源11a,11bを点灯したときに、網膜64で光が反射されたとしてもその光は第2カメラ23で検知されにくい。そのため、第2カメラ23で取得した画像は、瞳孔62が比較的暗い暗瞳孔画像となる。この画像は暗瞳孔画像として、暗瞳孔画像検出部52で抽出される。   When the first light sources 11a and 11b mounted on the first image receiving device 10 are turned on, an image acquired by the first camera 13 substantially coaxial with the first light sources 11a and 11b is reflected by the retina 64. Since the infrared light easily enters the camera 13, a bright pupil image in which the pupil 62 appears bright is obtained. This image is extracted as a bright pupil image by the bright pupil image detection unit 51. On the other hand, since the optical axis O2 of the second camera 23 provided in the image receiving device 20 is not coaxial with the optical axes of the first light sources 11a and 11b of the first image receiving device 10, the first light sources 11a and 11b are Even when the light is reflected by the retina 64 when the light is turned on, the light is not easily detected by the second camera 23. Therefore, the image acquired by the second camera 23 is a dark pupil image in which the pupil 62 is relatively dark. This image is extracted by the dark pupil image detection unit 52 as a dark pupil image.

逆に、第2受像装置20の第1光源21a,21bを点灯したときは、網膜64で反射された光が瞳孔62を通過し、光軸O2に沿って第2カメラ23で検知されやすく、第2カメラ23で取得された画像が明瞳孔画像となる。このとき、網膜64で反射された光は、斜め前方に位置する第1カメラ13で検知されにくく、第1カメラ13で取得された画像が暗瞳孔画像となる。   Conversely, when the first light sources 21a and 21b of the second image receiving device 20 are turned on, the light reflected by the retina 64 passes through the pupil 62 and is easily detected by the second camera 23 along the optical axis O2. An image acquired by the second camera 23 is a bright pupil image. At this time, the light reflected by the retina 64 is not easily detected by the first camera 13 located obliquely forward, and the image acquired by the first camera 13 becomes a dark pupil image.

つまり、同じ波長の検知光が発せられたときに、カメラに近接する組の光源(カメラと同軸の光源)から光が発せられたときは、そのカメラから取得された画像が明瞳孔画像となり、カメラから遠隔の組の光源(カメラと非同軸の光源)から光が発せられたときは、そのカメラから取得された画像が暗瞳孔画像となる。   In other words, when detection light of the same wavelength is emitted, when light is emitted from a pair of light sources close to the camera (light source coaxial with the camera), the image acquired from the camera becomes a bright pupil image, When light is emitted from a pair of light sources remote from the camera (non-coaxial light source with the camera), an image acquired from the camera becomes a dark pupil image.

これは、第1受像装置10の第2光源12a,12bと、第2受像装置の第2光源22a,22bと、カメラ13,23との組み合わせにおいても同じである。   The same applies to the combination of the second light sources 12a and 12b of the first image receiving device 10, the second light sources 22a and 22b of the second image receiving device, and the cameras 13 and 23.

図7に示す瞳孔画像抽出部50では、受像装置10と受像装置20の双方で明瞳孔画像と暗瞳孔画像が取得されたら、明瞳孔画像検出部51で検出された明瞳孔画像から暗瞳孔画像検出部52で検出された暗瞳孔画像がマイナスされる。この計算により明瞳孔画像に明るく現れている瞳孔62の画像が残り、それ以外の画像は相殺されてほぼ見えなくなる。   In the pupil image extraction unit 50 shown in FIG. 7, when the bright pupil image and the dark pupil image are acquired by both the image receiving device 10 and the image receiving device 20, the dark pupil image is obtained from the bright pupil image detected by the bright pupil image detection unit 51. The dark pupil image detected by the detection unit 52 is subtracted. As a result of this calculation, an image of the pupil 62 that appears brightly in the bright pupil image remains, and the other images are canceled and almost invisible.

