JP6307409B2 - Gas component measuring device - Google Patents

Gas component measuring device Download PDF

Info

Publication number
JP6307409B2
JP6307409B2 JP2014210965A JP2014210965A JP6307409B2 JP 6307409 B2 JP6307409 B2 JP 6307409B2 JP 2014210965 A JP2014210965 A JP 2014210965A JP 2014210965 A JP2014210965 A JP 2014210965A JP 6307409 B2 JP6307409 B2 JP 6307409B2
Authority
JP
Japan
Prior art keywords
light
light transmission
gas
laser
side light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014210965A
Other languages
Japanese (ja)
Other versions
JP2016080480A (en
Inventor
安武 聡信
聡信 安武
杉山 友章
友章 杉山
翼 宮▲崎▼
翼 宮▲崎▼
光一 田上
光一 田上
近藤 学
学 近藤
塚原 千幸人
千幸人 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014210965A priority Critical patent/JP6307409B2/en
Publication of JP2016080480A publication Critical patent/JP2016080480A/en
Application granted granted Critical
Publication of JP6307409B2 publication Critical patent/JP6307409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス成分測定装置に関し、例えば、ボイラ装置の燃焼排ガスの分析に好適に用いられるガス成分測定装置に関する。   The present invention relates to a gas component measuring device, for example, a gas component measuring device suitably used for analyzing combustion exhaust gas of a boiler device.

従来、電力施設などからの排ガスに脱硝用の還元剤として注入されるアンモニアガスを測定対象とするレーザ式ガス分析計が提案されている(例えば、特許文献1参照)。このガス分析計は、コリメートレンズが設けられた発光部と、集光レンズが設けられた受光部とを備える。このガス分析計においては、発光部側及び受光部側から計装空気をそれぞれバージガスとして流すことにより、発光部のコリメートレンズの表面及び受光部の集光レンズの表面に付着した測定対象ガスに含まれる煤塵を吹き飛ばしてレンズの表面を清浄に保っている。   Conventionally, there has been proposed a laser type gas analyzer that uses ammonia gas injected as a reducing agent for denitration into exhaust gas from an electric power facility or the like (for example, see Patent Document 1). The gas analyzer includes a light emitting unit provided with a collimating lens and a light receiving unit provided with a condensing lens. In this gas analyzer, it is included in the measurement target gas attached to the surface of the collimating lens of the light emitting unit and the surface of the condensing lens of the light receiving unit by flowing instrument air as a barge gas from the light emitting unit side and the light receiving unit side The lens surface is kept clean by blowing away the dust.

特開2014−102152号公報JP 2014-102152 A

しかしながら、特許文献1に記載のレーザ式ガス分析においては、レンズ表面の清浄化のためにレーザ光の発光部側及び受光部側のそれぞれから常時一定の流速(例えば、1m/s)でパージガスとしての計装空気を流す必要があり、計装空気のユーティリティー確保がコスト的及び設備的な制約から困難な場合がある。   However, in the laser-type gas analysis described in Patent Document 1, a purge gas is used at a constant flow rate (for example, 1 m / s) from each of the light emitting part side and the light receiving part side of the laser light for cleaning the lens surface. Therefore, it may be difficult to secure a utility for instrumentation air due to cost and equipment limitations.

本発明は、このような実情に鑑みてなされたものであり、パージガスを削減でき、計装空気のユーティリティー確保を容易にすることが可能なガス成分測定装置を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a gas component measuring apparatus capable of reducing purge gas and facilitating securing of utility of instrument air.

本発明のガス成分測定装置は、被測定ガスを分析するレーザ光を発光するレーザ発光部と、前記レーザ光の光強度を検出するレーザ受光部と、前記被測定ガスの流路内に配置され、前記レーザ発光部で発光したレーザ光を前記流路内に設けられた測定領域に向けて送光する送光側送光部材と、前記被測定ガスの流路内に配置され、前記送光側送光部材から前記測定領域を介して送光された前記レーザ光を前記レーザ受光部に向けて送光する受光側送光部材と、前記送光側送光部材及び前記受光側送光部材の少なくとも一方に設けられ、前記送光側送光部材内及び前記受光側送光部材内への被測定ガスの侵入を防ぐ透光板とを具備することを特徴とする。   A gas component measuring apparatus according to the present invention is disposed in a laser light emitting unit that emits laser light for analyzing a gas to be measured, a laser light receiving unit that detects light intensity of the laser light, and a flow path of the gas to be measured. A light transmission side light transmitting member that transmits laser light emitted from the laser light emitting unit toward a measurement region provided in the flow path, and a light transmission light transmitting member disposed in the flow path of the gas to be measured. A light-receiving-side light-transmitting member that transmits the laser light transmitted from the side light-transmitting member through the measurement region toward the laser light-receiving unit, the light-transmitting-side light-transmitting member, and the light-receiving-side light-transmitting member And a translucent plate that prevents the gas under measurement from entering the light transmitting side light transmitting member and the light receiving side light transmitting member.

このガス成分測定装置によれば、送光側送光部材及び受光側送光部材に設けた透光板により送光側送光部材内及び受光側送光部材内への燃焼排ガス中の煤塵の侵入を防ぐことができる。これにより、ガス成分測定装置は、送光側送光部材内及び受光側送光部材内から測定領域に向けたパージガスの供給量を削減することができるので、計装空気のユーティリティー確保を容易にすることが可能なガス成分測定装置を実現することが可能となる。   According to this gas component measuring apparatus, dusts in the combustion exhaust gas into the light transmitting side light transmitting member and the light receiving side light transmitting member are transmitted by the light transmitting plates provided on the light transmitting side light transmitting member and the light receiving side light transmitting member. Intrusion can be prevented. As a result, the gas component measuring device can reduce the supply amount of purge gas from the light transmitting side light transmitting member and the light receiving side light transmitting member toward the measurement region, so that it is easy to ensure the utility of instrument air. It is possible to realize a gas component measuring apparatus that can do this.

本発明のガス成分測定装置においては、前記透光板が、サファイアガラス又は石英であることが好ましい。この構成により、透光板へ燃焼ガス中の煤塵が付着しにくくなるので、より一層パージガスの送光側送光部材内及び受光側送光部材内から測定領域に向けたパージガスの供給量を削減することが可能となる。   In the gas component measuring apparatus of the present invention, the light transmitting plate is preferably sapphire glass or quartz. This configuration makes it difficult for soot and dust in the combustion gas to adhere to the translucent plate, thus further reducing the amount of purge gas supplied from the inside of the light transmitting side light transmitting member and from the inside of the light receiving side light transmitting member to the measurement region. It becomes possible to do.

本発明のガス成分測定装置においては、前記透光板と前記送光側送光部材及び前記受光側送光部材との間に通気孔が設けられたことが好ましい。この構成により、通気孔を介して送光側送光部材内及び受光側送光部材内から測定領域に向けてパージガスが供給されるので、パージガスの供給量を削減することが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that a vent hole is provided between the light transmitting plate, the light transmitting side light transmitting member, and the light receiving side light transmitting member. With this configuration, the purge gas is supplied from the inside of the light transmitting side light transmitting member and the inside of the light receiving side light transmitting member to the measurement region via the vent hole, so that the supply amount of the purge gas can be reduced.

本発明のガス成分測定装置においては、前記送光側送光部材及び前記受光側送光部材の少なくとも一方の内壁に、前記送光側送光部材内及び前記受光側送光部材内を流れる気体を前記透光板の表面に向けて導く整流部材が設けられたことが好ましい。この構成により、透光板の表面に沿って送光側送光部材内及び受光側送光部材内から供給されるパージガスを流すことができるので、効率良く透光板の表面に対する燃焼排ガス中の煤塵の付着を防ぐことが可能となる。   In the gas component measuring apparatus of the present invention, the gas flowing in the light transmitting side light transmitting member and in the light receiving side light transmitting member on the inner wall of at least one of the light transmitting side light transmitting member and the light receiving side light transmitting member. It is preferable that a rectifying member that guides the light toward the surface of the translucent plate is provided. With this configuration, the purge gas supplied from the light transmitting side light transmitting member and the light receiving side light transmitting member can flow along the surface of the light transmitting plate. It becomes possible to prevent dust from adhering.

本発明のガス成分測定装置においては、前記透光板は、表面が帯電防止加工されてなることが好ましい。この構成により、燃焼排ガス中の煤塵の帯電による透光板の表面への付着を防ぐことができるので、より一層効率良く透光板の表面への煤塵の付着を防ぐことが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that the surface of the translucent plate is antistatic processed. With this configuration, it is possible to prevent adhesion of dust in the flue gas to the surface of the light transmissive plate due to charging of dust, so that it is possible to prevent dust from adhering to the surface of the light transmissive plate even more efficiently.

本発明のガス成分測定装置においては、前記透光板は、表面が疎水加工されてなることが好ましい。この構成により、燃焼排ガス中の水分を介した透光板の表面への煤塵の付着を防ぐことができるので、より一層効率良く透光板の表面への煤塵の付着を防ぐことが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that the translucent plate has a hydrophobic surface. With this configuration, it is possible to prevent soot from adhering to the surface of the translucent plate via moisture in the combustion exhaust gas, and thus it becomes possible to more effectively prevent soot from adhering to the surface of the translucent plate. .

本発明のガス成分測定装置においては、さらに、前記透光板の表面にコロナ放電する集塵極を備えたことが好ましい。この構成により、集塵極から放出された電子によってイオンを発生させて透光板の表面の静電気を中和させることができるので、より一層効率良く透光板の表面への煤塵の付着を防ぐことが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that a dust collecting electrode for corona discharge is further provided on the surface of the light transmitting plate. With this configuration, ions can be generated by the electrons emitted from the dust collecting electrode to neutralize the static electricity on the surface of the translucent plate, thereby preventing dust from adhering to the surface of the translucent plate more efficiently. It becomes possible.

