JP6320341B2 - Receiving machine - Google Patents

Receiving machine Download PDF

Info

Publication number
JP6320341B2
JP6320341B2 JP2015079608A JP2015079608A JP6320341B2 JP 6320341 B2 JP6320341 B2 JP 6320341B2 JP 2015079608 A JP2015079608 A JP 2015079608A JP 2015079608 A JP2015079608 A JP 2015079608A JP 6320341 B2 JP6320341 B2 JP 6320341B2
Authority
JP
Japan
Prior art keywords
slave
receiver
main
amplitude
signal obtained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015079608A
Other languages
Japanese (ja)
Other versions
JP2016201644A (en
Inventor
啓介 内藤
啓介 内藤
秀樹 石原
秀樹 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015079608A priority Critical patent/JP6320341B2/en
Publication of JP2016201644A publication Critical patent/JP2016201644A/en
Application granted granted Critical
Publication of JP6320341B2 publication Critical patent/JP6320341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、受信機に関する。   The present invention relates to a receiver.

修理が不可能な人工衛星と地上局との間の通信には、高い信頼度が要求される。人工衛星と地上局との間の通信において、地上局での送信及び受信を制御することにより、高い信頼度を実現する技術が提案されている(例えば、特許文献1参照)。特許文献1において提案されている技術では、送信側は位相制御を行って衛星によって受信される信号の電力を高める。受信側は、衛星からの信号を複数のアンテナで受信し、受信された各信号のタイミングと振幅とを調整した後に最大比合成を行う。   High reliability is required for communication between an artificial satellite that cannot be repaired and a ground station. In communication between an artificial satellite and a ground station, a technique for realizing high reliability by controlling transmission and reception at the ground station has been proposed (see, for example, Patent Document 1). In the technique proposed in Patent Document 1, the transmission side performs phase control to increase the power of the signal received by the satellite. The receiving side receives signals from the satellite with a plurality of antennas, adjusts the timing and amplitude of each received signal, and performs maximum ratio combining.

特許第5474886号公報Japanese Patent No. 5474886

しかしながら、特許文献1において提案されている技術では、受信機においてダイバーシチ利得が得られないという課題がある。   However, the technique proposed in Patent Document 1 has a problem that diversity gain cannot be obtained in the receiver.

本発明は、上記に鑑みてなされたものであって、ダイバーシチ利得を得ることができる受信機を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a receiver capable of obtaining a diversity gain.

上述した課題を解決し、目的を達成するために、本発明に係る受信機は、受信機主系と受信機従系とを有し、前記受信機主系は、受信信号の電力を増幅する主系高周波回路と、主系加算回路と、前記主系加算回路によって得られた信号を復調する主系復調部とを有し、前記受信機従系は、前記受信信号の電力を増幅する従系高周波回路と、従系加算回路と、前記従系加算回路によって得られた信号を復調する従系復調部とを有し、前記主系加算回路は、前記主系高周波回路によって得られた信号と、前記従系高周波回路によって得られた信号とを加算し、前記従系加算回路は、前記従系高周波回路によって得られた信号と、前記主系高周波回路によって得られた信号とを加算する。前記受信機主系は、前記主系高周波回路によって得られた信号の伝送を遅延させる主系遅延回路を有し、前記受信機従系は、前記従系高周波回路によって得られた信号の伝送を遅延させる従系遅延回路を有する。本発明に係る受信機は、既知の試験信号が前記受信機主系の前記主系加算回路へ到達する時間と、前記試験信号が前記受信機従系の前記従系加算回路へ到達する時間との差を算出すると共に、算出した前記差をもとに前記主系遅延回路と前記従系遅延回路との少なくとも一方に遅延時間を設定する相関部を更に有する。 In order to solve the above-described problems and achieve the object, a receiver according to the present invention has a receiver main system and a receiver sub system, and the receiver main system amplifies the power of the received signal. A main system high frequency circuit; a main system adder circuit; and a main system demodulator that demodulates a signal obtained by the main system adder circuit, wherein the receiver slave system amplifies the power of the received signal. A system high-frequency circuit, a sub-system adder circuit, and a sub-system demodulator that demodulates a signal obtained by the sub-system adder circuit, the main system adder circuit is a signal obtained by the main system high-frequency circuit And the signal obtained by the slave high-frequency circuit, and the slave adder circuit adds the signal obtained by the slave high-frequency circuit and the signal obtained by the master high-frequency circuit. . The receiver main system includes a main delay circuit that delays transmission of the signal obtained by the main high frequency circuit, and the receiver sub system transmits the signal obtained by the sub high frequency circuit. A slave delay circuit for delaying is included. The receiver according to the present invention includes a time for a known test signal to reach the main adder circuit of the receiver main system, and a time for the test signal to reach the subordinate adder circuit of the receiver slave. And a correlation unit for setting a delay time in at least one of the main delay circuit and the subordinate delay circuit based on the calculated difference.

本発明によれば、ダイバーシチ利得を得ることができるという効果を奏する。   According to the present invention, it is possible to obtain a diversity gain.

実施の形態1の受信機の構成を示す図FIG. 3 illustrates a configuration of a receiver in the first embodiment. 実施の形態2の受信機の構成を示す図FIG. 9 illustrates a configuration of a receiver according to a second embodiment. 実施の形態3の受信機の構成を示す図FIG. 11 illustrates a configuration of a receiver according to a third embodiment. 実施の形態4の受信機の構成を示す図FIG. 10 illustrates a configuration of a receiver according to a fourth embodiment.

以下に、本発明の実施の形態に係る受信機を図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。   Hereinafter, a receiver according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this Embodiment.

実施の形態1.
まず、実施の形態1の受信機1について説明する。図1は、実施の形態1の受信機1の構成を示す図である。受信機1は、信号を復調する受信機主系11と、信号を復調する受信機従系21と、受信機1の外部からの信号を受信して受信信号を受信機主系11及び受信機従系21に伝送するアンテナ部30とを有する。アンテナ部30は、アンテナとアンテナによって受信された信号を受信機主系11及び受信機従系21に伝送する回路とを有する。受信機主系11と受信機従系21とは同一の機能を有する。
Embodiment 1 FIG.
First, the receiver 1 of Embodiment 1 is demonstrated. FIG. 1 is a diagram illustrating a configuration of a receiver 1 according to the first embodiment. The receiver 1 includes a receiver main system 11 that demodulates a signal, a receiver slave system 21 that demodulates the signal, a signal received from the outside of the receiver 1, and receives the received signal as a receiver main system 11 and a receiver. And an antenna unit 30 that transmits to the subordinate system 21. The antenna unit 30 includes an antenna and a circuit that transmits a signal received by the antenna to the receiver main system 11 and the receiver slave system 21. The receiver main system 11 and the receiver slave system 21 have the same function.

受信機主系11は、アンテナ部30からの受信信号をIF(Intermediate Frequency)帯の周波数に変換すると共に、受信信号の電力を増幅する主系高周波回路101と、主系高周波回路101が周波数を変換する際に必要な信号を出力するローカル信号生成部102とを有する。ローカル信号生成部102は例えば回路によって実現される。受信機従系21は、アンテナ部30からの受信信号をIF帯の周波数に変換すると共に、受信信号の電力を増幅する従系高周波回路121と、従系高周波回路121が周波数を変換する際に必要な信号を出力するローカル信号生成部122とを有する。ローカル信号生成部122は例えば回路によって実現される。主系高周波回路101及び従系高周波回路121において行われる増幅には、例えばLNA(Low Noise Amplifier)といった増幅器が用いられる。   The receiver main system 11 converts a reception signal from the antenna unit 30 into a frequency of an IF (Intermediate Frequency) band, and a main high-frequency circuit 101 that amplifies the power of the reception signal, and the main high-frequency circuit 101 changes the frequency. And a local signal generation unit 102 that outputs a signal necessary for conversion. The local signal generation unit 102 is realized by a circuit, for example. The receiver slave system 21 converts the received signal from the antenna unit 30 into an IF band frequency, and a slave high frequency circuit 121 that amplifies the power of the received signal, and when the slave high frequency circuit 121 converts the frequency. And a local signal generation unit 122 that outputs a necessary signal. The local signal generation unit 122 is realized by a circuit, for example. For amplification performed in the main high frequency circuit 101 and the sub high frequency circuit 121, for example, an amplifier such as an LNA (Low Noise Amplifier) is used.

受信機主系11は、主系高周波回路101によって得られたアナログ信号をディジタル信号に変換するADC(Analog to Digital Converter)103と、正弦波及び余弦波を出力するNCO(Numerical Controlled Oscillator)104と、ADC103からの信号にNCO104からの正弦波及び余弦波を乗算する乗算器105とを有する。NCO104は、後述する振幅位相検出部108から受信信号の周波数オフセット情報を受け取り、周波数オフセットが補正された信号を乗算器105から出力させるために、乗算器105に正弦波及び余弦波を出力する。   The receiver main system 11 includes an ADC (Analog to Digital Converter) 103 that converts an analog signal obtained by the main high-frequency circuit 101 into a digital signal, an NCO (Numerical Controlled Oscillator) 104 that outputs a sine wave and a cosine wave, and the like. , And a multiplier 105 that multiplies the signal from the ADC 103 by the sine wave and cosine wave from the NCO 104. The NCO 104 receives the frequency offset information of the received signal from the amplitude phase detection unit 108 described later, and outputs a sine wave and a cosine wave to the multiplier 105 in order to cause the multiplier 105 to output a signal with the corrected frequency offset.

受信機従系21は、従系高周波回路121によって得られたアナログ信号をディジタル信号に変換するADC123と、正弦波及び余弦波を出力するNCO124と、ADC123からの信号にNCO124からの正弦波及び余弦波を乗算する乗算器125とを有する。NCO124は、後述する振幅位相検出部128から受信信号の周波数オフセット情報を受け取り、周波数オフセットが補正された信号を乗算器125から出力させるために、乗算器125に正弦波及び余弦波を出力する。周波数オフセットは、例えば、受信機1が衛星に設置される場合の地上局の信号と衛星のローカル信号との差異、又は地上局に対する衛星の相対速度から生じるドップラ周波数により生じる。   The receiver slave 21 includes an ADC 123 that converts an analog signal obtained by the slave high-frequency circuit 121 into a digital signal, an NCO 124 that outputs a sine wave and a cosine wave, and a sine wave and cosine from the NCO 124 that are signals from the ADC 123. And a multiplier 125 for multiplying the waves. The NCO 124 receives frequency offset information of the received signal from the amplitude phase detection unit 128 described later, and outputs a sine wave and a cosine wave to the multiplier 125 in order to cause the multiplier 125 to output a signal with the corrected frequency offset. The frequency offset is caused by, for example, a difference between a ground station signal and a satellite local signal when the receiver 1 is installed on a satellite, or a Doppler frequency generated from a relative speed of the satellite with respect to the ground station.

受信機主系11は、乗算器105から出力される信号が伝送レートに対してオーバサンプリングである場合に信号帯域以外の雑音を減衰するLPF(Low Pass Filter)106を有する。乗算器105から出力される信号が伝送レートに対してオーバサンプリングである場合は、乗算器105から出力される信号の量が伝送レートを超える場合を意味する。受信機従系21は、乗算器125から出力される信号が伝送レートに対してオーバサンプリングである場合に信号帯域以外の雑音を減衰するLPF126を有する。乗算器125から出力される信号が伝送レートに対してオーバサンプリングである場合は、乗算器125から出力される信号の量が伝送レートを超える場合を意味する。LPF106及びLPF126は、デシメーションを行うこともある。   The receiver main system 11 includes an LPF (Low Pass Filter) 106 that attenuates noise other than the signal band when the signal output from the multiplier 105 is oversampled with respect to the transmission rate. When the signal output from the multiplier 105 is oversampling with respect to the transmission rate, it means that the amount of the signal output from the multiplier 105 exceeds the transmission rate. The receiver slave system 21 has an LPF 126 that attenuates noise other than the signal band when the signal output from the multiplier 125 is oversampling with respect to the transmission rate. When the signal output from the multiplier 125 is oversampling with respect to the transmission rate, it means that the amount of the signal output from the multiplier 125 exceeds the transmission rate. The LPF 106 and the LPF 126 may perform decimation.

受信機主系11は、LPF106によって得られた信号の振幅を調整する主系前段振幅調整部107を有する。主系前段振幅調整部107は、後述する振幅位相検出部108で得られる振幅情報をもとに、主系前段振幅調整部107から出力される信号の振幅が一定となるように、LPF106によって得られる信号の振幅を調整する。受信機主系11は、主系前段振幅調整部107によって得られる信号の振幅及び位相を検出する振幅位相検出部108を有する。主系前段振幅調整部107及び振幅位相検出部108は例えば回路によって実現される。   The receiver main system 11 includes a main system pre-stage amplitude adjustment unit 107 that adjusts the amplitude of the signal obtained by the LPF 106. The main-system pre-stage amplitude adjustment unit 107 is obtained by the LPF 106 so that the amplitude of the signal output from the main-system pre-stage amplitude adjustment unit 107 is constant based on amplitude information obtained by the amplitude phase detection unit 108 described later. Adjust the amplitude of the generated signal. The receiver main system 11 includes an amplitude phase detection unit 108 that detects the amplitude and phase of the signal obtained by the main system pre-stage amplitude adjustment unit 107. The main system pre-stage amplitude adjustment unit 107 and the amplitude phase detection unit 108 are realized by a circuit, for example.

受信機従系21は、LPF126によって得られる信号の振幅を調整する従系前段振幅調整部127を有する。従系前段振幅調整部127は、後述する振幅位相検出部128で得られる振幅情報をもとに、従系前段振幅調整部127から出力される信号の振幅が一定となるように、LPF126によって得られる信号の振幅を調整する。受信機従系21は、従系前段振幅調整部127によって得られる信号の振幅及び位相を検出する振幅位相検出部128を有する。従系前段振幅調整部127及び振幅位相検出部128は例えば回路によって実現される。   The receiver slave system 21 includes a slave front-stage amplitude adjustment unit 127 that adjusts the amplitude of the signal obtained by the LPF 126. The secondary upstream amplitude adjustment unit 127 is obtained by the LPF 126 so that the amplitude of the signal output from the secondary upstream amplitude adjustment unit 127 is constant based on amplitude information obtained by the amplitude phase detection unit 128 described later. Adjust the amplitude of the generated signal. The receiver slave system 21 includes an amplitude phase detector 128 that detects the amplitude and phase of the signal obtained by the slave upstream-stage amplitude adjuster 127. The secondary upstream amplitude adjustment unit 127 and the amplitude phase detection unit 128 are realized by a circuit, for example.