瞳孔62の形状を示す瞳孔画像信号は、瞳孔中心算出部53及び瞳孔径算出部54に与えられる。瞳孔中心算出部53では、瞳孔画像信号が画像処理されて二値化され、瞳孔62の形状と面積に対応する部分のエリア画像が算出される。さらに、このエリア画像を含む楕円が抽出され、楕円の長軸と短軸との交点が瞳孔62の中心位置として算出される。瞳孔径算出部54では、瞳孔画像信号と、瞳孔中心算出部53で算出された瞳孔62の中心位置と、楕円の長軸と短軸と、に基づいて瞳孔62の瞳孔径が算出される。   A pupil image signal indicating the shape of the pupil 62 is given to the pupil center calculation unit 53 and the pupil diameter calculation unit 54. In the pupil center calculation unit 53, the pupil image signal is subjected to image processing and binarized, and an area image corresponding to the shape and area of the pupil 62 is calculated. Further, an ellipse including this area image is extracted, and the intersection of the major axis and the minor axis of the ellipse is calculated as the center position of the pupil 62. The pupil diameter calculation unit 54 calculates the pupil diameter of the pupil 62 based on the pupil image signal, the center position of the pupil 62 calculated by the pupil center calculation unit 53, and the major and minor axes of the ellipse.

次に、図5(A)(B)に示すように、いずれかの光源が点灯しているときには、その光源からの光が、角膜61の表面で反射されて、その光が第1カメラ13と第2カメラ23の双方で取得され、明瞳孔画像検出部51と暗瞳孔画像検出部52で検出される。特に、暗瞳孔画像検出部52では、瞳孔62の画像が比較的暗いため、角膜61の反射点65から反射された反射光が明るくスポット画像として検出しやすくなる。   Next, as shown in FIGS. 5A and 5B, when any one of the light sources is turned on, the light from the light source is reflected by the surface of the cornea 61 and the light is reflected on the first camera 13. And the second camera 23 and detected by the bright pupil image detection unit 51 and the dark pupil image detection unit 52. In particular, in the dark pupil image detection unit 52, since the image of the pupil 62 is relatively dark, the reflected light reflected from the reflection point 65 of the cornea 61 is bright and easily detected as a spot image.

暗瞳孔画像検出部52で検出された暗瞳孔画像信号は、角膜反射光中心検出部55に与えられる。暗瞳孔画像信号には、角膜61の反射点65から反射された反射光による輝度信号が含まれている。角膜61の反射点65からの反射光はプルキニエ像を結像するものであり、図6に示すように、カメラ13、23の撮像素子には、きわめて小さい面積のスポット画像として取得される。角膜反射光中心検出部55では、スポット画像が画像処理されて、角膜61の反射点65からの反射光の中心が求められる。   The dark pupil image signal detected by the dark pupil image detection unit 52 is given to the corneal reflection light center detection unit 55. The dark pupil image signal includes a luminance signal by reflected light reflected from the reflection point 65 of the cornea 61. The reflected light from the reflection point 65 of the cornea 61 forms a Purkinje image, and is acquired as a spot image with a very small area on the imaging devices of the cameras 13 and 23 as shown in FIG. The corneal reflection light center detection unit 55 performs image processing on the spot image, and obtains the center of the reflected light from the reflection point 65 of the cornea 61.

瞳孔中心算出部53で算出された瞳孔中心算出値と角膜反射光中心検出部55で算出された角膜反射光中心算出値は、視線方向算出部56に与えられる。視線方向算出部56では、瞳孔中心算出値と角膜反射光中心算出値とから視線の向きが検出される。   The pupil center calculation value calculated by the pupil center calculation unit 53 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 55 are given to the gaze direction calculation unit 56. The line-of-sight direction calculation unit 56 detects the direction of the line of sight from the pupil center calculated value and the corneal reflection light center calculated value.

