JP6236923B2 - Method for determining the series / parallel combination of photovoltaic modules - Google Patents

Method for determining the series / parallel combination of photovoltaic modules Download PDF

Info

Publication number
JP6236923B2
JP6236923B2 JP2013136012A JP2013136012A JP6236923B2 JP 6236923 B2 JP6236923 B2 JP 6236923B2 JP 2013136012 A JP2013136012 A JP 2013136012A JP 2013136012 A JP2013136012 A JP 2013136012A JP 6236923 B2 JP6236923 B2 JP 6236923B2
Authority
JP
Japan
Prior art keywords
series
parallel
power generation
configuration
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013136012A
Other languages
Japanese (ja)
Other versions
JP2015012116A (en
Inventor
孝則 林
孝則 林
富士也 海野
富士也 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013136012A priority Critical patent/JP6236923B2/en
Publication of JP2015012116A publication Critical patent/JP2015012116A/en
Application granted granted Critical
Publication of JP6236923B2 publication Critical patent/JP6236923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Description

本発明は、太陽光発電モジュールの直並列組合わせ決定法に係わり、特に雲や建物の影による太陽光発電モジュール毎にバラツキのある日射に対して太陽光発電モジュールの直並列の組合わせを切替える方法に関するものである。   The present invention relates to a method for determining a series-parallel combination of photovoltaic modules, and in particular, switches a series-parallel combination of photovoltaic modules against uneven solar radiation for each photovoltaic module caused by clouds or shadows of buildings. It is about the method.

通常の太陽光発電システムは、太陽電池セルを1つ以上搭載した太陽光発電モジュールを幾つか直列に並べてPCS(Power Conversion System)の入力電圧に適合するようにしたもの(ストリングと呼ばれる)を、PCS容量に合わせて並列に接続して構成される。しかし、このような固定的な太陽光発電モジュール構成では日射の弱いときに、PCSへの入力電圧が足りなくなる等の問題が発生する。   A normal photovoltaic power generation system is a series of photovoltaic modules equipped with one or more photovoltaic cells that are arranged in series to meet the PCS (Power Conversion System) input voltage (called a string). It is configured by connecting in parallel according to the PCS capacity. However, such a fixed photovoltaic power generation module configuration causes problems such as insufficient input voltage to the PCS when sunlight is weak.

このような問題に対して特許文献1では、太陽光発電モジュール毎に発電電力等のモニタリング行うと共に、直並列切替えによる再構成を可能にしたデバイス及び再構成ロジックを提案している。また、太陽光発電モジュールの電圧・電流から日射強度を推定することは特許文献2や特許文献3などで提案されている。   With respect to such a problem, Patent Document 1 proposes a device and a reconfiguration logic that enable monitoring of generated power and the like for each photovoltaic power generation module and enable reconfiguration by series-parallel switching. Moreover, estimating the solar radiation intensity from the voltage / current of the photovoltaic power generation module has been proposed in Patent Document 2, Patent Document 3, and the like.

特表2012−516568Special table 2012-516568 特開2006−32612JP 2006-32612 A 特開2006−146634JP 2006-146634 A

特許文献1には、太陽光発電モジュールの直並列切替えに関する記載はあるが、具体的に記載されているパターンは12モジュールの例で、12×1,6×2,4×3,3×4,2×6,1×12のように、各並列部分での並列数が一定のパターンの中で目的に最適なものを選ぶというものである。また、目的としての具体事例として、
(1)出力電圧をインバータ入力範囲内にする。
(2)発電と負荷のインピーダンスを近づける。
(3)出力電力を最大電力に近づける。
が挙げられ、直並列の組合わせ毎に予め出力電圧をテーブル化しておく方法である。
In Patent Document 1, there is a description regarding the series-parallel switching of the photovoltaic power generation modules, but the pattern specifically described is an example of 12 modules, 12 × 1, 6 × 2, 4 × 3, 3 × 4. , 2 × 6, 1 × 12, and the like, a pattern having a fixed number of parallel portions in each parallel portion is selected for the purpose. In addition, as a concrete example as a purpose,
(1) Set the output voltage within the inverter input range.
(2) Move the power generation and load impedance closer.
(3) The output power is brought close to the maximum power.
In this method, the output voltage is tabulated in advance for each series-parallel combination.

しかし、このような方法は、均一な日射が期待できる砂漠等で朝夕の低日射時に電圧を確保するために切替えるような運用、或いは負荷変動に合わせた発電量を制御するような運用については有効と考えられるが、雲や建物の影の移動によって時々刻々と変わる日射のバラツキに対して発電電力を最大化する運用に対しては不十分となっている。   However, such a method is effective for operations such as switching in order to ensure voltage during low sunlight in the morning and evening in deserts where uniform solar radiation can be expected, or for controlling the amount of power generation in accordance with load fluctuations. However, it is inadequate for the operation that maximizes the generated power against the variation of solar radiation that changes every moment by the movement of clouds and shadows of buildings.

本発明が目的とするとこは、雲や建物の影による太陽光発電モジュール毎にバラツキのある日射に対しての太陽光発電モジュールの直並列の組合わせ方法を提供することにある。   An object of the present invention is to provide a series-parallel combination method of solar power generation modules with respect to solar radiation that varies among solar power generation modules due to clouds and shadows of buildings.