振幅位相検出部108、NCO104及び乗算器105はフィードバック回路を構成し、そのフィードバック回路はAFC(Automatic Frequency Control)と呼ばれる。振幅位相検出部128、NCO124及び乗算器125もフィードバック回路を構成し、そのフィードバック回路もAFCと呼ばれる。振幅位相検出部108及び主系前段振幅調整部107はフィードバック回路を構成し、そのフィードバック回路はAGC(Automatic Gain Control)と呼ばれる。振幅位相検出部128及び従系前段振幅調整部127もフィードバック回路を構成し、そのフィードバック回路もAGCと呼ばれる。AFCとAGCとによって、周波数オフセットが無い、一定振幅のベースバンド信号が得られる。   The amplitude / phase detector 108, the NCO 104, and the multiplier 105 constitute a feedback circuit, and the feedback circuit is called AFC (Automatic Frequency Control). The amplitude / phase detector 128, the NCO 124, and the multiplier 125 also constitute a feedback circuit, and the feedback circuit is also called AFC. The amplitude phase detection unit 108 and the main system pre-stage amplitude adjustment unit 107 constitute a feedback circuit, and the feedback circuit is called AGC (Automatic Gain Control). The amplitude phase detector 128 and the subordinate upstream amplitude adjuster 127 also constitute a feedback circuit, and the feedback circuit is also called AGC. With AFC and AGC, a baseband signal having a constant amplitude and no frequency offset is obtained.

AFCとAGCとにおける制御情報を生成する振幅位相検出部108は、実施の形態1ではLPF106の後段に位置しているが、さらに平均化した振幅位相情報を得るために、最終段の主系復調部111の内部に設けられてもよい。主系復調部111については後述する。同様に、振幅位相検出部128は、実施の形態1ではLPF126の後段に位置しているが、最終段の従系復調部131の内部に設けられてもよい。従系復調部131については後述する。   The amplitude phase detection unit 108 that generates control information in AFC and AGC is located in the latter stage of the LPF 106 in the first embodiment. However, in order to obtain further averaged amplitude phase information, the main phase demodulation in the last stage is performed. It may be provided inside the part 111. The main demodulation unit 111 will be described later. Similarly, the amplitude / phase detection unit 128 is located in the subsequent stage of the LPF 126 in the first embodiment, but may be provided in the slave demodulation unit 131 in the final stage. The sub demodulator 131 will be described later.

受信機主系11は、主系前段振幅調整部107によって得られた信号であって振幅及び周波数オフセットが補正された信号を受信するスイッチ109と、スイッチ109を切り替えるスイッチ制御部110と、スイッチ109からの信号を復調する主系復調部111とを有する。スイッチ109は、受信機主系11の主系前段振幅調整部107からの信号だけでなく、受信機従系21の従系前段振幅調整部127からの信号も受信する。スイッチ制御部110及び主系復調部111は例えば回路によって実現される。   The receiver main system 11 includes a switch 109 that receives a signal obtained by the main-system pre-stage amplitude adjustment unit 107 and whose amplitude and frequency offset are corrected, a switch control unit 110 that switches the switch 109, and a switch 109. Main system demodulation section 111 for demodulating the signal from The switch 109 receives not only the signal from the main-system pre-stage amplitude adjustment unit 107 of the receiver main system 11 but also the signal from the sub-system pre-stage amplitude adjustment unit 127 of the receiver sub-system 21. The switch control unit 110 and the main demodulation unit 111 are realized by a circuit, for example.

受信機従系21は、従系前段振幅調整部127によって得られた信号であって振幅及び周波数オフセットが補正された信号を受信するスイッチ129と、スイッチ129を切り替えるスイッチ制御部130と、スイッチ129からの信号を復調する従系復調部131とを有する。スイッチ129は、受信機従系21の従系前段振幅調整部127からの信号だけでなく、受信機主系11の主系前段振幅調整部107からの信号も受信する。スイッチ制御部130及び従系復調部131は例えば回路によって実現される。   The receiver slave system 21 includes a switch 129 that receives the signal obtained by the slave pre-stage amplitude adjustment unit 127 and whose amplitude and frequency offset are corrected, a switch control unit 130 that switches the switch 129, and a switch 129. And a slave demodulation unit 131 for demodulating the signal from the. The switch 129 receives not only the signal from the slave pre-stage amplitude adjustment unit 127 of the receiver slave system 21 but also the signal from the master pre-stage amplitude adjustment unit 107 of the receiver main system 11. The switch control unit 130 and the slave demodulation unit 131 are realized by a circuit, for example.

受信機主系11の主系復調部111及び受信機従系21の従系復調部131は、復調を行うと同時にSNR(Signal to Noise Ratio:信号対雑音比)の算出を行う。主系復調部111によって算出されたSNRの情報は、受信機主系11のスイッチ制御部110に出力されると共に、スイッチ制御部110を介して受信機従系21のスイッチ制御部130に出力される。従系復調部131によって算出されたSNRの情報は、受信機従系21のスイッチ制御部130に出力されると共に、スイッチ制御部130を介して受信機主系11のスイッチ制御部110に出力される。   The master demodulator 111 of the receiver master 11 and the slave demodulator 131 of the receiver slave 21 perform demodulation and simultaneously calculate SNR (Signal to Noise Ratio). The SNR information calculated by the main system demodulation unit 111 is output to the switch control unit 110 of the receiver main system 11 and is also output to the switch control unit 130 of the receiver slave system 21 via the switch control unit 110. The The SNR information calculated by the slave demodulation unit 131 is output to the switch control unit 130 of the receiver slave system 21 and is also output to the switch control unit 110 of the receiver master system 11 via the switch control unit 130. The

受信機主系11のスイッチ制御部110及び受信機従系21のスイッチ制御部130は、受信機主系11のSNRと受信機従系21のSNRとを比較する。受信機主系11と受信機従系21とのうちのSNRが高い方の系の信号が各復調部に出力されるように、スイッチ制御部110は受信機主系11のスイッチ109を切り替え、スイッチ制御部130は受信機従系21のスイッチ129を切り替える。   The switch control unit 110 of the receiver master system 11 and the switch control unit 130 of the receiver slave system 21 compare the SNR of the receiver master system 11 with the SNR of the receiver slave system 21. The switch control unit 110 switches the switch 109 of the receiver main system 11 so that the signal of the higher SNR of the receiver main system 11 and the receiver sub system 21 is output to each demodulation unit, The switch control unit 130 switches the switch 129 of the receiver slave system 21.

なお、初期設定では、他方の系から入力される信号をオフするため、受信機主系11の信号は受信機主系11の主系復調部111へ出力され、受信機従系21の信号は受信機従系21の従系復調部131へ出力される。   In the initial setting, since the signal input from the other system is turned off, the signal of the receiver main system 11 is output to the main demodulator 111 of the receiver main system 11, and the signal of the receiver sub system 21 is The signal is output to the slave demodulation unit 131 of the receiver slave 21.

上述の通り、受信機主系11と受信機従系21とのうちのSNRが高い方の系の信号が各復調部に出力されるように、スイッチ109及びスイッチ129は切り替えられる。これにより、一方の系のSNRが低下しても、受信機1は、SNRが低下する前と同等の復調性能を発揮することができる。また、復調信号について異常が検出された場合、例えばスイッチ制御部110及びスイッチ制御部130が、スイッチ109及びスイッチ129を切り替えて、主系前段振幅調整部107から主系復調部111までの経路、主系前段振幅調整部107から従系復調部131までの経路、従系前段振幅調整部127から主系復調部111までの経路、及び従系前段振幅調整部127から従系復調部131までの経路における各SNRを算出することで、異常発生箇所が受信機主系11に存在するのか受信機従系21に存在するのかを判定することができると共に、異常発生箇所が各スイッチの前か後かを判定することができる。   As described above, the switch 109 and the switch 129 are switched so that the signal of the higher SNR of the receiver main system 11 and the receiver slave system 21 is output to each demodulator. Thereby, even if the SNR of one system is lowered, the receiver 1 can exhibit the demodulation performance equivalent to that before the SNR is lowered. Further, when an abnormality is detected in the demodulated signal, for example, the switch control unit 110 and the switch control unit 130 switch the switch 109 and the switch 129, and the path from the main system pre-stage amplitude adjustment unit 107 to the main system demodulation unit 111, The path from the main system pre-stage amplitude adjustment unit 107 to the sub system demodulation unit 131, the path from the sub system pre-stage amplitude adjustment unit 127 to the main system demodulation unit 111, and the path from the sub system pre-stage amplitude adjustment unit 127 to the sub system demodulation unit 131 By calculating each SNR in the path, it is possible to determine whether the abnormality occurrence location exists in the receiver main system 11 or the receiver slave system 21 and the abnormality occurrence location is before or after each switch. Can be determined.

実施の形態2.
次に、実施の形態2の受信機2について説明する。図2は、実施の形態2の受信機2の構成を示す図である。受信機2は、実施の形態1の受信機1と同様に、信号を復調する受信機主系12と、信号を復調する受信機従系22と、受信機2の外部からの信号を受信して受信信号を受信機主系12及び受信機従系22に伝送するアンテナ部30とを有する。受信機主系12と受信機従系22とは同一の機能を有する。受信機主系12の経路長と受信機従系22の経路長とは同一である。
Embodiment 2. FIG.
Next, the receiver 2 according to the second embodiment will be described. FIG. 2 is a diagram illustrating a configuration of the receiver 2 according to the second embodiment. Similarly to the receiver 1 of the first embodiment, the receiver 2 receives a receiver main system 12 that demodulates signals, a receiver slave system 22 that demodulates signals, and signals from the outside of the receiver 2. The antenna unit 30 transmits the received signal to the receiver main system 12 and the receiver slave system 22. The receiver main system 12 and the receiver slave system 22 have the same function. The path length of the receiver main system 12 and the path length of the receiver slave system 22 are the same.

受信機主系12は、実施の形態1の受信機主系11が有する主系高周波回路101と、ローカル信号生成部102と、ADC103と、NCO104と、乗算器105と、LPF106と、主系前段振幅調整部107と、振幅位相検出部108と、主系復調部111とを有する。受信機従系22は、実施の形態1の受信機従系21が有する従系高周波回路121と、ローカル信号生成部122と、ADC123と、NCO124と、乗算器125と、LPF126と、従系前段振幅調整部127と、振幅位相検出部128と、従系復調部131とを有する。   The receiver main system 12 includes a main high-frequency circuit 101 included in the receiver main system 11 according to the first embodiment, a local signal generation unit 102, an ADC 103, an NCO 104, a multiplier 105, an LPF 106, and a pre-stage of the main system. An amplitude adjustment unit 107, an amplitude phase detection unit 108, and a main system demodulation unit 111 are included. The receiver slave 22 includes a slave high-frequency circuit 121, a local signal generator 122, an ADC 123, an NCO 124, a multiplier 125, an LPF 126, and a slave pre-stage included in the receiver slave 21 of the first embodiment. An amplitude adjustment unit 127, an amplitude phase detection unit 128, and a secondary demodulation unit 131 are included.

受信機主系12は、主系前段振幅調整部107によって得られた信号の振幅を調整する主系第1振幅調整部201と、受信機従系22の従系前段振幅調整部127によって得られた信号の振幅を調整する主系第2振幅調整部202とを更に有する。つまり、主系第1振幅調整部201は主系高周波回路101によって得られた信号の振幅を調整し、主系第2振幅調整部202は従系高周波回路121によって得られた信号の振幅を調整する。主系第1振幅調整部201及び主系第2振幅調整部202は例えば回路によって実現される。   The receiver main system 12 is obtained by a main system first amplitude adjusting unit 201 that adjusts the amplitude of the signal obtained by the main system pre-stage amplitude adjusting unit 107 and a sub-system pre-stage amplitude adjusting unit 127 of the receiver sub-system 22. And a main second amplitude adjusting unit 202 for adjusting the amplitude of the received signal. That is, the main system first amplitude adjustment unit 201 adjusts the amplitude of the signal obtained by the main system high frequency circuit 101, and the main system second amplitude adjustment unit 202 adjusts the amplitude of the signal obtained by the sub system high frequency circuit 121. To do. The main system first amplitude adjusting unit 201 and the main system second amplitude adjusting unit 202 are realized by a circuit, for example.

受信機主系12は、主系第1振幅調整部201によって得られた信号と主系第2振幅調整部202によって得られた信号とを加算する主系加算回路203を更に有する。つまり、主系加算回路203は、主系高周波回路101によって得られた信号と、従系高周波回路121によって得られた信号とを加算する。実施の形態2では、主系復調部111は主系加算回路203によって得られた信号を復調する。   The receiver main system 12 further includes a main system addition circuit 203 that adds the signal obtained by the main system first amplitude adjustment unit 201 and the signal obtained by the main system second amplitude adjustment unit 202. That is, the main addition circuit 203 adds the signal obtained by the main high frequency circuit 101 and the signal obtained by the sub high frequency circuit 121. In the second embodiment, the main demodulation unit 111 demodulates the signal obtained by the main addition circuit 203.

受信機主系12は、主系第1振幅調整部201及び主系第2振幅調整部202が振幅を調整する際に用いる調整値を決定する振幅制御部204を更に有する。主系第1振幅調整部201及び主系第2振幅調整部202は、振幅制御部204によって決定された調整値をもとに信号の振幅を調整する。初期設定では、主系第2振幅調整部202についての調整値はゼロである。つまり、初期設定では、受信機従系22の従系前段振幅調整部127からの信号の振幅はゼロに変換される。振幅制御部204は例えば回路によって実現される。   The receiver main system 12 further includes an amplitude control unit 204 that determines an adjustment value used when the main system first amplitude adjustment unit 201 and the main system second amplitude adjustment unit 202 adjust the amplitude. Main system first amplitude adjustment section 201 and main system second amplitude adjustment section 202 adjust the amplitude of the signal based on the adjustment value determined by amplitude control section 204. In the initial setting, the adjustment value for the main system second amplitude adjustment unit 202 is zero. That is, in the initial setting, the amplitude of the signal from the slave upstream amplitude adjustment unit 127 of the receiver slave 22 is converted to zero. The amplitude control unit 204 is realized by a circuit, for example.

受信機従系22は、従系前段振幅調整部127によって得られた信号の振幅を調整する従系第1振幅調整部221と、受信機主系12の主系前段振幅調整部107によって得られた信号の振幅を調整する従系第2振幅調整部222とを有する。つまり、従系第1振幅調整部221は従系高周波回路121によって得られた信号の振幅を調整し、従系第2振幅調整部222は主系高周波回路101によって得られた信号の振幅を調整する。従系第1振幅調整部221及び従系第2振幅調整部222は例えば回路によって実現される。   The receiver slave 22 is obtained by the slave first amplitude adjuster 221 that adjusts the amplitude of the signal obtained by the slave pre-stage amplitude adjuster 127 and the master pre-stage amplitude adjuster 107 of the receiver main system 12. And a secondary second amplitude adjusting unit 222 that adjusts the amplitude of the received signal. That is, the slave first amplitude adjustment unit 221 adjusts the amplitude of the signal obtained by the slave high frequency circuit 121, and the slave second amplitude adjustment unit 222 adjusts the amplitude of the signal obtained by the master high frequency circuit 101. To do. The subordinate first amplitude adjusting unit 221 and the subordinate second amplitude adjusting unit 222 are realized by a circuit, for example.

受信機従系22は、従系第1振幅調整部221によって得られた信号と従系第2振幅調整部222によって得られた信号とを加算する従系加算回路223を更に有する。つまり、従系加算回路223は、従系高周波回路121によって得られた信号と、主系高周波回路101によって得られた信号とを加算する。実施の形態2では、従系復調部131は従系加算回路223によって得られた信号を復調する。   The receiver slave system 22 further includes a slave adder circuit 223 that adds the signal obtained by the slave first amplitude adjuster 221 and the signal obtained by the slave second amplitude adjuster 222. That is, the subordinate adder circuit 223 adds the signal obtained by the subordinate high frequency circuit 121 and the signal obtained by the main high frequency circuit 101. In the second embodiment, the secondary demodulation unit 131 demodulates the signal obtained by the secondary addition circuit 223.

受信機従系22は、従系第1振幅調整部221及び従系第2振幅調整部222が振幅を調整する際に用いる調整値を決定する振幅制御部224を更に有する。従系第1振幅調整部221及び従系第2振幅調整部222は、振幅制御部224によって決定された調整値をもとに信号の振幅を調整する。初期設定では、従系第2振幅調整部222についての調整値はゼロである。つまり、初期設定では、受信機主系12の主系前段振幅調整部107からの信号の振幅はゼロに変換される。振幅制御部224は例えば回路によって実現される。   The receiver slave 22 further includes an amplitude controller 224 that determines an adjustment value used when the slave first amplitude adjuster 221 and the slave second amplitude adjuster 222 adjust the amplitude. The subordinate first amplitude adjustment unit 221 and the subordinate second amplitude adjustment unit 222 adjust the amplitude of the signal based on the adjustment value determined by the amplitude control unit 224. In the initial setting, the adjustment value for the secondary second amplitude adjustment unit 222 is zero. That is, in the initial setting, the amplitude of the signal from the main system pre-stage amplitude adjustment unit 107 of the receiver main system 12 is converted to zero. The amplitude control unit 224 is realized by a circuit, for example.

受信機主系12の主系復調部111は主系加算回路203によって得られる信号について、復調を行うと同時にSNRを算出し、受信機従系22の従系復調部131は従系加算回路223によって得られる信号について、復調を行うと同時にSNRを算出する。受信機主系12の振幅制御部204は、従系復調部131によって算出されたSNRの情報を受信機従系22の振幅制御部224を介して取得する。受信機従系22の振幅制御部224は、主系復調部111によって算出されたSNRの情報を受信機主系12の振幅制御部204を介して取得する。   The master demodulation unit 111 of the receiver master system 12 demodulates the signal obtained by the master adder circuit 203 and simultaneously calculates the SNR. The slave demodulator 131 of the receiver slave system 22 calculates the slave adder circuit 223. SNR is calculated simultaneously with the demodulation of the signal obtained by the above. The amplitude control unit 204 of the receiver main system 12 acquires the SNR information calculated by the slave demodulation unit 131 via the amplitude control unit 224 of the receiver slave system 22. The amplitude control unit 224 of the receiver slave system 22 acquires the SNR information calculated by the main system demodulation unit 111 via the amplitude control unit 204 of the receiver main system 12.

受信機主系12の振幅制御部204は、主系第1振幅調整部201によって得られる信号の電力と主系第2振幅調整部202によって得られる信号の電力との比を、受信機主系12のSNRと受信機従系22のSNRとの比となるように調整値を決定する。受信機従系22の振幅制御部224は、従系第2振幅調整部222によって得られる信号の電力と従系第1振幅調整部221によって得られる信号の電力との比を、受信機主系12のSNRと受信機従系22のSNRとの比となるように調整値を決定する。   The amplitude control unit 204 of the receiver main system 12 calculates the ratio of the signal power obtained by the main first amplitude adjustment unit 201 and the signal power obtained by the main second amplitude adjustment unit 202 to the receiver main system. The adjustment value is determined so as to be a ratio of the SNR of 12 and the SNR of the receiver slave 22. The amplitude control unit 224 of the receiver slave system 22 calculates the ratio of the signal power obtained by the slave second amplitude adjustment unit 222 and the signal power obtained by the slave first amplitude adjustment unit 221 to the receiver main system. The adjustment value is determined so as to be a ratio of the SNR of 12 and the SNR of the receiver slave 22.

高周波回路の増幅器で生じる雑音については主系と従系とでは相関が無いため、主系の信号と従系の信号とを最大比合成することで、2系の場合で最大3dBのダイバーシチ利得が得られる。つまり、実施の形態2の受信機2は、ダイバーシチ利得を得ることができる。実施の形態2では、振幅制御に係る調整値はSNRの比に応じて設定されるが、振幅制御の方法は実施の形態2において説明した方法に限られず、どのような方法であってもよい。   Since there is no correlation between the main system and the sub system with respect to the noise generated in the amplifier of the high frequency circuit, the maximum ratio combining of the main system signal and the sub system signal provides a diversity gain of 3 dB at maximum in the case of the second system. can get. That is, the receiver 2 of Embodiment 2 can obtain diversity gain. In the second embodiment, the adjustment value for amplitude control is set according to the ratio of the SNR. However, the amplitude control method is not limited to the method described in the second embodiment, and any method may be used. .

実施の形態2の受信機2は、異常発生箇所を特定する異常特定回路40を更に有する。異常特定回路40は、主系第1振幅調整部201、主系第2振幅調整部202、従系第1振幅調整部221及び従系第2振幅調整部222をオンの状態とオフの状態とに切り替えるスイッチとして動作させ、主系第1振幅調整部201、主系第2振幅調整部202、従系第1振幅調整部221及び従系第2振幅調整部222までの各経路の信号についてSNR(信号対雑音比)を算出して比較することにより、異常発生箇所を特定する。すなわち、異常特定回路40は、受信機2において異常が発生した場合の異常発生箇所を特定することができる。   The receiver 2 of the second embodiment further includes an abnormality specifying circuit 40 that specifies an abnormality occurrence location. The abnormality specifying circuit 40 turns on and off the main system first amplitude adjustment unit 201, the main system second amplitude adjustment unit 202, the sub system first amplitude adjustment unit 221 and the sub system second amplitude adjustment unit 222. SNR for signals on each path to the main system first amplitude adjustment unit 201, the main system second amplitude adjustment unit 202, the sub system first amplitude adjustment unit 221 and the sub system second amplitude adjustment unit 222 By calculating (signal-to-noise ratio) and comparing, the location where an abnormality has occurred is identified. That is, the abnormality identification circuit 40 can identify an abnormality occurrence location when an abnormality occurs in the receiver 2.

実施の形態3.
次に、実施の形態3の受信機3について説明する。図3は、実施の形態3の受信機3の構成を示す図である。受信機3は、実施の形態2の受信機2と同様に、信号を復調する受信機主系13と、信号を復調する受信機従系23と、受信機3の外部からの信号を受信して受信信号を受信機主系13及び受信機従系23に伝送するアンテナ部30とを有する。受信機主系13と受信機従系23とは同一の機能を有する。実施の形態2の受信機2では受信機主系12の経路長と受信機従系22の経路長とは同一であるが、実施の形態3の受信機3では受信機主系13の経路長と受信機従系23の経路長とは異なる。実施の形態2と実施の形態3とでは、経路長に関する点だけが相違するので、実施の形態3では、実施の形態2との相違部分のみを説明する。
Embodiment 3 FIG.
Next, the receiver 3 of Embodiment 3 will be described. FIG. 3 is a diagram illustrating a configuration of the receiver 3 according to the third embodiment. Similarly to the receiver 2 of the second embodiment, the receiver 3 receives a receiver main system 13 that demodulates a signal, a receiver slave system 23 that demodulates the signal, and a signal from outside the receiver 3. The antenna unit 30 transmits the received signal to the receiver main system 13 and the receiver slave system 23. The receiver main system 13 and the receiver slave system 23 have the same function. In the receiver 2 of the second embodiment, the path length of the receiver main system 12 is the same as the path length of the receiver slave system 22, but in the receiver 3 of the third embodiment, the path length of the receiver main system 13 is the same. And the path length of the receiver slave system 23 is different. Since the second embodiment and the third embodiment are different only in respect of the path length, in the third embodiment, only the difference from the second embodiment will be described.

上述の通り、実施の形態3の受信機3では受信機主系13の経路長と受信機従系23の経路長とが異なる。経路長が異なるため、タイミングを調整せずに最大比合成を行うと、受信機主系13の信号と受信機従系23の信号とが打消し合って復調性能が劣化する。受信機3は、経路長が異なることにより復調性能が劣化することを抑制する主系遅延回路301と従系遅延回路321とを有する。具体的には、受信機主系13は、実施の形態2の受信機主系12が有するすべての構成要素に加えて、主系遅延回路301を有する。受信機従系23は、実施の形態2の受信機従系22が有するすべての構成要素に加えて従系遅延回路321を有する。   As described above, in the receiver 3 according to the third embodiment, the path length of the receiver main system 13 and the path length of the receiver slave system 23 are different. Since the path lengths are different, if maximum ratio combining is performed without adjusting the timing, the signal of the receiver main system 13 and the signal of the receiver slave system 23 cancel each other, and the demodulation performance deteriorates. The receiver 3 includes a main delay circuit 301 and a sub delay circuit 321 that suppress degradation of demodulation performance due to different path lengths. Specifically, the receiver main system 13 includes a main system delay circuit 301 in addition to all the constituent elements of the receiver main system 12 of the second embodiment. The receiver slave system 23 includes a slave delay circuit 321 in addition to all the constituent elements of the receiver slave system 22 of the second embodiment.

受信機主系13の主系遅延回路301は、主系高周波回路101によって得られた信号の伝送を遅延させる回路である。より具体的には、主系遅延回路301は、主系前段振幅調整部107と主系第1振幅調整部201との間に設けられており、主系前段振幅調整部107によって得られた信号の伝送を遅延させる。受信機従系23の従系遅延回路321は、従系高周波回路121によって得られた信号の伝送を遅延させる回路である。より具体的には、従系遅延回路321は、従系前段振幅調整部127と従系第1振幅調整部221との間に設けられており、従系前段振幅調整部127によって得られた信号の伝送を遅延させる。   The main delay circuit 301 of the receiver main system 13 is a circuit that delays transmission of the signal obtained by the main high-frequency circuit 101. More specifically, the main system delay circuit 301 is provided between the main system pre-stage amplitude adjusting unit 107 and the main system first amplitude adjusting unit 201, and the signal obtained by the main system pre-stage amplitude adjusting unit 107. Delays transmission. The slave delay circuit 321 of the receiver slave 23 is a circuit that delays transmission of the signal obtained by the slave high-frequency circuit 121. More specifically, the secondary delay circuit 321 is provided between the secondary upstream amplitude adjustment unit 127 and the secondary first amplitude adjustment unit 221, and the signal obtained by the secondary upstream amplitude adjustment unit 127. Delays transmission.

受信機主系13の主系遅延回路301及び受信機従系23の従系遅延回路321により最大比合成を行うタイミングを調整することで、ダイバーシチ利得は最大化する。受信機主系13は、主系遅延回路301の遅延時間を設定する主系相関器302を更に有する。受信機従系23は、従系遅延回路321の遅延時間を設定する従系相関器322を更に有する。主系相関器302と従系相関器322とは相関部50を構成する。   The diversity gain is maximized by adjusting the timing of performing the maximum ratio combining by the master delay circuit 301 of the receiver master system 13 and the slave delay circuit 321 of the receiver slave system 23. The receiver main system 13 further includes a main correlator 302 that sets the delay time of the main delay circuit 301. The receiver slave 23 further includes a slave correlator 322 that sets the delay time of the slave delay circuit 321. The primary correlator 302 and the secondary correlator 322 constitute a correlation unit 50.

受信機主系13の主系相関器302及び受信機従系23の従系相関器322は、受信機主系13の信号と受信機従系23の信号との相関を求めることで受信機主系13の経路と受信機従系23の経路との差異を算出する。主系相関器302及び従系相関器322は、算出した経路の差異の分だけ主系遅延回路301又は従系遅延回路321に遅延時間を設定する。これにより、受信機主系13の主系加算回路203と受信機従系23の従系加算回路223とは、同一の内容の信号を同一のタイミングで受け取ることができる。そのため、受信機3は、受信機主系13の経路長と受信機従系23の経路長とは異なるが、復調性能を劣化させることなく最大比合成を行うことができる。   The master correlator 302 of the receiver master system 13 and the slave correlator 322 of the receiver slave system 23 obtain the correlation between the signal of the receiver master system 13 and the signal of the receiver slave system 23 to obtain the receiver master. The difference between the path of the system 13 and the path of the receiver slave system 23 is calculated. The master correlator 302 and the slave correlator 322 set a delay time in the master delay circuit 301 or the slave delay circuit 321 by the calculated path difference. As a result, the main adder circuit 203 of the receiver main system 13 and the subordinate adder circuit 223 of the receiver slave system 23 can receive signals having the same contents at the same timing. Therefore, the receiver 3 can perform the maximum ratio combining without degrading the demodulation performance, although the path length of the receiver main system 13 and the path length of the receiver slave system 23 are different.

受信機主系13の経路長と受信機従系23の経路長との差異が既知である場合、主系遅延回路301又は従系遅延回路321に設定される遅延時間を固定することができるため、主系相関器302及び従系相関器322は不要である。   When the difference between the path length of the receiver main system 13 and the path length of the receiver slave system 23 is known, the delay time set in the master delay circuit 301 or the slave delay circuit 321 can be fixed. The main correlator 302 and the sub correlator 322 are not necessary.

受信機主系13において、主系遅延回路301が行う遅延処理と、主系第1振幅調整部201及び主系第2振幅調整部202が行う振幅調整とはいずれも線形演算であるので、主系遅延回路301が行う遅延処理と、主系第1振幅調整部201及び主系第2振幅調整部202が行う振幅調整との順番は問わない。同様に、受信機従系23において、従系遅延回路321が行う遅延処理と、従系第1振幅調整部221及び従系第2振幅調整部222が行う振幅調整とはいずれも線形演算であるので、従系遅延回路321が行う遅延処理と、従系第1振幅調整部221及び従系第2振幅調整部222が行う振幅調整との順番は問わない。   In the receiver main system 13, since the delay processing performed by the main delay circuit 301 and the amplitude adjustment performed by the main first amplitude adjustment unit 201 and the main second amplitude adjustment unit 202 are both linear operations, The order of the delay processing performed by the system delay circuit 301 and the amplitude adjustment performed by the main system first amplitude adjustment unit 201 and the main system second amplitude adjustment unit 202 is not limited. Similarly, in the receiver slave system 23, the delay process performed by the slave delay circuit 321 and the amplitude adjustment performed by the slave first amplitude adjuster 221 and the slave second amplitude adjuster 222 are both linear operations. Therefore, the order of the delay processing performed by the slave delay circuit 321 and the amplitude adjustment performed by the slave first amplitude adjustment unit 221 and the slave second amplitude adjustment unit 222 is not limited.

最大比合成をより高精度に行うために、主系相関器302と従系相関器322とによって構成される相関部50は、実際に処理するデータの伝送を行う前に、既知の試験信号を用いて受信機主系13と受信機従系23との相関ピークがより鋭くなるように、主系遅延回路301又は従系遅延回路321に設定される遅延時間を算出してもよい。つまり、相関部50は、既知の試験信号が受信機主系13の主系加算回路203へ到達する時間と、試験信号が受信機従系23の従系加算回路223へ到達する時間との差を算出すると共に、算出した差をもとに主系遅延回路301と従系遅延回路321との少なくとも一方に遅延時間を設定する。これにより高速な信号においても、最大比合成を高精度に行うことができる。   In order to perform the maximum ratio synthesis with higher accuracy, the correlator 50 constituted by the main correlator 302 and the sub correlator 322 transmits a known test signal before transmitting data to be actually processed. The delay time set in the main delay circuit 301 or the sub delay circuit 321 may be calculated so that the correlation peak between the receiver main system 13 and the receiver sub system 23 becomes sharper. That is, the correlator 50 determines the difference between the time required for the known test signal to reach the main adder circuit 203 of the receiver main system 13 and the time required for the test signal to reach the subordinate adder circuit 223 of the receiver slave 23. And a delay time is set in at least one of the main delay circuit 301 and the subordinate delay circuit 321 based on the calculated difference. As a result, maximum ratio synthesis can be performed with high accuracy even for high-speed signals.

実施の形態4.
次に、実施の形態4の受信機4について説明する。図4は、実施の形態4の受信機4の構成を示す図である。受信機4は、受信機主系14と受信機従系24とを有していると共に、実施の形態3の受信機3の機能を維持している。受信機4の回路規模は受信機3のそれよりも小さい。具体的には、受信機4は、受信機3が有する主系前段振幅調整部107及び振幅位相検出部108を有しておらず、振幅位相検出部108の位相検出の機能を持つ位相検出部401を有する。同様に、受信機4は、受信機3が有する従系前段振幅調整部127及び振幅位相検出部128を有しておらず、振幅位相検出部128の位相検出の機能を持つ位相検出部421を有する。
Embodiment 4 FIG.
Next, the receiver 4 of Embodiment 4 is demonstrated. FIG. 4 is a diagram illustrating a configuration of the receiver 4 according to the fourth embodiment. The receiver 4 has a receiver main system 14 and a receiver slave system 24 and maintains the function of the receiver 3 of the third embodiment. The circuit scale of the receiver 4 is smaller than that of the receiver 3. Specifically, the receiver 4 does not have the main-system pre-stage amplitude adjustment unit 107 and the amplitude phase detection unit 108 included in the receiver 3, and has a phase detection function of the amplitude phase detection unit 108. 401. Similarly, the receiver 4 does not include the slave upstream amplitude adjustment unit 127 and the amplitude phase detection unit 128 included in the receiver 3, and includes a phase detection unit 421 having a phase detection function of the amplitude phase detection unit 128. Have.

実施の形態4の受信機4では、主系第1振幅調整部201と主系第2振幅調整部202との組と、従系第1振幅調整部221と従系第2振幅調整部222との組とが、実施の形態3の受信機3におけるAGCが行う振幅調整を行う。上述の通り、受信機4では、実施の形態3の受信機3における主系前段振幅調整部107及び振幅位相検出部108の二つの構成要素が一つの位相検出部401に置き換えられている。同様に、受信機4では、受信機3における従系前段振幅調整部127及び振幅位相検出部128の二つの構成要素が一つの位相検出部421に置き換えられている。その結果、受信機4の回路規模は受信機3のそれよりも小さくなっている。   In the receiver 4 of the fourth embodiment, a set of the main system first amplitude adjustment unit 201 and the main system second amplitude adjustment unit 202, the sub system first amplitude adjustment unit 221 and the sub system second amplitude adjustment unit 222, The amplitude adjustment performed by the AGC in the receiver 3 of the third embodiment is performed. As described above, in the receiver 4, the two components of the main system pre-stage amplitude adjustment unit 107 and the amplitude phase detection unit 108 in the receiver 3 of the third embodiment are replaced with one phase detection unit 401. Similarly, in the receiver 4, two components of the receiver upstream amplitude adjustment unit 127 and the amplitude phase detection unit 128 in the receiver 3 are replaced with one phase detection unit 421. As a result, the circuit scale of the receiver 4 is smaller than that of the receiver 3.

なお、上述の実施の形態では各受信機は無線機に適用されることを想定しているが、各受信機は、無線機であってもよいし有線機であってもよい。また、上述の実施の形態では、各受信機は主系と従系との二重の冗長構成を有しているが、各受信機における冗長構成の系の数は問わない。   In the above-described embodiment, it is assumed that each receiver is applied to a wireless device. However, each receiver may be a wireless device or a wired device. Further, in the above-described embodiment, each receiver has a double redundant configuration of a main system and a slave system, but the number of redundant configurations in each receiver is not limited.

実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省いたり変更したりすることも可能である。   The structure shown in the embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and a part of the structure can be combined without departing from the gist of the present invention. It can be omitted or changed.

2 受信機、101 主系高周波回路、111 主系復調部、203 主系加算回路、121 従系高周波回路、131 従系復調部、223 従系加算回路。   2 receivers, 101 main high frequency circuit, 111 main demodulation unit, 203 main addition circuit, 121 sub high frequency circuit, 131 sub demodulation unit, 223 sub addition circuit.

Claims (3)

受信機主系と受信機従系とを備え、
前記受信機主系は、受信信号の電力を増幅する主系高周波回路と、主系加算回路と、前記主系加算回路によって得られた信号を復調する主系復調部とを有し、
前記受信機従系は、前記受信信号の電力を増幅する従系高周波回路と、従系加算回路と、前記従系加算回路によって得られた信号を復調する従系復調部とを有し、
前記主系加算回路は、前記主系高周波回路によって得られた信号と、前記従系高周波回路によって得られた信号とを加算し、
前記従系加算回路は、前記従系高周波回路によって得られた信号と、前記主系高周波回路によって得られた信号とを加算し、
前記受信機主系は、前記主系高周波回路によって得られた信号の伝送を遅延させる主系遅延回路を有し、
前記受信機従系は、前記従系高周波回路によって得られた信号の伝送を遅延させる従系遅延回路を有し、
既知の試験信号が前記受信機主系の前記主系加算回路へ到達する時間と、前記試験信号が前記受信機従系の前記従系加算回路へ到達する時間との差を算出すると共に、算出した前記差をもとに前記主系遅延回路と前記従系遅延回路との少なくとも一方に遅延時間を設定する相関部を更に備える
ことを特徴とする受信機。
It has a receiver main system and a receiver slave system,
The receiver main system has a main high-frequency circuit that amplifies the power of the received signal, a main adder circuit, and a main demodulator that demodulates the signal obtained by the main adder circuit,
The receiver slave system has a slave high-frequency circuit that amplifies the power of the received signal, a slave adder circuit, and a slave demodulator that demodulates the signal obtained by the slave adder circuit,
The main addition circuit adds the signal obtained by the main high frequency circuit and the signal obtained by the sub high frequency circuit,
The slave addition circuit adds the signal obtained by the slave high frequency circuit and the signal obtained by the master high frequency circuit ,
The receiver main system has a main delay circuit that delays transmission of a signal obtained by the main high-frequency circuit;
The receiver slave system has a slave delay circuit that delays transmission of the signal obtained by the slave high-frequency circuit,
Calculate the difference between the time for the known test signal to reach the main adder circuit of the receiver main system and the time for the test signal to reach the subordinate adder circuit of the receiver slave A receiver further comprising a correlator configured to set a delay time in at least one of the main delay circuit and the subordinate delay circuit based on the difference .
前記受信機主系は、前記主系高周波回路によって得られた信号の振幅を調整する主系第1振幅調整部と、前記従系高周波回路によって得られた信号の振幅を調整する主系第2振幅調整部とを更に有し、
前記受信機従系は、前記従系高周波回路によって得られた信号の振幅を調整する従系第1振幅調整部と、前記主系高周波回路によって得られた信号の振幅を調整する従系第2振幅調整部とを更に有し、
前記主系加算回路は、前記主系第1振幅調整部によって得られた信号に前記主系第2振幅調整部によって得られた信号を加算し、
前記従系加算回路は、前記従系第1振幅調整部によって得られた信号に前記従系第2振幅調整部によって得られた信号を加算する
ことを特徴とする請求項1に記載の受信機。
The receiver main system includes a main first amplitude adjusting unit that adjusts the amplitude of the signal obtained by the main high frequency circuit, and a main second that adjusts the amplitude of the signal obtained by the sub high frequency circuit. An amplitude adjustment unit,
The receiver slave system includes a slave first amplitude adjuster that adjusts the amplitude of the signal obtained by the slave high frequency circuit, and a slave second that adjusts the amplitude of the signal obtained by the master high frequency circuit. An amplitude adjustment unit,
The main system addition circuit adds the signal obtained by the main system second amplitude adjustment unit to the signal obtained by the main system first amplitude adjustment unit,
2. The receiver according to claim 1, wherein the slave addition circuit adds the signal obtained by the slave second amplitude adjustment unit to the signal obtained by the slave first amplitude adjustment unit. .
受信機主系と受信機従系とを備え、
前記受信機主系は、受信信号の電力を増幅する主系高周波回路と、主系加算回路と、前記主系加算回路によって得られた信号を復調する主系復調部とを有し、
前記受信機従系は、前記受信信号の電力を増幅する従系高周波回路と、従系加算回路と、前記従系加算回路によって得られた信号を復調する従系復調部とを有し、
前記主系加算回路は、前記主系高周波回路によって得られた信号と、前記従系高周波回路によって得られた信号とを加算し、
前記従系加算回路は、前記従系高周波回路によって得られた信号と、前記主系高周波回路によって得られた信号とを加算し、
前記受信機主系は、前記主系高周波回路によって得られた信号の振幅を調整する主系第1振幅調整部と、前記従系高周波回路によって得られた信号の振幅を調整する主系第2振幅調整部とを更に有し、
前記受信機従系は、前記従系高周波回路によって得られた信号の振幅を調整する従系第1振幅調整部と、前記主系高周波回路によって得られた信号の振幅を調整する従系第2振幅調整部とを更に有し、
前記主系加算回路は、前記主系第1振幅調整部によって得られた信号に前記主系第2振幅調整部によって得られた信号を加算し、
前記従系加算回路は、前記従系第1振幅調整部によって得られた信号に前記従系第2振幅調整部によって得られた信号を加算し、
前記主系第1振幅調整部、前記主系第2振幅調整部、前記従系第1振幅調整部及び前記従系第2振幅調整部をオンの状態とオフの状態とに切り替えるスイッチとして動作させ、前記主系第1振幅調整部、前記主系第2振幅調整部、前記従系第1振幅調整部及び前記従系第2振幅調整部までの各経路の信号について信号対雑音比を算出して比較することにより、異常発生箇所を特定する異常特定回路を更に備える
ことを特徴とする受信機。
It has a receiver main system and a receiver slave system,
The receiver main system has a main high-frequency circuit that amplifies the power of the received signal, a main adder circuit, and a main demodulator that demodulates the signal obtained by the main adder circuit,
The receiver slave system has a slave high-frequency circuit that amplifies the power of the received signal, a slave adder circuit, and a slave demodulator that demodulates the signal obtained by the slave adder circuit,
The main addition circuit adds the signal obtained by the main high frequency circuit and the signal obtained by the sub high frequency circuit,
The slave addition circuit adds the signal obtained by the slave high frequency circuit and the signal obtained by the master high frequency circuit,
The receiver main system includes a main first amplitude adjusting unit that adjusts the amplitude of the signal obtained by the main high frequency circuit, and a main second that adjusts the amplitude of the signal obtained by the sub high frequency circuit. An amplitude adjustment unit,
The receiver slave system includes a slave first amplitude adjuster that adjusts the amplitude of the signal obtained by the slave high frequency circuit, and a slave second that adjusts the amplitude of the signal obtained by the master high frequency circuit. An amplitude adjustment unit,
The main system addition circuit adds the signal obtained by the main system second amplitude adjustment unit to the signal obtained by the main system first amplitude adjustment unit,
The slave addition circuit adds the signal obtained by the slave second amplitude adjustment unit to the signal obtained by the slave first amplitude adjustment unit,
The main system first amplitude adjustment unit, the main system second amplitude adjustment unit, the sub system first amplitude adjustment unit, and the sub system second amplitude adjustment unit are operated as a switch for switching between an on state and an off state. The signal-to-noise ratio is calculated for the signals of the respective paths to the main system first amplitude adjusting unit, the main system second amplitude adjusting unit, the subordinate first amplitude adjusting unit, and the subordinate second amplitude adjusting unit. by comparing Te, receiver device further comprising a malfunctioning identification circuit for identifying the abnormal location.
JP2015079608A 2015-04-08 2015-04-08 Receiving machine Active JP6320341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079608A JP6320341B2 (en) 2015-04-08 2015-04-08 Receiving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079608A JP6320341B2 (en) 2015-04-08 2015-04-08 Receiving machine

Publications (2)

Publication Number Publication Date
JP2016201644A JP2016201644A (en) 2016-12-01
JP6320341B2 true JP6320341B2 (en) 2018-05-09

Family

ID=57424578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079608A Active JP6320341B2 (en) 2015-04-08 2015-04-08 Receiving machine

Country Status (1)

Country Link
JP (1) JP6320341B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105727A (en) * 1982-12-09 1984-06-19 Nec Corp Space diversity receiving system containing anti-disturbance receiving function
JP2000286769A (en) * 1999-03-30 2000-10-13 Kokusai Electric Co Ltd Receiver
JP3632535B2 (en) * 1999-12-15 2005-03-23 日本電気株式会社 Diversity transmission / reception method and apparatus
JP4219866B2 (en) * 2003-09-30 2009-02-04 三菱電機株式会社 Adaptive antenna
JP2005229539A (en) * 2004-02-16 2005-08-25 Mitsubishi Electric Corp Mobile communication terminal device
JP4693462B2 (en) * 2005-03-31 2011-06-01 富士通テン株式会社 Diversity receiving apparatus and method
JP2007266788A (en) * 2006-03-27 2007-10-11 Matsushita Electric Ind Co Ltd Receiver
JP2010135862A (en) * 2007-03-28 2010-06-17 Panasonic Corp Receiving device and receiving method
JP2010028186A (en) * 2008-07-15 2010-02-04 Hitachi Ltd Diversity receiver and diversity reception method

Also Published As

Publication number Publication date
JP2016201644A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US7280611B2 (en) Nonlinear distortion compensating device
US8843097B2 (en) Method and system for blocker attenuation using multiple receive antennas
US20100136900A1 (en) Radio Relay Device and Method
JP3360731B2 (en) Array antenna calibration method and array antenna receiving device
WO2001091330A1 (en) Calibration system for array antenna receiving apparatus
US10330775B2 (en) Transmitter, transmission method, phase adjustment device, and phase adjustment method
WO2015087731A1 (en) Reception device
EP0637878A2 (en) Space diversity combiner
WO2006106920A1 (en) Receiving apparatus, signal processing circuit, and receiving system
JP2010183171A (en) Receiver
JP2006319412A (en) Wireless receiver and wireless transmitter
JP6320341B2 (en) Receiving machine
US10237100B2 (en) Method and apparatus for digitization of broadband analog signals
JP2010177954A (en) Reception circuit
JP2007089067A (en) Radio communication method and radio communication apparatus
WO2017130301A1 (en) Wireless device
JP2007288625A (en) Output switching device
JP5591065B2 (en) Wraparound canceller and relay device
JP4194404B2 (en) Array antenna communication device
JP3930456B2 (en) Array antenna communication device
US8942307B2 (en) Antenna switching apparatus based on spatial modulation
WO2023053193A1 (en) Wireless communication device, control circuit, storage medium, and signal processing method
KR101133038B1 (en) Multi-mode signal receiving system and receiving method thereof
JP7147350B2 (en) Wireless communication device and received signal correction method
JP5087598B2 (en) Positioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250