JP6359858B2 - Magnetic field detection device and magnetic identification device - Google Patents

Magnetic field detection device and magnetic identification device Download PDF

Info

Publication number
JP6359858B2
JP6359858B2 JP2014078054A JP2014078054A JP6359858B2 JP 6359858 B2 JP6359858 B2 JP 6359858B2 JP 2014078054 A JP2014078054 A JP 2014078054A JP 2014078054 A JP2014078054 A JP 2014078054A JP 6359858 B2 JP6359858 B2 JP 6359858B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnets
detection
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014078054A
Other languages
Japanese (ja)
Other versions
JP2015200523A5 (en
JP2015200523A (en
Inventor
川瀬 正博
正博 川瀬
裕貴 町田
裕貴 町田
匠 佐藤
匠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2014078054A priority Critical patent/JP6359858B2/en
Priority to CN201510157710.XA priority patent/CN104977547B/en
Publication of JP2015200523A publication Critical patent/JP2015200523A/en
Publication of JP2015200523A5 publication Critical patent/JP2015200523A5/ja
Application granted granted Critical
Publication of JP6359858B2 publication Critical patent/JP6359858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紙幣等のような磁性体を含んだ磁気インクの印刷物もしくは磁性の箔帯を組み込んだ紙状の媒体に対して磁気の検知を行い、例えば、種類判別や真贋判定を行う磁気識別技術に関する。   The present invention performs magnetic detection on a printed material of magnetic ink containing a magnetic material such as banknotes or a paper-like medium incorporating a magnetic foil strip, for example, magnetic identification for performing type discrimination or authenticity determination. Regarding technology.

従来、紙幣に印刷された磁気インクを磁気センサ内の磁石等の磁界印加手段により磁化して、周囲への磁場の変化を磁気検出素子により検知し、磁気パターンを認識することで、紙幣の種類判別や真贋判定を行っている。このような従来の紙幣の識別方法においては、光学ラインセンサから読み取った光学のパターンと、磁気センサから読み取った磁気パターンとを照合する上で、磁気センサの出力がベースラインから一方向に振れる量的な波形となることが望ましい。   Conventionally, a magnetic ink printed on a banknote is magnetized by a magnetic field application means such as a magnet in a magnetic sensor, a change in the magnetic field to the surroundings is detected by a magnetic detection element, and a magnetic pattern is recognized, whereby the type of banknote Discrimination and authenticity determination are performed. In such a conventional banknote identification method, the amount by which the output of the magnetic sensor swings in one direction from the base line when collating the optical pattern read from the optical line sensor with the magnetic pattern read from the magnetic sensor. It is desirable to have a typical waveform.

例えば、特許文献1では、磁石の一方の極を検出対象である媒体に当てて、N極とS極の中点を通りNS方向を法線とする平面に磁気検出素子を配置する磁気センサが提案されている。特許文献1に係る磁性体検出方法の原理は、以下の通りである。   For example, in Patent Document 1, a magnetic sensor in which one pole of a magnet is applied to a medium to be detected and a magnetic detection element is arranged on a plane passing through the midpoint of the N pole and the S pole and having the NS direction as a normal line. Proposed. The principle of the magnetic substance detection method according to Patent Document 1 is as follows.

すなわち、磁石の片方の磁極に磁性体が近接もしくは当接すると磁石からの磁場が変化するが、磁性体検出センサは、N極とS極の中点を通りNS方向に対して垂直な方向で磁界検知を行う。N極とS極の中点を通る平面に磁気検出素子の検知面を置くのは、希土類磁石等の磁力の大きな磁石に対して、磁気飽和しやすい高感度の磁気検出素子を利用したいからである。   That is, when a magnetic body approaches or comes into contact with one of the magnetic poles of the magnet, the magnetic field from the magnet changes, but the magnetic body detection sensor passes through the midpoint of the N and S poles in a direction perpendicular to the NS direction. Perform magnetic field detection. The reason why the detection surface of the magnetic detection element is placed on a plane passing through the midpoint between the north and south poles is to use a high-sensitivity magnetic detection element that is likely to be magnetically saturated against a magnet having a large magnetic force such as a rare earth magnet. is there.

また、高感度の磁気検出素子としては、例えば、特許文献2に開示の磁性薄膜とコイルを積層した磁気検出素子とを、特許文献3に開示の回路で駆動する方法がある。この磁気検出素子は、磁性薄膜の長手方向に感度を持ち、磁気センサへの利用に適している。   As a highly sensitive magnetic detection element, for example, there is a method of driving a magnetic detection element in which a magnetic thin film disclosed in Patent Document 2 and a coil are laminated with a circuit disclosed in Patent Document 3. This magnetic detection element has sensitivity in the longitudinal direction of the magnetic thin film and is suitable for use in a magnetic sensor.

磁性体が磁石の磁極に近接すると磁石の磁束の流れが変化し、磁気検出素子を置くゼロ磁界の近傍の環境においても磁界変化として現れ、高感度の磁気検出素子によってこの磁界変化が電気信号に変換される。   When the magnetic material is close to the magnetic pole of the magnet, the magnetic flux flow of the magnet changes, and it appears as a magnetic field change even in the environment near the zero magnetic field where the magnetic detection element is placed, and this magnetic field change is converted into an electric signal by the highly sensitive magnetic detection element. Converted.

特許第4541136号公報Japanese Patent No. 4541136 特許第4695325号公報Japanese Patent No. 4695325 特許第4160330号公報Japanese Patent No. 4160330

しかしながら、近年においては、紙幣の識別精度のさらなる向上が要求されている。磁気インクの濃度が低い部分において磁界の変化が小さくなるため識別が困難となる場合がある。   However, in recent years, further improvement in bill identification accuracy has been demanded. In a portion where the density of magnetic ink is low, the change in the magnetic field is small, so that identification may be difficult.

また、マルチチャンネルセンサにおいて検知チャンネル数を増やして解像度を上げるという要求に対しては、各チャンネルが細分化されて磁石を大きくできずに発生磁界を稼げないという問題がある。   In addition, the demand for increasing the resolution by increasing the number of detection channels in a multi-channel sensor has a problem in that each channel is subdivided and the magnet cannot be enlarged and the generated magnetic field cannot be increased.

これらの問題を解決するためには、磁気媒体により発生する磁界の効率を上げる工夫が必要となっている。   In order to solve these problems, a device for increasing the efficiency of the magnetic field generated by the magnetic medium is required.

また、センサの検知幅内で感度のばらつきがあると、不感帯を形成してしまい、例えば細い線状の磁性体の識別をする際に、磁性体が通過する位置によって感度差が生じ、検知エラーを生じてしまうというリスクがあった。   In addition, if there is a variation in sensitivity within the detection range of the sensor, a dead zone is formed.For example, when identifying a thin linear magnetic material, a sensitivity difference occurs depending on the position through which the magnetic material passes, resulting in a detection error. There was a risk that this would occur.

なお、上述した各種問題は、例示に過ぎず、何れにしても、高感度な磁界検出装置が要望されている。   The various problems described above are merely examples, and in any case, a highly sensitive magnetic field detection device is desired.

本発明の一態様は、複数の磁石を磁極逆転して交互に並べて配置し、隣り合う磁石の間には、隣り合う各磁石でそれぞれ形成される磁場変化と、隣り合う磁石間で形成される磁場変化とをそれぞれ受ける感磁素子が配置されたことを特徴とする磁界検出装置である。   In one embodiment of the present invention, a plurality of magnets are alternately arranged with magnetic poles reversed, and between adjacent magnets, a magnetic field change formed by each adjacent magnet is formed between adjacent magnets. A magnetic field detection device comprising magnetically sensitive elements each receiving a change in magnetic field.

ここで、このような本発明の一態様においては、前記感磁素子は、前記磁石のNS方向を法線とし前記磁石のN極とS極の中点を含む平面上に配置されたことを特徴とする磁界検出装置とするのがよい。   Here, in one aspect of the present invention, the magnetosensitive element is arranged on a plane including the midpoint of the magnet and the midpoint of the magnet and the NS direction of the magnet as a normal line. It is preferable to use a magnetic field detection device as a feature.

また、本発明の他の態様は、磁性体を含んだ磁気媒体を相対的に移動させ、前記磁気媒体による磁石の磁場の変化を検知する磁界検出装置であって、前記磁界検出装置は、複数の磁石と複数の感磁素子とが略直線上に交互に配置されて構成され、前記複数の磁石は、そのNS方向が前記磁気媒体の搬送する面に対して概ね垂直となるように、かつ前記磁気媒体の搬送方向と垂直の方向へ略等間隔に配置されるとともに、前記複数の磁石は、前記磁気媒体に接する側の磁極が交互に入れ替わるように配列され、前記複数の感磁素子は、前記略直線方向に磁界検知方向を有するように配置され、前記複数の磁石のNS方向を法線とし前記複数の磁石のN極とS極の概ね中点を含む平面内に前記複数の感磁素子の磁界検知部が位置するように配置され、前記複数の感磁素子のそれぞれは、前記磁性体が自素子に隣接する2つの磁石のそれぞれの磁極上に近接することで発生する前記2つの磁石の磁場変化と、前記2つの磁石の磁極間に前記磁性体が近接することで発生する前記磁性体の磁化による前記2つの磁石の磁場変化と、を同時に検出することを特徴とする磁界検出装置である。   According to another aspect of the present invention, there is provided a magnetic field detection device that detects a change in a magnetic field of a magnet by the magnetic medium by relatively moving a magnetic medium including a magnetic material, and the magnetic field detection device includes a plurality of magnetic field detection devices. Magnets and a plurality of magnetosensitive elements are alternately arranged on a substantially straight line, and the plurality of magnets have an NS direction substantially perpendicular to a surface of the magnetic medium transported, and The plurality of magnets are arranged at substantially equal intervals in a direction perpendicular to the conveyance direction of the magnetic medium, and the plurality of magnets are arranged so that magnetic poles in contact with the magnetic medium are alternately switched, and the plurality of magnetosensitive elements are The plurality of sensations are arranged in a plane that has a magnetic field detection direction in the substantially linear direction, and has a NS direction of the plurality of magnets as a normal line and includes a substantially midpoint of the N and S poles of the plurality of magnets. Arrange so that the magnetic field detector of the magnetic element is located. Each of the plurality of magnetosensitive elements includes a magnetic field change of the two magnets generated when the magnetic body is close to the magnetic poles of two magnets adjacent to the element, and the magnetic poles of the two magnets. A magnetic field detection device that simultaneously detects a change in the magnetic field of the two magnets due to the magnetization of the magnetic material that occurs when the magnetic material comes close to each other.

また、本発明の他の態様は、上記の磁界検出装置により構成された複数のチャンネルを有する磁気識別装置であって、高周波電流を前記感磁素子の前記磁界検知部である磁性薄膜に印加する電流印加部と、前記感磁素子の前記磁性薄膜に積層されたコイルから検波回路により前記感磁素子の電圧を取り出す電圧取得部と、前記電圧を増幅する増幅回路と、前記複数のチャンネルを切り替えるマルチプレクサと、前記マルチプレクサからの出力を数値化して演算処理を行う演算部と、を有する磁気識別装置である。 According to another aspect of the present invention, there is provided a magnetic identification device having a plurality of channels constituted by the magnetic field detection device, wherein a high-frequency current is applied to a magnetic thin film that is the magnetic field detection unit of the magnetosensitive element. a current applying unit, and the sense of the to voltage acquisition unit eject the voltage of the sensing element by the detection circuit from the coil stacked on the magnetic thin film of the magnetosensitive, an amplifying circuit for amplifying the pre-Symbol voltage, The magnetic identification device includes a multiplexer that switches between the plurality of channels, and an arithmetic unit that performs arithmetic processing by digitizing an output from the multiplexer.

本発明によれば、高感度な磁界の検出を実現することができる。そして、一例を挙げれば、複数の磁石と、各磁石間に配置される感磁素子とが、ほぼ直線状に並ぶように構成されていると、各磁石の磁極上と、互いに隣接した磁石の磁極間とにおける磁界変化を各感磁素子で検知することが可能となり、従来のものと比べて、大きな磁界変化を検知することが可能である。また、本発明によれば、不感帯がほぼ存在しない構成を実現可能であるため、検知エラーが大幅に軽減される。   According to the present invention, highly sensitive magnetic field detection can be realized. As an example, when a plurality of magnets and a magnetosensitive element arranged between the magnets are arranged in a substantially straight line, the magnetic poles of the magnets and the magnets adjacent to each other are arranged. The magnetic field change between the magnetic poles can be detected by each magnetosensitive element, and a large magnetic field change can be detected as compared with the conventional one. In addition, according to the present invention, since it is possible to realize a configuration in which there is almost no dead zone, detection errors are greatly reduced.

本発明の第1の実施形態に係る磁界センサの斜視外観図の一例である。1 is an example of a perspective external view of a magnetic field sensor according to a first embodiment of the present invention. 本発明の第1の実施形態に係る磁界センサにおける感磁素子(磁気検出素子)の検知面の拡大図の一例を示す図である。It is a figure which shows an example of the enlarged view of the detection surface of the magnetosensitive element (magnetic detection element) in the magnetic field sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁界センサにおける感磁素子(磁気検出素子)の磁界検知特性の一例を示す図である。It is a figure which shows an example of the magnetic field detection characteristic of the magnetosensitive element (magnetic detection element) in the magnetic field sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁界センサにおける感磁素子(磁気検出素子)と磁石との位置関係を説明する図である。It is a figure explaining the positional relationship of the magnetosensitive element (magnetic detection element) and magnet in the magnetic field sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁界センサの構成による効果を説明する図である。It is a figure explaining the effect by the composition of the magnetic field sensor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る磁界センサの構成による効果を説明する図である。It is a figure explaining the effect by the composition of the magnetic field sensor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る磁界センサの構成による効果を説明する図である。It is a figure explaining the effect by the composition of the magnetic field sensor concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る磁界センサによって紙幣について磁気測定を行った際の出力波形の一例を示す図である。It is a figure which shows an example of the output waveform at the time of performing a magnetic measurement about a banknote with the magnetic field sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気センサの磁石と感磁素子(磁気検出素子)の配列について説明する図である。It is a figure explaining the arrangement | sequence of the magnet of the magnetic sensor which concerns on the 1st Embodiment of this invention, and a magnetic sensing element (magnetic detection element). 本発明の第2の実施形態に係る磁気センサの一例を示す図である。It is a figure which shows an example of the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るマルチチャンネルセンサの回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the multichannel sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る磁気センサを自動預け払い機へ搭載して紙幣識別装置を実現した場合の構成例を示す図である。It is a figure which shows the structural example at the time of mounting the magnetic sensor which concerns on the 2nd Embodiment of this invention in an automatic teller machine, and implement | achieving a banknote identification device. 本発明の第2の実施形態に係る磁気センサの他の利用例を示す図である。It is a figure which shows the other usage example of the magnetic sensor which concerns on the 2nd Embodiment of this invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の説明において参照する各図では、原則として、他の図と同等部分は同一符号によって示される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure referred in the following description, in principle, the same part as another figure is shown with the same code | symbol.

(実施形態1)
(磁気センサの構成)
図1は、本実施形態に係る磁界検出装置の一例である磁気センサの一例を示す斜視外観図である。図1は、本実施形態の磁気センサ10が、磁気媒体1を識別する際の様子を示している。
(Embodiment 1)
(Configuration of magnetic sensor)
FIG. 1 is a perspective external view showing an example of a magnetic sensor which is an example of a magnetic field detection apparatus according to the present embodiment. FIG. 1 shows a state when the magnetic sensor 10 of the present embodiment identifies the magnetic medium 1.

磁気媒体1は、一例として、磁性体を含む紙状の媒体である。より具体的には、例えば、磁気媒体1は、紙幣のように紙に磁性体を含んだインクを印刷したものである。また、磁気媒体1は、磁性体の箔帯を織り込んだものであってもよい。また、磁性体は、保磁力が大きい硬磁性のものであって、ほとんど保磁力を持たない軟磁性のものであってもよい。   As an example, the magnetic medium 1 is a paper-like medium containing a magnetic material. More specifically, for example, the magnetic medium 1 is obtained by printing ink containing a magnetic material on paper like a banknote. The magnetic medium 1 may be one in which a magnetic foil strip is woven. Further, the magnetic material may be a hard magnetic material having a large coercive force and a soft magnetic material having almost no coercive force.

ここで、図1に示される例では、磁気媒体1は磁気インクが印刷された磁気印刷部2を有し、磁気印刷部2は矢印で示す媒体搬送方向(Y方向とする)に幅wが狭く、搬送方向とは直角の方向(X方向とする)に伸びた直線状である。   Here, in the example shown in FIG. 1, the magnetic medium 1 has a magnetic printing unit 2 on which magnetic ink is printed, and the magnetic printing unit 2 has a width w in the medium transport direction (Y direction) indicated by an arrow. It is narrow and has a linear shape extending in a direction perpendicular to the transport direction (X direction).

例えば、本実施形態では、磁界検出装置となる磁気センサ10は、複数の磁石3a,3b,3cと、複数の感磁素子の一例である磁気検出素子5a,5bとが、交互に並んで構成されている。詳細には、磁石3a,3bの間に磁気検出素子5aが配置され、磁石3b,3cの間に磁気検出素子5bが配置され、各々が略一直線上に配置されている。また、各磁石3a,3b,3cは、N極とS極とが磁極逆転して交互に並んで配置されている。すなわち、隣り合う一組の磁石3a,3bとその間に配置される磁気検出素子5aとで1つの磁界検出モジュール(磁界検出装置)が実質的に構成され、この磁界検出モジュールを直線的に配置することで、帯状の磁界検出領域が形成される。   For example, in the present embodiment, the magnetic sensor 10 serving as the magnetic field detection device includes a plurality of magnets 3a, 3b, and 3c and magnetic detection elements 5a and 5b that are an example of a plurality of magnetosensitive elements arranged alternately. Has been. Specifically, the magnetic detection element 5a is arranged between the magnets 3a and 3b, the magnetic detection element 5b is arranged between the magnets 3b and 3c, and each is arranged on a substantially straight line. In addition, the magnets 3a, 3b, 3c are arranged so that N poles and S poles are alternately arranged with their magnetic poles reversed. That is, one magnetic field detection module (magnetic field detection device) is substantially constituted by a pair of adjacent magnets 3a and 3b and the magnetic detection element 5a arranged therebetween, and the magnetic field detection modules are linearly arranged. Thus, a band-shaped magnetic field detection region is formed.

なお、これら各磁石3a,3b,3cは、Ne-Fe-B系やSm-Co系の希土類の磁石や酸化鉄系のフェライト磁石等であり、直方体状に成形されたものである。   Each of the magnets 3a, 3b, 3c is a Ne-Fe-B or Sm-Co rare earth magnet, an iron oxide ferrite magnet, or the like, and is formed in a rectangular parallelepiped shape.

また、磁石3a等のNS方向は、媒体搬送面(XY面)に垂直であり、自身と隣接する磁石とは逆の極性を取るように並べられる。図1では、一例として、媒体搬送面から見て、S,N,Sの順で並べられている。また、磁石3a,3b,3cは、媒体搬送方向(Y方向)とは直角のX軸方向にピッチpで配置されている。   Further, the NS direction of the magnets 3a and the like is perpendicular to the medium transport surface (XY plane) and is arranged so as to have a polarity opposite to that of the magnet adjacent to itself. In FIG. 1, as an example, they are arranged in the order of S, N, and S when viewed from the medium conveyance surface. The magnets 3a, 3b, 3c are arranged at a pitch p in the X-axis direction perpendicular to the medium transport direction (Y direction).

さらに、本実施形態における磁気検出素子5a,5bは、それぞれの検知面6a,6bが、磁石3a,3b,3cのNS極の概ね中点を通り、磁石3a等のNS方向を法線とする平面4と略同一となるように配置されている(この点については後に詳述する)。なお、3つの磁石3a,3b,3cで平面4を共有するためには、磁石のサイズや材質を同じにしておくのが好ましい。必要により、個別に磁石位置のNS方向(Z方向とする)への微調整を行ってもよい。   Further, in the magnetic detection elements 5a and 5b in the present embodiment, the respective detection surfaces 6a and 6b pass through substantially the midpoints of the NS poles of the magnets 3a, 3b, and 3c, and the NS direction of the magnet 3a and the like is a normal line. They are arranged so as to be substantially the same as the plane 4 (this point will be described in detail later). In order to share the plane 4 with the three magnets 3a, 3b, 3c, it is preferable that the magnets have the same size and material. If necessary, the magnet position may be finely adjusted individually in the NS direction (Z direction).

図2は、磁気検出素子5a、5bの検知面6の拡大図の一例を示す図である。なお、磁気検出素子5の検知面6は、パーマロイ、アモルファス、微結晶構造等の高透磁率の細長い磁性薄膜7と、銅やアルミ等の導電性金属薄膜による平面コイル8とが不図示の絶縁膜を介して積層され、それぞれ電極9に引き出されている。   FIG. 2 is a diagram illustrating an example of an enlarged view of the detection surface 6 of the magnetic detection elements 5a and 5b. In addition, the detection surface 6 of the magnetic detection element 5 has an insulation (not shown) composed of a long magnetic thin film 7 having a high magnetic permeability such as permalloy, amorphous, or microcrystalline structure, and a planar coil 8 made of a conductive metal thin film such as copper or aluminum. The films are stacked via a film, and each is led out to the electrode 9.

本実施形態の磁気検出素子5a、5bは、直交フラックスゲートである。また、磁気検出素子5は、磁性薄膜7に高周波電流を印加し、磁性薄膜7内の磁束変化を、平面コイル8から電圧に変換したセンサ信号として取り出す。磁界検知方向は磁性薄膜7の長手方向であり、図1に示されるセンサ構成ではこれがX軸方向となるように磁気検出素子5a,5bが配置される。なお、この磁気検出素子5a,5bはバイアス磁界が不要であり、磁界ゼロで感度を有しており、本実施形態の磁気センサ10に好適である。   The magnetic detection elements 5a and 5b of the present embodiment are orthogonal flux gates. In addition, the magnetic detection element 5 applies a high-frequency current to the magnetic thin film 7 and takes out a change in magnetic flux in the magnetic thin film 7 from the planar coil 8 as a sensor signal converted into a voltage. The magnetic field detection direction is the longitudinal direction of the magnetic thin film 7. In the sensor configuration shown in FIG. 1, the magnetic detection elements 5a and 5b are arranged so that this is in the X-axis direction. The magnetic detection elements 5a and 5b do not require a bias magnetic field and have sensitivity with zero magnetic field, which is suitable for the magnetic sensor 10 of this embodiment.

図3は、磁気検出素子5a、5bの磁界検知特性の一例を示す図である。図3の例によれば、本例の磁気検出素子5a等は10ガウスを超えたところで飽和する。よって、本例では、ゼロ磁界に近いところでセンサを動作させることが好ましく、そのためには先に述べたように、図1の平面4に磁気検出素子5a、5bの検知面を置くことが好ましい。   FIG. 3 is a diagram illustrating an example of the magnetic field detection characteristics of the magnetic detection elements 5a and 5b. According to the example of FIG. 3, the magnetic detection element 5a and the like of the present example saturate when it exceeds 10 Gauss. Therefore, in this example, it is preferable to operate the sensor near the zero magnetic field. For this purpose, as described above, it is preferable to place the detection surfaces of the magnetic detection elements 5a and 5b on the plane 4 in FIG.

より具体的には、図4に示されるように、磁石3a,3b,3cのNS極の概ね中点を通り、NS方向を法線とする平面4が、磁気検出素子5a,5bの磁性薄膜7を通る面となるように、磁気検出素子5a,5bを配置すると、より好適である。ここで、平面4は、高感度の磁気飽和しやすい磁気センサの設置に適した、その面内で理想的には磁界ゼロとなる平面である。ただし、平面4が磁石のNSの中点を含むことは厳密に必須なのではなく、実質的に磁界ゼロに近いところでセンサを動作させることがより好ましいということである。   More specifically, as shown in FIG. 4, a plane 4 that passes through approximately the midpoint of the NS poles of the magnets 3 a, 3 b, 3 c and that has the NS direction as a normal line is a magnetic thin film of the magnetic detection elements 5 a, 5 b. It is more preferable that the magnetic detection elements 5a and 5b are arranged so as to be a plane passing through. Here, the plane 4 is a plane that is ideal for installation of a highly sensitive magnetic sensor that is likely to be saturated, and that ideally has a magnetic field of zero in that plane. However, it is not strictly necessary that the plane 4 includes the midpoint of the NS of the magnet, and it is more preferable to operate the sensor at a position near the magnetic field substantially zero.

また、平面4の面内の磁界のばらつき範囲は、本例の磁気検出素子を利用する場合においては、±10ガウス内にあるのが好適である。よって、磁気検出素子の感度を落として磁界検知レンジを広げて使うことを想定しても、平面4の面内の磁界のばらつき範囲は、±30ガウス内の領域に留めておくのが良いと想定される。   In addition, the variation range of the magnetic field in the plane 4 is preferably within ± 10 gauss when the magnetic detection element of this example is used. Therefore, even if it is assumed that the sensitivity of the magnetic detection element is lowered and the magnetic field detection range is expanded, the variation range of the magnetic field in the plane 4 should be kept within a range of ± 30 gauss. is assumed.

(磁気センサの動作原理)
本実施形態に係る磁気センサは、上述したように、複数の磁石3a、3b、3cと、各磁石の間にそれぞれ磁気センサ5a、5bが配置されている。本実施形態に係る磁気センサは、このような構成によって、磁性体が磁石の磁極に掛かる(接近する)際の磁石の磁場変化と、磁石間に磁性体が掛かる(接近する)際の磁化発生という、二つの物理現象が重ね合わさる点(ハイブリッド現象)が特徴である。
(Operation principle of magnetic sensor)
As described above, in the magnetic sensor according to the present embodiment, the plurality of magnets 3a, 3b, 3c and the magnetic sensors 5a, 5b are arranged between the magnets. With such a configuration, the magnetic sensor according to the present embodiment is configured such that the magnetic field changes when the magnetic material is applied (approached) to the magnetic pole of the magnet and the generation of magnetization when the magnetic material is applied (approached) between the magnets. The point is that two physical phenomena overlap (hybrid phenomenon).

以下、この本実施形態の磁気センサの動作原理について説明するが、その事前説明として、まず、2つの磁石3p,3qに磁性体が接近した場合に磁場がどのように変化するかについて、図5および図6を用いて説明する。   Hereinafter, the operation principle of the magnetic sensor of this embodiment will be described. As a prior explanation, first, how the magnetic field changes when a magnetic body approaches the two magnets 3p and 3q will be described with reference to FIG. This will be described with reference to FIG.

図5および図6は、図1の本実施形態に係る磁気センサ10と同様に配置された2つの磁石3p、3qとその間に配置された磁気センサ5pをY軸方向から見た図である。   5 and 6 are views of the two magnets 3p and 3q arranged in the same manner as the magnetic sensor 10 according to the present embodiment shown in FIG. 1 and the magnetic sensor 5p arranged therebetween as viewed from the Y-axis direction.

図5に示されるように、磁気検出素子5pの検知位置(本説明では、この位置を原点Oとする)は磁石3pのS,N極のほぼ中点の高さに位置する。   As shown in FIG. 5, the detection position of the magnetic detection element 5p (in this description, this position is referred to as the origin O) is located at a substantially midpoint height of the S and N poles of the magnet 3p.

よって、磁性体2’が磁石3pの磁極の上に無い時には、破線矢印50で示されるように、原点OではX軸方向へは磁界成分が発生していない。しかし、磁性体2’が磁石3aの磁極の上に掛かると、磁性体2’側に磁束が引っ張られ(実線矢印51)、ベクトル成分としてX軸方向の磁界が発生する。同様に、磁石3q上に磁性体2’が掛かっても、同様な原理でX軸方向に磁界が発生する。   Therefore, when the magnetic body 2 ′ is not on the magnetic pole of the magnet 3 p, no magnetic field component is generated in the X-axis direction at the origin O as indicated by the dashed arrow 50. However, when the magnetic body 2 'is applied on the magnetic pole of the magnet 3a, the magnetic flux is pulled toward the magnetic body 2' (solid arrow 51), and a magnetic field in the X-axis direction is generated as a vector component. Similarly, a magnetic field is generated in the X-axis direction according to the same principle even when the magnetic body 2 'is placed on the magnet 3q.

ここで、図5の右方向の磁界をプラスの極性であるとすると、磁石3pの磁界と磁石3qの磁界ともに右方向を向いている。すなわち、磁性体2’が磁石3pおよび3qの上に掛かる時には、磁界のX軸方向のベクトル成分は加算関係となる。   Here, assuming that the magnetic field in the right direction in FIG. 5 has a positive polarity, both the magnetic field of the magnet 3p and the magnetic field of the magnet 3q are directed rightward. That is, when the magnetic body 2 'is applied on the magnets 3p and 3q, the vector component in the X-axis direction of the magnetic field is in an additive relationship.

これは、本実施形態の磁気センサ10において隣接する磁石3aと磁石3b、磁石3bと磁石3cが、それぞれ互いに逆の極性となるように配置されていることによる効果であり、もし隣接の磁石が同極性となるように配置されていると、この効果は得られない。   This is due to the fact that in the magnetic sensor 10 of the present embodiment, the adjacent magnets 3a and 3b and the magnets 3b and 3c are arranged so as to have opposite polarities, respectively. If they are arranged so as to have the same polarity, this effect cannot be obtained.

つまり、複数の磁石3a,3b,3cを磁極逆転して交互に並べて近接配置することで、各磁石におけるN極とS極との間の磁場が複数のベクトル成分(磁石の併設方向成分、各磁石のNS方向成分)で形成される。ここで、「複数の磁石を磁極逆転して交互に並べて配置する」とは、隣り合う磁石においてN極とS極とが交互に入れ替わって配置されることを示す。   That is, by arranging a plurality of magnets 3a, 3b, and 3c alternately in reverse with magnetic poles reversed, the magnetic field between the N pole and the S pole in each magnet has a plurality of vector components (magnet side-by-side components, NS component of the magnet). Here, “a plurality of magnets are alternately arranged with their magnetic poles reversed” indicates that the N and S poles are alternately arranged in adjacent magnets.

そして本実施形態では、隣り合う各磁石3a,3b,3cでそれぞれ形成される磁場変化と、隣り合う磁石3a,3b間、又は磁石3b,3c間で形成される磁場変化とをそれぞれ受けられる磁石間の隙間に対して、磁界検出素子5a,5bをそれぞれ配置する。このような構成により、各磁界検出素子5a,5bは、複数の磁場変化を受けることが可能となる。これにより、高感度な磁界検出装置をコンパクトに実現することができる。   And in this embodiment, the magnet which can each receive the magnetic field change each formed by each adjacent magnet 3a, 3b, 3c and the magnetic field change formed between adjacent magnets 3a, 3b or between magnets 3b, 3c, respectively. Magnetic field detection elements 5a and 5b are respectively disposed in the gaps between them. With such a configuration, each of the magnetic field detection elements 5a and 5b can receive a plurality of magnetic field changes. Thereby, a highly sensitive magnetic field detection apparatus can be realized in a compact manner.

また、図6に示されるように、磁石3pと磁石3qとの間に磁性体が存在しない場合は、搬送面側の磁場Hmfと搬送面とは反対側の磁場Hmrは対称であり、原点Oでは磁界が丁度ゼロとなっている。そこへ、磁石3pのS極と磁石3qのN極との間に磁性体2’が掛かると、磁性体2’が磁場Hmfで磁化し、その磁化による磁界が原点Oで発生する。この場合も、発生した磁界の極性は右方向(X軸方向)のプラスとなり、図5で説明した磁石3pおよび磁石3qの上に磁性体2’が掛かる場合の発生する磁界のX軸方向のベクトル成分と同じ方向である。よって、磁性体2’が磁石3p、3qの磁極上および両磁石間に同時に掛かる場合には、発生する磁界のX軸方向のベクトル成分は実質的に加算関係となる。   Further, as shown in FIG. 6, when there is no magnetic material between the magnet 3p and the magnet 3q, the magnetic field Hmf on the transport surface side and the magnetic field Hmr on the opposite side to the transport surface are symmetric, and the origin O Then the magnetic field is just zero. When the magnetic body 2 ′ is applied between the S pole of the magnet 3 p and the N pole of the magnet 3 q, the magnetic body 2 ′ is magnetized by the magnetic field Hmf, and a magnetic field due to the magnetization is generated at the origin O. Also in this case, the polarity of the generated magnetic field is positive in the right direction (X-axis direction), and the magnetic field generated in the case where the magnetic body 2 ′ is applied on the magnet 3 p and the magnet 3 q described in FIG. The direction is the same as the vector component. Therefore, when the magnetic body 2 'is simultaneously applied on the magnetic poles of the magnets 3p and 3q and between the two magnets, the vector component in the X-axis direction of the generated magnetic field is substantially in an additive relationship.

つまり、図1に示される構成により、本実施形態の磁気センサは、磁性体が磁石の磁極に掛かることによる磁場変化と、磁石間に磁性体が掛かることで発生する磁場変化との二つの物理現象を重ね合わせたハイブリッドの構成となる。   In other words, with the configuration shown in FIG. 1, the magnetic sensor of the present embodiment has two physical properties: a magnetic field change caused by the magnetic material being applied to the magnetic pole of the magnet, and a magnetic field change generated by the magnetic material being applied between the magnets. The hybrid structure is a combination of phenomena.

そして、図1のように磁気印刷部2が複数の磁石に同時に掛かる場合では、以下に説明するように、最大限の効果が得られる。以下、図7を用いて説明する。   In the case where the magnetic printing unit 2 is simultaneously applied to a plurality of magnets as shown in FIG. 1, the maximum effect can be obtained as described below. Hereinafter, a description will be given with reference to FIG.

図7は、本実施形態に係る磁気センサの構成と同様に磁石が3つであり磁気検出素子が2つである差動構成の場合の検証例を示す図である。   FIG. 7 is a diagram illustrating a verification example in the case of a differential configuration in which there are three magnets and two magnetic detection elements, similarly to the configuration of the magnetic sensor according to the present embodiment.

本検証例では、磁石の磁極は3×1mmで高さ1.45mmの希土類(Ne-Fe-B系)磁石、および磁気検出素子として2×1mmで厚さ0.725mmの磁性薄膜を搭載したフラックスゲートセンサを用意した。そして、これらを図1と同様のレイアウトでセンサを構成した(図7(a))。磁石間のピッチpは3mmとした。また、2つの磁気検出素子の感度は、1V/ガウスになるようそれぞれ調整を行い、最終の出力は差動増幅を行い、2V/ガウスとした。   In this verification example, the magnetic pole of the magnet is mounted with a rare earth (Ne-Fe-B system) magnet having a height of 1.45 mm and a height of 1.45 mm, and a magnetic thin film having a thickness of 2.times.1 mm and a thickness of 0.725 mm as a magnetic detection element. A fluxgate sensor was prepared. And the sensor was comprised by these in the layout similar to FIG. 1 (FIG. 7 (a)). The pitch p between the magnets was 3 mm. The sensitivity of the two magnetic detection elements was adjusted to 1 V / Gauss, and the final output was differentially amplified to 2 V / Gauss.

媒体搬送面については、不図示ではあるが銅合金の薄板(t=0.2mm)を磁石の上に載せて、媒体との間隔を規制した。また、磁性体には紙媒体に磁性トナーで幅1mmの線2’を印刷し、この線2’の伸びる方向をY軸に合わせつつ、X軸方向へ線2’をずらして(図7(b))、磁気センサの感度分布を調べた。   As for the medium transport surface, although not shown, a copper alloy thin plate (t = 0.2 mm) was placed on the magnet to regulate the distance from the medium. On the magnetic material, a line 2 ′ having a width of 1 mm is printed on a paper medium with a magnetic toner, and the line 2 ′ is shifted in the X-axis direction while aligning the extending direction of the line 2 ′ with the Y-axis (FIG. 7 ( b)), the sensitivity distribution of the magnetic sensor was examined.

図7(a)に示される測定データによれば、磁石3p、3q、3rの磁極上と磁気検出素子5p、5qの中央真上の5点(A1、C、A2、B1、B2)で感度のピークが表れ、さらに全体に渡って感度が落ち込む不感度帯が表れていないことが判る。位置Cでのピークが位置A1,A2のピークの約2倍になっているのは、位置Cにおける磁界変化が磁気検出素子5p,5qの両方に掛かっていて、差動動作により約2倍となっているためである。また、磁石間の位置B1,B2の感度も適度にあり、本例の構成は、良好に補間関係を構築していると言える。   According to the measurement data shown in FIG. 7A, the sensitivity at five points (A1, C, A2, B1, B2) on the magnetic poles of the magnets 3p, 3q, and 3r and directly above the center of the magnetic detection elements 5p and 5q. It can be seen that no insensitivity band appears in which the sensitivity drops over the whole. The peak at the position C is approximately twice the peak at the positions A1 and A2. The change in the magnetic field at the position C is applied to both the magnetic detection elements 5p and 5q. It is because it has become. Also, the sensitivity of the positions B1 and B2 between the magnets is moderate, and it can be said that the configuration of this example has a good interpolation relationship.

次に、本実施形態に係る磁気センサによって、ある紙幣について磁気測定を行った際の出力波形を図8に示す。磁気検出素子5a,5bを差動動作した出力結果を2V/ガウスで磁界換算し、両素子間の扱う磁界の差分を縦軸とした。その結果、地磁気の大きさに迫る最大0.25ガウスの磁界を確保し、従来の磁気センサより一桁高い磁界の感度を実現することが出来た。また、出力波形のギザツキもほとんどなく、良好なS/Nであることも理解できる。   Next, the output waveform at the time of performing a magnetic measurement about a certain banknote with the magnetic sensor which concerns on this embodiment is shown in FIG. The output result of the differential operation of the magnetic detection elements 5a and 5b was converted into a magnetic field at 2 V / Gauss, and the difference in magnetic field handled between the two elements was taken as the vertical axis. As a result, a maximum magnetic field of 0.25 gauss approaching the magnitude of geomagnetism was secured, and the sensitivity of the magnetic field one digit higher than that of the conventional magnetic sensor could be realized. Also, it can be understood that there is almost no output waveform roughness and that the S / N is good.

(磁石と磁気検出素子の配列について)
図9は、本実施形態に係る磁気センサの磁石と磁気検出素子の配列について説明する図である。磁石3a,3b,3cと磁気検出素子5a,5bは、X軸方向に略直線上に並んでいるのが好ましい。「略直線上(に並ぶ)」とは、図9(a)に示されるように、媒体搬送方向(Y軸方向)に幅mを有するライン内に、磁性薄膜7a、7bが含まれつつ媒体搬送方向に略垂直な直線(直線l)上に並ぶように全ての磁気検出素子5a,5bが配置されるとともに、このラインが全ての磁石の磁極3a,3b,3cに掛かるように磁気検出素子5a,5bと磁石の磁極3a,3b,3cが並ぶことを意味する。具体例として、図9(b)〜図9(d)が挙げられる。
(Regarding the arrangement of magnets and magnetic detection elements)
FIG. 9 is a diagram illustrating the arrangement of magnets and magnetic detection elements of the magnetic sensor according to the present embodiment. The magnets 3a, 3b, 3c and the magnetic detection elements 5a, 5b are preferably arranged on a substantially straight line in the X-axis direction. “Substantially on a straight line” means that, as shown in FIG. 9A, the magnetic thin film 7a, 7b is included in a line having a width m in the medium transport direction (Y-axis direction). All the magnetic detection elements 5a and 5b are arranged so as to be aligned on a straight line (straight line l) substantially perpendicular to the transport direction, and the magnetic detection elements are arranged so that these lines are placed on the magnetic poles 3a, 3b and 3c of all the magnets. This means that 5a, 5b and magnetic poles 3a, 3b, 3c of magnets are arranged. Specific examples include FIGS. 9B to 9D.

詳細には、図9(b)〜図9(d)に示すように、各磁石3a,3b,3cの少なくとも一部が実質的に直線的な領域において存在するように各磁石3a,3b,3cが配置され、各磁石3a,3b,3cの間には磁気検出素子5a,5bが配置される。   Specifically, as shown in FIGS. 9 (b) to 9 (d), each magnet 3a, 3b, 3c, so that at least a part of each magnet 3a, 3b, 3c exists in a substantially linear region. 3c is arranged, and magnetic detection elements 5a and 5b are arranged between the magnets 3a, 3b and 3c.

すなわち、各磁石3a,3b,3cは、少なくとも一部が隣り合う関係において帯状の磁場領域(幅mで図示した領域)を形成するように整列され、磁気検出素子5a,5bは、各磁石3a,3b,3cで形成される磁場領域において、各磁石の間に配置される。   That is, the magnets 3a, 3b, and 3c are aligned so as to form a belt-like magnetic field region (region illustrated by the width m) at least partially adjacent to each other, and the magnetic detection elements 5a and 5b are connected to the magnets 3a. , 3b, 3c are arranged between the magnets in the magnetic field region.

