JP6332655B2 - Hot-wire anemometer and blood anemometer using the same - Google Patents

Hot-wire anemometer and blood anemometer using the same Download PDF

Info

Publication number
JP6332655B2
JP6332655B2 JP2016503889A JP2016503889A JP6332655B2 JP 6332655 B2 JP6332655 B2 JP 6332655B2 JP 2016503889 A JP2016503889 A JP 2016503889A JP 2016503889 A JP2016503889 A JP 2016503889A JP 6332655 B2 JP6332655 B2 JP 6332655B2
Authority
JP
Japan
Prior art keywords
tip
wire
wiring cable
hot
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016503889A
Other languages
Japanese (ja)
Other versions
JPWO2015125289A1 (en
Inventor
佐野 嘉彦
嘉彦 佐野
証英 原田
証英 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Publication of JPWO2015125289A1 publication Critical patent/JPWO2015125289A1/en
Application granted granted Critical
Publication of JP6332655B2 publication Critical patent/JP6332655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Description

この発明は、熱線流速計およびそれを用いた血流速計に関するものである。   The present invention relates to a hot-wire anemometer and a blood anemometer using the same.

熱線流速計は通常、例えば特許文献1に記載のように、抵抗ブリッジを組んだ4つの抵抗のうちの一つを、先端に例えば白金等の熱線を繋いだ配線ケーブルとし、その熱線を流れ方向と交差する方向に延在させて流体内に配置して通電により発熱させ、流体の流速に比例した熱線の冷却による抵抗変化を計測することで、流体の流速を測定している。   As described in, for example, Patent Document 1, a hot-wire anemometer usually has one of four resistors having a resistance bridge as a wiring cable having a hot wire such as platinum connected to the tip, and the hot wire is flow direction. The flow velocity of the fluid is measured by extending in a direction crossing the direction of the fluid and arranging it in the fluid to generate heat by energization and measuring the resistance change due to the cooling of the hot wire in proportion to the flow velocity of the fluid.

ところで、上記のような構成を有する熱線流速計は、極めて高感度であるとともに外径をきわめて細く形成することが可能であるため、例えばカテーテル型プローブとして血管内に挿入することで血流速を計測することも考えられる。   By the way, a hot-wire anemometer having the above-described configuration is extremely sensitive and can be formed with a very thin outer diameter. For example, a blood flow velocity can be reduced by inserting the catheter into a blood vessel as a catheter probe. It is also possible to measure.

特開2000−266773号公報JP 2000-266773 A

しかしながら、上記従来の熱線流速計の構成のままでプローブ全体をきわめて細く形成すると、そのプローブ内を通る、先端に熱線を繋いだ配線ケーブルも極めて細くなって、その配線ケーブルが外部環境の影響をノイズとして高感度に受けてしまうという問題が生ずる。   However, if the entire probe is made very thin while maintaining the configuration of the conventional hot-wire anemometer, the wiring cable that passes through the probe and has a hot wire connected to the tip will also become very thin. There arises a problem of high sensitivity as noise.

この発明は上記従来の熱線流速計の課題を有利に解決するものであり、この発明の熱線流速計は、抵抗ブリッジの同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、その熱線を流れ方向と交差する方向に延在させて流体内に配置して通電により発熱させ、流体の流速に比例した熱線の冷却による抵抗変化を計測することで流体の流速を測定する熱線流速計において、
前記抵抗ブリッジの同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとし
前記先端に熱線を繋いだ配線ケーブルと前記先端を回路的に閉じた配線ケーブルとを共通のスリーブ内に収容するとともに、前記熱線を前記スリーブの先端から突出させたことを特徴とするものである。
The present invention advantageously solves the problems of the conventional hot-wire anemometer described above, and the hot-wire anemometer of the present invention connects one of the two resistors on the same pole side of the resistance bridge and a hot wire at the tip. It is necessary to extend the heat wire in a direction crossing the flow direction, place it in the fluid, generate heat by energization, and measure the resistance change due to cooling of the heat wire in proportion to the fluid flow velocity. In a hot-wire anemometer that measures the flow velocity of
The other one of the two resistors on the same pole side of the resistance bridge is extended to the vicinity of the heat wire along the wiring cable having the heat wire connected to the tip, and the tip is closed in a circuit. Including wiring cables ,
A wiring cable in which a heat wire is connected to the tip and a wiring cable in which the tip is closed in a circuit are accommodated in a common sleeve, and the heat wire is projected from the tip of the sleeve. .

そしてこの発明の血流速計は、抵抗ブリッジの同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、その熱線を流れ方向と交差する方向に延在させて血流内に配置して通電により発熱させ、血流速に比例した熱線の冷却による抵抗変化を計測することで血流速を測定する血流速計において、
前記抵抗ブリッジの同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとし、
血管内に挿入される共通のスリーブ内に前記先端に熱線を繋いだ配線ケーブルと前記先端を閉じた配線ケーブルとを収容するとともに前記熱線をそのスリーブの先端から絶縁状態で突出させて配置してカテーテル型プローブを構成したことを特徴とするものである。
The blood flow meter of the present invention includes one of two resistances on the same pole side of the resistance bridge including a wiring cable having a hot wire connected to the tip, and the hot wire extends in a direction crossing the flow direction. In a blood flow meter that measures the blood flow rate by measuring the resistance change due to cooling of the heat ray proportional to the blood flow rate, and placing it in the bloodstream to generate heat,
The other one of the two resistors on the same pole side of the resistance bridge is extended to the vicinity of the heat wire along the wiring cable having the heat wire connected to the tip, and the tip is closed in a circuit. Including wiring cables,
A wiring cable in which a heat wire is connected to the tip and a wiring cable having the tip closed are accommodated in a common sleeve that is inserted into a blood vessel, and the heat wire is disposed so as to protrude in an insulated state from the tip of the sleeve. A catheter type probe is configured.

かかるこの発明の熱線流速計にあっては、抵抗ブリッジを組んだ4つの抵抗のうちの、同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとするとともに、前記抵抗ブリッジの同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとし、前記先端に熱線を繋いだ配線ケーブルと前記先端を回路的に閉じた配線ケーブルとを共通のスリーブ内に収容するとともに、前記熱線を前記スリーブの先端から突出させたため、その熱線を流れ方向と交差する方向に延在させて流体内に配置して通電により発熱させ、流体の流速に比例した熱線の冷却による抵抗変化を計測することで流体の流速を測定する際に、先端に熱線を繋いだ側の配線ケーブルと先端を閉じた側の配線ケーブルとが共通のスリーブ内で互いに同程度に流体等の外部環境の影響をノイズとして受けるので、抵抗ブリッジ内でそれらのノイズが実質的に相殺される。 In such a hot-wire anemometer of the present invention, one of the two resistors on the same pole side out of the four resistors that form a resistance bridge includes a wiring cable having a hot wire connected to the tip. The other one of the two resistances on the same pole side of the resistance bridge is extended to the vicinity of the heating wire along the wiring cable having the heating wire connected to the tip, and the tip is closed in a circuit. A wiring cable having a heat wire connected to the tip and a wiring cable having the tip closed in a circuit are housed in a common sleeve, and the heat wire is projected from the tip of the sleeve. Therefore, the flow rate of the fluid is measured by extending the heat ray in the direction intersecting the flow direction and placing it in the fluid to generate heat by energization and measuring the resistance change due to the cooling of the heat ray proportional to the flow rate of the fluid. When that, because affected by external environment such as a fluid to the same extent with each other and distribution cable side of closing the distribution cable and the tip of the connected side heat rays tip within a common sleeve as noise, the resistance bridge Therefore, those noises are substantially canceled out.

従って、この発明の熱線流速計によれば、細管内の流体の流速等の計測のためにプローブ全体をきわめて細く形成した場合でも、先端に熱線を繋いだ配線ケーブルが受けるノイズの影響を殆どもしくは全くなくして、流体の流速を高精度に測定することができる。   Therefore, according to the hot-wire anemometer of the present invention, even when the entire probe is formed to be very thin for measuring the flow velocity of the fluid in the thin tube, the influence of noise received by the wiring cable having the hot wire connected to the tip is almost or The flow rate of the fluid can be measured with high accuracy without any loss.

また、この発明の血流速計にあっては、抵抗ブリッジの同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとするとともに、前記抵抗ブリッジを組んだ4つの抵抗のうちの、同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものと、血管内に挿入される共通のスリーブ内に前記先端に熱線を繋いだ配線ケーブルと前記先端を閉じた配線ケーブルとを収容するとともに前記熱線をそのスリーブの先端から絶縁状態で突出させて配置してカテーテル型プローブを構成したため、その熱線を血流方向と交差する方向に延在させて血管内に配置して通電により発熱させ、血流速に比例した熱線の冷却による抵抗変化を計測することで血流速を測定する際に、先端に熱線を繋いだ配線ケーブルと先端を閉じた配線ケーブルとが共通のスリーブ内で互いに同程度に血流等の外部環境の影響をノイズとして受けるので、抵抗ブリッジ内でそれらのノイズが実質的に相殺される。 Further, in the blood flow velocity meter according to the present invention, one of the two resistances on the same pole side of the resistance bridge includes a wiring cable in which a heat wire is connected to the tip, and the resistance bridge is assembled. Of the four resistors, the other one of the two resistors on the same pole side is extended to the vicinity of the hot wire along the wiring cable in which the hot wire is connected to the tip. is intended to include wire cables closed, the sleeve the heat ray accommodates the wiring cables and a common wiring cable that connects hot wire into the distal end in the sleeve closing said distal end to be inserted into a blood vessel because from the tip to constitute a catheter probe and arranged to protrude in an insulated state, the hot wire is heated by energization and positioned within the vessel by extending in a direction intersecting the direction of blood flow, proportional to blood flow velocity Heat ray When measuring the blood flow velocity by measuring the resistance change due to retirement, the external environment of the blood stream, such as to the same extent with each other and interconnect cables closed distribution cable and the tip by connecting the hot wire in a common sleeve in the distal end As a result, the noise is substantially canceled in the resistor bridge.

従って、この発明の血流速計によれば、プローブ全体をきわめて細く形成してカテーテル型プローブを構成した場合でも、先端に熱線を繋いだ配線ケーブルが受けるノイズの影響を殆どもしくは全くなくして、血流速を高精度に測定することができる。   Therefore, according to the blood flow meter of the present invention, even when a catheter type probe is configured by forming the entire probe to be extremely thin, the influence of noise received by the wiring cable having a hot wire connected to the tip is little or not, The blood flow rate can be measured with high accuracy.

なお、この発明の血流速計においては、前記先端に熱線を繋いだ配線ケーブルおよび前記先端を回路的に閉じた配線ケーブルは、互いに縒られたツイスト線(縒り線)であると、先端に熱線を繋いだ配線ケーブルと先端を閉じた配線ケーブルとがスリーブ内で互いに密接して、それらの配線ケーブルが受ける血流等の外部環境の影響がより良く一致するようになることから、抵抗ブリッジ内でそれらの配線ケーブルが受けるノイズをより有効に相殺することができるので好ましい。 In the blood flow velocity meter according to the present invention , the wiring cable having a hot wire connected to the tip and the wiring cable having the tip closed in a circuit form are twisted wires (twisting wires) that are twisted together. A resistance bridge because the distribution cable that connects the hot wires and the distribution cable that closes the tip are in close contact with each other in the sleeve, and the effects of the external environment such as blood flow that these distribution cables receive are better matched. This is preferable because noises received by the wiring cables can be more effectively offset.

また、この発明の血流速計においては、前記配線ケーブルはポリテトラフルオロエチレン等のフッ素樹脂のコーティングを施したチタン線であると、コーティングの低摩擦性により配線ケーブルがスリーブ内で円滑に動けるためカテーテル型プローブの血管内への挿入が円滑になるとともに、コーティングの絶縁性により配線ケーブル同士の短絡も防止できるので好ましい。   In the blood flow meter of the present invention, if the wiring cable is a titanium wire coated with a fluororesin such as polytetrafluoroethylene, the wiring cable can move smoothly in the sleeve due to the low friction of the coating. Therefore, it is preferable because the insertion of the catheter probe into the blood vessel becomes smooth and the short circuit between the wiring cables can be prevented by the insulating property of the coating.

(a)は、本発明の熱線流速計の一実施形態を模式的に示す説明図であり、(b)は、本発明の熱線流速計の他の一実施形態を模式的に示す説明図である。(A) is explanatory drawing which shows typically one Embodiment of the hot-wire anemometer of this invention, (b) is explanatory drawing which shows other one Embodiment of the hot-wire anemometer of this invention typically. is there. (a)は、上記した先の実施形態の熱線流速計を適用した、本発明の血流速計の一実施形態を模式的に示す説明図、(b)は、(a)中のカテーテル型プローブの先端部を含むA部を拡大して示す側面図、(c)は、(a)中のカテーテル型プローブのスリーブを含むB部を拡大して示す縦断面図、(d)は、この実施形態の血流速計の一変形例を示す説明図である。(A) is explanatory drawing which shows typically one Embodiment of the blood flow rate meter of this invention to which the hot-wire flow rate meter of above-mentioned embodiment was applied, (b) is the catheter type | mold in (a) The side view which expands and shows the A part containing the front-end | tip part of a probe, (c) is the longitudinal cross-sectional view which expands and shows the B part containing the sleeve of the catheter type probe in (a), (d) is this It is explanatory drawing which shows the modification of the blood flow rate meter of embodiment. (a)は、図2(b)中の先端部の構成例を拡大して示す縦断面図、(b)は、図2(c)中のスリーブの構成例を拡大して示す斜視図、(c)は、図2(c)中の配線ケーブルの構成例を拡大して示す縦断面図である。(A) is a longitudinal sectional view showing an enlarged configuration example of the tip in FIG. 2 (b), (b) is a perspective view showing an enlarged configuration example of the sleeve in FIG. 2 (c), (C) is a longitudinal sectional view showing an enlarged configuration example of the wiring cable in FIG. 2 (c). (a)は、図2(c)中のスリーブ内の配線ケーブルの配置例を拡大して示す横断面図、(b)は、その配線ケーブルの構成例を拡大して示す横断面図である。(A) is a cross-sectional view showing an enlarged arrangement example of the wiring cable in the sleeve in FIG. 2 (c), and (b) is a cross-sectional view showing an enlarged configuration example of the wiring cable. . 上記実施形態の血流速計の回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure of the blood flow rate meter of the said embodiment. 図2(c)に示すスリーブ内の配線ケーブルの一変形例を拡大して示す斜視図である。It is a perspective view which expands and shows the modification of the wiring cable in the sleeve shown in FIG.2 (c).

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1(a)は、本発明の熱線流速計の一実施形態を模式的に示す説明図である。この実施形態の熱線流速計は、抵抗ブリッジを組んだ4つの抵抗R1,R2,R3,R4のうち、同一極であるグランド側の2つの抵抗R3,R4のうちの一つである抵抗R3を、先端にコイル状の熱線HWを繋いだ配線ケーブルC1すなわち熱線HWの抵抗と二本の配線ケーブルC1の抵抗の直列接続とし、その熱線HWをスリーブSの先端から突出させて固定するとともに配線ケーブルC1をスリーブS内に通してプローブPを構成し、その熱線HWのコイルの軸線方向をスリーブSの軸線方向と一致させることで、熱線HWを図中矢印で示す流体の流れ方向FLと交差する方向に延在させて流体内に配置して、抵抗ブリッジからの通電により発熱させ、流体の流速に比例した熱線HWの冷却による抵抗変化をブリッジドライブ回路BDで電流変化として計測することで、流体の流速を測定するものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, FIG. 1A is an explanatory view schematically showing an embodiment of the hot-wire anemometer of the present invention. The hot-wire anemometer of this embodiment includes a resistor R3, which is one of two resistors R3, R4 on the ground side, which is the same pole, among four resistors R1, R2, R3, R4 that form a resistance bridge. The wiring cable C1 having a coiled heat wire HW connected to the tip, that is, the resistance of the heat wire HW and the resistance of the two wiring cables C1 are connected in series, and the heat wire HW protrudes from the tip of the sleeve S and is fixed. The probe P is formed by passing C1 through the sleeve S, and the axial direction of the coil of the heat wire HW is made to coincide with the axial direction of the sleeve S, so that the heat wire HW intersects the fluid flow direction FL indicated by an arrow in the figure. Extending in the direction and arranged in the fluid, heat is generated by energization from the resistance bridge, and the resistance change due to cooling of the hot wire HW proportional to the flow velocity of the fluid is changed to the bridge drive circuit BD. By measuring the current change, and measures the flow velocity of the fluid.

しかしてこの実施形態の熱線流速計では特に、抵抗ブリッジを組んだ4つの抵抗R1,R2,R3,R4のうち、同一極であるグランド側の2つの抵抗R3,R4のうちの他の一つである抵抗R4を、先端に熱線HWを繋いだ配線ケーブルC1に沿わせてその熱線HWの近くまでスリーブS内で延在させた、先端を回路的に閉じた配線ケーブルC2すなわち二本の配線ケーブルC1の抵抗の直列接続としている。なお、熱線HWは、例えば白金線の表面に薄い絶縁樹脂皮膜をコーティングしたものとし、配線ケーブルC1,C2もそれぞれ、例えば銅線やチタン線の等の導電性金属線の表面に薄い絶縁樹脂皮膜をコーティングしたものとしている。   In particular, in the hot-wire anemometer of this embodiment, among the four resistors R1, R2, R3, and R4 that form a resistance bridge, the other one of the two ground-side resistors R3 and R4 that are the same poles. The resistor R4 is a wiring cable C2 having two ends, which is extended in the sleeve S along the wiring cable C1 having the heat wire HW connected to the tip and close to the heat wire HW, ie, two wires. The resistance of the cable C1 is connected in series. The heat wire HW is, for example, a surface of a platinum wire coated with a thin insulating resin film, and each of the wiring cables C1, C2 is also a thin insulating resin film on the surface of a conductive metal wire such as a copper wire or a titanium wire. Is coated.

かかる実施形態の熱線流速計にあっては、抵抗ブリッジの同一極側の2つの抵抗R3,R4のうちの一つである抵抗R3を、先端に熱線HWを繋いだ配線ケーブルC1を含むものとするとともに、抵抗ブリッジの同一極側の2つの抵抗R3,R4のうちの他の一つである抵抗R4を、先端に熱線HWを繋いだ配線ケーブルC1に沿わせてその熱線HWの近くまで延在させた、先端を回路的に閉じた配線ケーブルC2を含むものとしたため、その熱線HWを流れ方向と交差する方向に延在させて流体内に配置して通電により発熱させ、流体の流速を測定する際に、配線ケーブルC1と配線ケーブルC2とが互いに同程度に流体等の外部環境の影響をノイズとして受けて抵抗値を変化させるので、抵抗ブリッジ内でそれらのノイズが実質的に相殺される。   In the hot-wire anemometer of this embodiment, the resistor R3, which is one of the two resistors R3 and R4 on the same pole side of the resistor bridge, includes the wiring cable C1 with the hot wire HW connected to the tip. The resistor R4, which is the other of the two resistors R3 and R4 on the same pole side of the resistor bridge, is extended to the vicinity of the heat wire HW along the wiring cable C1 having the heat wire HW connected to the tip. In addition, since the wiring cable C2 whose end is closed in a circuit manner is included, the heat ray HW extends in a direction intersecting the flow direction, is placed in the fluid and is heated by energization, and the flow velocity of the fluid is measured. In this case, since the wiring cable C1 and the wiring cable C2 are affected by the influence of the external environment such as fluid as noise to change the resistance value, the noise is substantially canceled in the resistance bridge. It is.

従って、この実施形態の熱線流速計によれば、細管内の流体の流速等の計測のためにプローブPの全体をきわめて細く形成した場合でも、先端に熱線HWを繋いだ配線ケーブルC1が受けるノイズの影響を殆どもしくは全くなくして、流体の流速を高精度に測定することができる。   Therefore, according to the hot-wire anemometer of this embodiment, even when the entire probe P is formed very thin for measuring the flow velocity of the fluid in the narrow tube, the noise received by the wiring cable C1 with the hot wire HW connected to the tip. The flow velocity of the fluid can be measured with high accuracy with little or no influence.

図1(b)は、本発明の熱線流速計の他の一実施形態を模式的に示す説明図であり、この実施形態では、先端に熱線HWを繋いだ二本の配線ケーブルC1のうちの一本を、先端を回路的に閉じた二本の配線ケーブルC2のうちの一本と共用にして、スリーブS内に延在させる配線ケーブルを三本にしたものであり、このようにしても先の実施形態と同様にノイズの影響を除去する作用効果を得ることができ、しかもこの実施形態によれば配線ケーブルの本数が減るので、スリーブSをより細く構成することができる。   FIG.1 (b) is explanatory drawing which shows typically other embodiment of the hot-wire anemometer of this invention, and in this embodiment, of two wiring cables C1 which connected the hot wire HW to the front-end | tip. One is shared with one of the two wiring cables C2 whose ends are closed in a circuit form, and three wiring cables extending into the sleeve S are formed. The effect of removing the influence of noise can be obtained in the same manner as in the previous embodiment, and according to this embodiment, the number of wiring cables is reduced, so that the sleeve S can be made thinner.

図2(a)は、上記実施形態の熱線流速計を適用した、本発明の血流速計の一実施形態を模式的に示す説明図、図2(b)は、図2(a)中のカテーテル型プローブの先端部を含むA部を拡大して示す側面図、図2(c)は、図2(a)中のカテーテル型プローブのスリーブを含むB部を拡大して示す縦断面図であり、図中、先の実施形態と同様の部分はそれと同一の符号にて示す。   FIG. 2 (a) is an explanatory view schematically showing an embodiment of the blood flow velocity meter of the present invention to which the hot-wire flow velocity meter of the above embodiment is applied, and FIG. 2 (b) is a diagram in FIG. 2 (a). The side view which expands and shows the A section containing the front-end | tip part of the catheter type probe of FIG. 2, FIG.2 (c) is a longitudinal cross-sectional view which expands and shows the B section containing the sleeve of the catheter type probe in FIG. In the figure, the same parts as those in the previous embodiment are denoted by the same reference numerals.

すなわち、この実施形態の血流速計は、後述する図5に示すように、抵抗ブリッジを組んだ4つの抵抗R1,R2,R3,R4のうちのグランド側の一つである抵抗R3を、先端に熱線HWを繋いだ配線ケーブルC1とそれに直列接続した補助抵抗R3’、すなわち熱線HWの抵抗と二本の配線ケーブルC1の抵抗と補助抵抗R3’との直列接続とし、その熱線HWを血液の流れ方向と交差する方向に延在させて血管内の血流内に配置して通電により発熱させ、血流速に比例した熱線HWの冷却による抵抗変化を計測することで血流速を測定するものである。   That is, as shown in FIG. 5 to be described later, the blood flow meter of this embodiment includes a resistor R3, which is one of the ground sides of the four resistors R1, R2, R3, and R4 that form a resistor bridge. A wiring cable C1 with a hot wire HW connected to the tip and an auxiliary resistor R3 ′ connected in series with it, that is, a resistance of the hot wire HW, a resistance of two wiring cables C1, and an auxiliary resistor R3 ′ are connected in series, and the hot wire HW is blood. The blood flow rate is measured by measuring the resistance change due to cooling of the hot wire HW proportional to the blood flow rate, extending in a direction crossing the flow direction of the blood and placing it in the blood flow in the blood vessel to generate heat when energized. To do.

そして、この実施形態では特に、抵抗ブリッジを組んだ4つの抵抗R1,R2,R3,R4のうちのグランド側の他の一つである抵抗R4を、先端に熱線HWを繋いだ配線ケーブルC1に沿わせてその熱線HWの近くまで延在させた、先端を回路的に閉じた配線ケーブルC2とそれに直列接続した補助抵抗(図示例では可変抵抗)R4’、すなわち二本の配線ケーブルC1の抵抗と補助抵抗R4’との直列接続とし、血管内に挿入されるスリーブS内に先端に熱線HWを繋いだ配線ケーブルC1と先端を閉じた配線ケーブルC2とを収容するとともに、スリーブSの先端部を液密に封止する先端が丸まった絶縁樹脂製チップT内に熱線HWを封入することで熱線HWをそのスリーブSの先端から絶縁状態で突出させて配置して、カテーテル型プローブPを構成している。なお、補助抵抗R3’,R4’は、抵抗ブリッジの平衡状態の調整や抵抗R3,R4の抵抗値の設定等に用いられる。 In this embodiment, in particular, the resistor R4, which is the other one of the four resistors R1, R2, R3, and R4 in the resistance bridge, is connected to the wiring cable C1 having the hot wire HW connected to the tip. A wiring cable C2 having a closed circuit end and an auxiliary resistor (variable resistance in the illustrated example) R4 ′ connected in series to the heat wire HW, that is, the resistance of two wiring cables C1. And the auxiliary resistor R4 ′ are connected in series, and a wiring cable C1 having a heat wire HW connected to the tip and a wiring cable C2 having a closed tip are accommodated in a sleeve S inserted into the blood vessel, and the tip of the sleeve S the arranged to heat rays HW from the tip of the sleeve S is projected in an insulated state by encapsulating the heat ray HW in liquid-tight insulation resin chips rounded tip to seal the T, the catheter-type flop Constitute the over blanking P. The auxiliary resistors R3 ′ and R4 ′ are used for adjusting the equilibrium state of the resistance bridge and setting the resistance values of the resistors R3 and R4.

図3(a)は、図2(b)中の先端部の構成例を拡大して示す縦断面図、図3(b)は、図2(c)中のスリーブの構成例を拡大して示す斜視図、図3(c)は、図2(c)中の配線ケーブルの構成例を拡大して示す縦断面図であり、また図4(a)は、図2(c)中のスリーブ内の配線ケーブルの配置例を拡大して示す横断面図、図4(b)は、その配線ケーブルの構成例を拡大して示す横断面図である。   3A is a longitudinal sectional view showing an enlarged configuration example of the tip portion in FIG. 2B, and FIG. 3B is an enlarged configuration example of the sleeve in FIG. 2C. FIG. 3C is an enlarged longitudinal sectional view showing a configuration example of the wiring cable in FIG. 2C, and FIG. 4A is a sleeve in FIG. FIG. 4B is an enlarged cross-sectional view showing a configuration example of the wiring cable.

図3(a)に示すように、この実施形態における熱線HWは、例えば直径10μmの白金細線を隙間を空けてコイル状に巻くとともにそのコイルの軸線方向一端部から白金細線の両端部を引き出したものであり、また図3(b)に示すように、この実施形態におけるスリーブSは、例えば直径80μmのステンレス線をコイルバネ状に密巻きして外径360μmで内径200μmの可撓性の筒状に形成したものであり、そして図3(c)に示すように、配線ケーブルC1,C2は各々、例えば直径50μmのチタン線TWの表面にフッ素樹脂としてのトリテトラフルオロエチレン(商標名テフロン)の10〜20μm厚のコーティングTCを施したものである。   As shown in FIG. 3A, the hot wire HW in this embodiment is formed by winding a platinum fine wire having a diameter of 10 μm in a coil shape with a gap, for example, and pulling out both ends of the platinum fine wire from one end in the axial direction of the coil. As shown in FIG. 3B, the sleeve S in this embodiment is, for example, a flexible cylindrical shape having an outer diameter of 360 μm and an inner diameter of 200 μm by tightly winding a stainless wire having a diameter of 80 μm in a coil spring shape. As shown in FIG. 3C, each of the wiring cables C1 and C2 is made of, for example, tritetrafluoroethylene (trade name: Teflon) as a fluororesin on the surface of a titanium wire TW having a diameter of 50 μm. A coating TC having a thickness of 10 to 20 μm is applied.

ここで、図4(a)に示すように、二本ずつ合計四本の配線ケーブルC1,C2は、スリーブS内に互いに隣接して収容され、このとき、図4(b)に示すように、テフロンコーティングTCの厚さを10μmとすると、合計四本の配線ケーブルC1,C2の最大径は149,9μmとなるので、四本の配線ケーブルC1,C2は、内径200μmのスリーブS内に遊びを持って円滑に挿通でき、また、スリーブSは配線ケーブルC1,C2との摺接による摩擦で妨げられずに、自由に撓み変形して血管内の所望の部位まで挿入されることができる。   Here, as shown in FIG. 4 (a), a total of four wiring cables C1 and C2 are housed adjacent to each other in the sleeve S, and at this time, as shown in FIG. 4 (b). If the thickness of the Teflon coating TC is 10 μm, the total diameter of the four wiring cables C1 and C2 is 149 and 9 μm in total, so that the four wiring cables C1 and C2 are free to play in the sleeve S having an inner diameter of 200 μm. In addition, the sleeve S can be freely bent and deformed and inserted to a desired site in the blood vessel without being hindered by friction caused by sliding contact with the wiring cables C1 and C2.

図5は、上記実施形態の血流速計の回路構成を示す説明図であり、この実施形態の血流速計では、4つの抵抗R1,R2,R3(=HW+2C1+R3’),R4(=2C2+R4’)からなる上述した抵抗ブリッジの、血流の流速に比例した熱線HWの冷却による抵抗変化をブリッジドライブ回路BDで電流変化として計測し、そのブリッジドライブ回路BDのアナログ出力信号をA/Dコンバーターでデジタル出力信号に変換して中央処理ユニット(CPU)に入力し、そのCPUで図示しないメモリ中のプログラムに基づき演算処理することで、上記デジタル出力信号を、血流速を示す信号に変換して出力する。   FIG. 5 is an explanatory diagram showing the circuit configuration of the blood flow meter of the above embodiment. In the blood flow meter of this embodiment, four resistors R1, R2, R3 (= HW + 2C1 + R3 ′), R4 (= 2C2 + R4). ') The resistance change of the above-described resistance bridge due to the cooling of the hot wire HW proportional to the blood flow velocity is measured as a current change by the bridge drive circuit BD, and the analog output signal of the bridge drive circuit BD is measured by the A / D converter. The digital output signal is converted into a digital output signal and input to a central processing unit (CPU). The CPU performs arithmetic processing based on a program in a memory (not shown) to convert the digital output signal into a signal indicating a blood flow rate. Output.

この回路構成のうち、カテーテル型プローブPを構成する熱線HWおよび四本の配線ケーブルC1,C2を除く部分は、図2(a)に示す、カテーテル型プローブPの基端部に固定された血流速計の本体MB内のプリント基板に実装されており、その本体MB内のプリント基板には、血流速を示す信号を出力する信号出力端子と、外部から電源を入力する電源入力端子とが設けられている。   In this circuit configuration, the portion excluding the hot wire HW and the four wiring cables C1, C2 constituting the catheter probe P is blood fixed to the proximal end portion of the catheter probe P shown in FIG. It is mounted on a printed circuit board in the main body MB of the anemometer, and on the printed circuit board in the main body MB, there are a signal output terminal for outputting a signal indicating the blood flow rate, and a power input terminal for inputting power from outside. Is provided.

なお、この本体MBはそれ自体を、信号出力端子と電源入力端子とを持つコネクターとして形成してもよく、このようにすれば、対応するソケットへの接続により容易に外部からの電源供給と外部への信号の取り出しとを行うことができる。   The main body MB itself may be formed as a connector having a signal output terminal and a power input terminal. In this way, the power supply from the outside and the external can be easily connected to the corresponding socket. The signal can be taken out from the signal.

また、図2(a)に示す例では、カテーテル型プローブPの基端部に本体MBが固定されているが、代わりに図2(d)に示すように、カテーテル型プローブPの基端部に本体MBがコネクターCNを介して着脱可能に結合され、スリーブS内の四本の配線ケーブルC1,C2がそのコネクターCNを介して本体MB内のプリント基板に着脱可能に接続されていてもよく、このようにすれば、本体MBを残してカテーテル型プローブPだけを容易に交換することができる。   In the example shown in FIG. 2A, the main body MB is fixed to the proximal end portion of the catheter type probe P. Instead, as shown in FIG. 2D, the proximal end portion of the catheter type probe P is used. The main body MB may be detachably coupled via the connector CN, and the four wiring cables C1 and C2 in the sleeve S may be detachably connected to the printed circuit board in the main body MB via the connector CN. In this way, it is possible to easily replace only the catheter probe P while leaving the main body MB.

この実施形態の血流速計にあっては、抵抗ブリッジの同一極であるグランド側の2つの抵抗R3,R4のうちの一つである抵抗R3を、先端に熱線HWを繋いだ配線ケーブルC1とそれに直列接続した補助抵抗R3’、すなわち熱線HWの抵抗と二本の配線ケーブルC1の抵抗と補助抵抗R3’との直列接続とするとともに、抵抗ブリッジの同一極であるグランド側の2つの抵抗R3,R4のうちの他の一つである抵抗R4を、先端に熱線HWを繋いだ配線ケーブルC1に沿わせてその熱線HWの近くまで延在させた、先端を回路的に閉じた配線ケーブルC2とそれに直列接続した補助抵抗R4’、すなわち二本の配線ケーブルC1の抵抗と補助抵抗R4’との直列接続としたため、血管内に挿入されるスリーブS内に先端に熱線HWを繋いだ配線ケーブルC1と先端を閉じた配線ケーブルC2とを収容するとともに熱線HWをそのスリーブSの先端部に絶縁状態で配置してカテーテル型プローブPを構成し、その熱線HWを血流方向と交差する方向に延在させて血管内に配置して通電により発熱させ、血流速に比例した熱線の冷却による抵抗変化を計測することで血流速を測定する際に、配線ケーブルC1と配線ケーブルC2とが互いに同程度に血流等の外部環境の影響をノイズとして受けるので、抵抗ブリッジ内でそれらのノイズが実質的に相殺される。   In the blood flow meter of this embodiment, a wiring cable C1 in which a resistance R3, which is one of two resistances R3 and R4 on the ground side, which is the same pole of a resistance bridge, is connected to a hot wire HW at the tip. And the auxiliary resistor R3 ′ connected in series therewith, that is, the resistance of the heat wire HW, the resistance of the two wiring cables C1, and the auxiliary resistor R3 ′, and two resistances on the ground side that are the same pole of the resistance bridge A wiring cable having a closed end in a circuit, in which a resistor R4, which is one of R3 and R4, is extended along the wiring cable C1 having a hot wire HW connected to the tip and close to the hot wire HW. Since the C2 and the auxiliary resistor R4 ′ connected in series with it, that is, the resistance of the two wiring cables C1 and the auxiliary resistor R4 ′ are connected in series, the hot wire HW is connected to the tip in the sleeve S inserted into the blood vessel. The wiring cable C1 and the wiring cable C2 with the distal end closed are accommodated, and the hot wire HW is disposed in an insulated state at the distal end portion of the sleeve S to form the catheter probe P. The hot wire HW intersects the blood flow direction. When the blood flow rate is measured by measuring the change in resistance caused by cooling of the hot wire in proportion to the blood flow rate by extending in the direction and arranging in the blood vessel to generate heat, the distribution cable C1 and the distribution cable C2 Are affected by the influence of the external environment such as blood flow to the same extent as noise, so that these noises are substantially canceled within the resistance bridge.

従って、この実施形態の血流速計によれば、プローブ全体をきわめて細く形成してカテーテル型プローブPを構成した場合でも、先端に熱線HWを繋いだ配線ケーブルC1が受けるノイズの影響を殆どもしくは全くなくして、血流速を高精度に測定することができる。   Therefore, according to the blood flow meter of this embodiment, even when the entire probe is formed to be thin and the catheter type probe P is configured, the influence of the noise received by the wiring cable C1 having the hot wire HW connected to the tip is almost or not. Without any, the blood flow rate can be measured with high accuracy.

さらに、この実施形態の血流速計によれば、配線ケーブルC1,C2はテフロンコーティングTCを施したチタン線TWであることから、コーティングTCの低摩擦性により配線ケーブルC1,C2がスリーブS内で円滑に動けるためカテーテル型プローブPの血管内への挿入が円滑になるとともに、コーティングTCの絶縁性により配線ケーブルC1,C2同士の短絡も防止することができる。また、この実施形態の血流速計によれば、スリーブSは、コイルバネ状ステンレス線からなることから、スリーブSの柔軟性によりカテーテル型プローブPの血管内への挿入が円滑になるとともに、スリーブSの耐食性により血液でのプローブPの腐食も防止することができる。   Furthermore, according to the blood flow meter of this embodiment, since the wiring cables C1 and C2 are titanium wires TW subjected to Teflon coating TC, the wiring cables C1 and C2 are placed in the sleeve S due to the low friction property of the coating TC. Therefore, the catheter type probe P can be smoothly inserted into the blood vessel, and the short circuit between the wiring cables C1 and C2 can be prevented by the insulating property of the coating TC. According to the blood flow meter of this embodiment, since the sleeve S is made of a coil spring-like stainless steel wire, the flexibility of the sleeve S facilitates the insertion of the catheter probe P into the blood vessel, and the sleeve S Corrosion resistance of S can also prevent corrosion of the probe P with blood.

図6は、図2(c)に示すスリーブS内の配線ケーブルの一変形例を拡大して示す斜視図であり、この変形例では、スリーブS内の4本の配線ケーブルC1,C2をツイスト線(縒り線)としている。この変形例によれば、先端に熱線を繋いだ配線ケーブルC1と先端を閉じた配線ケーブルC2とがスリーブS内で互いに密接して、それらの配線ケーブルC1,C2が受ける血流等の外部環境の影響がより良く一致するようになり、抵抗ブリッジ内で配線ケーブルが受けるノイズをより有効に相殺することができる。なお、この配線ケーブルC1,C2をツイスト線(縒り線)とする構成は、図1に示す先の実施態様の熱線流速計にも適用することができる。   FIG. 6 is an enlarged perspective view showing a modification of the wiring cable in the sleeve S shown in FIG. 2C. In this modification, the four wiring cables C1 and C2 in the sleeve S are twisted. It is a line. According to this modified example, the distribution cable C1 with the leading end connected to the heat wire and the distribution cable C2 with the closed end are in close contact with each other in the sleeve S, and the external environment such as blood flow received by the distribution cables C1 and C2 Thus, the influence of the noises can be better matched and the noise received by the wiring cable in the resistance bridge can be more effectively offset. Note that the configuration in which the wiring cables C1 and C2 are twisted wires (twisting wires) can also be applied to the hot-wire anemometer of the previous embodiment shown in FIG.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えばこの発明の熱線流速計は、例えばラジエターコア内の冷却管等の細管内の流体の流速の直接計測にも用いることができる。   As mentioned above, although demonstrated based on the example of illustration, this invention is not limited to the above-mentioned example, It can change suitably within the description range of a claim, For example, the hot-wire anemometer of this invention is, for example, It can also be used for direct measurement of the flow velocity of fluid in a narrow tube such as a cooling tube in a radiator core.

また、この発明の血流速計においては、例えばカテーテル型プローブPの先端部の絶縁樹脂製チップTの形状を、熱線HWのコイル内や螺旋状の熱線HWの周囲を血流が通過するように、先端部と外周部とに開口を持つ筒状に形成してもよく、図1(b)に示すと同様に、二本の配線ケーブルC1のうちの一本を、二本の配線ケーブルC2のうちの一本と共用にして、スリーブS内に延在させる配線ケーブルを三本にしてもよい。   In the blood flow meter of the present invention, for example, the shape of the insulating resin tip T at the tip of the catheter probe P is set so that the blood flow passes through the coil of the hot wire HW or around the spiral hot wire HW. In addition, it may be formed in a cylindrical shape having an opening at the front end portion and the outer peripheral portion. As shown in FIG. 1B, one of the two wiring cables C1 is replaced with two wiring cables. Three wiring cables extending in the sleeve S may be used in common with one of C2.

さらに、この発明の血流速計においては、例えばカテーテル型プローブPのスリ−ブS内に、配線ケーブルC1,C2に沿わせて一本または複数本の偏向ワイヤーを配置し、その偏向ワイヤーの先端部をスリ−ブSの先端部に接続するとともに基端部をハンドルやレバー等で押し引き可能にすることで、血管内でカテーテル型プローブPの先端部の向きを血管に沿うように変更可能にしてもよい。   Furthermore, in the blood flow meter of the present invention, for example, one or a plurality of deflection wires are arranged along the distribution cables C1 and C2 in the sleeve S of the catheter probe P, and the deflection wires By connecting the distal end to the distal end of the sleeve S and enabling the proximal end to be pushed and pulled with a handle, lever, etc., the orientation of the distal end of the catheter-type probe P in the blood vessel is changed to follow the blood vessel. It may be possible.

さらに、上記各実施形態では同一極側としてのグランド(負極)側の二つの抵抗R3,R4のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、他の一つを先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとしたが、この発明の熱線流速計および血流速計においては、同一極側としての正極側の二つの抵抗R1,R2のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、他の一つを先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとしてもよく、それらを組み合わせてもよい。   Further, in each of the above embodiments, one of the two resistors R3 and R4 on the ground (negative electrode) side as the same pole side is assumed to include a wiring cable having a heat wire connected to the tip, and the other one to the tip. Including the wiring cable with the circuit closed at the tip, extending to the vicinity of the heating wire along the wiring cable connected with the heating wire, in the heating wire velocimeter and blood flow velocity meter of the present invention, One of the two resistances R1 and R2 on the positive electrode side as the same pole side is assumed to include a wiring cable with a hot wire connected to the tip, and the other one along the wiring cable with a hot wire connected to the tip. It may include a wiring cable that extends to the vicinity of the heat wire and has a closed circuit end, or a combination thereof.

そして、この発明の熱線流速計および血流速計においては、各部材の構成材料は、上記実施形態におけるものに限定されず、所要に応じて適宜変更することができる。   And in the hot-wire anemometer and blood anemometer of this invention, the constituent material of each member is not limited to the thing in the said embodiment, It can change suitably as needed.

かくしてこの発明の熱線流速計によれば、細管内の流体の流速等の計測のためにプローブ全体をきわめて細く形成した場合でも、先端に熱線を繋いだ配線ケーブルが受けるノイズの影響を殆どもしくは全くなくして、流体の流速を高精度に測定することができる。   Thus, according to the hot-wire anemometer of the present invention, even when the entire probe is formed to be very thin for measuring the flow velocity of the fluid in the narrow tube, the influence of the noise received by the wiring cable having the hot wire connected to the tip is little or not. Without it, the flow rate of the fluid can be measured with high accuracy.

また、この発明のこの発明の血流速計によれば、プローブ全体をきわめて細く形成してカテーテル型プローブを構成した場合でも、先端に熱線を繋いだ配線ケーブルが受けるノイズの影響を殆どもしくは全くなくして、血流速を高精度に測定することができる。   Further, according to the blood flow meter of the present invention of the present invention, even when a catheter type probe is configured by forming the entire probe to be very thin, the influence of noise received by the wiring cable having a hot wire connected to the tip is almost or not. Without it, the blood flow rate can be measured with high accuracy.

C1,C2 配線ケーブル
CN コネクター
FL 流れ方向
HW 熱線
MB 本体
P プローブ
R1〜R4 抵抗
R3’,R4’ 補助抵抗
S スリーブ
TC テフロンコーティング
TW チタン線
C1, C2 Wiring cable CN Connector FL Flow direction HW Heat wire MB Body P Probe R1-R4 Resistance R3 ', R4' Auxiliary resistance S Sleeve TC Teflon coating TW Titanium wire

Claims (4)

抵抗ブリッジの同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、その熱線を流れ方向と交差する方向に延在させて流体内に配置して通電により発熱させ、流体の流速に比例した熱線の冷却による抵抗変化を計測することで流体の流速を測定する熱線流速計において、
前記抵抗ブリッジの同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとし
前記先端に熱線を繋いだ配線ケーブルと前記先端を回路的に閉じた配線ケーブルとを共通のスリーブ内に収容するとともに、前記熱線を前記スリーブの先端から突出させたことを特徴とする熱線流速計。
One of the two resistors on the same pole side of the resistance bridge includes a wiring cable with a hot wire connected to the tip, and the heat wire is extended in the direction crossing the flow direction and placed in the fluid to energize In a hot-wire anemometer that measures the flow velocity of the fluid by measuring the resistance change due to the cooling of the hot wire proportional to the flow velocity of the fluid,
The other one of the two resistors on the same pole side of the resistance bridge is extended to the vicinity of the heat wire along the wiring cable having the heat wire connected to the tip, and the tip is closed in a circuit. Including wiring cables ,
A hot wire velocimeter characterized in that a wiring cable having a hot wire connected to the tip and a wiring cable having the tip closed in a circuit are accommodated in a common sleeve, and the hot wire is projected from the tip of the sleeve. .
抵抗ブリッジの同一極側の2つの抵抗のうちの一つを、先端に熱線を繋いだ配線ケーブルを含むものとし、その熱線を流れ方向と交差する方向に延在させて血流内に配置して通電により発熱させ、血流速に比例した熱線の冷却による抵抗変化を計測することで血流速を測定する血流速計において、
前記抵抗ブリッジの同一極側の2つの抵抗のうちの他の一つを、前記先端に熱線を繋いだ配線ケーブルに沿わせてその熱線の近くまで延在させた、先端を回路的に閉じた配線ケーブルを含むものとし、
血管内に挿入されるスリーブ内に前記先端に熱線を繋いだ配線ケーブルと前記先端を閉じた配線ケーブルとを収容するとともに前記熱線をそのスリーブの先端から絶縁状態で突出させて配置してカテーテル型プローブを構成したことを特徴とする血流速計。
One of the two resistors on the same pole side of the resistance bridge shall include a wiring cable with a hot wire connected to the tip, and the hot wire extends in the direction crossing the flow direction and is placed in the bloodstream. In a blood flow meter that measures the blood flow rate by measuring the resistance change due to cooling of the heat ray proportional to the blood flow rate,
The other one of the two resistors on the same pole side of the resistance bridge is extended to the vicinity of the heat wire along the wiring cable having the heat wire connected to the tip, and the tip is closed in a circuit. Including wiring cables,
A catheter type in which a wiring cable in which a heat wire is connected to the distal end and a wiring cable having the distal end closed are accommodated in a sleeve inserted into a blood vessel, and the heat wire protrudes in an insulated state from the distal end of the sleeve. A blood flow meter comprising a probe.
前記先端に熱線を繋いだ配線ケーブルおよび前記先端を回路的に閉じた配線ケーブルは、互いに縒られたツイスト線であることを特徴とする請求項1または2記載の血流速計。 The blood flow meter according to claim 1 or 2, wherein the wiring cable having a hot wire connected to the tip and the wiring cable having the tip closed in a circuit form are twisted wires that are twisted together . 前記配線ケーブルは、フッ素樹脂のコーティングを施されたチタン線であることを特徴とする請求項1または2記載の血流速計。 The distribution cable, according to claim 1 or 2 blood flow velocity meter, wherein the coating of the fluororesin is titanium lines into force a.
JP2016503889A 2014-02-24 2014-02-24 Hot-wire anemometer and blood anemometer using the same Active JP6332655B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054260 WO2015125289A1 (en) 2014-02-24 2014-02-24 Hot-wire flow meter and blood-flow meter using same

Publications (2)

Publication Number Publication Date
JPWO2015125289A1 JPWO2015125289A1 (en) 2017-03-30
JP6332655B2 true JP6332655B2 (en) 2018-05-30

Family

ID=53877822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016503889A Active JP6332655B2 (en) 2014-02-24 2014-02-24 Hot-wire anemometer and blood anemometer using the same

Country Status (2)

Country Link
JP (1) JP6332655B2 (en)
WO (1) WO2015125289A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2883138T3 (en) 2014-04-04 2021-12-07 St Jude Medical Systems Ab Intravascular Pressure and Flow Data Diagnostic System

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507127B2 (en) * 1994-05-30 2004-03-15 テルモ株式会社 Flow sensor probe
JPH10251003A (en) * 1997-03-12 1998-09-22 Tanaka Kikinzoku Kogyo Kk Electrode lead wire for ozonizer and its production
JP2000329599A (en) * 1999-03-16 2000-11-30 Kurabe Ind Co Ltd Thermal type current meter
US20070060812A1 (en) * 2001-11-29 2007-03-15 Metacure N.V. Sensing of pancreatic electrical activity

Also Published As

Publication number Publication date
WO2015125289A1 (en) 2015-08-27
JPWO2015125289A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
CN105939081B (en) The fixing means of fixed appliance, motor and temperature detecting element
JP5547031B2 (en) Rogowski coil and current detector
US20120215127A1 (en) In vivo flow sensor
SE1050717A1 (en) Sensor guide wire comprising a multi-hole sensor capsule.
JP6341616B2 (en) Electric heater and manufacturing method thereof
JP2017026359A (en) Water quality sensor
JP6332655B2 (en) Hot-wire anemometer and blood anemometer using the same
EP3243432B1 (en) Blood flow meter and measurement device
EP3899440A1 (en) Magnetic inductive flow sensor and measurement point
JP6733698B2 (en) Sensor control circuit
US20090010625A1 (en) Flow Through Heater
US8413503B2 (en) Constant temperature anemometer
JP5149018B2 (en) Flow sensor
WO2014196249A1 (en) Catheter having bendable tip
JP2016182213A (en) Sensor-attached guide wire
JP2019506225A (en) Video endoscope
JP6874400B2 (en) Guide wire and manufacturing method of guide wire
JP4097088B2 (en) Sensor support type thermal mass flow meter
JP2019049552A (en) Measurement sensor element for calculating temperature
JP2616202B2 (en) Ultrafine thermocouple temperature sensor
JP3907645B2 (en) Thermal mass flow meter
JP2018189646A (en) Mechanical force sensor based on eddy current sensing
CN115697458A (en) Guide wire
JP6604709B2 (en) Measuring device
WO2019234799A1 (en) Variable-rigidity device and endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6332655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250