本発明のガス成分測定装置においては、前記集塵極は、前記送光側送光部材及び前記受光側送光部材内における前記測定領域側に設けられたことが好ましい。この構成により、透光板に付着した煤塵を自重により剥離落下させることが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that the dust collecting electrode is provided on the measurement region side in the light transmitting side light transmitting member and the light receiving side light transmitting member. With this configuration, the dust adhering to the translucent plate can be peeled and dropped by its own weight.

本発明のガス成分測定装置においては、前記透光板の表面に紫外光を照射する紫外光照射部を備え、前記透光板の表面に光触媒層が設けられたことが好ましい。この構成により、透光板の表面に付着した燃焼排ガス中に含まれる煤塵を光触媒を介した酸化還元反応によって分解して除去することが可能となる。   In the gas component measuring apparatus of the present invention, it is preferable that the surface of the translucent plate is provided with an ultraviolet light irradiation unit that irradiates ultraviolet light, and a photocatalyst layer is provided on the surface of the translucent plate. With this configuration, it is possible to decompose and remove dust contained in the combustion exhaust gas attached to the surface of the light-transmitting plate by an oxidation-reduction reaction via the photocatalyst.

本発明のガス成分測定装置においては、前記紫外光照射部による前記透光板への紫外光の照射と、前記レーザ発光部からの前記レーザ光の前記透光板への照射とを切替える制御部を備えたことが好ましい。この構成により、レーザ光と紫外光との干渉を防ぐことができるので、ガス成分の分析と透光板に付着した煤塵の除去とを効率よく両立できる。   In the gas component measuring apparatus of the present invention, a control unit that switches between irradiation of ultraviolet light to the light transmitting plate by the ultraviolet light irradiation unit and irradiation of the laser light from the laser light emitting unit to the light transmitting plate. It is preferable to have provided. With this configuration, interference between the laser light and the ultraviolet light can be prevented, so that it is possible to efficiently achieve both the analysis of the gas component and the removal of the dust adhering to the light transmitting plate.

本発明のガス成分測定装置においては、前記測定領域内の前記被測定ガスを排気して前記測定領域内を負圧にする排気部と、前記送光側送光部材内及び前記受光側送光部材内に外気を供給する外気供給ラインが設けられたことが好ましい。この構成により、送光側送光部材内及び受光側送光部材内に外気を供給して送光側送光部材内及び前記受光側送光部材内への燃焼排ガスの侵入を防ぐことができるので、パージガスの供給量を削減することが可能となる。   In the gas component measuring apparatus of the present invention, an exhaust section that exhausts the gas to be measured in the measurement region and makes the measurement region have a negative pressure, the light transmission side light transmission member, and the light reception side light transmission It is preferable that an outside air supply line for supplying outside air is provided in the member. With this configuration, outside air can be supplied into the light transmitting side light transmitting member and the light receiving side light transmitting member to prevent the combustion exhaust gas from entering the light transmitting side light transmitting member and the light receiving side light transmitting member. Therefore, it becomes possible to reduce the supply amount of purge gas.

本発明のガス成分測定装置においては、前記外気に含まれる水分及び煤塵を除去するフィルタを備えたことが好ましい。この構成により、外気中に含まれる粉塵、ミスト及び塩などを除去することができるので、送光側送光部材内及び受光側送光部材内を清浄に保つことが可能となる。   In the gas component measuring device of the present invention, it is preferable that a filter for removing moisture and dust contained in the outside air is provided. With this configuration, dust, mist, salt, and the like contained in the outside air can be removed, so that the inside of the light transmitting side light transmitting member and the inside of the light receiving side light transmitting member can be kept clean.

本発明のガス成分測定装置は、被測定ガスを分析するレーザ光を発光するレーザ発光部と、前記レーザ光の光強度を検出するレーザ受光部と、前記被測定ガスの流路内に配置され、前記レーザ発光部で発光したレーザ光を前記流路内に設けられた測定領域に向けて送光する送光側送光部材と、前記被測定ガスの流路内に配置され、前記送光側送光部材から前記測定領域を介して送光された前記レーザ光を前記レーザ受光部に向けて送光する受光側送光部材と、前記測定領域内の前記被測定ガスを排気して前記測定領域内を負圧にする排気部と、前記送光側送光部材内及び前記受光側送光部材内に外気を供給する外気供給ラインとを具備することを特徴とする。   A gas component measuring apparatus according to the present invention is disposed in a laser light emitting unit that emits laser light for analyzing a gas to be measured, a laser light receiving unit that detects light intensity of the laser light, and a flow path of the gas to be measured. A light transmission side light transmitting member that transmits laser light emitted from the laser light emitting unit toward a measurement region provided in the flow path, and a light transmission light transmitting member disposed in the flow path of the gas to be measured. A light-receiving side light-transmitting member that transmits the laser light transmitted from the side light-transmitting member through the measurement region toward the laser light-receiving unit; and exhausting the gas to be measured in the measurement region and It is characterized by comprising an exhaust section for making negative pressure in the measurement region, and an outside air supply line for supplying outside air into the light transmitting side light transmitting member and the light receiving side light transmitting member.

このガス成分測定装置によれば、送光側送光部材内及び受光側送光部材内に外気を供給して送光側送光部材内及び前記受光側送光部材内への燃焼排ガスの侵入を防ぐことができる。これにより、ガス成分測定装置は、送光側送光部材内及び受光側送光部材内から測定領域に向けたパージガスの供給量を削減することができるので、計装空気のユーティリティー確保を容易にすることが可能なガス成分測定装置を実現することが可能となる。   According to this gas component measuring device, the inflow of combustion exhaust gas into the light transmitting side light transmitting member and the light receiving side light transmitting member by supplying outside air into the light transmitting side light transmitting member and the light receiving side light transmitting member. Can be prevented. As a result, the gas component measuring device can reduce the supply amount of purge gas from the light transmitting side light transmitting member and the light receiving side light transmitting member toward the measurement region, so that it is easy to ensure the utility of instrument air. It is possible to realize a gas component measuring apparatus that can do this.

本発明のガス成分測定装置においては、前記外気に含まれる水分及び煤塵を除去するフィルタを備えたことが好ましい。この構成により、外気中に含まれる粉塵、ミスト及び塩などを除去することができるので、送光側送光部材内及び受光側送光部材内を清浄に保つことが可能となる。   In the gas component measuring device of the present invention, it is preferable that a filter for removing moisture and dust contained in the outside air is provided. With this configuration, dust, mist, salt, and the like contained in the outside air can be removed, so that the inside of the light transmitting side light transmitting member and the inside of the light receiving side light transmitting member can be kept clean.

本発明によれば、パージガスを削減でき、計装空気のユーティリティー確保を容易にすることが可能なガス成分測定装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, purge gas can be reduced and the gas component measuring apparatus which can make the utility ensuring of instrumentation air easy can be implement | achieved.

図1は、本発明の第1の実施の形態に係るボイラ装置の概略図である。FIG. 1 is a schematic diagram of a boiler apparatus according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係るガス成分測定装置の概略図である。FIG. 2 is a schematic diagram of the gas component measuring apparatus according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態に係るガス成分測定装置のプローブの模式的な斜視図である。FIG. 3 is a schematic perspective view of the probe of the gas component measuring apparatus according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態に係るガス成分測定装置における測定原理の概念図である。FIG. 4 is a conceptual diagram of the measurement principle in the gas component measurement device according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態に係るガス成分測定装置における吸収分光計測の透過光強度と透過光の波長との関係の一例を示す。FIG. 5 shows an example of the relationship between the transmitted light intensity and the wavelength of transmitted light in the absorption spectroscopic measurement in the gas component measuring apparatus according to the first embodiment of the present invention. 図6は、本発明の第1の実施の形態に係るガス成分測定装置の送光筒の断面模式図である。FIG. 6 is a schematic cross-sectional view of the light transmission tube of the gas component measurement device according to the first embodiment of the present invention. 図7Aは、図6のA−A線矢視断面図である。FIG. 7A is a cross-sectional view taken along line AA in FIG. 図7Bは、図6のB−B線矢視断面図である。7B is a cross-sectional view taken along line B-B in FIG. 6. 図8Aは、送光側送光筒の先端部の部分拡大図である。FIG. 8A is a partially enlarged view of a tip portion of a light transmission side light transmission tube. 図8Bは、受光側送光筒の先端部の部分拡大図である。FIG. 8B is a partially enlarged view of the distal end portion of the light receiving side light transmitting tube. 図9は、本発明の第1の実施の形態に係るガス成分測定装置の送光筒の他の例を示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing another example of the light transmission tube of the gas component measurement device according to the first embodiment of the present invention. 図10は、本発明の第2の実施の形態に係るガス成分測定装置の送光筒の断面模式図である。FIG. 10 is a schematic cross-sectional view of the light transmission tube of the gas component measurement device according to the second embodiment of the present invention. 図11Aは、本発明の第3の実施の形態に係る送光側送光筒の先端部の部分拡大図である。FIG. 11A is a partially enlarged view of the distal end portion of the light transmission side light transmission tube according to the third embodiment of the present invention. 図11Bは、本発明の第3の実施の形態に係る受光側送光筒の先端部の部分拡大図である。FIG. 11B is a partially enlarged view of the distal end portion of the light receiving side light transmitting tube according to the third embodiment of the present invention. 図12は、本発明の第4の実施の形態に係るガス成分測定装置の送光筒の断面模式図である。FIG. 12 is a schematic cross-sectional view of a light transmission tube of a gas component measurement device according to a fourth embodiment of the present invention.

以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は適宜組み合わせて実施可能である。また、各実施の形態において共通する構成要素には同一の符号を付し、説明の重複を避ける。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, it is not limited to each following embodiment, It can implement by changing suitably. Also, the following embodiments can be implemented in combination as appropriate. Moreover, the same code | symbol is attached | subjected to the component which is common in each embodiment, and duplication of description is avoided.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係るボイラ装置1の概略図である。図1に示すように、本実施の形態に係るボイラ装置1は、ボイラ11からの燃焼排ガスGに還元剤としてのアンモニア(NH)を供給して窒素酸化物(NOx)を脱硫して煙突12から排出する装置である。このボイラ装置1は、ボイラ11からの燃焼排ガスGが流れる煙道13のガス流れ方向におけるボイラ11の後段に設けられたアンモニア注入装置14と、このアンモニア注入装置14の後段に設けられた脱硝装置15と、この脱硝装置15の後段に設けられたガス成分測定装置2と、このガス成分測定装置2の後段に設けられた空気予熱器16とを備える。空気予熱器16は、出口部分に図示しない吸込通風機(IDF:Induced Draft Fan:排気部)が設けられている。これにより、空気予熱器16は、後段に設けられた煙突12に向けて煙道13内の燃焼排ガスGを排気するので、煙道13内は負圧となっている。
(First embodiment)
FIG. 1 is a schematic diagram of a boiler apparatus 1 according to a first embodiment of the present invention. As shown in FIG. 1, the boiler apparatus 1 according to the present embodiment supplies ammonia (NH 3 ) as a reducing agent to the combustion exhaust gas G 1 from the boiler 11 to desulfurize nitrogen oxides (NOx). A device for discharging from the chimney 12. The boiler device 1 includes an ammonia injection device 14 provided at the rear stage of the boiler 11 in the gas flow direction of the flue 13 through which the combustion exhaust gas G 1 from the boiler 11 flows, and a denitration provided at the rear stage of the ammonia injection device 14. A device 15, a gas component measuring device 2 provided at the subsequent stage of the denitration device 15, and an air preheater 16 provided at the subsequent stage of the gas component measuring device 2 are provided. The air preheater 16 is provided with a suction ventilator (IDF: Induced Draft Fan) at the outlet portion. Thus, the air preheater 16, so that the exhaust flue gases G 1 of the flue 13 toward the chimney 12 disposed downstream, the flue 13 has a negative pressure.

アンモニア注入装置14は、燃焼排ガスG中にアンモニア(NH)などの還元剤を供給する。脱硝装置15は、煙道13内に設置された区画された脱硝触媒151を備える。この脱硝触媒151を介して燃焼排ガスGに供給された還元剤によって燃焼排ガスG中の窒素酸化物(NOx)が還元されて燃焼排ガスGが脱硝される。 The ammonia injection device 14 supplies a reducing agent such as ammonia (NH 3 ) into the combustion exhaust gas G 1 . The denitration device 15 includes a partitioned denitration catalyst 151 installed in the flue 13. The through denitration catalyst 151 nitrogen oxides in the combustion exhaust gas G 1 by the supplied reducing agent to the combustion exhaust gas G 1 (NOx) is reduced flue gas G 1 is the denitrification.

ガス成分測定装置2は、脱硝触媒151の後段に配置された複数の送光筒(送光部材)21を備える。ガス成分測定装置2は、送光筒21を介して燃焼排ガスGにレーザ光を照射することにより燃焼排ガスG中のガス成分(NH3、NOx)濃度分布を計測する。ガス成分測定装置2によるガス成分濃度分布の測定結果は、制御装置20に伝達される。制御装置20は、例えば、コンピュータであり、CPU、CPUが実行するプログラム等を記憶するためのROM(Read Only Memory)、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)、大容量記憶装置としてのハードディスクドライブ(HDD)、通信ネットワークに接続するための通信インターフェース、及び外部記憶装置が装着されるアクセス部などを備えている。これら各部は、バスを介して接続されている。更に、制御装置20は、キーボードやマウス等からなる入力部及びデータを表示する液晶表示装置等からなる表示部などと接続されていてもよい。制御装置20は、ガス成分濃度分布の測定結果に基づいてアンモニア注入装置14からのアンモニア注入量を制御する。 The gas component measuring device 2 includes a plurality of light transmission tubes (light transmission members) 21 arranged at the subsequent stage of the denitration catalyst 151. The gas component measuring device 2 measures the gas component (NH 3 , NOx) concentration distribution in the combustion exhaust gas G 1 by irradiating the combustion exhaust gas G 1 with laser light via the light transmission cylinder 21. The measurement result of the gas component concentration distribution by the gas component measuring device 2 is transmitted to the control device 20. The control device 20 is, for example, a computer, a CPU, a ROM (Read Only Memory) for storing a program executed by the CPU, a RAM (Random Access Memory) functioning as a work area when executing each program, a large capacity It includes a hard disk drive (HDD) as a storage device, a communication interface for connecting to a communication network, and an access unit to which an external storage device is mounted. These units are connected via a bus. Furthermore, the control device 20 may be connected to an input unit such as a keyboard and a mouse and a display unit including a liquid crystal display device that displays data. The control device 20 controls the ammonia injection amount from the ammonia injection device 14 based on the measurement result of the gas component concentration distribution.

図2は、ガス成分測定装置2の概略図である。なお、図2においては、煙道13内の燃焼排ガスGの流れ方向に対する垂直断面を示している。図2に示すように、ガス成分測定装置2は、煙道13の外部に設けられ、送光筒21内にレーザ光Lを送光するレーザ発光部22と、煙道13の外部に設けられ、レーザ発光部22から送光筒21に送光されたレーザ光Lを受光するレーザ受光部23とを備える。レーザ発光部22は、燃焼排ガスG中のアンモニア(NH)濃度を計測する場合には、半導体レーザ(半導体素子:InGaAs、波長:1.5μm、出力:1mW程度)をレーザ光Lとして照射する。レーザ発光部22から照射されたレーザ光Lは、送光筒21内にレーザ光Lを送光する送光ユニット24内に設けられた送光反射部241によって順次反射されて9本の送光筒21内に送光される。送光筒21内に送光されたレーザ光Lは、送光筒21から送光されたレーザ光Lを受光する受光ユニット25内の受光反射部251によって順次反射されてレーザ受光部23に向けて送光される。送光ユニット24内及び受光ユニット25内にはそれぞれパージガスGが供給される。このパージガスGを供給することにより、送光筒21内への燃焼排ガスGの侵入を防ぐことが可能となる。 FIG. 2 is a schematic diagram of the gas component measuring apparatus 2. In FIG. 2 shows a section orthogonal to the flow direction the combustion exhaust gas G 1 in the flue 13. As shown in FIG. 2, the gas component measuring device 2 is provided outside the flue 13, and is provided outside the flue 13, and a laser light emitting unit 22 that sends the laser light L into the light sending tube 21. And a laser light receiving unit 23 that receives the laser light L transmitted from the laser light emitting unit 22 to the light transmission tube 21. When measuring the ammonia (NH 3 ) concentration in the combustion exhaust gas G 1 , the laser emission unit 22 irradiates a semiconductor laser (semiconductor element: InGaAs, wavelength: 1.5 μm, output: about 1 mW) as laser light L. To do. The laser light L emitted from the laser light emitting unit 22 is sequentially reflected by a light transmission reflection unit 241 provided in a light transmission unit 24 that transmits the laser light L into the light transmission cylinder 21, so that nine light transmissions are performed. Light is transmitted into the tube 21. The laser light L transmitted into the light transmission tube 21 is sequentially reflected by the light receiving / reflecting unit 251 in the light receiving unit 25 that receives the laser light L transmitted from the light transmitting tube 21 toward the laser light receiving unit 23. Is transmitted. A purge gas G 2 is supplied into the light transmitting unit 24 and the light receiving unit 25. By supplying the purge gas G 2 , it is possible to prevent the combustion exhaust gas G 1 from entering the light transmission cylinder 21.

また、ガス成分測定装置2は、9つの区画P〜Pに分割された煙道13内に平行に配置された3つのプローブ21A〜21Cを備える。3つのプローブ21A〜21Cは、それぞれ3つの送光筒21を備える。本実施の形態では、プローブ21Aは、区画P〜Pに配置され、プローブ21Bは、区画P〜Pに配置され、プローブ21Cは、区画P〜Pに配置される。送光筒21は、煙道13内でそれぞれ送光側送光筒(送光側送光部材)211と受光側送光筒(受光側送光部材)212とに区切られ、この区切られた区間が測定領域Zとなる。プローブ21Aの3つの送光筒21は、区画P〜P内の測定領域Zの燃焼排ガスGのガス成分をそれぞれ分析し、プローブ21Bの3つの送光筒21は、区画P〜Pの測定領域Zの燃焼排ガスGのガス成分をそれぞれ分析し、プローブ21Cの3つの送光筒21は、区画P〜Pの測定領域Zの燃焼排ガスGのガス成分をそれぞれ分析する。なお、図2においては,9区画であるが,これに捉われるものではなく、測定領域Zは、例えば、ダクトの大きさ、形状、及び煤塵濃度など排ガス性状によりフレキシブルに設定される。 The gas component measurement device 2 includes three probes 21A to 21C arranged in parallel in the flue 13 divided into nine sections P 1 to P 9 . Each of the three probes 21A to 21C includes three light transmission tubes 21. In this embodiment, the probe 21A is located in a compartment P 1 to P 3, the probe 21B is arranged in a compartment P 4 to P 6, probe 21C is disposed in a compartment P 7 to P 9. The light transmission tube 21 is divided into a light transmission side light transmission tube (light transmission side light transmission member) 211 and a light reception side light transmission tube (light reception side light transmission member) 212 in the flue 13, respectively. The section becomes the measurement region Z. Three light-sending tube 21 of the probe 21A is a gas component of the combustion exhaust gas G 1 of the measurement region Z in the compartment P 1 to P 3 each analyzed, three light-sending tube 21 of the probe 21B is partitioned P 4 ~ the gas components of the combustion exhaust gas G 1 of the measurement region Z of P 6 and analyzed respectively, the three light-sending tube 21 of the probe 21C, respectively gaseous components of the combustion exhaust gas G 1 of the measurement region Z of the partition P 7 to P 9 analyse. In FIG. 2, although there are nine sections, this is not restrictive, and the measurement region Z is set flexibly depending on the exhaust gas properties such as the size, shape, and dust concentration of the duct.

図3は、ガス成分測定装置のプローブ21Aの模式的な斜視図である。なお、図3においては、送光ユニット24及び受光ユニット25を省略して示している。なお、プローブ21B及びプローブ21Cも同様の構成を有する。   FIG. 3 is a schematic perspective view of the probe 21A of the gas component measuring device. In FIG. 3, the light transmitting unit 24 and the light receiving unit 25 are omitted. The probe 21B and the probe 21C have the same configuration.

図3に示すように、プローブ21Aは、レーザ光Lが通過する中空の送光筒21を備える。この送光筒21は、煙道13内で送光側送光筒211と受光側送光筒212とに測定領域Zを介して区切られている。送光筒21に送光されたレーザ光Lは、測定領域Zを介して送光側送光筒211から受光側送光筒212に送光される。このとき、レーザ光Lは、燃焼排ガスGが流れる測定領域Zを介して送光されるので、燃焼排ガスG中のアンモニアなどの成分をレーザ光Lによって測定することができる。この測定領域Zは、例えば、レーザ光路長を1mとした場合に1mの区間である。 As shown in FIG. 3, the probe 21 </ b> A includes a hollow light transmission tube 21 through which the laser light L passes. The light transmission cylinder 21 is divided into a light transmission side light transmission cylinder 211 and a light reception side light transmission cylinder 212 through the measurement region Z in the flue 13. The laser light L transmitted to the light transmission tube 21 is transmitted from the light transmission side light transmission tube 211 to the light reception side light transmission tube 212 through the measurement region Z. At this time, since the laser light L is transmitted through the measurement region Z through which the combustion exhaust gas G 1 flows, components such as ammonia in the combustion exhaust gas G 1 can be measured by the laser light L. This measurement region Z is, for example, a 1 m section where the laser optical path length is 1 m.

次に、本実施の形態に係る濃度分布測定の原理について説明する。図4は、本実施の形態に係るガス成分測定装置における測定原理の概念図である。本実施の形態に係るガス成分測定装置においては、レーザ光の光強度と測定対象物質の濃度との関係を示す関係式であるランベルト・ベール(Lambert−Beer)の法則を用いた吸光分光分析により、燃焼排ガスG中の測定対象物質であるアンモニアなどの濃度を測定する。図5に、本実施の形態に係るガス成分測定装置における吸収分光計測の透過光強度と透過光の波長との関係の一例を示す。 Next, the principle of concentration distribution measurement according to this embodiment will be described. FIG. 4 is a conceptual diagram of the measurement principle in the gas component measurement device according to the present embodiment. In the gas component measuring apparatus according to the present embodiment, by spectroscopic analysis using the Lambert-Beer law, which is a relational expression showing the relationship between the light intensity of the laser beam and the concentration of the substance to be measured. , measuring the concentration of such as ammonia as the measurement substance in the combustion exhaust gas G 1. FIG. 5 shows an example of the relationship between the transmitted light intensity and the wavelength of transmitted light in absorption spectroscopy measurement in the gas component measuring apparatus according to the present embodiment.

ランベルト・ベールの法則では、図4に示すように、送光ユニット24側の送光点P1と受光ユニット25側の受光点P2との間のレーザ光Lの経路の測定領域Zと、レーザ光の照射強度Iと、レーザ光の受光強度I(L)と、距離X中に存在する測定対象(アンモニア)濃度Cとの間に下記式(1)の関係が成立する。
I(L)=Iexp(−kCX) ……(1)
(式(1)中、kは、測定対象物質の吸光度に応じて設定される比例係数である。)
In the Lambert-Beer law, as shown in FIG. 4, the measurement region Z of the path of the laser light L between the light transmission point P1 on the light transmission unit 24 side and the light reception point P2 on the light reception unit 25 side, and the laser light The relationship of the following formula (1) is established between the irradiation intensity I 0 of the laser beam, the received light intensity I (L) of the laser beam, and the measurement target (ammonia) concentration C 0 existing in the distance X.
I (L) = I 0 exp (−kC 0 X) (1)
(In formula (1), k is a proportionality coefficient set according to the absorbance of the substance to be measured.)

また、測定対象物質の濃度を測定する測定領域Zにおける濃度平均値Cと、測定領域Zにおけるレーザ経路の距離Xとすると、上記式(1)は、下記式(2)のように表すことができる。ここで、予め設定されたレーザ経路ごとにレーザ光を照射する際、測定領域Zにおけるレーザ経路の距離X、レーザ光の照射強度I及びレーザ光の受光強度I(L)は既知であるので、上記式(2)を用いることにより、測定領域における測定対象物質の濃度平均値Cを算出できる。
I(L)=Iexp(−kC) ……(2)
Further, when the concentration average value C 1 in the measurement region Z for measuring the concentration of the measurement target substance and the laser path distance X 1 in the measurement region Z, the above equation (1) is expressed as the following equation (2). be able to. Here, when the laser beam is irradiated for each preset laser path, the laser path distance X 1 in the measurement region Z, the laser beam irradiation intensity I 0, and the laser beam reception intensity I (L) are known. since, by using the above equation (2) can be calculated the density average value C 1 of the measuring object in the measurement region.
I (L) = I 0 exp (−kC 1 X 1 ) (2)

次に、本実施の形態に係るガス成分測定装置2の送光筒21の構成について詳細に説明する。図6は、本実施の形態に係るガス成分測定装置2の送光筒21の断面模式図である。図6に示すように、送光側送光筒211は、概して一端部が竹槍状に尖った円筒形状を有しており、竹槍状に尖った一端側が測定領域Zとなる煙道13内に向けて配置される。また、送光側送光筒211は、燃焼排ガスGのガス流れ方向における上流側である上端側211aが下端側を覆うように配置される。このように配置することにより、燃焼排ガスGに含まれる煤塵の送光側送光筒211内への侵入を防ぐことができる。 Next, the configuration of the light transmission tube 21 of the gas component measurement device 2 according to the present embodiment will be described in detail. FIG. 6 is a schematic cross-sectional view of the light transmission tube 21 of the gas component measurement device 2 according to the present embodiment. As shown in FIG. 6, the light transmission side light transmission tube 211 generally has a cylindrical shape with one end pointed like a bamboo basket, and one end side sharpened like a bamboo basket is inside the flue 13 where the measurement region Z is formed. Placed. Also, sending-side light-sending tube 211, the upper end 211a of the upstream side in the gas flow direction of the combustion exhaust gas G 1 is arranged to cover the lower end side. This By arranging so, can be prevented from entering into the combustion exhaust gas G 1 feeding of dust contained in the light side sending cylinder 211.

送光側送光筒211は、他端側がフランジ31を介して煙道13の壁面に固定されている。このフランジ31には、概略円筒形状のレーザビーム窓32が接続されている。このレーザビーム窓32の内部には、レーザビーム窓32の内部と外部との間のガスの出入りを遮断するシール用光学ガラス33が配置されている。シール用光学ガラス33の受光面は、レーザ光の反射を防止するため、レーザ光の光路に対して垂直ではなく斜めに形成されてもよい。   The other end side of the light transmission side light transmission cylinder 211 is fixed to the wall surface of the flue 13 via the flange 31. A laser beam window 32 having a substantially cylindrical shape is connected to the flange 31. Inside the laser beam window 32, a sealing optical glass 33 is disposed to block gas in and out between the inside and outside of the laser beam window 32. The light receiving surface of the sealing optical glass 33 may be formed obliquely rather than perpendicular to the optical path of the laser beam in order to prevent reflection of the laser beam.

レーザビーム窓32には、シール用光学ガラス33を挟んで一対の通気孔34が設けられている。この一対の通気孔34からパージガスGが送光側送光筒211内に吹き出すことによって、シール用光学ガラス33への燃焼排ガスG中の煤塵などの物質の付着を防止できる。また、送光側送光筒211内にパージガスGが充満することで、測定領域Z内から送光側送光筒211内への燃焼排ガスGの流入を防止できる。なお、通気孔34は、必ずしもシール用光学ガラス33を挟んで設ける必要はなく、シール用光学ガラス33に対して測定領域Z側に設ければよい。 The laser beam window 32 is provided with a pair of vent holes 34 with a sealing optical glass 33 interposed therebetween. By blowing from the pair of vent holes 34 into the purge gas G 2 is sending-side sending tube 211, can prevent adhesion of materials such as dust in the combustion exhaust gas G in 1 to sealing optical glass 33. In addition, by purge gas G 2 to the light-sending side sending cylinder 211 is filled, it is possible to prevent the inflow of the combustion exhaust gas G 1 to the sending-side sending cylinder 211 from the measurement region Z. The vent hole 34 is not necessarily provided with the optical glass 33 for sealing interposed therebetween, and may be provided on the measurement region Z side with respect to the optical glass 33 for sealing.

送光側送光筒211の一端部には、測定領域Z内からの送光側送光筒211内部への燃焼排ガスGの侵入を防ぐ透光板26が配置される。透光板26は、レーザ光Lを透過する透光性を有すると共に、燃焼排ガスGに対する耐久性を有する部材であれば特に制限はなく、各種ガラス部材などを用いることができる。これらのガラス部材の中でも、表面への傷及び燃焼排ガスG中の煤塵の付着を防ぐ観点から、サファイアガラス又は石英を用いることが好ましく、サファイアガラスを用いることがより好ましい。 At one end of the sending-side sending tube 211, the transparent plate 26 to prevent the intrusion combustion exhaust gas G 1 to the interior light side sending tube 211 feeding from the measurement region Z is placed. Transparent plate 26, with a light-transmitting transmits the laser beam L, not particularly limited as long as it is a member having a resistance to the combustion exhaust gas G 1, and various glass member can be used. Among these glass member, from the standpoint of preventing scratches and adhesion of dust in the combustion exhaust gas G 1 to the surface, it is preferable to use a sapphire glass or quartz, it is more preferable to use a sapphire glass.

透光板26は、支持部材27を介して送光側送光筒211内に固定される。この支持部材27の測定領域Z側の一端部には、送光側送光筒211内から測定領域Z側に向けて流れるパージガスGを透光板26の表面に向けて導いて流す整流部材28が設けられている。 The translucent plate 26 is fixed in the light transmission side light transmission tube 211 via the support member 27. At one end of the measurement region Z side of the support member 27, the rectifying member for flowing a purge gas G 2 flows toward the measurement region Z side from the sending-side sending tube within 211 guided toward the surface of the transparent plate 26 28 is provided.

受光側受光筒212は、概して一端部が竹槍状に尖った円筒形状を有しており、竹槍状に尖った一端側が測定領域Zとなる煙道13内に向けて配置される。また、受光側送光筒212は、燃焼排ガスGのガス流れ方向における上流側である上端212b側が下端側を覆うように配置される。このように配置することにより、燃焼排ガスGに含まれる煤塵の受光側送光筒212内への侵入を防ぐことができる。 The light-receiving side light-receiving tube 212 has a cylindrical shape with one end generally pointed in a bamboo basket shape, and one end side sharpened in a bamboo basket shape is arranged toward the flue 13 serving as the measurement region Z. The light-receiving side light-sending tube 212 has an upper end 212b side is disposed so as to cover the lower side is the upstream side in the gas flow direction of the combustion exhaust gas G 1. With this arrangement, it is possible to prevent from entering the light-receiving side light-sending tube 212 of the dust contained in the combustion exhaust gas G 1.

受光側送光筒212は、他端側がフランジ31を介して煙道13の壁面に固定されている。このフランジ31には、概略円筒形状のレーザビーム窓32が接続されている。このレーザビーム窓32の内部には、レーザビーム窓32の内部と外部との間のガスの出入りを遮断するシール用光学ガラス33が配置されている。シール用光学ガラス33の受光面は、レーザ光の反射を防止するため、レーザ光の光路に対して垂直ではなく斜めに形成されてもよい。   The other end of the light-receiving side light transmission tube 212 is fixed to the wall surface of the flue 13 via the flange 31. A laser beam window 32 having a substantially cylindrical shape is connected to the flange 31. Inside the laser beam window 32, a sealing optical glass 33 is disposed to block gas in and out between the inside and outside of the laser beam window 32. The light receiving surface of the sealing optical glass 33 may be formed obliquely rather than perpendicular to the optical path of the laser beam in order to prevent reflection of the laser beam.

レーザビーム窓32には、シール用光学ガラス33を挟んで一対の通気孔34が設けられている。この一対の通気孔34からパージガスGが受光側送光筒212内に吹き出すことによって、シール用光学ガラス33への燃焼排ガスG中の煤塵などの物質の付着を防止できる。また、受光側送光筒212内にパージガスGが充満することで、測定領域Z内から受光側送光筒212内への燃焼排ガスGの流入を防止できる。なお、通気孔34は、必ずしもシール用光学ガラス33を挟んで設ける必要はなく、シール用光学ガラス33に対して測定領域Z側に設ければよい。 The laser beam window 32 is provided with a pair of vent holes 34 with a sealing optical glass 33 interposed therebetween. By blowing from the pair of vent holes 34 into the purge gas G 2 is the light-receiving side light-sending pipe 212, thereby preventing the adhesion of materials such as dust in the combustion exhaust gas G in 1 to sealing optical glass 33. Further, the purge gas G 2 is filled in the light receiving side light transmitting cylinder 212, so that the inflow of the combustion exhaust gas G 1 from the measurement region Z into the light receiving side light transmitting cylinder 212 can be prevented. The vent hole 34 is not necessarily provided with the optical glass 33 for sealing interposed therebetween, and may be provided on the measurement region Z side with respect to the optical glass 33 for sealing.

受光側送光筒212の一端部には、測定領域Z内からの受光側送光筒212内部への燃焼排ガスGの侵入を防ぐ透光板26が配置される。透光板26は、レーザ光Lを透過する透光性を有すると共に、燃焼排ガスGに対する耐久性を有する部材であれば特に制限はなく、各種ガラス部材などを用いることができる。これらのガラス部材の中でも、表面への傷及び燃焼排ガスG中の煤塵の付着を防ぐ観点から、サファイアガラスを用いることが好ましい。 At one end of the light-receiving side light-sending pipe 212, the transparent plate 26 is disposed to prevent the intrusion combustion exhaust gas G 1 to the internal light-receiving side light-sending pipe 212 from the measurement region Z. Transparent plate 26, with a light-transmitting transmits the laser beam L, not particularly limited as long as it is a member having a resistance to the combustion exhaust gas G 1, and various glass member can be used. Among these glass member, from the viewpoint of preventing adhesion of dust scratches and combustion gas G in 1 to the surface, it is preferable to use a sapphire glass.

透光板26は、支持部材27を介して受光側送光筒212内に固定される。この支持部材27の測定領域Z側の一端部には、受光側送光筒212内から測定領域Z側に向けて流れるパージガスGを透光板26の表面に向けて流す整流部材28が設けられている。 The light transmitting plate 26 is fixed in the light receiving side light transmitting tube 212 via the support member 27. At one end of the support member 27 on the measurement region Z side, a rectifying member 28 is provided for flowing the purge gas G 2 flowing from the light receiving side light transmission tube 212 toward the measurement region Z side toward the surface of the light transmitting plate 26. It has been.

図7Aは、図6のA−A線矢視断面図であり、図7Bは、図6のB−B線矢視断面図である。図7A及び図7Bに示すように、送光側送光筒211及び受光側送光筒212内に配置される透光板26は、平面視にて略円形形状を有しており、直径が送光側送光筒211及び受光側送光筒212の内径に対して小さい。また、透光板26は、支持部材27によって互いに中心を通過する直交する直線上の外縁部で2箇所ずつ、合計4箇所で送光側送光筒211及び受光側送光筒212内に固定されている。これにより、透光板26の外縁部と送光側送光筒211及び受光側送光筒212の内壁との間には所定の空間(スリット)Sが設けられる。この空間Sが送光側送光筒211及び受光側送光筒212内からのパージガスGの通気孔となる。 7A is a cross-sectional view taken along line AA in FIG. 6, and FIG. 7B is a cross-sectional view taken along line BB in FIG. 6. As shown in FIGS. 7A and 7B, the translucent plate 26 disposed in the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212 has a substantially circular shape in a plan view and has a diameter. It is smaller than the inner diameters of the light transmission side light transmission cylinder 211 and the light reception side light transmission cylinder 212. The translucent plate 26 is fixed in the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212 by a support member 27 at two positions on the outer edges of the orthogonal straight lines passing through the center of each other, for a total of four positions. Has been. Thus, a predetermined space (slit) S is provided between the outer edge portion of the light transmitting plate 26 and the inner walls of the light transmission side light transmission tube 211 and the light reception side light transmission tube 212. This space S becomes a vent hole for the purge gas G 2 from the light transmission side light transmission cylinder 211 and the light reception side light transmission cylinder 212.

図8Aは、送光側送光筒211の先端部の部分拡大図であり、図8Bは、受光側送光筒212の先端部の部分拡大図である。図8A及び図8Bに示すように、送光側送光筒211及び受光側送光筒212の先端部では、透光板26の測定領域Z側の表面との間で所定の間隔Dをとって整流部材28が配置されている。このように整流部材28を配置することにより、送光側送光筒211及び受光側送光筒212内から供給されたパージガスGが、透光板26と送光側送光筒211及び受光側送光筒212との間の空間Sを介して透光板26を通過し、整流部材28によって透光板26の表面に沿って流れる。これにより、透光板26の測定領域Z側の表面に燃焼排ガスG中の煤塵が付着した場合であっても、透光板26の表面に沿って流れるパージガスGにより、透光板26の表面を清浄に保つことができる。 8A is a partially enlarged view of the distal end portion of the light transmitting side light transmitting cylinder 211, and FIG. 8B is a partially enlarged view of the distal end portion of the light receiving side light transmitting cylinder 212. As shown in FIGS. 8A and 8B, a predetermined distance D is provided between the front end portions of the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212 and the surface of the translucent plate 26 on the measurement region Z side. The rectifying member 28 is arranged. By disposing such a rectifying member 28, purge gas G 2 which is supplied from the sending side sending tube 211 and the light receiving side sending tube inside 212, the transparent plate 26 and the sending-side light-sending tube 211 and the light The light passes through the translucent plate 26 via the space S between the side light transmission tube 212 and flows along the surface of the translucent plate 26 by the rectifying member 28. Thereby, even if the dust in the combustion exhaust gas G 1 adheres to the surface of the translucent plate 26 on the measurement region Z side, the translucent plate 26 is caused by the purge gas G 2 flowing along the surface of the translucent plate 26. Can keep the surface clean.

以上説明したように、本実施の形態に係るガス成分測定装置2によれば、送光側送光筒211及び受光側送光筒212に設けた透光板26により送光側送光筒211内及び受光側送光筒212内への燃焼排ガスG中の煤塵の侵入を防ぐことができる。これにより、ガス成分測定装置2は、送光側送光筒211内及び受光側送光筒212内から測定領域Zに向けたパージガスGの供給量を削減することができるので、計装空気のユーティリティー確保を容易にすることが可能なガス成分測定装置2を実現することが可能となる。 As described above, according to the gas component measuring apparatus 2 according to the present embodiment, the light transmission side light transmission tube 211 is provided by the light transmitting plate 26 provided on the light transmission side light transmission tube 211 and the light reception side light transmission tube 212. it is possible to prevent the inner and dust from entering in the combustion exhaust gas G 1 to the light receiving side light-sending tube 212. Thus, the gas component measuring apparatus 2, it is possible to reduce the supply amount of the purge gas G 2 toward the measurement region Z from the sending-side light-sending tube 211 and the light receiving side sending tube within 212, instrument air It is possible to realize the gas component measuring apparatus 2 that can easily secure the utility.

なお、上述した実施の形態においては、送光筒21の送光側送光筒211と受光側送光筒212とが離間して設けられた例について説明したが、送光筒21の構成は、この構成に限定されない。送光筒21は、図9に示すように、送光側送光筒211の一端側の上端211aと受光側送光筒212の上端212bとが接触して配置してもよい。このように配置することにより、送光側送光筒211の上端211aと受光側送光筒212の上端212bによって燃焼排ガスGのガス流れ方向の下流側を覆うことができるので、より一層送光側送光筒211内及び受光側送光筒212内への燃焼排ガスG中の煤塵の侵入を防ぐことができる。さらに、送光筒21の構成は、送光側送光筒211と受光側送光筒212とを一体として設けて所望の部分の送光筒21のガス流れ方向における下方側を切り欠いて測定領域Zを設けた構成としてもよい。 In the above-described embodiment, the example in which the light transmission side light transmission tube 211 and the light reception side light transmission tube 212 of the light transmission tube 21 are provided apart from each other has been described. However, the configuration of the light transmission tube 21 is as follows. The configuration is not limited to this. As shown in FIG. 9, the light transmission tube 21 may be arranged such that the upper end 211 a on one end side of the light transmission side light transmission tube 211 and the upper end 212 b of the light reception side light transmission tube 212 are in contact with each other. With this arrangement, it is possible by the upper end 212b of the upper end 211a and the light receiving side light-sending pipe 212 of the sending-side sending tube 211 covers the downstream side of the gas flow direction the combustion exhaust gas G 1, feeding more it is possible to prevent dust from entering in the combustion exhaust gas G 1 to the light side sending cylinder and the receiving side sending barrel 212 211. Further, the configuration of the light transmission cylinder 21 is measured by providing a light transmission side light transmission cylinder 211 and a light reception side light transmission cylinder 212 as a single unit, and cutting out the lower side of the desired part of the light transmission cylinder 21 in the gas flow direction. It is good also as a structure which provided the area | region Z.

また、上述した実施の形態においては、送光筒21、送光側送光筒211及び受光側送光筒212が筒状部材である例について説明したが、送光筒21、送光側送光筒211及び受光側送光筒212は筒状部材に限定されず、レーザ光Lを送光できるものであれば形状は適宜変更可能である。   In the above-described embodiment, an example in which the light transmission tube 21, the light transmission side light transmission tube 211, and the light reception side light transmission tube 212 are cylindrical members has been described. The light tube 211 and the light-receiving side light-transmitting tube 212 are not limited to cylindrical members, and the shapes can be appropriately changed as long as the laser light L can be transmitted.

さらに、上述した実施の形態においては、透光板26の表面に帯電防止加工を施してもよい。これにより、透光板26の表面に付着する煤塵の電荷を除去することができるので、より一層透光板26の表面への煤塵の付着を防止できる。また、透光板26は、表面が疎水加工を施してもよい。これにより、透光板26への水分を介した煤塵の付着を防止することができる。   Further, in the above-described embodiment, the surface of the translucent plate 26 may be subjected to antistatic processing. Thereby, since the electric charge of the dust adhering to the surface of the light transmission board 26 can be removed, the adhesion of the dust to the surface of the light transmission board 26 can be prevented further. Moreover, the surface of the translucent plate 26 may be subjected to hydrophobic processing. Thereby, it is possible to prevent dust from adhering to the translucent plate 26 through moisture.

(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following, differences from the first embodiment described above will be mainly described to avoid duplication of description.

図10は、本発明の第2の実施の形態に係るガス成分測定装置2の送光筒21の断面模式図である。本実施の形態に係るガス成分測定装置2は、上述した第1の実施の形態に係るガス成分測定装置2の構成に加えて、送光側送光筒211及び受光側送光筒212に設けられた集塵極29を備える。集塵極29は、透光板26の表面にコロナ放電を発生させて透光板26の表面に付着した煤塵を剥離落下させる。その他の構成については、図6に示した送光筒21と同一のため説明を省略する。   FIG. 10 is a schematic cross-sectional view of the light transmission tube 21 of the gas component measurement device 2 according to the second embodiment of the present invention. The gas component measurement device 2 according to the present embodiment is provided in the light transmission side light transmission tube 211 and the light reception side light transmission tube 212 in addition to the configuration of the gas component measurement device 2 according to the first embodiment described above. The dust collecting electrode 29 is provided. The dust collection electrode 29 generates corona discharge on the surface of the translucent plate 26 and peels and drops the dust attached to the surface of the translucent plate 26. The other configuration is the same as that of the light transmission tube 21 shown in FIG.

本実施の形態においては、集塵極29は、送光側送光筒211及び受光側送光筒212の先端部における上端211a,212b部の内壁側に設けられる。このように配置することにより、透光板26に対するガス流れ方向の上流側からコロナ放電させて帯電した煤塵を効率良く捕集することができるので、透光板26の表面に付着した煤塵を効率良く剥離落下させることが可能となる。その他の構成については、上述した第1の実施の形態に係るガス成分測定装置1と同様であるため説明を省略する。   In the present embodiment, the dust collecting electrode 29 is provided on the inner wall side of the upper ends 211 a and 212 b at the distal end portions of the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212. By arranging in this way, the dust that has been charged by corona discharge from the upstream side in the gas flow direction with respect to the translucent plate 26 can be efficiently collected, so that the dust that has adhered to the surface of the translucent plate 26 can be efficiently collected. It is possible to peel and drop well. Since other configurations are the same as those of the gas component measuring apparatus 1 according to the first embodiment described above, description thereof is omitted.

なお、集塵極29は、送光側送光筒211及び受光側送光筒212の先端部における上端211a,212b部の内壁に設ける必要はなく、例えば、透光板26よりレーザビーム窓32側の送光側送光筒211及び受光側送光筒212内に配置してもよい。   The dust collecting electrode 29 does not need to be provided on the inner walls of the upper ends 211 a and 212 b at the distal end portions of the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212. The light transmission side light transmission tube 211 and the light reception side light transmission tube 212 may be disposed.

このように、本実施の形態によれば、集塵極29から放出された電子によってイオンを発生させて透光板26の表面の静電気を中和させることができるので、より一層効率良く透光板26の表面への煤塵の付着を防ぐことが可能となる。   As described above, according to the present embodiment, ions can be generated by the electrons emitted from the dust collecting electrode 29 to neutralize the static electricity on the surface of the translucent plate 26, so that the translucent light can be more efficiently transmitted. It is possible to prevent dust from adhering to the surface of the plate 26.

(第3の実施の形態)
次に、本発明の第3の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the following, differences from the first embodiment described above will be mainly described to avoid duplication of description.

図11Aは、本発明の第3の実施の形態に係る送光側送光筒211の先端部の部分拡大図であり、図11Bは、本発明の第3の実施の形態に係る受光側送光筒212の先端部の部分拡大図である。図11A及び図11Bに示すように、本実施の形態に係るガス成分測定装置2は、上述した第1の実施の形態に係る送光筒21の構成に加えて、透光板26の測定領域Z側の表面に設けられた光触媒層30と、送光側送光筒211及び受光側送光筒212の先端部における上端211a,212b部に配置された紫外光照射部41とを備える。その他の構成については、図8A及び図8Bに示した送光側送光筒211及び受光側送光筒212と同一のため説明を省略する。   FIG. 11A is a partially enlarged view of the distal end portion of the light transmission side light transmission tube 211 according to the third embodiment of the present invention, and FIG. 11B is a light reception side transmission according to the third embodiment of the present invention. FIG. 4 is a partially enlarged view of a tip portion of a light tube 212. As shown in FIGS. 11A and 11B, the gas component measuring apparatus 2 according to the present embodiment includes a measurement region of the translucent plate 26 in addition to the configuration of the light transmission cylinder 21 according to the first embodiment described above. The photocatalyst layer 30 provided on the surface on the Z side, and the ultraviolet light irradiation unit 41 disposed at the upper ends 211a and 212b at the tip portions of the light transmission side light transmission tube 211 and the light reception side light transmission tube 212 are provided. The other configurations are the same as those of the light transmission side light transmission tube 211 and the light reception side light transmission tube 212 shown in FIGS.

光触媒層30は、酸化チタン(TiO)などの光触媒を含有する。紫外光照射部41は、透光板26に向けて紫外線を照射する。また、紫外光照射部41は、発光部24がガス成分分析用のレーザ光Lを発光していないときに透光板26に向けて紫外線の照射を開始し、発光ユニット24がガス成分分析用のレーザ光Lを発光するときには、透光板26に向けた紫外線の照射を停止する。これにより、光触媒層30に含まれる光触媒による酸化還元反応により透光板26に対する煤塵の付着を防ぐことができると共に、透光板26に煤塵が付着した場合であっても、透光板26に付着した炭化水素成分などの煤塵を効率良く除去することができる。 The photocatalyst layer 30 contains a photocatalyst such as titanium oxide (TiO 2 ). The ultraviolet light irradiation unit 41 irradiates the light transmitting plate 26 with ultraviolet light. The ultraviolet light irradiation unit 41 starts irradiation of ultraviolet rays toward the light transmitting plate 26 when the light emitting unit 24 is not emitting the laser light L for gas component analysis, and the light emitting unit 24 is used for gas component analysis. When the laser beam L is emitted, the irradiation of ultraviolet rays toward the light transmitting plate 26 is stopped. Thereby, it is possible to prevent the dust from adhering to the light transmitting plate 26 due to the oxidation-reduction reaction by the photocatalyst included in the photocatalyst layer 30, and even if the dust adheres to the light transmitting plate 26, Soot and dust such as adhering hydrocarbon components can be efficiently removed.

このように、本実施の形態によれば、透光板26の表面に付着した燃焼排ガスG中に含まれる煤塵を、光触媒を介した酸化還元反応によって分解して除去することが可能となる。 Thus, according to this embodiment, it is possible to the dust contained in the combustion exhaust gas G 1 attached to the surface of the transparent plate 26, is removed by decomposition by an oxidation-reduction reaction through the photocatalytic .

(第4の実施の形態)
次に、本発明の第4の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. In the following, differences from the first embodiment described above will be mainly described to avoid duplication of description.

図12は、本発明の第4の実施の形態に係るガス成分測定装置2の送光筒21の断面模式図である。図12に示すように、本実施の形態に係るガス成分測定装置2は、送光側送光筒211及び受光側送光筒212のそれぞれの通気孔34に外気Gを供給する外気供給ラインLを備える。この外気供給ラインLには、外気供給ラインLを流れる外気Gに含まれる水分、ミスト、塩、粉塵、煤塵を除塵するフィルタ42と、外気供給ラインLを流れる外気Gの流量を調整する流量調整弁Vとが設けられている。フィルタ42としては、外気G中の粉塵を除去できるものであれば特に制限はなく、例えば、HEPAフィルタなどを用いることができる。その他の構成については、図6に示した送光筒21と同一のため説明を省略する。 FIG. 12 is a schematic cross-sectional view of the light transmission tube 21 of the gas component measurement device 2 according to the fourth embodiment of the present invention. As shown in FIG. 12, the gas component measuring apparatus 2 according to the present embodiment has an outside air supply line that supplies outside air G 3 to the vent holes 34 of the light transmitting side light transmitting tube 211 and the light receiving side light transmitting tube 212. equipped with a L 1. The fresh air supply line L 1, the moisture contained in the outside air G 3 flowing outside air supply line L 1, mist, salt, dust, a filter 42 for dust removal a dust flow rate of the outside air G 3 flowing outside air supply line L 1 And a flow rate adjusting valve V for adjusting. The filter 42 is not particularly limited as long as it can remove the dust in the outside air G 3, for example, it can be used as the HEPA filter. The other configuration is the same as that of the light transmission tube 21 shown in FIG.

ボイラ装置1においては、脱硝装置15は、後段に設けられた空気予熱器16の出口に設けられた吸込通風機(IDF:Induced Draft Fan)により煙道13の内部が負圧(例えば、0.1kPa〜0.2kPa)となる。そこで、本実施の形態においては、通気孔34に外気供給ラインLを接続して外部から空気を供給することにより、パージガスGを用いることなく通気孔34から導入される外気Gによって透光板26への粉塵の付着を防ぐことが可能となる。なお、本実施の形態においては、外気に加えてオゾンを供給してもよい。また、透光板26は、必ずしも設ける必要はない。 In the boiler device 1, the denitration device 15 is configured such that the inside of the flue 13 has a negative pressure (for example, 0. 0 mm) by an intake draft fan (IDF) provided at an outlet of an air preheater 16 provided at a subsequent stage. 1 kPa to 0.2 kPa). Therefore, in this embodiment, by supplying air from the outside by connecting the fresh air supply line L 1 to the ventilation hole 34, permeable by the outside air G 3 to be introduced from the ventilation hole 34 without using the purge gas G 2 It is possible to prevent dust from adhering to the light plate 26. Note that in this embodiment, ozone may be supplied in addition to the outside air. Further, the light transmitting plate 26 is not necessarily provided.

このように、本実施の形態によれば、送光側送光筒211内及び受光側送光筒212内に外気Gを供給して送光側送光筒211内及び受光側送光筒212内への燃焼排ガスGの侵入を防ぐことができるので、パージガスGの供給量を削減することが可能となり、計装空気そのものの確保が困難な場合であってもガス成分を分析することが可能となる。 As described above, according to the present embodiment, the outside air G 3 is supplied into the light transmission side light transmission tube 211 and the light reception side light transmission tube 212, and the light transmission side light transmission tube 211 and the light reception side light transmission tube are supplied. it is possible to prevent the intrusion combustion exhaust gas G 1 into the 212, it is possible to reduce the supply amount of the purge gas G 2, even when securing instrumentation air itself is difficult to analyze the gas components It becomes possible.

1 ボイラ装置
11 ボイラ
12 煙突
13 煙道
14 アンモニア注入装置
15 脱硝装置
151 脱硝触媒
16 空気予熱器
2 ガス成分測定装置
20 制御装置
21 送光筒(送光部材)
21A,21B,21C プローブ
211 送光側送光筒(送光側送光部材)
212 受光側送光筒(受光側送光部材)
22 レーザ発光部
23 レーザ受光部
24 送光ユニット
241 送光反射部
25 受光ユニット
251 受光反射部
26 透光板
27 支持部材
28 整流部材
29 集塵極
30 光触媒層
31 フランジ
32 レーザービーム窓
33 シール用光学ガラス
34 通気孔
燃焼排ガス(排ガス)
パージガス
外気
L レーザ光
外気供給ライン
S 空間(通気孔)
V 流量調整弁
Z 測定領域
DESCRIPTION OF SYMBOLS 1 Boiler apparatus 11 Boiler 12 Chimney 13 Chimney 14 Ammonia injection apparatus 15 Denitration apparatus 151 Denitration catalyst 16 Air preheater 2 Gas component measuring apparatus 20 Control apparatus 21 Light transmission cylinder (light transmission member)
21A, 21B, 21C Probe 211 Light transmission side light transmission tube (light transmission side light transmission member)
212 Light Receiving Side Light Transmitting Tube (Light Receiving Side Light Transmitting Member)
DESCRIPTION OF SYMBOLS 22 Laser light emission part 23 Laser light-receiving part 24 Light transmission unit 241 Light transmission reflection part 25 Light reception unit 251 Light reception reflection part 26 Light transmission board 27 Support member 28 Rectification member 29 Dust collection electrode 30 Photocatalyst layer 31 Flange 32 Laser beam window 33 For sealing Optical glass 34 Ventilation hole G 1 Combustion exhaust gas (exhaust gas)
G 2 purge gas G 3 outside air L laser light L 1 outside air supply line S space (vent hole)
V Flow control valve Z Measurement area

Claims (12)

被測定ガスを分析するレーザ光を発光するレーザ発光部と、
前記レーザ光の光強度を検出するレーザ受光部と、
前記被測定ガスの流路内に配置され、前記レーザ発光部で発光したレーザ光を前記流路内に設けられた測定領域に向けて送光する送光側送光部材と、
前記被測定ガスの流路内に配置され、前記送光側送光部材から前記測定領域を介して送光された前記レーザ光を前記レーザ受光部に向けて送光する受光側送光部材と、
前記送光側送光部材及び前記受光側送光部材の少なくとも一方に設けられ、前記送光側送光部材内及び前記受光側送光部材内への被測定ガスの侵入を防ぐ透光板とを具備し、
前記透光板と前記送光側送光部材及び前記受光側送光部材との間に通気孔が設けられたことを特徴とする、ガス成分測定装置。
A laser emitting section for emitting laser light for analyzing the gas to be measured;
A laser receiving unit for detecting the light intensity of the laser beam;
A light transmitting side light transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light emitted from the laser light emitting unit toward a measurement region provided in the flow path;
A light-receiving-side light-transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light transmitted from the light-transmitting-side light-transmitting member through the measurement region toward the laser light-receiving unit; ,
A translucent plate that is provided on at least one of the light transmission side light transmission member and the light reception side light transmission member and prevents the measurement gas from entering the light transmission side light transmission member and the light reception side light transmission member; equipped with,
A gas component measuring apparatus, wherein a vent hole is provided between the light transmitting plate, the light transmitting side light transmitting member, and the light receiving side light transmitting member .
前記透光板が、サファイアガラス又は石英ガラスである、請求項1に記載のガス成分測定装置。   The gas component measuring apparatus according to claim 1, wherein the translucent plate is sapphire glass or quartz glass. 前記送光側送光部材及び前記受光側送光部材の少なくとも一方の内壁に、前記送光側送光部材内及び前記受光側送光部材内を流れる気体を前記透光板の表面に向けて導く整流部材が設けられた、請求項1又は請求項2に記載のガス成分測定装置。 On the inner wall of at least one of the light transmission side light transmission member and the light reception side light transmission member, the gas flowing in the light transmission side light transmission member and the light reception side light transmission member is directed toward the surface of the light transmitting plate. The gas component measuring device according to claim 1, wherein a rectifying member for guiding is provided. 被測定ガスを分析するレーザ光を発光するレーザ発光部と、
前記レーザ光の光強度を検出するレーザ受光部と、
前記被測定ガスの流路内に配置され、前記レーザ発光部で発光したレーザ光を前記流路内に設けられた測定領域に向けて送光する送光側送光部材と、
前記被測定ガスの流路内に配置され、前記送光側送光部材から前記測定領域を介して送光された前記レーザ光を前記レーザ受光部に向けて送光する受光側送光部材と、
前記送光側送光部材及び前記受光側送光部材の少なくとも一方に設けられ、前記送光側送光部材内及び前記受光側送光部材内への被測定ガスの侵入を防ぐ透光板とを具備し、
前記送光側送光部材及び前記受光側送光部材の少なくとも一方の内壁に、前記送光側送光部材内及び前記受光側送光部材内を流れる気体を前記透光板の表面に向けて導く整流部材が設けられたことを特徴とする、ガス成分測定装置。
A laser emitting section for emitting laser light for analyzing the gas to be measured;
A laser receiving unit for detecting the light intensity of the laser beam;
A light transmitting side light transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light emitted from the laser light emitting unit toward a measurement region provided in the flow path;
A light-receiving-side light-transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light transmitted from the light-transmitting-side light-transmitting member through the measurement region toward the laser light-receiving unit; ,
A translucent plate that is provided on at least one of the light transmission side light transmission member and the light reception side light transmission member and prevents the measurement gas from entering the light transmission side light transmission member and the light reception side light transmission member; Comprising
On the inner wall of at least one of the light transmission side light transmission member and the light reception side light transmission member, the gas flowing in the light transmission side light transmission member and the light reception side light transmission member is directed toward the surface of the light transmitting plate. A gas component measuring device , characterized in that a rectifying member is provided .
前記透光板は、表面が帯電防止加工されてなる、請求項1から請求項4のいずれか1項に記載のガス成分測定装置。   The gas component measuring device according to any one of claims 1 to 4, wherein a surface of the translucent plate is antistatic processed. 前記透光板は、表面が疎水加工されてなる、請求項1から請求項5のいずれか1項に記載のガス成分測定装置。   The gas component measuring device according to any one of claims 1 to 5, wherein the translucent plate has a hydrophobic surface. さらに、前記透光板の表面にコロナ放電する集塵極を備えた、請求項1から請求項6のいずれか1項に記載のガス成分測定装置。   Furthermore, the gas component measuring device of any one of Claim 1 to 6 provided with the dust collection electrode which corona discharges on the surface of the said translucent board. 前記集塵極は、前記送光側送光部材及び前記受光側送光部材内における前記測定領域側に設けられた、請求項7に記載のガス成分測定装置。   The gas component measuring device according to claim 7, wherein the dust collection electrode is provided on the measurement region side in the light transmission side light transmission member and the light reception side light transmission member. 前記透光板の表面に紫外光を照射する紫外光照射部を備え、
前記透光板の表面に光触媒層が設けられた、請求項1から請求項8のいずれか1項に記載のガス成分測定装置。
An ultraviolet light irradiation unit that irradiates the surface of the translucent plate with ultraviolet light,
The gas component measuring device according to any one of claims 1 to 8, wherein a photocatalyst layer is provided on a surface of the translucent plate.
前記紫外光照射部による前記透光板への紫外光の照射と、前記レーザ発光部からの前記レーザ光の前記透光板への照射とを切替える制御部を備えた、請求項9に記載のガス成分測定装置。   10. The control unit according to claim 9, further comprising: a control unit that switches between irradiation of the ultraviolet light to the light transmitting plate by the ultraviolet light irradiation unit and irradiation of the laser light from the laser light emitting unit to the light transmitting plate. Gas component measuring device. 被測定ガスを分析するレーザ光を発光するレーザ発光部と、
前記レーザ光の光強度を検出するレーザ受光部と、
前記被測定ガスの流路内に配置され、前記レーザ発光部で発光したレーザ光を前記流路内に設けられた測定領域に向けて送光する送光側送光部材と、
前記被測定ガスの流路内に配置され、前記送光側送光部材から前記測定領域を介して送光された前記レーザ光を前記レーザ受光部に向けて送光する受光側送光部材と、
前記送光側送光部材及び前記受光側送光部材の少なくとも一方に設けられ、前記送光側送光部材内及び前記受光側送光部材内への被測定ガスの侵入を防ぐ透光板とを具備し、
前記測定領域内の前記被測定ガスを排気して前記測定領域内を負圧にする排気部と、前記送光側送光部材内及び前記受光側送光部材内に外気を供給する外気供給ラインが設けられたことを特徴とする、ガス成分測定装置。
A laser emitting section for emitting laser light for analyzing the gas to be measured;
A laser receiving unit for detecting the light intensity of the laser beam;
A light transmitting side light transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light emitted from the laser light emitting unit toward a measurement region provided in the flow path;
A light-receiving-side light-transmitting member that is disposed in the flow path of the gas to be measured and transmits the laser light transmitted from the light-transmitting-side light-transmitting member through the measurement region toward the laser light-receiving unit; ,
A translucent plate that is provided on at least one of the light transmission side light transmission member and the light reception side light transmission member and prevents the measurement gas from entering the light transmission side light transmission member and the light reception side light transmission member; Comprising
An exhaust section for exhausting the gas to be measured in the measurement region to make the measurement region have a negative pressure; and an outside air supply line for supplying outside air into the light transmitting side light transmitting member and the light receiving side light transmitting member characterized in that is provided, the gas component measuring apparatus.
前記外気に含まれる水分及び煤塵を除去するフィルタを備えた、請求項11に記載のガス成分測定装置。   The gas component measuring apparatus according to claim 11, further comprising a filter that removes moisture and dust contained in the outside air.
JP2014210965A 2014-10-15 2014-10-15 Gas component measuring device Active JP6307409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210965A JP6307409B2 (en) 2014-10-15 2014-10-15 Gas component measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210965A JP6307409B2 (en) 2014-10-15 2014-10-15 Gas component measuring device

Publications (2)

Publication Number Publication Date
JP2016080480A JP2016080480A (en) 2016-05-16
JP6307409B2 true JP6307409B2 (en) 2018-04-04

Family

ID=55958315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210965A Active JP6307409B2 (en) 2014-10-15 2014-10-15 Gas component measuring device

Country Status (1)

Country Link
JP (1) JP6307409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545043B1 (en) 2021-10-13 2023-06-16 한국세라믹기술원 Performance test device for filter-type photocatalyst sample

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365874B2 (en) 2019-11-28 2023-10-20 Jfeスチール株式会社 How to operate an online gas analyzer, an electrostatic precipitator, and a desulfurization tower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111256U (en) * 1983-12-28 1985-07-27 日立プラント建設株式会社 Light transmission type dust concentration meter
JP2003315268A (en) * 2002-04-19 2003-11-06 Mitsubishi Electric Corp Dust detector
JP4566070B2 (en) * 2005-06-10 2010-10-20 トヨタ自動車株式会社 Exhaust gas analyzer
JP2007183366A (en) * 2006-01-05 2007-07-19 Pentax Corp Dust-proof light transmissive member, its application and imaging apparatus provided with the member
JP5423496B2 (en) * 2010-03-15 2014-02-19 富士電機株式会社 Laser gas analyzer
JP5972760B2 (en) * 2012-11-09 2016-08-17 三菱重工業株式会社 Exhaust gas denitration system, exhaust gas denitration device regeneration method, and exhaust gas denitration device catalyst replacement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545043B1 (en) 2021-10-13 2023-06-16 한국세라믹기술원 Performance test device for filter-type photocatalyst sample

Also Published As

Publication number Publication date
JP2016080480A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5972760B2 (en) Exhaust gas denitration system, exhaust gas denitration device regeneration method, and exhaust gas denitration device catalyst replacement method
EP3168604B1 (en) Device for measuring floating micro-organisms
JP6307409B2 (en) Gas component measuring device
JP6266127B2 (en) Clean air device and dust inspection method
JP5712564B2 (en) Virus detection apparatus and virus detection method
CN206788031U (en) Diaphragm type deep clean type flue gas analyzer
JP5964216B2 (en) Catalyst diagnosis system and method for exhaust gas denitration apparatus
JP2010236877A (en) Device and method for measurement of ammonia concentration in exhaust gas
CN114544450B (en) Waste gas on-line treatment monitoring system
KR20190084537A (en) Dust measuring apparatus
JP6000083B2 (en) Exhaust gas denitration system
CN211122432U (en) Particulate matter detector and detection system with same
JP6025504B2 (en) Gas component concentration measuring device in exhaust gas
JP2011002232A (en) Light transmission type analyzer
JP2013245951A (en) Concentration measuring device and denitrification device
CN106662528B (en) Analysis device and exhaust gas treatment device
JP5960030B2 (en) Gas component concentration multi-point measuring device in gas
JP2008215840A (en) Exhaust gas analyzer
KR20180106108A (en) Apparatus for measuring exhaust gas
JP2015127686A (en) Gas component concentration distribution measurement device and exhaust gas denitrification system
CN111307677A (en) Laser front scattering particulate matter monitoring device
JP5931557B2 (en) Concentration distribution measuring apparatus and concentration distribution measuring method
CN220071215U (en) Sliding arc plasma tail gas treatment device
JP2014115200A (en) Measuring apparatus for gas composition in gas using laser measurement
US10073014B2 (en) Exhaust gas sampling mechanism and exhaust gas analysis apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6307409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350