図5(A)では、人の目60の視線方向VLが、第1カメラ13の光軸O1と第2カメラ23の光軸O2との中間方向に向けられている。このとき、図6(A)に示すように、角膜61からの反射点65の中心が瞳孔62の中心と一致している。これに対して、図5(B)では、人の目60の視線方向VLが、かなり左側へ向けられている。このとき、図6(B)に示すように、瞳孔62の中心と角膜61からの反射点65の中心とが位置ずれする。   In FIG. 5A, the line-of-sight direction VL of the human eye 60 is oriented in the intermediate direction between the optical axis O1 of the first camera 13 and the optical axis O2 of the second camera 23. At this time, the center of the reflection point 65 from the cornea 61 coincides with the center of the pupil 62 as shown in FIG. In contrast, in FIG. 5B, the line-of-sight direction VL of the human eye 60 is considerably directed to the left side. At this time, as shown in FIG. 6B, the center of the pupil 62 and the center of the reflection point 65 from the cornea 61 are displaced.

視線方向算出部56では、瞳孔62の中心と、角膜61からの反射点65の中心との直線距離αが算出される(図6(B))。また瞳孔62の中心を原点とするX−Y座標が設定され、瞳孔62の中心と反射点65の中心とを結ぶ線とX軸との傾き角度βが算出される。2つのカメラ13,23で取得された画像に基づいて前記直線距離αと前記傾き角度βが算出されることで、視線方向VLが算出される。   The line-of-sight direction calculation unit 56 calculates a linear distance α between the center of the pupil 62 and the center of the reflection point 65 from the cornea 61 (FIG. 6B). Further, XY coordinates having the origin at the center of the pupil 62 are set, and an inclination angle β between the line connecting the center of the pupil 62 and the center of the reflection point 65 and the X axis is calculated. The line-of-sight direction VL is calculated by calculating the linear distance α and the tilt angle β based on images acquired by the two cameras 13 and 23.

<変形例>
以下に変形例について説明する。
図4(A)に示す変形例では、カバー板4に形成された凹部17内に光吸収材料71が充填されている。光吸収材料71は、第1光源11aから発せられる赤外光を吸収できるものであり、好ましくは、第1光源11aと第2光源12bの双方の光の波長を吸収できることが好ましい。光吸収材料71は、例えばカーボン材料を主体として構成されている。
<Modification>
A modification will be described below.
In the modification shown in FIG. 4A, the light absorbing material 71 is filled in the recess 17 formed in the cover plate 4. The light absorbing material 71 can absorb infrared light emitted from the first light source 11a, and preferably absorbs wavelengths of light from both the first light source 11a and the second light source 12b. The light absorbing material 71 is composed mainly of a carbon material, for example.

凹部17に光吸収材料71を充填することにより、凹部17の表面での光の反射を防止でき、カバー板4内での光の伝搬を規制しやすくなる。   By filling the concave portion 17 with the light absorbing material 71, reflection of light on the surface of the concave portion 17 can be prevented and propagation of light within the cover plate 4 can be easily regulated.

図4(B)(C)に示す変形例では、カバー板4に形成されている凹部117の断面形状はほぼ台形となっている。この凹部117の断面形状も、内面4aでの開口幅が広く、外面4bに向かうにしたがって開口幅が徐々に狭くなっている。   In the modification shown in FIGS. 4B and 4C, the cross-sectional shape of the recess 117 formed in the cover plate 4 is substantially trapezoidal. The cross-sectional shape of the recess 117 also has a wide opening width on the inner surface 4a, and the opening width gradually decreases toward the outer surface 4b.

このように、凹部17,117の断面形状を、内面4aでの開口幅が広く、外面4bに向かうにしたがって開口幅が徐々に狭くなるように形成することで、カバー板4内を伝搬する光が凹部17,117の境界面に当たったときに、光の反射方向を外面4b方向へ向けやすくなる。   In this way, the cross-sectional shape of the recesses 17 and 117 is formed such that the opening width on the inner surface 4a is wide and the opening width gradually decreases toward the outer surface 4b, so that the light propagating in the cover plate 4 is formed. When the light hits the boundary surface between the recesses 17 and 117, the light reflection direction is easily directed toward the outer surface 4b.

<第2の実施形態>
図8(A)(B)に示す第2の実施の形態では、第1受像装置10と第2受像装置20の双方において、カメラ13の周囲に光源11,12が環状に並んで配置されている。光源11は、850nmの波長の光を発し、光源12は940nmの波長の光を発する。カメラ13の前方に遮蔽部材15が延び出ており、カメラ13の前方とそれぞれの光源11,12の発光方向前方との境界部において、カバー板4の内面4aに凹部17が形成されている。この場合、凹部17は、カメラ13の前方を囲むように環状に形成される。
<Second Embodiment>
In the second embodiment shown in FIGS. 8A and 8B, the light sources 11 and 12 are arranged in a ring around the camera 13 in both the first image receiving device 10 and the second image receiving device 20. Yes. The light source 11 emits light having a wavelength of 850 nm, and the light source 12 emits light having a wavelength of 940 nm. A shielding member 15 extends in front of the camera 13, and a recess 17 is formed in the inner surface 4 a of the cover plate 4 at the boundary between the front of the camera 13 and the front of the light sources 11 and 12 in the light emission direction. In this case, the recess 17 is formed in an annular shape so as to surround the front of the camera 13.

4 カバー板
4a 内面
4b 外面
10、20 受像装置
11a、11b、21a、21b 第1光源
12a、12b、22a,22b 第2光源
13、23 カメラ
15 遮蔽部材
17、117 凹部
44、45 画像取得部
50 瞳孔画像抽出部
53 瞳孔中心算出部
54 瞳孔径算出部(判定情報取得部)
55 角膜反射光中心検出部
56 視線方向算出部
60 目
O1,O2 光軸
4 Cover plate 4a Inner surface 4b Outer surfaces 10, 20 Image receiving devices 11a, 11b, 21a, 21b First light sources 12a, 12b, 22a, 22b Second light sources 13, 23 Camera 15 Shield member 17, 117 Recess 44, 45 Image acquisition unit 50 Pupil image extraction unit 53 Pupil center calculation unit 54 Pupil diameter calculation unit (determination information acquisition unit)
55 Cornea Reflected Light Center Detection Unit 56 Gaze Direction Calculation Unit 60 Eye O1, O2 Optical Axis

Claims (8)

撮像対象の画像を取得するカメラと、撮像対象に検知光を与える複数の光源と、前記カメラの撮像方向前方と前記光源の発光方向前方とを共通に覆う透光性のカバー板とを有する照明撮像装置において、
複数の前記光源が前記カメラを挟むように配置されて、前記カメラの光軸とそれぞれの前記光源の光軸とが互いに平行に延び、前記カメラの光軸と前記光源の光軸が前記カバー板の内面に斜めに入射しており、
前記カメラの撮像方向前方と前記光源の発光方向前方とを仕切る遮蔽部材が設けられ、前記遮蔽部材が、前記カメラの光軸に対して開き角度を有して前記カバー板の内面に向かって傾いて延びており、
前記カバー板の内面には、前記カメラの撮像方向前方と前記光源の発光方向前方の境界部に凹部が形成されており、前記凹部が、前記遮蔽部材の延長上またはその近傍に位置していることを特徴とする照明撮像装置。
Illumination having a camera that acquires an image of an imaging target, a plurality of light sources that provide detection light to the imaging target, and a translucent cover plate that covers in common the imaging direction front of the camera and the light emission direction of the light source In the imaging device,
A plurality of the light sources are arranged so as to sandwich the camera, and an optical axis of the camera and an optical axis of each of the light sources extend in parallel to each other, and the optical axis of the camera and the optical axis of the light source are the cover plate Is obliquely incident on the inner surface of
A shielding member is provided that partitions the front of the camera in the imaging direction and the light emission direction of the light source, and the shielding member is inclined toward the inner surface of the cover plate with an opening angle with respect to the optical axis of the camera. Extending,
On the inner surface of the cover plate, a recess is formed at the boundary between the camera in the imaging direction and the light source in the emission direction, and the recess is located on or near the extension of the shielding member. The illumination imaging device characterized by the above-mentioned.
前記遮蔽部材の前記カメラ側の内面の延長線と、前記凹部の内面と、が同一線上に位置する請求項1記載の照明撮像装置。The illumination imaging apparatus according to claim 1, wherein an extension line of the inner surface of the shielding member on the camera side and an inner surface of the recess are located on the same line. 前記凹部の断面形状は、前記カバー板の前記内面から外面方向に向かうにしたがって開口幅が徐々に減少する形状である請求項1または2記載の照明撮像装置。 3. The illumination imaging apparatus according to claim 1, wherein a cross-sectional shape of the recess is a shape in which an opening width gradually decreases from the inner surface toward the outer surface of the cover plate . 前記遮蔽部材は、前記カメラの光軸を囲むコーン形状である請求項1ないし3のいずれかに記載の照明撮像装置。The illumination imaging apparatus according to claim 1, wherein the shielding member has a cone shape surrounding an optical axis of the camera. 前記凹部内に、前記光源から発せられる光を吸収する光吸収材料が充填されている請求項1ないし4のいずれかに記載の照明撮像装置。 The illumination imaging apparatus according to claim 1, wherein the concave portion is filled with a light absorbing material that absorbs light emitted from the light source. 前記光源が前記カメラのレンズよりも前記内面に近い位置に配置されている請求項1ないしのいずれかに記載の照明撮像装置。 Wherein the light source illuminating the image pickup device according to any one of 5 claims 1 is disposed at a position closer to the inner surface than the lens of the camera. 前記光源は、人の目の網膜で反射されやすい波長の光を発する第1光源と、前記第1光源よりも網膜で反射されにくい波長の光を発する第2光源とを有し、前記第1光源の発光方向前方と、前記カメラの撮像方向前方との境界部に前記凹部が形成されている請求項1ないし6のいずれかに記載の照明撮像装置。 The light source includes a first light source that emits light having a wavelength that is easily reflected by the retina of a human eye, and a second light source that emits light having a wavelength that is less likely to be reflected by the retina than the first light source. The illumination imaging device according to any one of claims 1 to 6 , wherein the concave portion is formed at a boundary portion between a light emitting direction front of the light source and a front of the camera imaging direction. 前記カメラは複数設けられ、それぞれのカメラに接近した位置に前記光源が配置されており、前記カバー板は、全てのカメラの撮像方向前方と全ての光源の発光方向前方を共通に覆っている請求項1ないし7のいずれかに記載の照明撮像装置。 A plurality of the cameras are provided, the light sources are arranged at positions close to the respective cameras, and the cover plate covers the front in the imaging direction of all the cameras and the front of the light emission directions of all the light sources in common. Item 8. The illumination imaging device according to any one of Items 1 to 7 .
JP2014176149A 2014-08-29 2014-08-29 Illumination imaging device Expired - Fee Related JP6360752B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014176149A JP6360752B2 (en) 2014-08-29 2014-08-29 Illumination imaging device
CN201510193867.8A CN106137117A (en) 2014-08-29 2015-04-22 Lighting camera device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176149A JP6360752B2 (en) 2014-08-29 2014-08-29 Illumination imaging device

Publications (2)

Publication Number Publication Date
JP2016051318A JP2016051318A (en) 2016-04-11
JP6360752B2 true JP6360752B2 (en) 2018-07-18

Family

ID=55658773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176149A Expired - Fee Related JP6360752B2 (en) 2014-08-29 2014-08-29 Illumination imaging device

Country Status (2)

Country Link
JP (1) JP6360752B2 (en)
CN (1) CN106137117A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181025A (en) * 2017-04-17 2018-11-15 アルプス電気株式会社 Sight line detecting device
JP6785723B2 (en) * 2017-06-09 2020-11-18 株式会社豊田中央研究所 Line-of-sight measuring device
EP3485799B9 (en) * 2017-11-16 2022-02-16 Aptiv Technologies Limited Eye tracking device
US11202567B2 (en) * 2018-07-16 2021-12-21 Verily Life Sciences Llc Retinal camera with light baffle and dynamic illuminator for expanding eyebox
CN110251077A (en) * 2019-01-30 2019-09-20 北京大学第三医院(北京大学第三临床医学院) A kind of ophthalmology camera arrangement and ophthalmology photographic method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269412A (en) * 1993-03-19 1994-09-27 Canon Inc Line-of-sight detector and optical device provided with the same
JPH10165371A (en) * 1996-12-09 1998-06-23 Niles Parts Co Ltd Sight line measuring device
GB2375679A (en) * 2001-04-09 2002-11-20 Patrick Kerr Retinal function camera using plural light wavelengths to produce a retinal function image showing haemoglobin oxygenation.
JP3979522B2 (en) * 2002-02-21 2007-09-19 シャープ株式会社 Camera device and monitoring system
JP2006098847A (en) * 2004-09-30 2006-04-13 Showa Electric Wire & Cable Co Ltd Photographing apparatus with illumination
JP4679123B2 (en) * 2004-11-26 2011-04-27 株式会社コーナン・メディカル Photorefractor
JP4466706B2 (en) * 2007-09-27 2010-05-26 ミツミ電機株式会社 Image reading apparatus and image reading method
JP2010096716A (en) * 2008-10-20 2010-04-30 Nikon Corp Infrared camera
JP5254156B2 (en) * 2009-08-25 2013-08-07 シャープ株式会社 Optical pointing device and electronic device equipped with the device
JP5915981B2 (en) * 2010-08-09 2016-05-11 国立大学法人静岡大学 Gaze point detection method and gaze point detection device
CN103018999A (en) * 2011-09-28 2013-04-03 鸿富锦精密工业(深圳)有限公司 Taking lens hood structure
JP5646557B2 (en) * 2011-11-16 2014-12-24 シャープ株式会社 Optical pointing device and electronic apparatus including the device
JP6075069B2 (en) * 2013-01-15 2017-02-08 富士通株式会社 Biological information imaging apparatus, biometric authentication apparatus, and manufacturing method of biometric information imaging apparatus
JP2014151025A (en) * 2013-02-08 2014-08-25 Scalar Corp Eyeball imaging apparatus
CN203275849U (en) * 2013-05-22 2013-11-06 河南铭视安防工程有限公司 Hemisphere camera
CN204993577U (en) * 2015-07-27 2016-01-20 深圳市乐视视频技术有限公司 Camera with separate optical assembly

Also Published As

Publication number Publication date
JP2016051318A (en) 2016-04-11
CN106137117A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6346525B2 (en) Gaze detection device
US10606031B2 (en) Imaging apparatus, imaging system that includes imaging apparatus, electron mirror system that includes imaging apparatus, and ranging apparatus that includes imaging apparatus
JP6360752B2 (en) Illumination imaging device
ES2909057T3 (en) Eye tracking using the position of the center of the eyeball
US9092671B2 (en) Visual line detection device and visual line detection method
KR102091055B1 (en) Head mounted display
ES2327633T3 (en) INSTALLATION TO SEE AND FOLLOW AN EYE AND THE DIRECTION OF THE SAME LOOK.
US9916005B2 (en) Gaze tracking with projector
WO2015012280A1 (en) Sight line detection device
KR101619651B1 (en) Driver Monitoring Apparatus and Method for Controlling Lighting thereof
JP2016049259A (en) Visual axis detecting apparatus
WO2018164104A1 (en) Eye image processing device
JP6555707B2 (en) Pupil detection device, pupil detection method, and pupil detection program
US11871990B2 (en) Retinal camera with dynamic illuminator for expanding eyebox
JP2016051317A (en) Visual line detection device
JP2016049261A (en) Illumination imaging device and visual axis detecting apparatus
US10088409B2 (en) Image forming device
JP4451195B2 (en) Gaze detection device
JP4613315B2 (en) Pupil detection method and apparatus using two types of light sources
JP2017162233A (en) Visual line detection device and visual line detection method
JP2018028728A (en) Ophthalmic portion image processing device
JP2018181025A (en) Sight line detecting device
KR20210136623A (en) A device tracking gaze and method threrefor
US9566003B2 (en) Ophthalmologic apparatus and method thereof
JP2017124037A (en) Visual line detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6360752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees