JP6271147B2 - Heat-resistant resin foam sheet and container - Google Patents

Heat-resistant resin foam sheet and container Download PDF

Info

Publication number
JP6271147B2
JP6271147B2 JP2013083670A JP2013083670A JP6271147B2 JP 6271147 B2 JP6271147 B2 JP 6271147B2 JP 2013083670 A JP2013083670 A JP 2013083670A JP 2013083670 A JP2013083670 A JP 2013083670A JP 6271147 B2 JP6271147 B2 JP 6271147B2
Authority
JP
Japan
Prior art keywords
mass
heat
resistant resin
foam sheet
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013083670A
Other languages
Japanese (ja)
Other versions
JP2014205761A (en
Inventor
山口 泰生
泰生 山口
和広 好岡
和広 好岡
雅史 塚田
雅史 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2013083670A priority Critical patent/JP6271147B2/en
Publication of JP2014205761A publication Critical patent/JP2014205761A/en
Application granted granted Critical
Publication of JP6271147B2 publication Critical patent/JP6271147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性と強度、成形性のバランスに優れ、特に電子レンジ用食品容器として好適に使用できる耐熱性樹脂発泡シートを提供する。   The present invention provides a heat-resistant resin foam sheet that is excellent in the balance between heat resistance, strength, and moldability, and that can be suitably used particularly as a food container for microwave ovens.

ポリスチレン系樹脂の発泡シートは軽量性、断熱性に優れ外観も美麗な事から、食品トレーや弁当容器、即席めんカップ容器等に加工され、食品包装用途で幅広く使用されている。   Polystyrene resin foam sheets are lightweight, heat-insulating, and have a beautiful appearance, so they are processed into food trays, lunch boxes, instant noodle cups, etc., and are widely used in food packaging applications.

一方で、近年の電子レンジの普及により、惣菜容器や弁当容器には電子レンジ対応が求められる場合が多く、それらの食品容器には高い耐熱性が要求される。   On the other hand, with the recent spread of microwave ovens, prepared food containers and lunch boxes are often required to be compatible with microwave ovens, and these food containers are required to have high heat resistance.

しかしながら、周知の如くポリスチレン系樹脂単独での発泡容器では耐熱性が不十分であるため、発泡容器を電子レンジで加熱すると著しい熱変形を生じる。   However, as is well known, a foamed container made of a polystyrene resin alone has insufficient heat resistance. Therefore, when the foamed container is heated in a microwave oven, significant thermal deformation occurs.

ポリスチレン系樹脂の耐熱性を改善する方法として、特許文献1にはスチレン−メタクリル酸共重合体を用いた発泡成形体が開示されているが、メタクリル酸比率を上げた場合の脆性が問題となる。脆性を改良する方法として、特許文献2にはスチレン−メタクリル酸とスチレン−ブタジエン系共重合体からなるスチレン系樹脂発泡シートが開示されているが、耐熱性が下がるために電子レンジ対応としては好ましくない。   As a method for improving the heat resistance of a polystyrene-based resin, Patent Document 1 discloses a foamed molded article using a styrene-methacrylic acid copolymer, but brittleness when the methacrylic acid ratio is increased becomes a problem. . As a method for improving brittleness, Patent Document 2 discloses a styrene-based resin foam sheet made of a styrene-methacrylic acid and a styrene-butadiene copolymer. Absent.

耐熱性と靱性を両立させる方法として特許文献3にはポリスチレンとポリフェニレンエーテルのブレンド樹脂を使用する方法が開示されているが、ポリフェニレンエーテル特有の臭気が発生するために食品用途としては不向きである。また、臭気を改善する方法として特許文献4にはゼオライト等を含有する方法が開示されているが、大量の無機物が存在するために靱性の低下や発泡体の外観不良が問題となる。   Patent Document 3 discloses a method of using a blend resin of polystyrene and polyphenylene ether as a method for achieving both heat resistance and toughness, but is unsuitable for food applications because of the odor peculiar to polyphenylene ether. Further, as a method for improving odor, Patent Document 4 discloses a method containing zeolite or the like, but since a large amount of inorganic substances are present, a decrease in toughness and poor appearance of the foam are problematic.

さらに、特許文献5にはポリフェニレンエーテルと芳香族ビニル−アクリル酸系モノマーの共重合樹脂、及びポリスチレンのブレンド樹脂を用いる事で、耐熱性と低温脆性、コンパウンド性、熱成形性の改良が試みられているが、強度と成形性については十分ではなかった。   Furthermore, Patent Document 5 attempts to improve heat resistance, low temperature brittleness, compoundability and thermoformability by using a copolymer resin of polyphenylene ether and an aromatic vinyl-acrylic acid monomer and a blend resin of polystyrene. However, the strength and formability were not sufficient.

特開平17−247888号公報Japanese Patent Laid-Open No. 17-247888 特開2000−136257号公報JP 2000-136257 A 特開平3−157432号公報Japanese Patent Laid-Open No. 3-157432 特開2008−94919号公報JP 2008-94919 A 特開2012−140549公報JP2012-140549A

本発明者らは、上記に記載したポリスチレン系樹脂を用いた発泡シートの耐熱性と強度、成形性のバランスに優れるという課題を達成するため、鋭意研究を進めたところ、特定の組成を持つスチレン−メタクリル酸共重合体とポリフェニレンエーテルを組み合わせ、特定の重量平均分子量(Mw)とする事で、耐熱性と強度、成形性のバランスに優れる耐熱性樹脂発泡シートが得られる事を見出し、本発明の完成に至った。   The present inventors have conducted extensive research to achieve the problem of excellent balance between heat resistance, strength, and moldability of the foamed sheet using the polystyrene-based resin described above. As a result, styrene having a specific composition is obtained. -A combination of methacrylic acid copolymer and polyphenylene ether, with a specific weight average molecular weight (Mw), found that a heat resistant resin foam sheet having an excellent balance of heat resistance, strength and moldability can be obtained. It was completed.

即ち、本発明は、下記(1)〜(7)に示すところである。
(1)メタクリル酸の含有量が2〜7質量%であるスチレン−メタクリル酸共重合体97〜15質量部、ポリフェニレンエーテル3〜25質量部、ポリスチレン0〜60質量部からなり、重量平均分子量(Mw)が16万以上である耐熱性樹脂発泡シート。ただし、この耐熱性樹脂中の各樹脂成分の混合量は、合計100質量部とする。
(2)Z平均分子量(Mz)/重量平均分子量(Mw)が1.6以上である前記(1)記載の耐熱性樹脂発泡シート。
(3)前記耐熱性樹脂がゴム補強材を1〜10質量部含む事を特徴とする前記(1)〜(2)記載の耐熱性樹脂発泡シート。
(4)前記ゴム補強材がハイインパクトポリスチレンであることを特徴とする前記(3)記載の耐熱性樹脂発泡シート。
(5)前記ハイインパクトポリスチレンのゴム分が6〜12質量%である事を特徴とする前記(4)記載の耐熱性樹脂発泡シート。
(6)片面又は両面に熱可塑性樹脂シート又はフィルムが積層されてなる前記(1)〜(5)記載の耐熱性樹脂発泡シート。
(7)前記(1)〜(6)記載の耐熱性樹脂発泡シートを成形してなる容器。
That is, this invention is a place shown to following (1)-(7).
(1) A styrene-methacrylic acid copolymer having a methacrylic acid content of 2 to 7% by mass, 97 to 15 parts by mass, 3 to 25 parts by mass of polyphenylene ether, and 0 to 60 parts by mass of polystyrene. A heat-resistant resin foam sheet having Mw) of 160,000 or more. However, the total amount of each resin component in the heat resistant resin is 100 parts by mass.
(2) The heat resistant resin foamed sheet according to (1), wherein the Z average molecular weight (Mz) / weight average molecular weight (Mw) is 1.6 or more.
(3) The heat resistant resin foam sheet according to (1) or (2), wherein the heat resistant resin contains 1 to 10 parts by mass of a rubber reinforcing material.
(4) The heat-resistant resin foam sheet according to (3), wherein the rubber reinforcing material is high impact polystyrene.
(5) The heat-resistant resin foam sheet according to (4), wherein the rubber content of the high-impact polystyrene is 6 to 12% by mass.
(6) The heat-resistant resin foam sheet according to the above (1) to (5), wherein a thermoplastic resin sheet or film is laminated on one side or both sides.
(7) A container formed by molding the heat-resistant resin foam sheet according to (1) to (6).

本発明の耐熱性樹脂発泡シートは耐熱性と強度、成形性のバランスに優れるため、発泡シートを軽量化した場合でも、十分な耐熱性と強度を有する食品容器を提供する事が出来る。また、深絞り等の多様な形状に加工する事が出来るため、電子レンジ用食品容器として幅広い用途で使用する事が出来る。   Since the heat resistant resin foam sheet of the present invention is excellent in the balance between heat resistance, strength and moldability, it is possible to provide a food container having sufficient heat resistance and strength even when the foam sheet is reduced in weight. Moreover, since it can be processed into various shapes such as deep drawing, it can be used in a wide range of applications as a food container for microwave ovens.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のスチレン−メタクリル酸共重合体はスチレンモノマーとメタクリル酸モノマーを熱、或いは過酸化物触媒によるラジカル重合により共重合させる事で得られ、重合方式としては塊状重合、溶液重合、懸濁重合等、公知のスチレン重合方式を用いる事が出来る。スチレン−メタクリル酸共重合体中のメタクリル酸の含有量は2〜7質量%であり、好ましくは3〜6質量%である。メタクリル酸の含有量が2質量%未満では耐熱性の向上効果が得られない。また、メタクリル酸の含有量が7質量%を超える場合、耐熱性樹脂発泡シートの強度と成形性が不十分となるため好ましくない。メタクリル酸の含有量は、重合工程における原料液のメタクリル酸濃度によって調整出来る。   The styrene-methacrylic acid copolymer of the present invention can be obtained by copolymerizing a styrene monomer and a methacrylic acid monomer by heat or radical polymerization with a peroxide catalyst. The polymerization method is bulk polymerization, solution polymerization, suspension polymerization. For example, a known styrene polymerization method can be used. The content of methacrylic acid in the styrene-methacrylic acid copolymer is 2 to 7% by mass, preferably 3 to 6% by mass. When the content of methacrylic acid is less than 2% by mass, the effect of improving heat resistance cannot be obtained. Moreover, when content of methacrylic acid exceeds 7 mass%, since the intensity | strength and moldability of a heat resistant resin foam sheet become inadequate, it is unpreferable. Content of methacrylic acid can be adjusted with the methacrylic acid density | concentration of the raw material liquid in a superposition | polymerization process.

本発明のスチレン−メタクリル酸共重合体の重量平均分子量(Mw)は16万以上であることが好ましく、20万以上であることがより好ましく、22万以上であることが特に好ましい。Mwが16万未満では耐熱性樹脂発泡シートの強度と成形性が不十分となる。スチレン−メタクリル酸共重合体のMwは重合工程での反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって調整する事が出来る。   The weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer of the present invention is preferably 160,000 or more, more preferably 200,000 or more, and particularly preferably 220,000 or more. If Mw is less than 160,000, the strength and formability of the heat-resistant resin foam sheet will be insufficient. Mw of styrene-methacrylic acid copolymer is adjusted by reaction temperature, residence time, type and amount of polymerization initiator in polymerization process, type and amount of chain transfer agent, type and amount of solvent used during polymerization, etc. I can do it.

本発明のポリフェニレンエーテルは、フェノール化合物の酸化カップリングにより製造される。ポリフェニレンエーテルの酸化カップリング反応触媒としては、特に制限はないが、銅、マンガン、コバルト等の重金属化合物の少なくとも1種を用いる(米国特許第4,042,056号、同第3,306,874号、同第3,306,875号公報等参照)。
フェノールの具体例としては、フェノール、o−,m−,p−クレゾール、2,6−、2,5−、2,4−または3,5−ジメチルフェノール、2−メチル−6−フェニルフェノール、2,6−ジフェニルフェノール、2,6−ジエチルフェノール、2−メチル−6−t−ブチルフェノールなどが挙げられる。上記フェノール化合物は二種以上を共重合してもよく、さらに得られるホモポリマーもしくはコポリマーを二種以上混合使用してよい。上記フェノール化合物の中でも特に2,6−ジメチルフェノールが好適であり、従って本発明においてはこれを重合して得られるポリ(2,6−ジメチルー1,4−フェニレン)エーテルが良好な結果を与える。
本発明における上記ポリフェニレンエーテルの分子量は、特に限定はしないが好適なのは極限粘度が0.3dl/g以上(温度25℃、溶媒クロロホルム中)のものである。0.3dl/g未満では機械的強度が劣る。また、好ましくは極限粘度0.3〜0.6dl/gである。
The polyphenylene ether of the present invention is produced by oxidative coupling of a phenol compound. The oxidative coupling reaction catalyst of polyphenylene ether is not particularly limited, but at least one heavy metal compound such as copper, manganese, cobalt and the like is used (US Pat. Nos. 4,042,056 and 3,306,874). No. 3,306,875, etc.).
Specific examples of phenol include phenol, o-, m-, p-cresol, 2,6-, 2,5-, 2,4- or 3,5-dimethylphenol, 2-methyl-6-phenylphenol, 2,6-diphenylphenol, 2,6-diethylphenol, 2-methyl-6-t-butylphenol and the like can be mentioned. Two or more of the phenol compounds may be copolymerized, and two or more homopolymers or copolymers obtained may be used in combination. Among the above phenol compounds, 2,6-dimethylphenol is particularly preferable. Therefore, in the present invention, poly (2,6-dimethyl-1,4-phenylene) ether obtained by polymerizing this gives good results.
The molecular weight of the polyphenylene ether in the present invention is not particularly limited, but preferably has an intrinsic viscosity of 0.3 dl / g or more (at a temperature of 25 ° C. in a solvent chloroform). If it is less than 0.3 dl / g, the mechanical strength is inferior. The intrinsic viscosity is preferably 0.3 to 0.6 dl / g.

本発明のポリスチレンはスチレンのホモポリマーであり、ラジカル重合、アニオン重合等公知の方法によって得られる。分子量は特に限定しないが、重量平均分子量(Mw)が20万以上であることが好ましい。   The polystyrene of the present invention is a homopolymer of styrene and can be obtained by known methods such as radical polymerization and anionic polymerization. Although molecular weight is not specifically limited, It is preferable that a weight average molecular weight (Mw) is 200,000 or more.

本発明の耐熱性樹脂は前記スチレン−メタクリル酸共重合体、ポリフェニレンエーテル、ポリスチレンをブレンドして得られる。これら樹脂は比較的良好な相溶性を有するが、特にポリフェニレンエーテルと他の成分のガラス転移温度差が大きいため分散が不十分となり易く、その場合、本発明の効果が得られない場合がある。よって、発泡押出機に導入する前に溶融コンパウンドしておくことが望ましい。溶融コンパウンドの方法としては、スチレン−メタクリル酸共重合体、ポリフェニレンエーテル、ポリスチレンを全てコンパウンドする方法と、ポリフェニレンエーテル、ポリスチレンのみをコンパウンドし、発泡押出機に導入する前にスチレン−メタクリル酸共重合体とペレット状態でドライブレンドする方法等が挙げられる。   The heat resistant resin of the present invention is obtained by blending the styrene-methacrylic acid copolymer, polyphenylene ether, and polystyrene. These resins have relatively good compatibility. However, since the glass transition temperature difference between polyphenylene ether and other components is particularly large, dispersion tends to be insufficient, and in this case, the effects of the present invention may not be obtained. Therefore, it is desirable to melt and compound before introducing into the foaming extruder. As a method of melt compounding, there are a method of compounding all of styrene-methacrylic acid copolymer, polyphenylene ether and polystyrene, and a compound of styrene-methacrylic acid copolymer before compounding only polyphenylene ether and polystyrene and introducing them into a foaming extruder. And a method of dry blending in a pellet state.

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にスチレン−メタクリル酸共重合体を97〜15質量部含み、より好ましくは97〜50質量部であり、更に好ましくは97〜75質量部である。スチレン−メタクリル酸共重合体が97質量部を超えると耐熱性の改良効果が得られない場合があり、15質量部未満では強度と成形性が不十分である。   The heat resistant resin of the present invention contains 97 to 15 parts by mass of styrene-methacrylic acid copolymer in 100 parts by mass of the resin composition, more preferably 97 to 50 parts by mass, and still more preferably 97 to 75 parts by mass. It is. If the styrene-methacrylic acid copolymer exceeds 97 parts by mass, the effect of improving heat resistance may not be obtained, and if it is less than 15 parts by mass, the strength and moldability are insufficient.

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にポリフェニレンエーテルを3〜25質量部含み、より好ましくは3〜15質量部であり、更に好ましくは3〜9質量部である。ポリフェニレンエーテルが3質量部未満の場合、耐熱性が不十分であり、25質量部を超える場合、成形性が低下するとともに、臭気が悪化するため消臭剤が必要となり、結果として発泡シートの強度が低下する。なお、ポリフェニレンエーテルとしては、変性PPEと称されるポリフェニレンエーテルと他の樹脂をアロイ化したものも用いることができるが、その場合は変性PPEに含まれるポリフェニレンエーテルの含有量を上記範囲に調整する。   The heat resistant resin of the present invention contains 3 to 25 parts by mass of polyphenylene ether in 100 parts by mass of the resin composition, more preferably 3 to 15 parts by mass, and further preferably 3 to 9 parts by mass. When the polyphenylene ether is less than 3 parts by mass, the heat resistance is insufficient, and when it exceeds 25 parts by mass, the moldability is reduced and the odor is deteriorated, so a deodorant is required, resulting in the strength of the foam sheet. Decreases. As the polyphenylene ether, a polyphenylene ether called modified PPE and an alloy of other resins can be used. In that case, the content of the polyphenylene ether contained in the modified PPE is adjusted to the above range. .

本発明の耐熱性樹脂は当該樹脂組成物100質量部中にポリスチレンを0〜60質量部含む。ポリスチレンを含有させる事により、スチレン−メタクリル酸共重合体とポリフェニレンエーテルの分散性を改善する事が出来るが、60質量部を超える場合、強度と耐熱性が低下するため好ましくない。   The heat resistant resin of the present invention contains 0 to 60 parts by mass of polystyrene in 100 parts by mass of the resin composition. By containing polystyrene, the dispersibility of the styrene-methacrylic acid copolymer and polyphenylene ether can be improved. However, if it exceeds 60 parts by mass, the strength and heat resistance are lowered, which is not preferable.

本発明の耐熱性樹脂の重量平均分子量(Mw)は16万以上であり、好ましくは18万以上であり、さらに好ましくは20万以上である。Mwが16万未満では十分な強度と成形性が得られない。   The weight average molecular weight (Mw) of the heat resistant resin of the present invention is 160,000 or more, preferably 180,000 or more, and more preferably 200,000 or more. If Mw is less than 160,000, sufficient strength and formability cannot be obtained.

本発明の耐熱性樹脂のZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は1.6以上である事が好ましい。Mz/Mwが1.6未満の場合、成形性が低下する。   The ratio (Mz / Mw) of the Z average molecular weight (Mz) and the weight average molecular weight (Mw) of the heat resistant resin of the present invention is preferably 1.6 or more. When Mz / Mw is less than 1.6, moldability is lowered.

本発明の耐熱性樹脂は当該樹脂100質量部中にゴム補強材を1〜10質量部含むことが好ましい。ゴム補強材とは、スチレンとブタジエンを構成単位として持つゴム質ポリマーであって、具体的には、ハイインパクトポリスチレン、スチレン−ブタジエン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、メタクリル酸メチル−ブタジエン−スチレン共重合体等が挙げられる。中でも耐熱性と補強効果のバランスの面でハイインパクトポリスチレンが好ましい。ハイインパクトポリスチレンのゴム分は5〜12質量%が好ましく、7〜12質量%がより好ましい。   The heat resistant resin of the present invention preferably contains 1 to 10 parts by mass of a rubber reinforcing material in 100 parts by mass of the resin. The rubber reinforcing material is a rubbery polymer having styrene and butadiene as structural units, specifically, high impact polystyrene, styrene-butadiene copolymer, styrene-butadiene-styrene copolymer, styrene-ethylene- Examples include butylene-styrene copolymer and methyl methacrylate-butadiene-styrene copolymer. Among them, high impact polystyrene is preferable in terms of the balance between heat resistance and reinforcing effect. The rubber content of the high impact polystyrene is preferably 5 to 12% by mass, and more preferably 7 to 12% by mass.

本発明の耐熱性樹脂には添加剤として、リン系、フェノール系、アミン系等の安定剤、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等の高級脂肪酸、及びその塩やエチレンビスステアリルアミド等の滑剤、流動パラフィン等の可塑剤、ゼオライト、活性炭、リン酸ジルコニウム等の消臭剤を添加する事ができる。   The heat-resistant resin of the present invention includes additives such as phosphorus-based, phenol-based, and amine-based stabilizers, higher fatty acids such as stearic acid, zinc stearate, calcium stearate, and magnesium stearate, and salts thereof and ethylene bisstearyl. Lubricants such as amides, plasticizers such as liquid paraffin, deodorizers such as zeolite, activated carbon and zirconium phosphate can be added.

また、本発明の耐熱性樹脂には、発泡シートを二次成形した際に発生するスケルトンと呼ばれる打抜き屑やそのリサイクルペレットを本発明の効果を損なわない範囲で配合することができる。   The heat-resistant resin of the present invention can be blended with punched scraps called skeletons generated when the foamed sheet is secondarily molded and recycled pellets thereof within a range not impairing the effects of the present invention.

本発明の耐熱性樹脂のビカット軟化温度は110〜130℃が好ましく、更に好ましくは115〜125℃である。ビカット軟化温度が110℃未満の場合、耐熱性樹脂発泡シートを熱成形して得られる容器の耐レンジアップ変形が不十分となる。ビカット軟化温度が130℃を超える場合、成形性が低下する。   The Vicat softening temperature of the heat resistant resin of the present invention is preferably 110 to 130 ° C, more preferably 115 to 125 ° C. When the Vicat softening temperature is less than 110 ° C., the range-up deformation of the container obtained by thermoforming the heat-resistant resin foam sheet becomes insufficient. When Vicat softening temperature exceeds 130 degreeC, a moldability will fall.

本発明の耐熱性樹脂には、耐熱性を上げるために、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸−メタクリル酸メチル共重合体、スチレン−無水マレイン酸共重合体、スチレン−マレイミド共重合体等のポリスチレン系樹脂、ポリプロピレン、プロピレン−α−オレフィン共重合体等のポリオレフィン系樹脂、ポリL−乳酸、ポリD−乳酸、ポリD、L−乳酸等の脂肪族ポリエステル系樹脂を本発明の効果を損なわない範囲で配合することができる。   In order to increase the heat resistance, the heat resistant resin of the present invention includes a styrene-methyl methacrylate copolymer, a styrene-methacrylic acid-methyl methacrylate copolymer, a styrene-maleic anhydride copolymer, and a styrene-maleimide copolymer. Polystyrene resins such as polymers, polyolefin resins such as polypropylene and propylene-α-olefin copolymers, and aliphatic polyester resins such as poly L-lactic acid, poly D-lactic acid, poly D, and L-lactic acid. It can mix | blend in the range which does not impair the effect.

本発明の耐熱性樹脂発泡シートは、前記耐熱性樹脂を発泡剤とともに溶融押出する事で得られ、公知の押出発泡シート製造方法を用いる事が出来る。具体的には、単軸押出機や二軸押出機を2基直列に配置し、1基目の押出機で発泡剤を発泡核剤とともに溶融混錬し、2基目の押出機で冷却により樹脂温度を120℃〜180℃に調整した後、サーキュラーダイスにより大気に放出し減圧発泡する方法が挙げられる。   The heat-resistant resin foam sheet of the present invention can be obtained by melt-extruding the heat-resistant resin together with a foaming agent, and a known method for producing an extruded foam sheet can be used. Specifically, two single-screw extruders and two-screw extruders are arranged in series, the foaming agent is melted and kneaded with the foam nucleating agent in the first extruder, and cooled by the second extruder. An example is a method in which the resin temperature is adjusted to 120 ° C. to 180 ° C. and then released into the atmosphere with a circular die and foamed under reduced pressure.

発泡剤としては、プロパン、ノルマルブタン、イソブタン、ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、トリクロロフロロメタン、ジクロロジフロロメタン、1,1−ジフルオロエタン、1,1−ジフルオロ−クロライド、メチレンクロライド等のハロゲン化炭化水素等の物理発泡剤を用いることができる。また、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウム、クエン酸等の分解型発泡剤、二酸化炭素、窒素等の無機ガスや水を使用することもできる。これら発泡剤を適宜混合して使用できるが、工業的にはブタンが使用されることが多く、発泡押出性や発泡シートの二次成形性、発泡剤の観点から、イソブタンとノルマルブタンからなる混合ブタンを使用することが好ましい。ブタンはポリスチレン系樹脂に対する透過速度が遅いため、発泡押出直後は発泡シート中に通常1〜3質量%程度残存する。この残存量は二次成形における二次発泡厚や熱成形性に影響するため、一定の熟成期間を設けることで適宜調整する。   Examples of blowing agents include aliphatic hydrocarbons such as propane, normal butane, isobutane, pentane and hexane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, 1,1-difluoroethane, Physical foaming agents such as halogenated hydrocarbons such as 1,1-difluoro-chloride and methylene chloride can be used. Also, decomposable foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium bicarbonate and citric acid, inorganic gases such as carbon dioxide and nitrogen, and water can be used. These foaming agents can be used by appropriately mixing them, but industrially, butane is often used, and from the viewpoint of foaming extrudability, secondary formability of foamed sheets, and foaming agents, mixing consisting of isobutane and normal butane It is preferred to use butane. Since butane has a slow permeation rate with respect to the polystyrene-based resin, about 1 to 3% by mass usually remains in the foamed sheet immediately after foam extrusion. Since this remaining amount affects the secondary foam thickness and thermoformability in secondary molding, it is appropriately adjusted by providing a certain aging period.

発泡核剤としては、タルク、炭酸カルシウム、クレー等の無機物粉末が挙げられ、これらを単独あるいは混合物としても用いることができる。中でも、気泡径を小さくする効果が大きく、安価という点でタルクが最も好ましい。発泡核剤の添加方法は特に制限が無く、直接押出機の供給孔に添加しても良いし、耐熱性樹脂と共に添加することもできる。また、スチレンの単独重合体やスチレン−メタクリル酸メチル共重合体等を基材としたマスターバッチを作成し、そのマスターバッチを用いて供給することもできる。発泡核剤の添加量は通常、0.1〜5質量%である。また、該マスターバッチには高級脂肪酸や高級脂肪酸の金属塩をあらかじめ配合しておいても良い。また、エチレンビスステアリルアミド等の滑材、流動パラフィンやシリコーンオイル等の展着剤、その他の界面活性剤、帯電防止剤、酸化防止剤、可塑剤、耐候剤、顔料等が含まれていても良い。   Examples of the foam nucleating agent include inorganic powders such as talc, calcium carbonate, and clay, and these can be used alone or as a mixture. Among them, talc is most preferable in that it has a large effect of reducing the bubble diameter and is inexpensive. The method for adding the foam nucleating agent is not particularly limited, and may be added directly to the supply hole of the extruder, or may be added together with the heat resistant resin. Moreover, the masterbatch which made the base material the homopolymer of styrene, a styrene-methyl methacrylate copolymer, etc. can also be created, and it can also supply using the masterbatch. The addition amount of the foam nucleating agent is usually 0.1 to 5% by mass. The master batch may contain a higher fatty acid or a metal salt of a higher fatty acid in advance. It may also contain lubricants such as ethylenebisstearylamide, spreading agents such as liquid paraffin and silicone oil, other surfactants, antistatic agents, antioxidants, plasticizers, weathering agents, pigments, etc. good.

本発明の耐熱性樹脂発泡シートの厚さは0.5〜4.0mmが好ましく、1.0〜3.0mmがより好ましい。耐熱性樹脂発泡シートの厚さが0.5mm未満では、2次成形後の容器の強度や断熱性が低下する。耐熱性樹脂発泡シートの厚さが4.0mmを超える場合、2次成形時にシートの温度ムラが発生しやすく、成形性が悪化する。   0.5-4.0 mm is preferable and, as for the thickness of the heat resistant resin foam sheet of this invention, 1.0-3.0 mm is more preferable. When the thickness of the heat resistant resin foam sheet is less than 0.5 mm, the strength and heat insulation of the container after the secondary molding are lowered. When the thickness of the heat-resistant resin foam sheet exceeds 4.0 mm, the temperature unevenness of the sheet tends to occur during the secondary molding, and the moldability deteriorates.

本発明の耐熱性樹脂発泡シートの密度は50〜150kg/mが好ましく、60〜130kg/mであることがより好ましい。耐熱性樹脂発泡シートの密度が50kg/m未満であると、2次成形後の容器の強度が低下する。耐熱性樹脂発泡シートの密度が150kg/mを超える場合、容器重量が重くなり軽量化の観点から望ましくない。密度D(kg/m)は、発泡シートの坪量S(g/m)とシート厚さT(mm)より、D=S/Tで算出することができる。 The density of heat-resistant resin foam sheet of the present invention is preferably 50~150kg / m 3, more preferably 60~130kg / m 3. When the density of the heat-resistant resin foam sheet is less than 50 kg / m 3 , the strength of the container after the secondary molding is lowered. When the density of the heat-resistant resin foam sheet exceeds 150 kg / m 3 , the container weight becomes heavy, which is not desirable from the viewpoint of weight reduction. The density D (kg / m 3 ) can be calculated as D = S / T from the basis weight S (g / m 2 ) of the foamed sheet and the sheet thickness T (mm).

本発明の耐熱性樹脂発泡シートにおいて、シートの厚み方向の平均気泡径Xは0.10〜0.40mmであることが好ましい。シートの厚み方向の平均気泡径Xが0.10mm未満であると2次成形における成形性が低下する。シートの厚み方向の平均気泡径Xが0.40mmを超える場合、発泡シートの外観が悪化し、強度も低下する。   In the heat resistant resin foam sheet of the present invention, the average cell diameter X in the thickness direction of the sheet is preferably 0.10 to 0.40 mm. If the average cell diameter X in the thickness direction of the sheet is less than 0.10 mm, the formability in the secondary molding is lowered. When the average cell diameter X in the thickness direction of the sheet exceeds 0.40 mm, the appearance of the foamed sheet deteriorates and the strength also decreases.

また、押出方向の平均気泡径Yと厚み方向の平均気泡径Xの比(Y/X)、及び幅方向の平均気泡径Zと厚み方向の平均気泡径Xの比(Z/X)は各々1.0〜2.5であることが好ましい。Y/X、Z/Xが1.0未満であると2次成形時のドローダウンが大きくなるため望ましくない。また、Y/X、Z/Xが2.5を超える場合、気泡の扁平度が大きく発泡シートの強度が低下する場合がある。   The ratio of the average bubble diameter Y in the extrusion direction to the average bubble diameter X in the thickness direction (Y / X) and the ratio of the average bubble diameter Z in the width direction to the average bubble diameter X in the thickness direction (Z / X) are respectively It is preferable that it is 1.0-2.5. If Y / X and Z / X are less than 1.0, drawdown during secondary molding is increased, which is not desirable. Moreover, when Y / X and Z / X exceed 2.5, the flatness of the bubbles is large, and the strength of the foamed sheet may be reduced.

シートの厚み方向の平均気泡径X、押出方向の平均気泡径Y、幅方向の平均気泡径Zは発泡シートの押出方向の垂直断面、幅方向の垂直断面を走査型電子顕微鏡を用いて観察し、ASTM D2842−06に記載の平均弦長に基づいて下記式を用いて算出することができる。
平均弦長=直線の長さ/気泡数
平均気泡径=平均弦長/0.616
The average bubble diameter X in the thickness direction of the sheet, the average bubble diameter Y in the extrusion direction, and the average bubble diameter Z in the width direction are observed using a scanning electron microscope. Based on the average chord length described in ASTM D2842-06, the following formula can be used.
Average chord length = straight line length / number of bubbles Average bubble diameter = average chord length / 0.616

また、本発明の耐熱性樹脂発泡シートには、厚み方向の中央部に比べて密度が低い、いわゆるスキン層と呼ばれる表面層をシートの表裏面に設けることができる。スキン層を設けることで、シートの強度を上げることができ、外観も美麗に仕上がる。スキン層はサーキュラーダイスを出た直後の発泡シート表面を風冷することによって調整できる。   In addition, the heat-resistant resin foam sheet of the present invention can be provided with a surface layer called a skin layer having a lower density than the central part in the thickness direction on the front and back surfaces of the sheet. By providing a skin layer, the strength of the sheet can be increased and the appearance is also beautifully finished. The skin layer can be adjusted by air cooling the surface of the foam sheet immediately after leaving the circular die.

本発明の耐熱性樹脂発泡シートは、その片面もしくは両面に熱可塑性樹脂シート又はフィルムを積層することにより、成形性、強度、剛性を改良することができる。上記、シートやフィルムを構成する熱可塑性樹脂としてはポリスチレン、ハイインパクトポリスチレン等のポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、エチレン−酢酸ビニル共重合体等が挙げられるが、接着層を用いなくても積層可能でリサイクル性も良好なポリスチレン系樹脂が好ましい。   The heat-resistant resin foam sheet of the present invention can be improved in formability, strength, and rigidity by laminating a thermoplastic resin sheet or film on one or both surfaces. The thermoplastic resins constituting the sheet and film are polystyrene resins such as polystyrene and high impact polystyrene, polypropylene resins, polyester resins, high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate. Examples thereof include a copolymer, and a polystyrene resin that can be laminated without using an adhesive layer and has good recyclability is preferable.

前記で積層される熱可塑性樹脂シート又はフィルムの厚みに特に制限はないが、0.01mm〜0.3mmが好ましい。シート又はフィルムの厚みが薄いと物性の改良効果が小さく、厚すぎると軽量化の観点から望ましくない。   Although there is no restriction | limiting in particular in the thickness of the thermoplastic resin sheet or film laminated | stacked above, 0.01 mm-0.3 mm are preferable. If the thickness of the sheet or film is thin, the effect of improving the physical properties is small, and if it is too thick, it is not desirable from the viewpoint of weight reduction.

本発明の耐熱性樹脂発泡シートは、真空成形や圧空成形、マッチドモールド成形、リバースドロー成形、エアスリップ成形、リッジ成形、プラグアンドリッジ成形、プラグアシスト成形、プラグアシストリバースドロー成形等、公知の熱成形方法を用いて、トレー、弁当容器、丼容器、カップ、蓋付箱型等の各種形状や大きさの容器に加工することができる。   The heat-resistant resin foam sheet of the present invention is a known heat treatment such as vacuum molding, pressure molding, matched mold molding, reverse draw molding, air slip molding, ridge molding, plug and ridge molding, plug assist molding, plug assist reverse draw molding, etc. Using the molding method, it can be processed into various shapes and sizes of containers such as trays, lunch boxes, bowl containers, cups, and box-types with lids.

本発明の耐熱性樹脂発泡シートを成形して得られる容器は、食品を入れた状態で電子レンジ加熱調理を行っても、容器の変形や火脹れが発生しないので、電子レンジ用食品容器として好適に使用できる。   The container obtained by molding the heat-resistant resin foam sheet of the present invention does not cause deformation or blistering of the container even when cooking in a microwave oven with food in it. It can be used suitably.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.

<スチレン−メタクリル酸共重合体の製造>
(1)スチレン−メタクリル酸共重合体S−1の製造
下記第1〜第3反応器を直列に接続して重合工程を構成した。
<Production of styrene-methacrylic acid copolymer>
(1) Production of Styrene-Methacrylic Acid Copolymer S-1 The following first to third reactors were connected in series to constitute a polymerization step.

第1反応器:容積39Lの攪拌翼付完全混合型反応器
第2反応器:容積39Lの攪拌翼付完全混合型反応器
第3反応器:容積16Lのスタティックミキサー付プラグフロー反応器
First reactor: 39 L capacity complete mixing reactor with stirring blades Second reactor: 39 L capacity mixing mixing reactor with stirring blades Third reactor: 16 L capacity plug flow reactor with static mixer

各反応器の条件は以下の通りとした。   The conditions of each reactor were as follows.

第1反応器:[反応温度] 120℃
第2反応器:[反応温度] 128℃
第3反応器:[反応温度] 流れ方向に125〜135℃の温度勾配がつくように調整
First reactor: [reaction temperature] 120 ° C
Second reactor: [reaction temperature] 128 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 135 ° C is applied in the flow direction.

原料液としては、以下のものを用いた。   The following were used as the raw material liquid.

スチレン97質量%、メタクリル酸3質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液   10 parts by mass of ethylbenzene with respect to 100 parts by mass of the monomer composition of 97% by mass of styrene and 3% by mass of methacrylic acid, 0.025 of 2,2bis (4,4-t-butylperoxycyclohexyl) propane as a polymerization initiator Raw material liquid mixed with parts by mass

原料液を12.0kg/hrの供給速度で120℃に設定した第1反応器に連続的に供給し重合した後、次いで128℃に設定した第2反応器に連続的に装入し重合した。第2反応器出口での重合転化率は65%であった。更に125〜135℃の温度勾配がつくように調整した第3反応器にて重合転化率が70%になるまで重合を進行させた。
この重合液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、未反応スチレン及びエチルベンゼンを分離した後、ストランド状に押し出して冷却した後切断してペレット化した。なお、1段目の予熱器の温度は200℃に設定し、真空脱揮槽の圧力は66.7kPaとし、2段目の予熱器の温度は240℃に設定し、真空脱揮槽の圧力は0.9kPaとした。得られたスチレン−メタクリル酸共重合体S−1の特性を表1に示す。
The raw material liquid was continuously supplied to the first reactor set at 120 ° C. at a supply rate of 12.0 kg / hr for polymerization, and then charged continuously into the second reactor set at 128 ° C. for polymerization. . The polymerization conversion rate at the outlet of the second reactor was 65%. Further, the polymerization was advanced in a third reactor adjusted so as to have a temperature gradient of 125 to 135 ° C. until the polymerization conversion reached 70%.
This polymerization solution was introduced into a vacuum devolatilization tank equipped with a preheater composed of two stages in series, and unreacted styrene and ethylbenzene were separated, then extruded into a strand, cooled, cut and pelletized. The temperature of the first stage preheater is set to 200 ° C., the pressure of the vacuum devolatilization tank is set to 66.7 kPa, the temperature of the second stage preheater is set to 240 ° C., and the pressure of the vacuum devolatilization tank is set. Was 0.9 kPa. The characteristics of the obtained styrene-methacrylic acid copolymer S-1 are shown in Table 1.

(2)スチレン−メタクリル酸共重合体S−2の製造
以下の原料液を用いた以外はS−1の製造と同様にした。その特性を表1に示す。
(2) Manufacture of styrene-methacrylic acid copolymer S-2 Except having used the following raw material liquids, it carried out similarly to manufacture of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン95.5質量%、メタクリル酸4.5質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene and 2,2 bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of the monomer composition of 95.5% by mass of styrene and 4.5% by mass of methacrylic acid Raw material liquid mixed with 0.025 parts by mass of propane

(3)スチレン−メタクリル酸共重合体S−3の製造
以下の原料液を用い第1〜3反応器の温度条件を以下のように変更した以外はS−1の製造と同様にした。その特性を表1に示す。
(3) Production of Styrene-Methacrylic Acid Copolymer S-3 Except that the following raw material liquid was used and the temperature conditions of the first to third reactors were changed as follows, the production was the same as that of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン94.5質量%、メタクリル酸5.5質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene with respect to 100 parts by mass of the monomer composition of 94.5% by mass of styrene and 5.5% by mass of methacrylic acid, 2,2bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator Raw material liquid mixed with 0.025 parts by mass of propane

<条件>
第1反応器:[反応温度] 120℃
第2反応器:[反応温度] 125℃
第3反応器:[反応温度] 流れ方向に125〜130℃の温度勾配がつくように調整
<Conditions>
First reactor: [reaction temperature] 120 ° C
Second reactor: [reaction temperature] 125 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 130 ° C is applied in the flow direction.

(4)スチレン−メタクリル酸共重合体S−4の製造
以下の原料液を用い第1〜3反応器の温度条件を以下のように変更した以外はS−1の製造と同様にした。その特性を表1に示す。
(4) Production of Styrene-Methacrylic Acid Copolymer S-4 Except that the temperature conditions of the first to third reactors were changed as follows using the following raw material liquid, the production was the same as the production of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン93質量%、メタクリル酸7質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.02質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene with respect to 100 parts by mass of the monomer composition of 93% by mass of styrene and 7% by mass of methacrylic acid, 0.02 of 2,2bis (4,4-t-butylperoxycyclohexyl) propane as a polymerization initiator Raw material liquid mixed with parts by mass

<条件>
第1反応器:[反応温度] 128℃
第2反応器:[反応温度] 138℃
第3反応器:[反応温度] 流れ方向に125〜138℃の温度勾配がつくように調整
<Conditions>
First reactor: [reaction temperature] 128 ° C
Second reactor: [reaction temperature] 138 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 138 ° C is applied in the flow direction.

(5)スチレン−メタクリル酸共重合体S−5の製造
以下の原料液を用いた以外はS−1の製造と同様にした。その特性を表1に示す。
(5) Manufacture of styrene-methacrylic acid copolymer S-5 Except having used the following raw material liquids, it carried out similarly to manufacture of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン99.1質量%、メタクリル酸0.9質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4−t−ブチルパーオキシシクロへキシル)プロパン0.02質量部を混合した原料液
<Raw material liquid>
10 parts by mass of ethylbenzene and 2,2 bis (4,4-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of the monomer composition of 99.1% by mass of styrene and 0.9% by mass of methacrylic acid Raw material liquid mixed with 0.02 parts by mass of propane

Figure 0006271147
Figure 0006271147

<実施例1〜14、比較例1〜7>
上記の方法で製造したスチレン−メタクリル酸共重合体(S−1〜5)とポリスチレン、ポリフェニレンエーテル、ゴム補強材を表2〜4に示す質量部比率にてヘンシェルミキサーで混合し、230〜260℃に設定した二軸押出機(神戸製鋼所製、KTX30α)にて溶融コンパウンドした。ソリッド物性を表2〜4に示す。
<Examples 1-14, Comparative Examples 1-7>
The styrene-methacrylic acid copolymer (S-1 to 5) produced by the above method, polystyrene, polyphenylene ether, and rubber reinforcing material are mixed by a Henschel mixer at a mass part ratio shown in Tables 2 to 4, and 230 to 260. It melt-compounded with the twin-screw extruder (Kobe Steel Works make, KTX30 (alpha)) set to ° C. The solid physical properties are shown in Tables 2-4.

なお、ポリスチレン、ポリフェニレンエーテル、ゴム補強材としては以下のものを用いた。
<ポリスチレン>
GPPS 商品名:「トーヨースチロール HRM12」 東洋スチレン社製
Mw=25万、Mz/Mw=2.04
<ポリフェニレンエーテル>
商品名:「IUPIACE PX100L」 三菱エンジニアリングプラスチックス社製
極限粘度0.41g/dl
商品名:「IUPIACE PX100F」 三菱エンジニアリングプラスチックス社製
極限粘度0.36g/dl
商品名:「ノリルEFN4230−111」 サビックイノベーティブプラスチックス社製
ポリフェニレンエーテル/ポリスチレン=70/30
<ゴム補強材>
HIPS1 商品名:「トーヨースチロール H848」 東洋スチレン社製
ゴム分10.0%、ゴム粒子径1.9μm
HIPS2 商品名:「トーヨースチロール E640N」 東洋スチレン社製
ゴム分6.2%、ゴム粒子径2.5μm
SBS 商品名:「タフプレン 125」 旭化成ケミカルズ社製
The following materials were used as polystyrene, polyphenylene ether, and rubber reinforcement.
<Polystyrene>
GPPS product name: “Toyostyrene HRM12” manufactured by Toyo Styrene Co., Ltd. Mw = 250,000, Mz / Mw = 2.04
<Polyphenylene ether>
Product name: “IUPACE PX100L” Intrinsic viscosity 0.41 g / dl manufactured by Mitsubishi Engineering Plastics
Product name: “IUPACE PX100F” Intrinsic viscosity 0.36 g / dl, manufactured by Mitsubishi Engineering Plastics
Product name: “Noryl EFN 4230-111” manufactured by Subic Innovative Plastics, Polyphenylene ether / polystyrene = 70/30
<Rubber reinforcement>
HIPS1 Product name: “Toyostyrene H848” manufactured by Toyo Styrene Co., Ltd., rubber content 10.0%, rubber particle diameter 1.9 μm
HIPS2 Product name: “Toyostyrene E640N” manufactured by Toyo Styrene Co., Ltd., rubber content 6.2%, rubber particle diameter 2.5 μm
SBS product name: “Tufprene 125” manufactured by Asahi Kasei Chemicals

次にスクリュー径40mmφと50mmφのタンデム式押出機にて発泡シートを製造した。まず、前記の溶融コンパウンドした樹脂100質量部に対しスチレン−メタクリル酸メチル共重合体60質量%とタルク40質量%からなるタルクマスターバッチ2.3質量部を均一に混合したものをスクリュー径40mmφの押出機に供給した。更に、発泡剤としてブタンを押出機先端より樹脂100質量部に対して2.5質量部の割合で圧入し溶融混合した。このときのシリンダー温度230〜270℃、樹脂温度235〜250℃、圧力12〜18MPaであった。
その後、230℃に設定した連結管を介してスクリュー径50mmφの押出機に移送し、シリンダー温度170〜200℃、樹脂温度155〜165℃、15〜17MPaに調整し、リップ開度0.6mm、口径40mmのサーキュラーダイスより吐出量10kg/hrで押出し直径152mmの冷却された円筒に添わせて引取り、円周の下部1点でカッターにより切開して発泡シートを得た。発泡シートの特性を表2〜4に示す。
Next, a foam sheet was produced with a tandem extruder having a screw diameter of 40 mmφ and 50 mmφ. First, 100 parts by mass of the above melt-compounded resin was obtained by uniformly mixing 2.3 parts by mass of a talc masterbatch composed of 60% by mass of a styrene-methyl methacrylate copolymer and 40% by mass of talc with a screw diameter of 40 mmφ. Feeded to the extruder. Further, butane as a blowing agent was injected from the tip of the extruder at a ratio of 2.5 parts by mass with respect to 100 parts by mass of the resin, and melt mixed. At this time, the cylinder temperature was 230 to 270 ° C, the resin temperature was 235 to 250 ° C, and the pressure was 12 to 18 MPa.
Thereafter, it is transferred to an extruder having a screw diameter of 50 mmφ through a connecting pipe set at 230 ° C., adjusted to a cylinder temperature of 170 to 200 ° C., a resin temperature of 155 to 165 ° C. and 15 to 17 MPa, and a lip opening of 0.6 mm, The foamed sheet was obtained by extruding from a circular die having a diameter of 40 mm at a discharge rate of 10 kg / hr, following a cooled cylinder having a diameter of 152 mm, and incising with a cutter at one lower point of the circumference. The characteristics of the foam sheet are shown in Tables 2 to 4.

なお、各種物性、性能評価は以下の方法で行った。   Various physical properties and performance evaluation were performed by the following methods.

(1)スチレン−メタクリル酸共重合体中のメタクリル酸含有量
室温にて、共重合体0.5gを秤量し、トルエン/エタノール=8/2(体積比)の混合溶液に溶解後、水酸化カリウム1mol/エタノール溶液にて中和滴定を行い終点を検出し、水酸化カリウムエタノール溶液の使用量より、メタクリル酸の質量基準の含有量を算出する。なお、電位差自動検出装置(京都電子工業社製、AT−510)により測定した。
(2)分子量
重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィ―(GPC)を用いて、次の条件で測定した。
GPC機種:昭和電工社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製PLgel 10μm MIXED−B,300×7.5mm
移動相:テトラヒドロフラン 1.0ml/min
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
単分散ポリスチレンの溶出曲線により各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出した。
(1) Methacrylic acid content in styrene-methacrylic acid copolymer At room temperature, 0.5 g of the copolymer was weighed and dissolved in a mixed solution of toluene / ethanol = 8/2 (volume ratio), and then hydroxylated. Neutralization titration is performed with 1 mol of potassium / ethanol solution to detect the end point, and the content of methacrylic acid based on mass is calculated from the amount of potassium hydroxide ethanol solution used. In addition, it measured with the electrical potential difference automatic detection apparatus (Kyoto Electronics Industry Co., Ltd. make, AT-510).
(2) Molecular weight The weight average molecular weight (Mw), the Z average molecular weight (Mz), and the number average molecular weight (Mn) were measured using gel permeation chromatography (GPC) under the following conditions.
GPC model: Shodex GPC-101 manufactured by Showa Denko
Column: Polymer Laboratories PLgel 10 μm MIXED-B, 300 × 7.5 mm
Mobile phase: tetrahydrofuran 1.0 ml / min
Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: differential refractometer The molecular weight at each elution time was calculated from the elution curve of monodisperse polystyrene, and was calculated as the molecular weight in terms of polystyrene.

ソリッド物性は以下の方法により評価した。
(3)メルトマスフローレイト
射出成型機を用いて試験片を作成し、JIS K7210に基づき200℃、49N荷重の条件により求めた。
(4)ビカット軟化温度
射出成型機を用いて試験片を作成し、JIS K7206に基づき49N荷重の条件により求めた。
(5)荷重たわみ温度
射出成型機を用いて試験片を作成し、JIS K7191に基づき1.8MPa応力の条件により求めた。
(6)シャルピー衝撃強さ
射出成型機を用いて試験片を作成し、JIS K7111により求めた。
The solid physical properties were evaluated by the following methods.
(3) Melt Mass Flow Rate A test piece was prepared using an injection molding machine, and was determined under the conditions of 200 ° C. and 49 N load based on JIS K7210.
(4) Vicat softening temperature A test piece was prepared using an injection molding machine, and determined under a condition of 49 N load based on JIS K7206.
(5) Deflection temperature under load A test piece was prepared using an injection molding machine, and obtained under conditions of 1.8 MPa stress based on JIS K7191.
(6) Charpy impact strength A test piece was prepared using an injection molding machine and determined according to JIS K7111.

発泡シートの特性は以下の方法により評価した。
(7)厚み
発泡シートの両端20mmを除き、幅50mm間隔の位置を測定点とした。この測定点をダイヤルシックネスゲージ ピーコック型式G(尾崎製作所社製)を使用し、試験片が変形しないように注意しながら、厚みを最小単位0.01mmまで測定し、この平均値を発泡シートの厚み(mm)とした。
(8)密度
発泡シートから縦10cm×横10cmの試験片を材料のセル構造が壊れないように注意深く切り出し、試験片の重量及び厚みから以下の式により算出した。
密度(kg/m)=試験片の重量(g)/試験片の厚み(mm)×100
(9)平均気泡径
発泡シートの厚み方向の平均気泡径X、押出方向の平均気泡径Y、幅方向の平均気泡径ZはASTM D2842−06の試験法により測定された平均弦長に基づいて算出した。
厚み方向の平均気泡径Xは、走査型電子顕微鏡で観察した押出方向の垂直断面において、シートの全厚みにわたって垂直な直線を引き、該直線の長さと該直線と交差する気泡数より平均弦長X1を求め、X1/0.616より算出した。
押出方向の平均気泡径Yは、走査型電子顕微鏡で観察した押出方向の垂直断面を厚み方向に4等分し、表層付近、厚み方向中央部、裏面付近の計3本の線分の各々において、該直線の長さと該直線と交差する気泡数より平均弦長Y1を求め、Y1/0.616より各々の線分の平均気泡径を算出し、これらの算術平均値をもって押出方向の平均気泡径Yとした。
押出方向の平均気泡径Zは、走査型電子顕微鏡で観察した幅方向の垂直断面を厚み方向に4等分し、表層付近、厚み方向中央部、裏面付近の計3本の線分の各々において、該直線の長さと該直線と交差する気泡数より平均弦長Z1を求め、Z1/0.616より各々の線分の平均気泡径を算出し、これらの算術平均値をもって押出方向の平均気泡径Zとした。
(10)シートインパクト強度
フィルムインパクトテスタ(東洋精機社製)を用いて衝撃球面10Rにて測定を行った。測定は発泡シートの表面、裏面、各々20回ずつ行い、全ての平均値をシートインパクト強度とした。
(11)熱成形性
発泡シートを単発成形機を用いて口径φ100mm、深さ70mmの深絞り丼形状容器を熱成形した。成形条件についてはヒーター温度230℃で加熱時間を一定にし、容器の亀裂発生状態を観察した。成形容器100個のうち、亀裂が観察される容器の数が0個の場合を◎、5個未満の場合を○、5個以上10個未満の場合を△、10個以上の場合を×として深絞り性を評価した。
The characteristics of the foam sheet were evaluated by the following methods.
(7) Thickness Except for 20 mm at both ends of the foamed sheet, positions at intervals of 50 mm in width were used as measurement points. Using the dial thickness gauge Peacock model G (manufactured by Ozaki Mfg. Co., Ltd.) at this measurement point, measuring the thickness to the minimum unit of 0.01 mm while taking care not to deform the test piece, this average value is the thickness of the foam sheet. (Mm).
(8) Density A test piece having a length of 10 cm and a width of 10 cm was carefully cut out from the foamed sheet so that the cell structure of the material was not broken, and calculated from the weight and thickness of the test piece by the following formula.
Density (kg / m 3 ) = weight of test piece (g) / thickness of test piece (mm) × 100
(9) Average cell diameter The average cell diameter X in the thickness direction of the foam sheet, the average cell diameter Y in the extrusion direction, and the average cell diameter Z in the width direction are based on the average chord length measured by the test method of ASTM D2842-06. Calculated.
The average bubble diameter X in the thickness direction is an average chord length determined from a length of the straight line and the number of bubbles intersecting the straight line in a vertical section in the extrusion direction observed with a scanning electron microscope. X1 was determined and calculated from X1 / 0.616.
The average bubble diameter Y in the extrusion direction is obtained by dividing the vertical cross section in the extrusion direction observed with a scanning electron microscope into four equal parts in the thickness direction, and in each of the three line segments in the vicinity of the surface layer, the central part in the thickness direction, and the vicinity of the back surface. The average chord length Y1 is obtained from the length of the straight line and the number of bubbles intersecting the straight line, the average bubble diameter of each line segment is calculated from Y1 / 0.616, and the average bubble in the extrusion direction is calculated using these arithmetic average values. The diameter was Y.
The average bubble diameter Z in the extrusion direction is obtained by dividing the vertical cross section in the width direction observed with a scanning electron microscope into four equal parts in the thickness direction, and in each of the three line segments in the vicinity of the surface layer, the central portion in the thickness direction, and the vicinity of the back surface. The average chord length Z1 is obtained from the length of the straight line and the number of bubbles intersecting the straight line, the average bubble diameter of each line segment is calculated from Z1 / 0.616, and the average bubble in the extrusion direction is calculated using these arithmetic average values. The diameter was Z.
(10) Sheet impact strength Using a film impact tester (manufactured by Toyo Seiki Co., Ltd.), measurement was performed on the impact spherical surface 10R. The measurement was performed 20 times for each of the front and back surfaces of the foam sheet, and the average value of all the sheets was used as the sheet impact strength.
(11) Thermoformability A deep-drawn bowl-shaped container having a diameter of 100 mm and a depth of 70 mm was thermoformed from a foam sheet using a single molding machine. Regarding the molding conditions, the heating time was kept constant at a heater temperature of 230 ° C., and the crack generation state of the container was observed. Out of 100 molded containers, the case where the number of containers in which cracks are observed is 0, ◎ if less than 5, ○ if 5 or less, and △ if 10 or more, × Deep drawability was evaluated.

容器特性は以下の方法により評価した。
(12)耐レンジアップ変形
発泡シートを単発成形機を用いて縦195mm、横220mm、深さ34mmの角型パスタ容器を熱成形した。成形条件についてはヒーター温度230℃一定とし、表面の荒れが発生しない加熱時間を適宜調整した。得られた角型パスタ容器を出力1500Wの電子レンジで70秒加熱し、表面状態を観察し、容器の変形や隆起が全く無いものを◎、容器の一部にわずかに変形や隆起が見られるものを○、容器に大きな変形や隆起が見られるものを×、容器の形状が崩れるか穴あきが発生するものを×とし耐熱性を評価した。
(13)容器強度
前記の角型パスタ容器の底面部分に13.8gのステンレス球を落とし、20回の測定で容器に亀裂が発生する50%破壊高さを容器強度とした。測定は室温と−40℃の環境下で行った。
The container characteristics were evaluated by the following method.
(12) Range-resistant deformation A square pasta container having a length of 195 mm, a width of 220 mm, and a depth of 34 mm was thermoformed from a foam sheet using a single molding machine. As for the molding conditions, the heater temperature was kept constant at 230 ° C., and the heating time during which surface roughness did not occur was appropriately adjusted. The obtained square pasta container is heated in a microwave oven with an output of 1500 W for 70 seconds, the surface state is observed, and the container is not deformed or raised at all. The heat resistance was evaluated with ○ as the case, × as the case where a large deformation or bulge was seen in the container, and × as the case where the shape of the container collapsed or a hole was generated.
(13) Container strength A 13.8 g stainless steel sphere was dropped on the bottom of the square pasta container, and the 50% fracture height at which the container cracked after 20 measurements was defined as the container strength. The measurement was performed at room temperature and in an environment of −40 ° C.

Figure 0006271147
Figure 0006271147

Figure 0006271147
Figure 0006271147

Figure 0006271147
Figure 0006271147

実施例の発泡シートは、比較例に比べて成形性、強度が大幅に改善されており、その発泡シートを熱成形して得られた容器は耐レンジアップ変形、容器強度のバランスに優れる。   The foamed sheets of the examples have greatly improved moldability and strength as compared with the comparative examples, and the container obtained by thermoforming the foamed sheet is excellent in range-up deformation resistance and container strength balance.

本発明の耐熱性樹脂発泡シートは耐熱性と強度、成形性のバランスに優れるため、深絞り等の多様な形状に加工し、電子レンジ用食品容器として好適に使用できる。   Since the heat-resistant resin foam sheet of the present invention has an excellent balance between heat resistance, strength and moldability, it can be processed into various shapes such as deep drawing and can be suitably used as a food container for microwave ovens.

Claims (7)

メタクリル酸の含有量が2〜7質量%であるスチレン−メタクリル酸共重合体97〜15質量部、ポリフェニレンエーテル3〜15質量部、ポリスチレン0〜60質量部からなり、重量平均分子量(Mw)が16万以上である耐熱性樹脂発泡シート。ただし、この耐熱性樹脂中の各樹脂成分の混合量は、合計100質量部とする。 It consists of 97 to 15 parts by mass of a styrene-methacrylic acid copolymer having a methacrylic acid content of 2 to 7% by mass, 3 to 15 parts by mass of polyphenylene ether, and 0 to 60 parts by mass of polystyrene, and has a weight average molecular weight (Mw). A heat-resistant resin foam sheet of 160,000 or more. However, the total amount of each resin component in the heat resistant resin is 100 parts by mass. Z平均分子量(Mz)/重量平均分子量(Mw)が1.6以上である請求項1記載の耐熱性樹脂発泡シート。   The heat-resistant resin foamed sheet according to claim 1, wherein Z average molecular weight (Mz) / weight average molecular weight (Mw) is 1.6 or more. 前記耐熱性樹脂がゴム補強材を1〜10質量部含む事を特徴とする請求項1〜2記載の耐熱性樹脂発泡シート。   The heat resistant resin foam sheet according to claim 1 or 2, wherein the heat resistant resin contains 1 to 10 parts by mass of a rubber reinforcing material. 前記ゴム補強材がハイインパクトポリスチレンであることを特徴とする請求項3記載の耐熱性樹脂発泡シート。   The heat-resistant resin foam sheet according to claim 3, wherein the rubber reinforcing material is high impact polystyrene. 前記ハイインパクトポリスチレンのゴム分が5〜12質量%である事を特徴とする請求項4記載の耐熱性樹脂発泡シート。   The heat-resistant resin foam sheet according to claim 4, wherein the rubber content of the high impact polystyrene is 5 to 12% by mass. 片面又は両面に熱可塑性樹脂シート又はフィルムが積層されてなる請求項1〜5記載の耐熱性樹脂発泡シート。   The heat-resistant resin foam sheet according to claim 1, wherein a thermoplastic resin sheet or film is laminated on one side or both sides. 請求項1〜6記載の耐熱性樹脂発泡シートを成形してなる容器。   A container formed by molding the heat-resistant resin foam sheet according to claim 1.
JP2013083670A 2013-04-12 2013-04-12 Heat-resistant resin foam sheet and container Active JP6271147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083670A JP6271147B2 (en) 2013-04-12 2013-04-12 Heat-resistant resin foam sheet and container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083670A JP6271147B2 (en) 2013-04-12 2013-04-12 Heat-resistant resin foam sheet and container

Publications (2)

Publication Number Publication Date
JP2014205761A JP2014205761A (en) 2014-10-30
JP6271147B2 true JP6271147B2 (en) 2018-01-31

Family

ID=52119598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083670A Active JP6271147B2 (en) 2013-04-12 2013-04-12 Heat-resistant resin foam sheet and container

Country Status (1)

Country Link
JP (1) JP6271147B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358517B2 (en) 2014-05-01 2019-07-23 Sabic Global Technologies B.V. Amphiphilic block copolymer; composition, membrane, and separation module thereof; and methods of making same
WO2015168423A1 (en) 2014-05-01 2015-11-05 Sabic Global Technologies B.V. Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
US10207230B2 (en) 2014-05-01 2019-02-19 Sabic Global Technologies B.V. Composite membrane with support comprising poly(phenylene ether) and amphilphilic polymer; method of making; and separation module thereof
WO2015168392A1 (en) 2014-05-01 2015-11-05 Sabic Global Technologies B.V. Skinned, asymmetric poly(phenylene ether) co-polymer membrane; gas separation unit, and preparation method thereof
US10421046B2 (en) 2015-05-01 2019-09-24 Sabic Global Technologies B.V. Method for making porous asymmetric membranes and associated membranes and separation modules
US10307717B2 (en) 2016-03-29 2019-06-04 Sabic Global Technologies B.V. Porous membranes and associated separation modules and methods
JP6827728B2 (en) * 2016-07-11 2021-02-10 共栄産業株式会社 High-strength modified polyphenylene ether-based resin extruded foam sheet for deep drawing, deep-drawing high-strength molded product manufacturing method, deep-drawing high-strength modified polyphenylene ether-based resin extruded foam sheet and deep-drawing high-strength foam molded product
JP6203973B1 (en) * 2016-08-09 2017-09-27 東洋スチレン株式会社 Heat-resistant styrene resin composition, foam sheet, and food container
JP2019108506A (en) * 2017-12-20 2019-07-04 東洋スチレン株式会社 Heat-resistant styrene resin composition, molded article, extruded sheet, and food packaging container
JP6955998B2 (en) * 2017-12-26 2021-10-27 株式会社ジェイエスピー Polystyrene resin multilayer foam sheet
JP7084771B2 (en) * 2018-05-02 2022-06-15 東洋スチレン株式会社 Heat-resistant styrene resin composition, molded article, foam sheet, and container for food packaging
JP7336840B2 (en) * 2018-10-12 2023-09-01 Psジャパン株式会社 Styrene-based copolymer resin, resin composition, its sheet and molded article
JP2021059652A (en) * 2019-10-04 2021-04-15 リスパック株式会社 Polystyrene resin foam sheet and container
JP7390171B2 (en) * 2019-11-22 2023-12-01 株式会社ジェイエスピー Polystyrene resin foam board and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188537A (en) * 1988-01-23 1989-07-27 Kanegafuchi Chem Ind Co Ltd Expanded heat-resistant styrene based resin sheet
JPH0258548A (en) * 1988-08-24 1990-02-27 Dainippon Ink & Chem Inc Heat-resistant expanded sheet
JPH0395245A (en) * 1989-05-25 1991-04-19 Dainippon Ink & Chem Inc Thermoplastic resin composition
JP2008144025A (en) * 2006-12-08 2008-06-26 Denki Kagaku Kogyo Kk Method for producing styrene-based resin foam sheet
JP5234723B2 (en) * 2007-07-25 2013-07-10 東洋スチレン株式会社 Method for producing styrene resin foam sheet
JP2009029871A (en) * 2007-07-25 2009-02-12 Toyo Styrene Co Ltd Styrenic resin composition and method for producing foamed sheet
JP2011246588A (en) * 2010-05-26 2011-12-08 Dic Corp Foamable styrenic resin composition, foamed sheet thereof, and foamed container
JP5717451B2 (en) * 2011-01-04 2015-05-13 東洋スチレン株式会社 Heat resistant resin composition and foamed molded body

Also Published As

Publication number Publication date
JP2014205761A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP6271147B2 (en) Heat-resistant resin foam sheet and container
JP5717451B2 (en) Heat resistant resin composition and foamed molded body
JP2014101403A (en) Heat resistant styrenic resin composition, extruded sheet and molded article
JP6353638B2 (en) Heat-resistant resin non-foamed sheet and container
JP2015071678A (en) Heat-resistant resin composition, and foam molding of the same
JP6187707B2 (en) Styrene foam sheet and molded body using the same
JP2008144025A (en) Method for producing styrene-based resin foam sheet
JP6302629B2 (en) Styrene- (meth) acrylic acid copolymer composition
JP2009029871A (en) Styrenic resin composition and method for producing foamed sheet
JP7084213B2 (en) Styrene-based resin composition for extrusion foam, foam sheet, container, and plate-like foam
JP2019108506A (en) Heat-resistant styrene resin composition, molded article, extruded sheet, and food packaging container
JP6203973B1 (en) Heat-resistant styrene resin composition, foam sheet, and food container
JP6580409B2 (en) Styrenic resin composition and foam molded article
JP6717599B2 (en) Styrene resin, styrene resin foam sheet, and food container
JP5234723B2 (en) Method for producing styrene resin foam sheet
JP2014074080A (en) Styrenic resin, extrusion foamed sheet and its molded article
JP7315571B2 (en) foam sheet
JP7100996B2 (en) Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers
JP7084771B2 (en) Heat-resistant styrene resin composition, molded article, foam sheet, and container for food packaging
JP6170730B2 (en) Styrene resin composition for foaming, styrene resin foam sheet, method for producing the same, and food packaging container
JP2019210437A (en) Styrene-based copolymer and its compact, sheet
JP7028585B2 (en) Styrene-based resin composition for extrusion foaming, foaming sheet, container, and plate-shaped foam
JP6235301B2 (en) Resin composition and molded body comprising the same
JP2018076416A (en) Heat-resistant styrenic resin composition, molding, extrusion sheet, and container for food package
JP6912169B2 (en) Styrene-based resin composition for extrusion foaming, extruded foaming sheet, container, and plate-shaped extruded foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6271147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250