このように、本実施形態の磁界検出装置は、各磁石3a,3b,3cと磁気検出素子(感磁素子)5a,5bとの配置レイアウトは、磁気検出素子の少なくとも一部が、各磁石の各隙間であって且つ帯状の磁場領域において重なる配置(インライン配置)である。これにより、高感度な磁界検出が非常にコンパクトなレイアウトで実現可能となる。   As described above, in the magnetic field detection device according to the present embodiment, the layout of the magnets 3a, 3b, and 3c and the magnetic detection elements (magnetic sensitive elements) 5a and 5b is such that at least a part of the magnetic detection elements includes the magnets. It is the arrangement | positioning (in-line arrangement | positioning) which is each clearance gap and overlaps in a strip | belt-shaped magnetic field area | region. Thereby, highly sensitive magnetic field detection can be realized with a very compact layout.

(実施形態2)
図10(a)は、本発明の第2の実施形態に係る磁気センサの一例を示す図である。本実施形態に係る磁気センサは、マルチチャンネルのセンサとして機能する。図10(a)においては、磁気センサが9個の磁石3a〜3iと8個の磁気検出素子5a〜5hとを備えることによって、4chのセンサとして機能する場合の構成例が示されている。
(Embodiment 2)
FIG. 10A is a diagram showing an example of a magnetic sensor according to the second embodiment of the present invention. The magnetic sensor according to the present embodiment functions as a multi-channel sensor. FIG. 10A shows a configuration example in which the magnetic sensor includes nine magnets 3a to 3i and eight magnetic detection elements 5a to 5h so as to function as a 4-channel sensor.

本実施形態に係るマルチチャンネルセンサの基本的な構成は、上述した第1の実施形態に係る磁気センサの構成と同様である。すなわち、図1の構成例における磁石3a等と磁気検出素子5a等の配列をさらにX方向へ連続的に配列を伸ばしたような構成となっている。媒体搬送面側から見て、S、N極を交互に入れ替えて必要なチャンネル数と同数の磁石が並べられている。また、互いに隣接する磁気検出素子は相対的に媒体からの磁界が逆相となるため、差動検知を行う。なお、例えばメカ駆動のモーター磁界や、ベアリングやシャフト等からの磁気等の影響が問題ないものであれば、差動検知をせずに、極性が交互に逆となる点について補正をして、さらにチャンネル数を2倍に増やす使い方も可能である。   The basic configuration of the multichannel sensor according to the present embodiment is the same as the configuration of the magnetic sensor according to the first embodiment described above. That is, the arrangement of the magnets 3a and the like and the magnetic detection elements 5a and the like in the configuration example of FIG. 1 is further extended continuously in the X direction. As viewed from the medium conveying surface side, the same number of magnets as the required number of channels are arranged by alternately switching the S and N poles. Further, the magnetic detection elements adjacent to each other perform differential detection because the magnetic field from the medium is relatively in reverse phase. For example, if there is no problem with mechanical drive motor magnetic field, magnetism from bearings, shafts, etc., correct the point where the polarity is alternately reversed without performing differential detection, It is also possible to increase the number of channels twice.

図10(b)は、本実施形態の磁気センサを破線Dで切断した場合の断面図の一例である。本体15は剛性のあるアルミダイキャストやプラスチック材料で成形され、磁気検出素子5hの電極9は端子ピン11にワイヤボンディング12で結ばれ、媒体搬送面とは逆に引き出しておく。なお、ワイヤボンディング以外では、半田付けでも構わない。媒体搬送面と磁石の磁極間の規制する摺動板13は、リン青銅や洋白等の非磁性の銅合金の薄板を用いることができる。必要により耐摩耗のめっきを施しても良い。   FIG. 10B is an example of a cross-sectional view when the magnetic sensor of the present embodiment is cut along a broken line D. The main body 15 is formed of a rigid aluminum die-cast or plastic material, and the electrode 9 of the magnetic detection element 5h is connected to the terminal pin 11 by wire bonding 12, and is pulled out opposite to the medium transport surface. In addition to the wire bonding, soldering may be used. As the sliding plate 13 that regulates between the medium conveying surface and the magnetic pole of the magnet, a thin plate of a nonmagnetic copper alloy such as phosphor bronze or white can be used. If necessary, wear-resistant plating may be applied.

図11は、本実施形態に係るマルチチャンネルセンサの回路構成の一例を示す図である。本実施形態のマルチチャンネルセンサでは、図10(a)に示される構成を有するセンサ部20が、フラックスゲートの動作のために磁性薄膜7に高周波電流を印加する発振回路21と接続される。またセンサ部20は、センサ部20を構成する各磁気検出素子のコイル8(図2参照)から出力を取り出すための検波回路22と接続されている。その後、検波回路22で取り出された出力信号は、差動の増幅回路23を経て、チャンネルを切り替えるマルチプレクサ24を介して、マイコン(CPU)25に伝送され、AD変換後数値化されて、所定の補正処理を行われる。   FIG. 11 is a diagram illustrating an example of a circuit configuration of the multi-channel sensor according to the present embodiment. In the multi-channel sensor of this embodiment, the sensor unit 20 having the configuration shown in FIG. 10A is connected to an oscillation circuit 21 that applies a high-frequency current to the magnetic thin film 7 for the operation of the flux gate. The sensor unit 20 is connected to a detection circuit 22 for extracting an output from the coil 8 (see FIG. 2) of each magnetic detection element constituting the sensor unit 20. After that, the output signal taken out by the detection circuit 22 is transmitted to a microcomputer (CPU) 25 via a differential amplifier circuit 23 and a multiplexer 24 for switching channels, and is converted into a numerical value after AD conversion. Correction processing is performed.

ここで、所定の補正処理とは、コイル等で一定の磁界を掛けた環境において、各磁気検出素子5a〜5hの感度を認識し、その感度差を吸収して、一定の感度に合わせることである。この処理により、外部磁界の影響を極力抑えることが可能となる。   Here, the predetermined correction processing is to recognize the sensitivity of each of the magnetic detection elements 5a to 5h in an environment where a constant magnetic field is applied by a coil or the like, absorb the sensitivity difference, and adjust the sensitivity to a certain level. is there. By this process, the influence of the external magnetic field can be suppressed as much as possible.

従来の磁気センサでは、センサの感度が低い場合に、回路ゲインで出力を大きく持ち上げる処理をしていたが、回路内のクロックノイズや振動によるインピーダンス変動を増幅させてしまい、その影響が問題となるケースがあった。これに対し、本実施形態に係る磁気センサでは、回路ゲインが従来のものより小さくでき、外乱磁界の影響を相対的に小さくできるだけでなく、回路内のノイズ要因も抑え込むことができる。   In the conventional magnetic sensor, when the sensitivity of the sensor is low, the output is greatly increased by the circuit gain, but the impedance fluctuation due to clock noise and vibration in the circuit is amplified, and its influence becomes a problem. There was a case. On the other hand, in the magnetic sensor according to the present embodiment, the circuit gain can be made smaller than that of the conventional one, not only can the influence of the disturbance magnetic field be relatively reduced, but also the noise factor in the circuit can be suppressed.

図12は、本実施形態に係る磁気センサを自動預け払い機(ATM機)へ搭載して紙幣識別装置を実現した場合の構成例を示す図である。図12の紙幣識別装置60は、紙幣30の搬送メカ26が組み込まれており、ローラー29等で規制される搬送面に図10に示される本実施形態の磁気センサ27と、光学ラインセンサ28a,28bとが配置されている。紙幣識別装置60は、そのセンサ出力を照合して、紙幣30の真贋判定や金種判別を行う。   FIG. 12 is a diagram illustrating a configuration example when the banknote identification device is realized by mounting the magnetic sensor according to the present embodiment on an automatic teller machine (ATM machine). The banknote identification device 60 of FIG. 12 incorporates the transport mechanism 26 of the banknote 30, and the magnetic sensor 27 of this embodiment shown in FIG. 10 and the optical line sensor 28a, 28b. The banknote identification device 60 collates the sensor output and performs authenticity determination and denomination determination of the banknote 30.

さらに、図13は、本実施形態に係る磁気センサの他の利用例を示す図である。図13に示されるように、本実施形態の磁気センサ27の検知面6側にパーマロイや磁性トナー等の磁性体32を取り付けたアーム31を用意し、X軸方向に移動させることで、エンコーダー的に位置の判別をすることも可能である。磁気センサ27の磁石と磁性体32は十分離して利用することが可能であり、非接触式の位置検知装置としても、利用価値が大きい。   Furthermore, FIG. 13 is a figure which shows the other usage example of the magnetic sensor which concerns on this embodiment. As shown in FIG. 13, an arm 31 having a magnetic body 32 such as permalloy or magnetic toner attached to the detection surface 6 side of the magnetic sensor 27 of the present embodiment is prepared and moved in the X-axis direction. It is also possible to determine the position. The magnet of the magnetic sensor 27 and the magnetic body 32 can be used with sufficient separation, and the utility value is great also as a non-contact type position detection device.

(まとめ)
上述した本発明の実施形態によれば、磁石上に磁性体が掛かることによる磁場変化の検知と、磁石間に磁性体が掛かることによる磁場変化の検知とを行うハイブリッドな構成となる。これにより、磁性体の磁場変化を最大限に引き出すことが可能となり、従来に比べ大幅なS/Nの改善が可能となる。また、これらの二つの磁気検知が補間関係にあることで、全体として不感帯を実質的に無くすことができ、磁性体が微小なものであっても取りこぼしがない検知、すなわち、高精度な検知が可能となる。
(Summary)
According to the above-described embodiment of the present invention, a hybrid configuration is employed in which a magnetic field change is detected when a magnetic material is applied to a magnet, and a magnetic field change is detected when a magnetic material is applied between the magnets. As a result, the magnetic field change of the magnetic material can be maximized, and the S / N can be greatly improved as compared with the conventional case. In addition, since these two magnetic detections are in an interpolating relationship, the dead zone as a whole can be substantially eliminated, and even if the magnetic material is minute, detection that is not missed, that is, highly accurate detection is possible. It becomes possible.

また、上記実施形態に係る磁気センサは、磁石のNSの中点を含みNS方向を法線とする平面内に磁気検出素子の検知面が位置するように構成されることで、磁気飽和しやすい高感度の磁気センサが利用可能となった。また、互いに隣接する磁気検出素子は、相対的に磁石の磁界変化が逆相となるため、差動動作にも適している。   In addition, the magnetic sensor according to the above-described embodiment is likely to be magnetically saturated by being configured such that the detection surface of the magnetic detection element is located in a plane including the midpoint of the NS of the magnet and having the NS direction as a normal line. A highly sensitive magnetic sensor has become available. In addition, the magnetic detection elements adjacent to each other are also suitable for differential operation because the magnetic field change of the magnet is relatively out of phase.

なお、上記実施形態では、磁気検出素子の配置を磁石のNS方向を法線とし磁石のNSの中点を含む平面上に配置したが、本発明はこれに限定されない。例えば、磁気検出素子(感磁素子)として、磁界検知レンジがゼロ磁界近傍だけでなく、広いレンジを持つ素子を用意する場合である。この場合、磁石のNS方向を法線とした場合、磁石のNSの中点を含む平面上を除いて、隣り合う各磁石のそれぞれの磁場変化と、隣り合う磁石間の磁場変化とを受けることが可能な任意の位置に適宜配置することで、高感度な磁界検出が可能となる。   In the above embodiment, the magnetic detection elements are arranged on a plane including the NS direction of the magnet as a normal line and the midpoint of the magnet NS, but the present invention is not limited to this. For example, as a magnetic detection element (magnetic sensing element), an element having a wide range in addition to the vicinity of the zero magnetic field in the magnetic field detection range is prepared. In this case, when the NS direction of the magnet is normal, except for the plane including the midpoint of the NS of the magnet, the magnetic field change of each adjacent magnet and the magnetic field change between adjacent magnets are received. Therefore, it is possible to detect a magnetic field with high sensitivity.

さらに、上記実施形態に係る磁気センサは、磁石の配列が媒体搬送面から見て、交互にS極、N極となるように配列されているため、マルチチャンネルのセンサへの適用が容易であり、磁気検知のラインセンサとして用いることができる。   Furthermore, the magnetic sensor according to the above-described embodiment is easily applied to a multi-channel sensor because the arrangement of magnets is alternately arranged to be S and N poles when viewed from the medium conveyance surface. It can be used as a line sensor for magnetic detection.

ここまで、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   The embodiments of the present invention have been described so far, but the present invention is not limited to the above-described embodiments, and it goes without saying that the present invention may be implemented in various forms within the scope of the technical idea.

なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。   It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that provide the same effects as those intended by the present invention. Further, the scope of the invention is not limited to the combinations of features of the invention defined by the claims, but may be defined by any desired combination of particular features among all the disclosed features. .

1 磁気媒体
2 磁気印刷部
4 磁石3a等のNS極の概ね中点を通り、NS方向を法線とする平面
3a、3b、3c 磁石
5a、5b 磁気検出素子
6a、6b 検知面
7 磁性薄膜
8 平面コイル
9 電極
10 磁気センサ
20 磁気センサ
21 発振回路
22 検波回路
23 増幅回路
24 マルチプレクサ
25 マイコン(CPU)
50、51 磁界
DESCRIPTION OF SYMBOLS 1 Magnetic medium 2 Magnetic printing part 4 Plane 3a, 3b, 3c Magnets 5a, 5b Magnetic detection element 6a, 6b Detection surface 7 Magnetic thin film 8 which passes through the middle point of NS poles, such as magnet 3a, and is normal to NS direction Planar coil 9 Electrode 10 Magnetic sensor 20 Magnetic sensor 21 Oscillation circuit 22 Detection circuit 23 Amplification circuit 24 Multiplexer 25 Microcomputer (CPU)
50, 51 magnetic field

Claims (6)

磁性体を含んだ磁気媒体を相対的に移動させ、当該移動方向と直交する方向に磁極逆転して交互に並べて配置された複数の磁石の磁場の変化を検知する磁界検出装置であって、
隣り合う磁石の間には、隣り合う各磁石でそれぞれ形成される磁場変化と、隣り合う磁石間で形成される磁場変化とをそれぞれ受ける感磁素子が配置されたことを特徴とする磁界検出装置。
A magnetic field detection device that detects a change in the magnetic field of a plurality of magnets arranged by alternately moving a magnetic medium including a magnetic body and reversing a magnetic pole in a direction orthogonal to the moving direction ,
A magnetic field detecting device is provided between adjacent magnets, each of which is provided with a magnetosensitive element that receives a magnetic field change formed by each adjacent magnet and a magnetic field change formed between adjacent magnets. .
前記感磁素子は、前記磁石のNS方向を法線とし前記磁石のN極とS極の中点を含む平面上に配置されたことを特徴とする請求項1に記載の磁界検出装置。   The magnetic field detection device according to claim 1, wherein the magnetosensitive element is arranged on a plane including a midpoint of the N pole and the S pole of the magnet with the NS direction of the magnet as a normal line. 前記感磁素子は、前記感磁素子に隣り合う各磁石でそれぞれ形成される磁場が前記磁性体と前記磁石とが接近することによって生じる磁場変化と、隣り合う磁石間で形成される磁場の作用を受けて磁化する前記磁性体によって生じる隣り合う磁石間の磁場変化とをそれぞれ受けることを特徴とする請求項1または2に記載の磁界検出装置。The magnetic sensing element includes a magnetic field change generated by the magnetic material and the magnet approaching each other, and an action of the magnetic field formed between the adjacent magnets. 3. The magnetic field detection device according to claim 1, wherein the magnetic field detection device receives a magnetic field change between adjacent magnets generated by the magnetic body that receives and magnetizes the magnetic field. 前記感磁素子は、前記感磁素子の磁界検知方向が前記直交する方向に向き、前記磁性体が自素子に隣接する2つの磁石のそれぞれの磁極上に近接していない場合には、前記感磁素子の検出磁界がゼロとなる位置に配置されることによって、前記直交する方向における前記感磁素子の検出出力において、前記感磁素子の中央真上における検出出力にピークが現れることを特徴とする請求項1から3のいずれか一項に記載の磁界検出装置。  The magnetic sensitive element has the magnetic sensitive element when the magnetic field detection direction of the magnetic sensitive element is oriented in the orthogonal direction and the magnetic body is not close to the magnetic poles of two magnets adjacent to the magnetic element. A peak appears in the detection output immediately above the center of the magnetic sensing element in the detection output of the magnetic sensing element in the orthogonal direction by being arranged at a position where the detection magnetic field of the magnetic element becomes zero. The magnetic field detection apparatus according to any one of claims 1 to 3. 磁性体を含んだ磁気媒体を移動させ、前記磁気媒体による移動方向と直交する方向に磁極逆転して交互に並べて配置された複数の磁石の磁場の変化を検知する磁界検出装置であって、
複数の磁石と複数の感磁素子とが略直線上に交互に配置されて構成され、
前記複数の磁石は、そのNS方向が前記磁気媒体を移動する面に対して概ね垂直となるように、かつ前記磁気媒体の移動方向と垂直方向へ略等間隔に配置されるとともに、前記複数の磁石は、前記磁気媒体に接する側の磁極が交互に入れ替わるように配列され、
前記複数の感磁素子は、前記略直線方向に磁界検知方向を有するように配置され、
前記複数の感磁素子のそれぞれは、前記磁性体が自素子に隣接する2つの磁石のそれぞれの磁極上に近接することで発生する前記2つの磁石それぞれの磁場変化と、前記2つの磁石の磁極間に前記磁性体が近接することで発生する前記磁性体の磁化による前記2つの磁石の磁場変化と、を同時に検出することを特徴とする磁界検出装置。
Magnetic media containing the magnetic substance is moved, a magnetic field detecting apparatus for detecting a change in the magnetic field of a plurality of magnets arranged side by side alternately with poles reversed in a direction perpendicular to the moving direction of said magnetic medium,
A plurality of magnets and a plurality of magnetosensitive elements are alternately arranged on a substantially straight line,
The plurality of magnets are arranged substantially equidistantly in a direction perpendicular to the moving direction of the magnetic medium such that the NS direction thereof is substantially perpendicular to a surface moving the magnetic medium. The magnets are arranged so that the magnetic poles in contact with the magnetic medium are alternately switched,
The plurality of magnetosensitive elements are arranged to have a magnetic field detection direction in the substantially linear direction ,
Each of the plurality of magnetosensitive elements includes a magnetic field change of each of the two magnets generated when the magnetic body is close to the magnetic poles of the two magnets adjacent to the element, and the magnetic poles of the two magnets. A magnetic field detecting device for simultaneously detecting a change in magnetic field between the two magnets due to magnetization of the magnetic material, which is generated when the magnetic material is in proximity.
請求項1から5のいずれか一項に記載の磁界検出装置により構成された複数のチャンネルを有する磁気識別装置であって、
高周波電流を前記感磁素子の磁界検知部である磁性薄膜に印加する電流印加部と、
前記感磁素子の前記磁性薄膜に積層されたコイルから検波回路により前記感磁素子のセンサ電圧を取り出すセンサ電圧取得部と、
前記センサ電圧を増幅する増幅回路と、
前記複数のチャンネルを切り替えるマルチプレクサと、
前記マルチプレクサからの出力を数値化して演算処理を行う演算部と、
を有する磁気識別装置。
A magnetic identification device having a plurality of channels constituted by the magnetic field detection device according to any one of claims 1 to 5,
A current applying unit that applies a high-frequency current to a magnetic thin film that is a magnetic field detecting unit of the magnetosensitive element;
A sensor voltage acquisition unit for extracting a sensor voltage of the magnetosensitive element by a detection circuit from a coil laminated on the magnetic thin film of the magnetosensitive element;
An amplifier circuit for amplifying the sensor voltage;
A multiplexer for switching the plurality of channels;
An arithmetic unit that performs arithmetic processing by digitizing the output from the multiplexer;
A magnetic identification device.
JP2014078054A 2014-04-04 2014-04-04 Magnetic field detection device and magnetic identification device Active JP6359858B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014078054A JP6359858B2 (en) 2014-04-04 2014-04-04 Magnetic field detection device and magnetic identification device
CN201510157710.XA CN104977547B (en) 2014-04-04 2015-04-03 Detector for magnetic field and magnetic identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078054A JP6359858B2 (en) 2014-04-04 2014-04-04 Magnetic field detection device and magnetic identification device

Publications (3)

Publication Number Publication Date
JP2015200523A JP2015200523A (en) 2015-11-12
JP2015200523A5 JP2015200523A5 (en) 2017-03-16
JP6359858B2 true JP6359858B2 (en) 2018-07-18

Family

ID=54274232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078054A Active JP6359858B2 (en) 2014-04-04 2014-04-04 Magnetic field detection device and magnetic identification device

Country Status (2)

Country Link
JP (1) JP6359858B2 (en)
CN (1) CN104977547B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093135A (en) * 2015-06-25 2015-11-25 无锡乐尔科技有限公司 Evaluation method for magnetic head and magnetic medium
JP6974897B2 (en) * 2016-04-19 2021-12-01 キヤノン電子株式会社 Magnetic identification device
JP6789711B2 (en) * 2016-07-29 2020-11-25 キヤノン電子株式会社 Magnetic identification device
CN106353701A (en) * 2016-08-24 2017-01-25 明光万佳联众电子有限公司 Automatic-measurement constant magnetic field separator
WO2019151422A1 (en) * 2018-01-31 2019-08-08 キヤノン電子株式会社 Inspection device
JP7059080B2 (en) * 2018-04-09 2022-04-25 キヤノン電子株式会社 Magnetic identification device
CN111896900B (en) * 2020-07-06 2021-05-25 苏州佳祺仕信息科技有限公司 Multi-probe Gaussian detection device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725728Y2 (en) * 1988-05-27 1995-06-07 株式会社村田製作所 Magnetoresistive element array
JP3226071B2 (en) * 1993-12-28 2001-11-05 東京瓦斯株式会社 Magnetic flaw detection
JP3064293B2 (en) * 1997-02-18 2000-07-12 トヨタ自動車株式会社 Rotation sensor
JP2002246568A (en) * 2001-02-16 2002-08-30 Sony Corp Magnetic memory device and its manufacturing method
JP4160330B2 (en) * 2002-07-12 2008-10-01 キヤノン電子株式会社 Magnetic field detection circuit
KR100801853B1 (en) * 2004-02-27 2008-02-11 가부시키가이샤 무라타 세이사쿠쇼 Prolonged magnetic sensor
WO2006039439A2 (en) * 2004-09-30 2006-04-13 Cummins-Allison Corp. Magnetic detection system for use in currency processing and method and apparatus for using the same
JP4940565B2 (en) * 2005-03-28 2012-05-30 ヤマハ株式会社 Manufacturing method of magnetic sensor
JP4837749B2 (en) * 2006-12-13 2011-12-14 アルプス電気株式会社 Magnetic sensor and magnetic encoder using the same
JP5362188B2 (en) * 2007-03-29 2013-12-11 キヤノン電子株式会社 Magnetic detection sensor
JP5227527B2 (en) * 2007-03-29 2013-07-03 キヤノン電子株式会社 Magnetic detection sensor
JP5494591B2 (en) * 2010-09-28 2014-05-14 株式会社村田製作所 Long magnetic sensor
JP5603259B2 (en) * 2011-01-14 2014-10-08 日立オムロンターミナルソリューションズ株式会社 Paper sheet identification device

Also Published As

Publication number Publication date
CN104977547A (en) 2015-10-14
JP2015200523A (en) 2015-11-12
CN104977547B (en) 2018-04-20

Similar Documents

Publication Publication Date Title
JP6359858B2 (en) Magnetic field detection device and magnetic identification device
JP5867235B2 (en) Magnetic sensor device
CN101273247B (en) Magnetic sensor and magnetic sensing method
US9279866B2 (en) Magnetic sensor
JP5719515B2 (en) Magnetic sensor device
EP3026451B1 (en) Single magnetoresistor tmr magnetic field sensor chip and magnetic currency detector head
KR20140051385A (en) Measuring device for measuring the magnetic properties of the surroundings of the measuring device
JP5227527B2 (en) Magnetic detection sensor
JP5799882B2 (en) Magnetic sensor device
WO2018139233A1 (en) Magnetoresistive effect element unit and magnetoresistive effect element device
JP6550587B2 (en) Magnetic line sensor and discrimination device using the same
EP3133561B1 (en) An in-plane magnetic image sensor chip
JP2008046104A (en) Manufacturing method of magnetic encoder and magnetic scale
CN113302693B (en) Magnetic identification sensor
JP5243725B2 (en) Magnetic detection sensor
JP5861551B2 (en) Magnetic sensor device
JP6315802B2 (en) Magnetic sensor device
JP6980166B1 (en) Magnetic sensor device
JP2022189283A (en) Magnetic identification sensor and magnetic identification device
WO2023127576A1 (en) Magnetic feature detecting device, and paper sheet identifying device
JP6974897B2 (en) Magnetic identification device
JP2019184382A (en) Magnetic identifying device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6359858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250