本発明は、複数の太陽電池セルからなる太陽光発電モジュールを複数設け、各太陽光発電モジュールにそれぞれ計測兼構成切替装置を接続し、各計測兼構成切替装置によって計測された太陽光発電モジュールの電圧・電流及び温度を構成管理装置に入力し、構成管理装置で太陽光発電モジュールの直並列組合わせ構成を算出し、算出された直並列組合わせに基づいて計測兼構成切替装置に対して直並列接続指令を出力して太陽光発電モジュールの直並列に組合わせ構成を変更し、直並列に組合わされた太陽光発電モジュールの出力をパワーコンディショナに入力するよう構成された太陽光発電システムの直並列組合わせ決定方法において、
前記構成管理装置は、
前記計測兼構成切替装置が計測した電圧・電流及び温度のデータを予め決められた一定周期毎に収集するステップと、
前記計測兼構成切替装置毎に、太陽光発電モジュールが現在発電している電圧・電流および温度を用い、定格温度における開放電圧と開放電圧の温度補正係数を使って開放電圧を推定し、該推定された開放電圧を用いて太陽電池基本式に基づいて短絡電流を推定するステップと、
前記計測兼構成切替装置毎に予め現在の直並列組合わせを記録し、可能な直並列組合わせ毎に、前記推定した太陽光発電モジュールの短絡電流を並列接続の度に合計した値に基づいて発電電力を推定して、該発電電力を最大にする組合わせを計算し、求められた組合わせが予め記録された直並列組合わせよりも良いときに新しく最大発電組合わせとして直並列組合わせを決定するステップと、
前記予め記録された現在の直並列組合わせと、前記新しく決定された最大発電組合わせを比較し、太陽光発電モジュールの直並列組合わせ構成を変更すると判断したとき計測兼構成切替装置に直並列再構成指示を出力するステップ、
で直並列組合わせを決定し、
前記直並列再構成指示を出力するステップは、前記パワーコンディショナに対する発電一時停止命令出力後、全計測兼構成切替装置毎に直並列構成の変更の要否を判断し、変更時にはパワーコンディショナに対して発電再開指令を出力することを特徴としたものである。
The present invention, a plurality of photovoltaic modules comprising a plurality of solar cells, the respective photovoltaic module connects the measurement and configuration switching device, the photovoltaic module which is measured by the measurement and configuration switching device The voltage, current, and temperature are input to the configuration management device, and the configuration management device calculates the series / parallel combination configuration of the photovoltaic power generation modules. Based on the calculated series / parallel combination, the measurement / configuration switching device A photovoltaic power generation system configured to output a parallel connection command, change the combination configuration of the photovoltaic modules in series-parallel, and input the output of the photovoltaic modules combined in series-parallel to the power conditioner. In the series-parallel combination determination method,
The configuration management device includes:
Collecting voltage, current and temperature data measured by the measurement and configuration switching device at predetermined intervals; and
For each of the measurement / configuration switching devices, the open voltage is estimated using the open circuit voltage at the rated temperature and the temperature correction coefficient of the open voltage using the voltage, current, and temperature currently generated by the photovoltaic power generation module. Estimating a short-circuit current based on a solar cell basic equation using the generated open-circuit voltage;
The pre-current series-parallel combination recorded every measurement and configuration switching device, for each series-parallel combinations possible, based on the total value each time connected in parallel to the short-circuit current of the photovoltaic modules the estimated Estimate the generated power, calculate the combination that maximizes the generated power , and when the obtained combination is better than the pre-recorded series-parallel combination, the series-parallel combination is newly selected as the maximum generation combination. A step to determine;
Compare the current serial / parallel combination recorded in advance with the newly determined maximum power generation combination and change the serial / parallel combination configuration of the photovoltaic power generation module. Outputting a reconfiguration instruction;
To determine the series-parallel combination ,
The step of outputting the series-parallel reconfiguration instruction is to determine whether or not it is necessary to change the series-parallel configuration for every measurement and configuration switching device after outputting the power generation pause command to the power conditioner. On the other hand, a power generation restart command is output.

本発明は、前記パワーコンディショナにMPPT制御機能を持たせ、前記構成管理装置が有する最大電力点情報をパワーコンディショナに送出し、パワーコンディショナで最大電力点近傍での局所最大点探索を行うことでMPPT制御を実行することを特徴としたものである。   The present invention provides the power conditioner with an MPPT control function, sends the maximum power point information of the configuration management device to the power conditioner, and performs a local maximum point search near the maximum power point with the power conditioner. Thus, the MPPT control is executed.

本発明は、前記計測される温度は、太陽光発電モジュールの任意数の温度情報であることを特徴としたものである。   The present invention is characterized in that the measured temperature is any number of temperature information of the photovoltaic power generation module.

以上のとおり、本発明によれば、雲や建物の影により太陽光発電モジュールに当たる日射のバラツキが生じても、発電電力の最大化が可能となるものである。   As described above, according to the present invention, it is possible to maximize the generated power even if the solar radiation generated by the clouds or the shadow of the building varies.

本発明の実施形態を示す太陽光発電システムの構成図。The block diagram of the solar energy power generation system which shows embodiment of this invention. 直並列再構成のフローチャート。The flowchart of series-parallel reconstruction. データ収集のフローチャート。Flow chart of data collection. 日射強度推定のフローチャート。The flowchart of solar radiation intensity estimation. 直並列組合わせ決定のフローチャート。The flowchart of a serial / parallel combination determination. 直並列再構成指示のフローチャート。The flowchart of a serial-parallel reconstruction instruction | indication. 温度計を部分的に省略した太陽光発電システムの構成図。The block diagram of the solar energy power generation system which abbreviate | omitted the thermometer partially. 計測兼構成切替装置内の切替え状態図。Switching state diagram in the measurement and configuration switching device. 太陽光発電システムの直並列切替え状態図。The series-parallel switching state diagram of a photovoltaic power generation system. 太陽光発電システムの直並列切替え状態図。The series-parallel switching state diagram of a photovoltaic power generation system. 太陽光発電システムの直並列構成図。The series parallel block diagram of a photovoltaic power generation system.

本発明は、太陽光発電システムにおける太陽光発電モジュールの直並列組合わせを決定するとき、計測された電圧・電流及び温度に基づいて直並列組合せ構成を変更することで、常に発電電力の最大化を可能としたもので、以下図に基づいて説明する。   The present invention always maximizes the generated power by changing the series-parallel combination configuration based on the measured voltage, current and temperature when determining the series-parallel combination of the photovoltaic modules in the photovoltaic system. This will be described below with reference to the drawings.

図1は、本発明の実施例を示す太陽光発電システムの概略構成図を示したものである。101はそれぞれ複数の太陽電池セルからなる太陽光発電モジュールで、
各太陽光発電モジュール101には計測兼構成切替装置102が接続されている。計測兼構成切替装置102は、複数台を太線で示した電力線106を介してまとめてパワーコンディショナ104に接続されており、それぞれは、接続された太陽光発電モジュール101の電圧・電流などのモニタリング機能を有すると共に、太陽光発電システムの直並列の接続構成を再構成する機能を有している。
FIG. 1 is a schematic configuration diagram of a photovoltaic power generation system showing an embodiment of the present invention. 101 is a photovoltaic power generation module comprising a plurality of solar cells,
Each photovoltaic power generation module 101 is connected to a measurement / configuration switching device 102. The measurement / configuration switching device 102 is connected to the power conditioner 104 collectively through a power line 106 indicated by a thick line, and each of the measurement / configuration switching device 102 monitors the voltage and current of the connected photovoltaic power generation module 101. In addition to having a function, it has a function of reconfiguring the series-parallel connection configuration of the photovoltaic power generation system.

103は温度計で、図1では全部の太陽光発電モジュール101に設けられているが、図7で示すように代表(ここでは1つ)とする太陽光発電モジュール101の太陽電池セル裏面などに取付けられて温度のモニタリングに使用される。
すなわち、計測兼構成切替装置102は、例えば、特許文献1に記載のインテリジェントノードの利用が可能で、接続した太陽光発電モジュール101が発電する電圧・電流、および温度を計測する。
Reference numeral 103 denotes a thermometer, which is provided in all the photovoltaic power generation modules 101 in FIG. 1, but as shown in FIG. 7, on the back surface of the solar cell of the photovoltaic power generation module 101 as a representative (here, one). Installed and used for temperature monitoring.
That is, the measurement / configuration switching device 102 can use, for example, the intelligent node described in Patent Document 1, and measures the voltage / current and temperature generated by the connected solar power generation module 101.

計測兼構成切替装置102は、それぞれ隣接同士間において直列接続或いは並列接続に変更されることで太陽光発電システムの再構成が可能となっており、本実施例での計測兼構成切替装置102は、パワーコンディショナ104のマイナス極側に近い計測兼構成切替装置102の接続が直並列切替えできるよう構成されている。すなわち、パワーコンディショナ104のマイナス極側に接続される計測兼構成切替装置102が直列接続されている。なお、プラス極側に近い計測兼構成切替装置102の接続を直並列切替えできるよう構成してもよいことは勿論である。   The measurement and configuration switching device 102 can be reconfigured by changing the connection between adjacent units to a series connection or a parallel connection, and the measurement and configuration switching device 102 in this embodiment is configured as follows. The connection of the measurement and configuration switching device 102 close to the negative pole side of the power conditioner 104 can be switched in series and parallel. That is, the measurement / configuration switching device 102 connected to the negative pole side of the power conditioner 104 is connected in series. It goes without saying that the measurement and configuration switching device 102 close to the positive pole side may be configured to be switched in series and parallel.

105は構成管理装置で、細線で示した通信線107を介して複数台の計測兼構成切替装置102と接続され、太陽光発電モジュール101が発電した電圧・電流および温度の計測値を、通信線107を介して取得する。そして、取得した計測値を基に太陽光発電モジュール101毎の日射強度を推定し、太陽光発電システムとして発電電力を最大化するよう直並列の組合わせを算出して各計測兼構成切替装置102に対し直並列再構成の指示を出す。   Reference numeral 105 denotes a configuration management device, which is connected to a plurality of measurement / configuration switching devices 102 via a communication line 107 indicated by a thin line, and measures measured values of voltage, current, and temperature generated by the photovoltaic power generation module 101 as communication lines. Through 107. And the solar radiation intensity | strength for every photovoltaic power generation module 101 is estimated based on the acquired measured value, a series-parallel combination is calculated so that generated power may be maximized as a photovoltaic power generation system, and each measurement and structure switching apparatus 102 Is instructed to perform serial-parallel reconstruction.

また、構成管理装置105は、パワーコンディショナ104とも通信線107により接続されており、直並列再構成の際には発電の一時停止処理指令を出力する。また、構成管理装置105は、パワーコンディショナ104のMPPT(最大電力点追従)制御に必要な情報提供機能を有し、MPPT制御機能はパワーコンディショナ104中に内蔵若しくは別設される。なお、図1では通信線107をカスケード接続で表現しているが、構成管理装置105と各計測兼構成切替装置102間を直接接続してもよく、中継装置を介しての接続や、無線による通信も可能である。   The configuration management apparatus 105 is also connected to the power conditioner 104 via the communication line 107, and outputs a power generation temporary stop processing command during series-parallel reconfiguration. The configuration management apparatus 105 has an information providing function necessary for MPPT (maximum power point tracking) control of the power conditioner 104, and the MPPT control function is built in or separately provided in the power conditioner 104. In FIG. 1, the communication line 107 is represented by cascade connection. However, the configuration management device 105 and each measurement / configuration switching device 102 may be directly connected, and may be connected via a relay device or wirelessly. Communication is also possible.

図8は計測兼構成切替装置102内の切替え部材のイメージ図で、(a)が並列接続時、(b)が直列接続時を示したものである。図9,図10は、計測兼構成切替装置102が4台ユニット(計測兼構成切替装置)の場合の例で、図8で示す切替え部材を使って太陽光発電システムを直並列構成した接続図を示したものである。図9(a)は4ユニットの計測兼構成切替装置102を図面左側から直列・並列・直列・並列として構成したもので、この場合の理論的な接続は図9(b)で示すように2台ユニットずつの並列接続が直列に接続された状態となる。   FIG. 8 is an image diagram of the switching member in the measurement and configuration switching device 102, where (a) shows a parallel connection and (b) shows a series connection. 9 and 10 are examples of the case where the measurement / configuration switching device 102 is a four-unit (measurement / configuration switching device), and is a connection diagram in which a photovoltaic power generation system is configured in series and parallel using the switching member shown in FIG. Is shown. FIG. 9A shows a four-unit measuring / configuration switching device 102 configured in series, parallel, series, and parallel from the left side of the drawing. The theoretical connection in this case is 2 as shown in FIG. 9B. The parallel connection of each unit is connected in series.

また、図面右側での計測兼構成切替装置102が直列に切替えられたものが図10(a)で、このときの理論的な接続は図10(b)で示すように2台の並列と残りの2ユニットが直列に接続された状態となる。そうして、パワーコンディショナ104の正極側には接続構成された計測兼構成切替装置の正極が接続され、パワーコンディショナ104の負極には計測兼構成切替装置の負極がそれぞれ接続される。   Also, the measurement / configuration switching device 102 on the right side of the drawing is switched in series in FIG. 10 (a), and the theoretical connection at this time is parallel to the remaining two units as shown in FIG. 10 (b). These two units are connected in series. Thus, the positive electrode of the measurement / configuration switching device connected is configured on the positive electrode side of the power conditioner 104, and the negative electrode of the measurement / configuration switching device is connected to the negative electrode of the power conditioner 104.

次に、太陽光発電システムを構成するユニットに影がかかったときの直並列構成について説明する。
図11は太陽光発電システムを12台のユニットで構成された場合の例で、通常時は図11(a)で理論的接続は図11(c)で示すように4並列が3段(S1〜S3)直列に接続された構成とする。ここで、図11(a)では斜線で示すように上半分のユニットに影が差し、この部分の日射が半分になったとする。
Next, a series-parallel configuration when a shadow is applied to the units constituting the photovoltaic power generation system will be described.
FIG. 11 shows an example in which the solar power generation system is configured by 12 units. In normal times, as shown in FIG. 11A, the theoretical connection is shown in FIG. -S3) It is set as the structure connected in series. Here, in FIG. 11 (a), it is assumed that a shadow is added to the upper half unit as indicated by diagonal lines, and the solar radiation in this portion is halved.

太陽光発電システムの特性として、電圧はあまり変化しないが電流が半減する。このようなとき、図11(a)の接続状態のままであると、影の無い段S3には4の電流がながれているとすると、半分が影の段S2では3、全部影の段S1では2の電流が流れる。しかし、物理法則によってどの段も同じ電流が流れなければならないため、実際には全体に2程度の電流しか流れず発電量は影の無いときに比較して半減する。図11(c)は図11(a)の理論的接続図を示す。   As a characteristic of the photovoltaic power generation system, the voltage does not change much but the current is halved. In such a case, if the connection state of FIG. 11 (a) is maintained, if a current of 4 flows in the shaded stage S3, 3 in the shadow stage S2 and 3 in the shadow stage S1. Then, a current of 2 flows. However, since the same current must flow in every stage according to the laws of physics, in reality only about 2 current flows in total, and the power generation amount is halved compared to when there is no shadow. FIG. 11C shows the theoretical connection diagram of FIG.

そこで、影が発生した場合、図11(b)で示すように○印を付した計測兼構成切替装置の切替え部材を直列→並列に、又は並列→直列に切替えて直並列構成を変更して図11(d)で示す理論的接続にすると、何れの段にも3の電流を流すことができる。したがって、影の無いときと比べて3/4の発電が可能となる。この発電量は影による日射量の減少に相当するものであり、実質的に発電の効率を落とさずに運用でき、不均等な影による日射量の減少以上に発電電量の減少することを緩和てきる。   Therefore, when a shadow occurs, change the series-parallel configuration by switching the switching member of the measurement and configuration switching device marked with a circle as shown in FIG. 11B from series to parallel or from parallel to series. With the theoretical connection shown in FIG. 11 (d), it is possible to pass a current of 3 in any stage. Therefore, 3/4 power generation is possible compared to when there is no shadow. This amount of power generation corresponds to a decrease in the amount of solar radiation due to shadows, which can be operated without substantially reducing the efficiency of power generation, and mitigating the decrease in the amount of power generation more than the decrease in solar radiation due to uneven shadows. The

本発明は、上記のように構成される太陽光発電システムの直並列組合わせの算出方法に関するものである。以下図に基づいて具体的に説明する。
構成管理装置105は一定時間毎に各計測兼構成切替装置102からデータを収集して直並列組合わせを決定し、計測兼構成切替装置102に対して直並列再構成の指示を行う。その流れを示したものが図2である。
The present invention relates to a method for calculating a series-parallel combination of a photovoltaic power generation system configured as described above. This will be specifically described below with reference to the drawings.
The configuration management device 105 collects data from each measurement / configuration switching device 102 at regular intervals, determines a serial / parallel combination, and instructs the measurement / configuration switching device 102 to perform serial / parallel reconfiguration. The flow is shown in FIG.

図2のフローチャートにおいて、ステップ201で一定周期毎に各計測兼構成切替装置102の計測データを収集する。201でのデータ収集は、図3で示すフローチャートのように、ステップ301で計測兼構成切替装置102毎に順次データ収集を指示し、各計測兼構成切替装置102が計測している太陽光発電モジュール101の現在発電している電圧・電流値を取得(302)し、また、接続されている温度計による太陽電池セル温度を取得(303)する。ステップ304では、これを計測兼構成切替装置毎に反復処理を行う。   In the flowchart of FIG. 2, in step 201, measurement data of each measurement / configuration switching device 102 is collected at regular intervals. As shown in the flowchart of FIG. 3, the data collection in 201 is a photovoltaic power generation module in which data collection is sequentially instructed for each measurement / configuration switching device 102 in step 301 and each measurement / configuration switching device 102 measures. The voltage / current value of current power generation 101 is acquired (302), and the solar cell temperature by the connected thermometer is acquired (303). In step 304, this is repeated for each measurement and configuration switching device.

図2において、ステップ202では、収集された計測データに基づいて日射強度を推定し、この推定に基づいて直並列組合わせを決定(203)し、204では組合わせ決定結果により構成変更を行うか否かの判定を行う。構成変更となった場合には205で直並列再構成指示を出力する。   In FIG. 2, in step 202, the solar radiation intensity is estimated based on the collected measurement data, and a series-parallel combination is determined based on this estimation (203). In 204, the configuration change is performed based on the combination determination result. Determine whether or not. When the configuration is changed, a series / parallel reconfiguration instruction is output at 205.

ステップ202の日射強度推定は、図4で示すフローチャートのように行われる。すなわち、計測兼構成切替装置毎に、太陽光発電モジュールが現在発電している電圧・電流値及び太陽電池セル温度を用いて太陽電池基本式に基づいて開放電圧(402)及び短絡電流(403)を計算する。その際の太陽光発電モジュールの特性パラメータは予め設定しておく。ステップ402の開放電圧推定は、定格温度における開放電圧と開放電圧の温度補正係数というパラメータ値を使って太陽電池セル温度から開放電圧を算出する。ステップ403の短絡電流推定では、402で算出した開放電圧を用い、太陽電池基本式に基づいて短絡電流を算出し、計測兼構成切替装置毎に反復処理(404)を行う。   The solar radiation intensity estimation in step 202 is performed as in the flowchart shown in FIG. That is, for each measurement / configuration switching device, the open circuit voltage (402) and the short circuit current (403) based on the solar cell basic formula using the voltage / current value and the solar cell temperature that the photovoltaic power generation module is currently generating. Calculate The characteristic parameters of the photovoltaic module at that time are set in advance. In the open-circuit voltage estimation in step 402, the open-circuit voltage is calculated from the solar cell temperature using the parameter values of the open-circuit voltage at the rated temperature and the open-circuit voltage temperature correction coefficient. In the short-circuit current estimation in step 403, the short-circuit current is calculated based on the solar cell basic equation using the open-circuit voltage calculated in 402, and the iterative process (404) is performed for each measurement and configuration switching device.

なお、図4では日射強度推定と言いながら日射強度を求めていない。日射強度は短絡電流に略比例することから、短絡電流の温度補正を行って定格短絡電流で除することで日射強度を求めることが出来る。しかし、次の段階で必要なものは短絡電流であるので無駄な計算を省いている。   In FIG. 4, the solar radiation intensity is not calculated while saying solar radiation intensity estimation. Since the solar radiation intensity is substantially proportional to the short circuit current, the solar radiation intensity can be obtained by correcting the temperature of the short circuit current and dividing by the rated short circuit current. However, since what is necessary in the next stage is a short-circuit current, useless calculation is omitted.

ステップ203の直並列組合わせは、図5で示すフローチャートのように行われる。予め現在の直並列組合わせを記録(501)してから可能な直並列組合わせ毎に(502)発電電力を推定(503)し、発電電力を最大にする組合わせを計算する。その後、最大電力の直並列組合わせが再構成ロスを考慮しても、現在の直並列組合わせより良ければ新たな直並列組合わせに決定する。ステップ502〜505は可能な直並列組合わせ毎に反復して処理することを示す。   The series-parallel combination in step 203 is performed as shown in the flowchart of FIG. The current series / parallel combination is recorded in advance (501), and then for each possible series / parallel combination (502), the generated power is estimated (503), and the combination that maximizes the generated power is calculated. Thereafter, even if the series-parallel combination with the maximum power takes the reconstruction loss into consideration, if it is better than the current series-parallel combination, a new series-parallel combination is determined. Steps 502-505 represent iterative processing for each possible series-parallel combination.

503での発電電力の推定は、選択した直並列組合わせで発電できる電力を太陽電池基本式と直並列合成で算出する。直並列合成は太陽電池基本式で算出できるIV特性関数を直列・並列の接続に合わせて電圧方向・電流方向に積算することで実施する。504の最大発電組合わせ記録は、503で算出された発電電力が、今までの直並列組合わせより大きければ更新することにより最大発電の直並列組合わせを記録する。506の再構成可否決定では501で記録された現在の最大発電の直並列組合わせと比較し、501で記録されたものが再構成ロスを考慮した基準を超えて最大発電の直並列組合わせが良ければ記録はそのままとし、そうでなければ今までの組合せを新たな最大発電の直並列組合わせとして決定する。この判断はステップ204で行って、205で直並列再構成指示を出力する。   In the estimation of the generated power at 503, the power that can be generated by the selected series-parallel combination is calculated by the solar cell basic formula and the series-parallel combination. The series-parallel synthesis is performed by integrating the IV characteristic function that can be calculated by the basic formula of the solar cell in the voltage direction / current direction in accordance with the series / parallel connection. The maximum power generation combination record of 504 records the maximum power generation series-parallel combination by updating if the generated power calculated in 503 is larger than the current series-parallel combination. Compared with the current maximum power generation serial / parallel combination recorded in 501 in the determination of whether or not the reconfiguration is possible in 506, the one recorded in 501 is a series / parallel combination of the maximum power generation exceeding the criterion considering the reconfiguration loss. If it is good, the record is left as it is, and if not, the previous combination is determined as a new maximum power generation series-parallel combination. This determination is made at step 204, and a series-parallel reconfiguration instruction is output at 205.

図6は、205での直並列再構成指示のフローチャートを示したもので、予め発電を一時停止してから、各計測兼構成切替装置102に直並列変更を指示して行き、直並列構成を更新してから発電を再開する。ステップ601ではパワーコンディショナ104に指示して発電を一時停止する。602〜605は計測兼構成切替装置102毎に反復して処理する。603では各計測兼構成切替装置102が直並列構成を更新すべきか否かを判断し、変更すべきと判断したときには604で計測兼構成切替装置102に指示して直並列構成を更新する。全ての直並列構成が更新されたら、606でパワーコンディショナ104に指示して発電を再開する。パワーコンディショナ104は新しい直並列組合わせに基づいてMPPT制御を行い発電を制御する。   FIG. 6 shows a flow chart of the series-parallel reconfiguration instruction in 205. After temporarily stopping power generation in advance, the measurement / configuration switching device 102 is instructed to change the series-parallel, and the series-parallel configuration is changed. Restart power generation after updating. In step 601, the power conditioner 104 is instructed to temporarily stop power generation. Steps 602 to 605 are repeated for each measurement / configuration switching device 102. In 603, each measurement / configuration switching device 102 determines whether or not the series / parallel configuration should be updated. When it is determined that the measurement / configuration switching device 102 should be changed, the measurement / configuration switching device 102 is instructed in 604 to update the series / parallel configuration. When all the series-parallel configurations have been updated, the power conditioner 104 is instructed at 606 to restart power generation. The power conditioner 104 performs MPPT control based on the new series-parallel combination to control power generation.

実施例1では、直並列組合わせ決定には、可能な直並列組合わせ毎に図5で示すように発電電力を推定している。開放電圧は大きく変わらないこと、最大発電電力は一般には短絡電流の一定割合で近似てきることを考慮すると、太陽光発電モジュール101の短絡電流を並列接続の度に合計した値の最小値をなるべく大きくすれば発電電力も大きくなりそうなことが分る。   In the first embodiment, in the series / parallel combination determination, the generated power is estimated as shown in FIG. 5 for each possible series / parallel combination. Considering that the open-circuit voltage does not change greatly and that the maximum generated power is generally approximated at a constant ratio of the short-circuit current, the minimum value of the total value of the short-circuit currents of the photovoltaic power generation modules 101 for each parallel connection is as much as possible. It can be seen that the larger the power, the greater the generated power.

そこで、実施例2は図5で示す発電電力推定を、短絡電流の並列合計の最小値の計算に置き換えることで、直並列組合わせ決定の簡略化を図ってより高速化するものである。
したがって、この実施例によれば、直並列組合わせ決定をより高速に可能となるものである。
Therefore, the second embodiment replaces the generated power estimation shown in FIG. 5 with the calculation of the minimum value of the parallel sum of the short-circuit currents, thereby simplifying the series-parallel combination determination and increasing the speed.
Therefore, according to this embodiment, series / parallel combination determination can be performed at higher speed.

この実施例は、MPPT制御に直並列組合わせ決定情報を利用して再構成時の電力ロスを大きく減らすものである。直並列再構成時には、パワーコンディショナ104は新しい直並列構成に対してMPPT制御を実施するが、構成管理装置105が直並列組合わせ決定する際には新しい直並列構成におけるIV特性関数を計算しており、これにより最大電力点も分っている。この最大電力点電力情報を構成管理装置105からパワーコンディショナ104に送り、パワーコンディショナ104ではこの最大電力点近傍の局所最大点の探索を行う。   In this embodiment, power loss at the time of reconfiguration is greatly reduced by using series / parallel combination determination information for MPPT control. At the time of series-parallel reconfiguration, the power conditioner 104 performs MPPT control on the new series-parallel configuration, but when the configuration management device 105 determines the series-parallel combination, the IV characteristic function in the new series-parallel configuration is calculated. As a result, the maximum power point is also known. This maximum power point power information is sent from the configuration management device 105 to the power conditioner 104, and the power conditioner 104 searches for a local maximum point in the vicinity of this maximum power point.

これによって、パワーコンディショナ104によるMPPT制御を迅速に実施でき、再構成時の電力ロスを大きく減らすことが可能となる。
したがって、この実施例によれば、直並列再構成時でのMPPT制御の高速化が可能となるものである。
As a result, MPPT control by the power conditioner 104 can be performed quickly, and power loss during reconfiguration can be greatly reduced.
Therefore, according to this embodiment, it is possible to increase the speed of MPPT control at the time of series-parallel reconfiguration.

この実施例は、直並列組合わせ決定のMPPT制御時への情報利用を行うことで、パワーコンディショナ104によるMPPT制御の迅速化、及び再構成時の電力ロスを減らすものである。
実施例2に基づいて直並列組合わせ決定を簡略計算で行った場合、実施例2では新しい直並列構成におけるIV特性関数を計算していないため、そのままの状態では実施例3のようにMPPT制御に利用することができない。
In this embodiment, information is used at the time of MPPT control of series / parallel combination determination, thereby speeding up MPPT control by the power conditioner 104 and reducing power loss during reconfiguration.
When the series-parallel combination determination is performed by the simple calculation based on the second embodiment, the IV characteristic function in the new series-parallel configuration is not calculated in the second embodiment. Therefore, the MPPT control as in the third embodiment is performed as it is. It cannot be used.

しかしながら、実施例2においても、実施例1と同様に太陽光発電モジュール101の開放電圧・短絡情報は存在するので、直並列組合わせが決定されてからその直並列組合わせでのIV特性関数や最大電力点の計算は可能である。計算された最大電力点情報を構成管理装置105からパワーコンディショナ104に送り、パワーコンディショナ104ではこの最大電力点近傍の局所最大点の探索のみを行う。これによって、パワーコンディショナ104によるMPPT制御を迅速に実施でき、再構成時の電力ロスを大きく減らすことが可能となる。
したがって、この実施例にも、実施例3と同様に直並列再構成時でのMPPT制御の高速化が可能となるものである。
However, since the open circuit voltage / short circuit information of the photovoltaic power generation module 101 exists in the second embodiment as well as the first embodiment, the IV characteristic function in the series / parallel combination after the series / parallel combination is determined The maximum power point can be calculated. The calculated maximum power point information is sent from the configuration management device 105 to the power conditioner 104, and the power conditioner 104 only searches for a local maximum point near the maximum power point. As a result, MPPT control by the power conditioner 104 can be performed quickly, and power loss during reconfiguration can be greatly reduced.
Therefore, in this embodiment as well as the third embodiment, it is possible to increase the speed of MPPT control at the time of serial-parallel reconfiguration.

図7で示すように、温度計103が一部の太陽光発電モジュール101にのみ取付けられた場合、太陽光発電モジュール101毎の太陽電池セル温度は不明となる。この場合、太陽光発電モジュール101毎の温度差はそれほど大きくないと仮定して、計測している太陽電池セル温度、若しくは太陽電池セル温度の平均値を太陽光発電システムの全ての太陽光発電モジュールの温度の代用値とする。
したがって、この実施例によれば、必要とする温度計の数を少なくすることが可能となるものである。
As shown in FIG. 7, when the thermometer 103 is attached only to some of the photovoltaic power generation modules 101, the solar cell temperature for each photovoltaic power generation module 101 is unknown. In this case, assuming that the temperature difference between the photovoltaic modules 101 is not so large, the measured photovoltaic cell temperature, or the average value of the photovoltaic cell temperatures, is used for all photovoltaic modules in the photovoltaic system. Substitute value for temperature.
Therefore, according to this embodiment, the number of required thermometers can be reduced.

101… 太陽光発電モジュール
102… 計測兼構成切替装置
103… 温度計
104… パワーコンディショナ
105… 構成管理装置
106… 電力線
107… 通信線
DESCRIPTION OF SYMBOLS 101 ... Photovoltaic power generation module 102 ... Measurement and structure switching apparatus 103 ... Thermometer 104 ... Power conditioner 105 ... Configuration management apparatus 106 ... Power line 107 ... Communication line

Claims (3)

複数の太陽電池セルからなる太陽光発電モジュールを複数設け、各太陽光発電モジュールにそれぞれ計測兼構成切替装置を接続し、各計測兼構成切替装置によって計測された太陽光発電モジュールの電圧・電流及び温度を構成管理装置に入力し、構成管理装置で太陽光発電モジュールの直並列組合わせ構成を算出し、算出された直並列組合わせに基づいて計測兼構成切替装置に対して直並列接続指令を出力して太陽光発電モジュールの直並列に組合わせ構成を変更し、直並列に組合わされた太陽光発電モジュールの出力をパワーコンディショナに入力するよう構成された太陽光発電システムの直並列組合わせ決定方法において、
前記構成管理装置は、
前記計測兼構成切替装置が計測した電圧・電流及び温度のデータを予め決められた一定周期毎に収集するステップと、
前記計測兼構成切替装置毎に、太陽光発電モジュールが現在発電している電圧・電流および温度を用い、定格温度における開放電圧と開放電圧の温度補正係数を使って開放電圧を推定し、該推定された開放電圧を用いて太陽電池基本式に基づいて短絡電流を推定するステップと、
前記計測兼構成切替装置毎に予め現在の直並列組合わせを記録し、可能な直並列組合わせ毎に、前記推定した太陽光発電モジュールの短絡電流を並列接続の度に合計した値に基づいて発電電力を推定して、該発電電力を最大にする組合わせを計算し、求められた組合わせが予め記録された直並列組合わせよりも良いときに新しく最大発電組合わせとして直並列組合わせを決定するステップと、
前記予め記録された現在の直並列組合わせと、前記新しく決定された最大発電組合わせを比較し、太陽光発電モジュールの直並列組合わせ構成を変更すると判断したとき計測兼構成切替装置に直並列再構成指示を出力するステップ、
で直並列組合わせを決定し、
前記直並列再構成指示を出力するステップは、前記パワーコンディショナに対する発電一時停止命令出力後、全計測兼構成切替装置毎に直並列構成の変更の要否を判断し、変更時にはパワーコンディショナに対して発電再開指令を出力することを特徴とした太陽光発電システムの直並列組合わせ決定方法。
A plurality of photovoltaic power generation modules composed of a plurality of photovoltaic cells are provided, a measurement / configuration switching device is connected to each photovoltaic power generation module, and the voltage / current of the photovoltaic power generation module measured by each measurement / configuration switching device and The temperature is input to the configuration management device, and the configuration management device calculates the series / parallel combination configuration of the photovoltaic power generation modules, and issues a series / parallel connection command to the measurement / configuration switching device based on the calculated series / parallel combination A series-parallel combination of photovoltaic systems configured to output and change the combination configuration of the photovoltaic modules in series-parallel and input the output of the photovoltaic modules combined in series-parallel to the power conditioner In the decision method,
The configuration management device includes:
Collecting voltage, current and temperature data measured by the measurement and configuration switching device at predetermined intervals; and
For each of the measurement / configuration switching devices, the open voltage is estimated using the open circuit voltage at the rated temperature and the temperature correction coefficient of the open voltage using the voltage, current, and temperature currently generated by the photovoltaic power generation module. Estimating a short-circuit current based on a solar cell basic equation using the generated open-circuit voltage;
The pre-current series-parallel combination recorded every measurement and configuration switching device, for each series-parallel combinations possible, based on the total value each time connected in parallel to the short-circuit current of the photovoltaic modules the estimated Estimate the generated power, calculate the combination that maximizes the generated power , and when the obtained combination is better than the pre-recorded series-parallel combination, the series-parallel combination is newly selected as the maximum generation combination. A step to determine;
Compare the current serial / parallel combination recorded in advance with the newly determined maximum power generation combination and change the serial / parallel combination configuration of the photovoltaic power generation module. Outputting a reconfiguration instruction;
To determine the series-parallel combination ,
The step of outputting the series-parallel reconfiguration instruction is to determine whether or not it is necessary to change the series-parallel configuration for every measurement and configuration switching device after outputting the power generation pause command to the power conditioner. A series-parallel combination determination method for a photovoltaic power generation system, characterized by outputting a power generation resumption command.
前記パワーコンディショナにMPPT制御機能を持たせ、前記構成管理装置が有する最大電力点情報をパワーコンディショナに送出し、パワーコンディショナで最大電力点近傍での局所最大点探索を行うことでMPPT制御を実行することを特徴とした請求項1記載の太陽光発電システムの直並列組合わせ決定方法。   MPPT control by giving the power conditioner an MPPT control function, sending the maximum power point information of the configuration management device to the power conditioner, and performing a local maximum point search near the maximum power point by the power conditioner The series-parallel combination determination method for a photovoltaic power generation system according to claim 1, wherein: 前記計測される温度は、太陽光発電モジュールの任意数の温度情報であることを特徴とした請求項1又は2記載の太陽光発電システムの直並列組合わせ決定方法。   The method for determining a series-parallel combination of a solar power generation system according to claim 1 or 2, wherein the measured temperature is temperature information of an arbitrary number of solar power generation modules.
JP2013136012A 2013-06-28 2013-06-28 Method for determining the series / parallel combination of photovoltaic modules Expired - Fee Related JP6236923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136012A JP6236923B2 (en) 2013-06-28 2013-06-28 Method for determining the series / parallel combination of photovoltaic modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136012A JP6236923B2 (en) 2013-06-28 2013-06-28 Method for determining the series / parallel combination of photovoltaic modules

Publications (2)

Publication Number Publication Date
JP2015012116A JP2015012116A (en) 2015-01-19
JP6236923B2 true JP6236923B2 (en) 2017-11-29

Family

ID=52305036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136012A Expired - Fee Related JP6236923B2 (en) 2013-06-28 2013-06-28 Method for determining the series / parallel combination of photovoltaic modules

Country Status (1)

Country Link
JP (1) JP6236923B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550368B1 (en) * 2015-04-17 2015-09-08 (주)에너지와공조 Solar photovoltaic power generation system and method for controlling connection of solar cell array
KR101859799B1 (en) * 2015-08-07 2018-05-21 한국과학기술원 Reconfigurable method of photovoltaic array and vehicular photovoltaic system
EP3142153B1 (en) * 2015-09-12 2020-04-01 IMEC vzw Reconfigurable photovoltaic module
CN106055017A (en) * 2016-06-12 2016-10-26 陈圳 Maximum power point tracing based solar power optimizing method and device
JP6908452B2 (en) * 2017-06-29 2021-07-28 京セラ株式会社 Vehicle solar cell control device, vehicle solar cell control device control method, and vehicle solar cell system
CN111708401B (en) * 2020-08-20 2020-11-20 浙江艾罗网络能源技术有限公司 Photovoltaic module maximum power tracking method suitable for multiple connection modes
CN114660393B (en) * 2022-05-18 2022-08-19 深圳市德兰明海科技有限公司 Method for identifying multi-path PV input mode
KR102583606B1 (en) * 2022-12-01 2023-09-27 주식회사 이엘티 Home-type Hybrid Energy Integrated Management System For Solar Power Generation
CN116545036B (en) * 2023-06-30 2023-10-27 长江勘测规划设计研究有限责任公司 Method for correcting photovoltaic module serial number based on ambient temperature and solar irradiance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700809B2 (en) * 1997-09-29 2005-09-28 積水樹脂株式会社 Solar cell device
JP2000089841A (en) * 1998-09-08 2000-03-31 Kobe Steel Ltd Solar generator
US8115340B2 (en) * 2008-12-12 2012-02-14 Paceco Corp. System for controlling power from a photovoltaic array by selectively configurating connections between photovoltaic panels
US20100198424A1 (en) * 2009-01-30 2010-08-05 Toru Takehara Method for reconfigurably connecting photovoltaic panels in a photovoltaic array
JP4915821B2 (en) * 2009-03-17 2012-04-11 独立行政法人産業技術総合研究所 Solar power system
WO2011155877A1 (en) * 2010-06-08 2011-12-15 Global Sun Engineering Sweden Ab Solar panel
JP2012043981A (en) * 2010-08-19 2012-03-01 National Institute Of Advanced Industrial & Technology Solar cell module
JP2012204651A (en) * 2011-03-25 2012-10-22 Sharp Corp Solar cell module, photovoltaic power generation system, connection switching control method for solar cell in solar cell module, connection switching control program, and recording medium
JP5747742B2 (en) * 2011-08-30 2015-07-15 Jx日鉱日石エネルギー株式会社 Arithmetic device for optimizing photovoltaic power generation, method for optimizing photovoltaic power generation, photovoltaic power generation system, and photovoltaic power generation simulation system

Also Published As

Publication number Publication date
JP2015012116A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6236923B2 (en) Method for determining the series / parallel combination of photovoltaic modules
EP3361631B1 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
US11527892B2 (en) Photovoltaic power generation control method and photovoltaic power generation system
US8508074B2 (en) System and method for optimizing solar power conversion
CN107017836B (en) A kind of photovoltaic generating system and its component IV curved scanning method
JP6277496B2 (en) Determination of string configuration in multi-string inverter
WO2016069810A1 (en) Systems and methods for dispatching maximum available capacity for photovoltaic power plants
CA3064446C (en) Maximum power point tracking hybrid control of an energy storage system
JP7289995B2 (en) Method and apparatus for recognizing operating state of photovoltaic string and storage medium
CN105378577A (en) Power conversion device, power management method, and power management system
CN112994107A (en) Method, device and system for controlling power supply system
Azab DC power optimizer for PV modules using SEPIC converter
CN104579164A (en) Method, device and system for monitoring performance of photovoltaic energy storage system
CN110297136A (en) A kind of testing conditions determine method, apparatus and photovoltaic system
JP2017022879A (en) Diagnosis device, photovoltaic power generation system, and deterioration/failure diagnosis method
JP5450285B2 (en) Predicted power generation calculation device and predicted power generation calculation method
JP6759081B2 (en) How to grasp the characteristics of solar cells and photovoltaic power generation control system
CN113489455B (en) Photovoltaic system, IV scanning method and device thereof and combiner box
Teja et al. Efficient Smart Micro Scale Solar Power Management System for Rechargeable Nodes
JP2019216547A (en) Power control apparatus, photovoltaic power generation system, and failure diagnosing method of photovoltaic power generation facility
JPWO2014136459A1 (en) Power conditioner, photovoltaic power generation apparatus, and control method
KR20180129399A (en) Photovoltaic system
JP2014195033A (en) Photovoltaic power generation system
JP6698234B1 (en) Degradation detection method for solar cell string, degradation detection system, and degradation detection device
CN109193770B (en) Reactive power control method, device and system for grid-connected inverter and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6236923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees