JP6221135B2 - Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same - Google Patents

Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same Download PDF

Info

Publication number
JP6221135B2
JP6221135B2 JP2013135328A JP2013135328A JP6221135B2 JP 6221135 B2 JP6221135 B2 JP 6221135B2 JP 2013135328 A JP2013135328 A JP 2013135328A JP 2013135328 A JP2013135328 A JP 2013135328A JP 6221135 B2 JP6221135 B2 JP 6221135B2
Authority
JP
Japan
Prior art keywords
ultrasonic
sounding body
resonator
parametric speaker
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013135328A
Other languages
Japanese (ja)
Other versions
JP2015012384A (en
Inventor
綾太 浅倉
綾太 浅倉
信之 黒崎
信之 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013135328A priority Critical patent/JP6221135B2/en
Publication of JP2015012384A publication Critical patent/JP2015012384A/en
Application granted granted Critical
Publication of JP6221135B2 publication Critical patent/JP6221135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発振源として利用される超音波発音体、超音波素子およびこれを用いたパラメトリックスピーカに関する。   The present invention relates to an ultrasonic sound generator, an ultrasonic element, and a parametric speaker using the same, which are used as an oscillation source.

超音波発音体は、金属板と圧電素子を貼り合わせた圧電振動子を備えている。そして、圧電振動子は、圧電振動子固有の共振周波数付近の交流電圧を印加することで振動し、超音波を発する。超音波発音体は、共振周波数が超音波帯域(20kHzを超えたもの)であるため、「超音波」発音体と呼ばれる。   The ultrasonic sounding body includes a piezoelectric vibrator in which a metal plate and a piezoelectric element are bonded. The piezoelectric vibrator vibrates by applying an alternating voltage in the vicinity of the resonance frequency unique to the piezoelectric vibrator and emits ultrasonic waves. An ultrasonic sounding body is called an “ultrasonic” sounding body because its resonance frequency is in the ultrasonic band (above 20 kHz).

また、圧電振動子にアルミニウムまたはアルミニウム合金で構成された円錐筒形状(パラボラ状、漏斗状含む)の共振子を取り付けることで、音圧を増すことができ、前方への指向性を持たせることができる。   In addition, by attaching a conical cylinder-shaped (including parabolic or funnel-shaped) resonator made of aluminum or an aluminum alloy to the piezoelectric vibrator, sound pressure can be increased and forward directivity can be provided. Can do.

超音波発音体の固定は、圧電振動子の屈曲振動において動かない節部をシリコン接着剤などで接着し、極力振動を妨げないように行われている。なお、超音波発音体は超音波センサと同じ構造をしており、超音波センサは超音波の送信、受信を行うもの、超音波発音体は超音波の送信のみを行うものである。   The ultrasonic sounding body is fixed by bonding a node that does not move in the bending vibration of the piezoelectric vibrator with a silicon adhesive or the like so as not to disturb the vibration as much as possible. Note that the ultrasonic sounding body has the same structure as the ultrasonic sensor, the ultrasonic sensor transmits and receives ultrasonic waves, and the ultrasonic sounding body transmits only ultrasonic waves.

そして、超音波発音体を複数個並べて構成したものがパラメトリックスピーカであり、パラメトリックスピーカは各々の超音波発音体が発した超音波が空気中で重なり合ってある音圧以上に達すると超音波から可聴音へ復調され、聞こえるようになる。また、超音波が重なり合った中心部のみが可聴音となるため、鋭い指向性を持ったスピーカとなる。   A parametric speaker is composed of a plurality of ultrasonic sound generators arranged side by side, and the parametric speaker can be used from an ultrasonic wave when the ultrasonic waves generated by the ultrasonic sound generators reach a sound pressure that is superposed in the air. The sound is demodulated and can be heard. In addition, since only the central portion where the ultrasonic waves overlap is an audible sound, the speaker has a sharp directivity.

例えば、特許文献1記載の超音波送信器は、共振子の大型軽量化を図り、送信音圧を高めるために素材に軽いマグネシウムまたはマグネシウム合金を用いている。一方、特許文献1には、共振子の歪みを防止するために、共振子の固有振動数を超音波送信器の特定の共振周波数を中心とする使用帯域外にすべきことも記載されている。   For example, the ultrasonic transmitter described in Patent Document 1 uses light magnesium or a magnesium alloy as a material in order to reduce the size and weight of the resonator and increase the transmission sound pressure. On the other hand, Patent Document 1 also describes that in order to prevent distortion of the resonator, the natural frequency of the resonator should be outside the use band centered on a specific resonance frequency of the ultrasonic transmitter. .

特開2007−88886号公報JP 2007-88886 A

しかしながら、上記のように、共振子を大型軽量化した上で、圧電振動子の振動幅を大きくする方法では必ずしも効率の高い超音波の送信ができていない。また、上記の特許文献1記載において共振子の固有振動数を帯域外にすべきと述べられている超音波送信器の共振周波数は、高周波数側の共振周波数と考えられるが、低周波数側の共振周波数付近については検証されていなかった。   However, as described above, the method of increasing the vibration width of the piezoelectric vibrator while reducing the size and weight of the resonator cannot always transmit ultrasonic waves with high efficiency. In addition, the resonance frequency of the ultrasonic transmitter described in the above-mentioned Patent Document 1 that the natural frequency of the resonator should be out of the band is considered to be the resonance frequency on the high frequency side, The vicinity of the resonance frequency has not been verified.

本発明は、このような事情に鑑みてなされたものであり、効率よく高い音圧を得ることができる超音波発音体、超音波素子およびこれを用いたパラメトリックスピーカを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultrasonic sound generator, an ultrasonic element, and a parametric speaker using the ultrasonic sound generator capable of efficiently obtaining a high sound pressure. .

(1)上記の目的を達成するため、本発明の超音波発音体は、パラメトリックスピーカの発振源として利用される超音波発音体であって、板状の圧電素子および前記圧電素子が一方の主面に接着された振動板により形成される圧電振動子と、前記振動板の他方の主面に設けられ、前記振動板の振動に共振して超音波を発生させる共振子と、を備え、前記共振子のみの固有振動の周波数と、自己の1次共振の周波数とが一致していることを特徴としている。   (1) In order to achieve the above object, the ultrasonic sounding body of the present invention is an ultrasonic sounding body used as an oscillation source of a parametric speaker, and the plate-like piezoelectric element and the piezoelectric element are one of the main elements. A piezoelectric vibrator formed by a diaphragm bonded to a surface, and a resonator provided on the other main surface of the diaphragm and generating an ultrasonic wave by resonating with vibration of the diaphragm, It is characterized in that the frequency of the natural vibration of only the resonator matches the frequency of its own primary resonance.

これにより、超音波振動子全体だけでなく共振子が共振して高い音圧を得ることが可能になる。また、音圧が高くなるとパラメトリックスピーカに必要な超音波発音体の数を低減でき、パラメトリックスピーカを小型かつ安価にすることができる。   As a result, not only the entire ultrasonic transducer but also the resonator can resonate to obtain a high sound pressure. Further, when the sound pressure increases, the number of ultrasonic sounding bodies necessary for the parametric speaker can be reduced, and the parametric speaker can be made small and inexpensive.

(2)また、本発明の超音波素子は、上記の超音波発音体と、前記超音波発音体を振動の節で支持する支持部材と、を備えることを特徴としている。これにより、超音波発音体の振動を阻害せずに大きな音圧を得ることができる。   (2) Further, an ultrasonic element of the present invention is characterized by including the above-described ultrasonic sounding body and a support member that supports the ultrasonic sounding body with a vibration node. Thereby, a large sound pressure can be obtained without inhibiting the vibration of the ultrasonic sounding body.

(3)また、本発明のパラメトリックスピーカは、複数の発振源から超音波を放射するパラメトリックスピーカであって、上記の超音波素子と、配線パターンが設けられ、前記配線パターンに前記超音波素子が設けられた平板状の基板と、を備えることを特徴としている。これにより、複数の発振源で大きな音圧を得ることができる。   (3) A parametric speaker according to the present invention is a parametric speaker that emits ultrasonic waves from a plurality of oscillation sources, and includes the ultrasonic element and a wiring pattern, and the ultrasonic element is provided on the wiring pattern. And a flat substrate provided. Thereby, a large sound pressure can be obtained with a plurality of oscillation sources.

本発明によれば、超音波振動子全体だけでなく共振子が共振して高い音圧を得ることができる。   According to the present invention, not only the entire ultrasonic transducer but also the resonator can resonate to obtain a high sound pressure.

本発明のパラメトリックスピーカを示す正面図である。It is a front view which shows the parametric speaker of this invention. 本発明の超音波発音体の構成を示す側面図である。It is a side view which shows the structure of the ultrasonic sounding body of this invention. (a)、(b)いずれも本発明の超音波発音体の動作の一場面を示す側面図である。(A), (b) is a side view which shows one scene of operation | movement of the ultrasonic sounding body of this invention. 本発明のパラメトリックスピーカの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the parametric speaker of this invention. 本発明の超音波発音体のインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the ultrasonic sounding body of this invention. (a)〜(c)有限要素法(FEM)により超音波発音体の振動をシミュレーションした結果を示す図である。(A)-(c) It is a figure which shows the result of having simulated the vibration of the ultrasonic sounding body by the finite element method (FEM).

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(パラメトリックスピーカの構成)
図1は、それぞれパラメトリックスピーカ100を示す正面図である。パラメトリックスピーカ100は、強力な音圧で変調された超音波を発生させ、空気中を超音波が伝播する際の非線形特性により、可聴音を出現させる。このようにして方向や距離を特定し指向性を与えて音響情報を伝えることを可能にする。
(Configuration of parametric speaker)
FIG. 1 is a front view showing the parametric speaker 100. The parametric speaker 100 generates an ultrasonic wave modulated with a strong sound pressure and causes an audible sound to appear due to nonlinear characteristics when the ultrasonic wave propagates through the air. In this way, it is possible to specify the direction and distance and give directivity to convey acoustic information.

図1に示すように、パラメトリックスピーカ100は、複数の超音波発音体110が基板120上に設けられて構成されている。超音波発音体110は、変調信号に基づいて超音波を発生させる。基板120は、配線パターンが設けられ、平板状に形成されており、超音波発音体110を固定し支持している。支持部材は、ゴム材料で形成され、基板上に設けられ、超音波発音体110を振動の節で支持する。これにより、超音波発音体110の動きが妨げられないため、少ない発振源で大きな音圧を得ることができる。なお、図1では、外観構成を示し、電気的構成は省略している。なお、支持部材は、リング状の突起部が設けられた樹脂製の端子台であってもよい。超音波発音体110および支持部材は、超音波素子を構成する。   As shown in FIG. 1, the parametric speaker 100 is configured by providing a plurality of ultrasonic sounding bodies 110 on a substrate 120. The ultrasonic sounding body 110 generates ultrasonic waves based on the modulation signal. The substrate 120 is provided with a wiring pattern, is formed in a flat plate shape, and fixes and supports the ultrasonic sounding body 110. The support member is formed of a rubber material and is provided on the substrate, and supports the ultrasonic sounding body 110 with a vibration node. Thereby, since the movement of the ultrasonic sounding body 110 is not hindered, a large sound pressure can be obtained with a small number of oscillation sources. In addition, in FIG. 1, the external appearance structure is shown and the electrical configuration is omitted. The support member may be a resin terminal block provided with a ring-shaped protrusion. The ultrasonic sounding body 110 and the support member constitute an ultrasonic element.

(超音波発音体の構成)
図2は、超音波発音体110の構成を示す側面図である。超音波発音体110は、発振源としてパラメトリックスピーカ100に用いられ、超音波を発生させる。超音波発音体110は、電圧の印加により変調超音波信号を発生させる。超音波発音体110は、圧電素子111、振動板112、リード線113a、113b、共振子114により構成されている。
(Configuration of ultrasonic sound generator)
FIG. 2 is a side view showing the configuration of the ultrasonic sounding body 110. The ultrasonic sounding body 110 is used in the parametric speaker 100 as an oscillation source and generates ultrasonic waves. The ultrasonic sounding body 110 generates a modulated ultrasonic signal by applying a voltage. The ultrasonic sounding body 110 includes a piezoelectric element 111, a diaphragm 112, lead wires 113a and 113b, and a resonator 114.

圧電素子111は、PZT等の圧電材料を用いて、板状に形成され、厚み方向への電圧の印加により伸縮する。圧電材料は、機械的品質係数Qm100以上が好ましい。圧電素子111の径は、振動板112の径以下であることが好ましい。圧電素子111は、振動板112の一方の主面に接着されて設置されている。圧電素子111は、振動板112の他方の主面が振動面となっており、振動面を介し、超音波を発生させることができる。   The piezoelectric element 111 is formed in a plate shape using a piezoelectric material such as PZT, and expands and contracts by applying a voltage in the thickness direction. The piezoelectric material preferably has a mechanical quality factor Qm100 or more. The diameter of the piezoelectric element 111 is preferably equal to or smaller than the diameter of the diaphragm 112. The piezoelectric element 111 is installed by being bonded to one main surface of the diaphragm 112. In the piezoelectric element 111, the other main surface of the vibration plate 112 is a vibration surface, and ultrasonic waves can be generated via the vibration surface.

共振子114は、円錐筒形状に形成されており、振動板112の径以下の径を有し、例えばアルミニウムまたはアルミニウム合金で構成されている。共振子114の高さは、0.5〜1.5mmが好ましい。なお、円錐筒形状には、パラボラ状または漏斗状が含まれる。共振子114は、振動板112の他方の主面に設けられ、振動板112の振動に共振して超音波を発生させる。なお、共振子のみの固有振動の周波数を1次共振の周波数に一致させることで、周波数が2次共振の周波数の1/10程度となっているため、共振子114に歪みが生じ難くなり破損しにくくなっている。   The resonator 114 is formed in a conical cylinder shape, has a diameter equal to or smaller than the diameter of the diaphragm 112, and is made of, for example, aluminum or an aluminum alloy. The height of the resonator 114 is preferably 0.5 to 1.5 mm. The conical cylinder shape includes a parabolic shape or a funnel shape. The resonator 114 is provided on the other main surface of the diaphragm 112 and resonates with the vibration of the diaphragm 112 to generate an ultrasonic wave. Since the frequency of the natural vibration of only the resonator matches the frequency of the primary resonance, the frequency becomes about 1/10 of the frequency of the secondary resonance, so that the resonator 114 is hardly distorted and is damaged. It is difficult to do.

圧電素子111の両主面には、それぞれ電極が形成されており、本体部分の圧電体は厚み方向に分極されている。振動板112は、圧電素子111が一方の主面に接着されている。振動板112は、例えば、真鍮、SUS304、42アロイまたはアルミニウム等の金属により円板状に形成されている。圧電素子111および振動板112は、圧電振動子115を形成している。振動板112の直径は、5〜15mmが好ましいがこれに限定されない。   Electrodes are formed on both principal surfaces of the piezoelectric element 111, and the piezoelectric body of the main body is polarized in the thickness direction. The diaphragm 112 has a piezoelectric element 111 bonded to one main surface. The diaphragm 112 is formed in a disc shape from a metal such as brass, SUS304, 42 alloy, or aluminum. The piezoelectric element 111 and the diaphragm 112 form a piezoelectric vibrator 115. The diameter of the diaphragm 112 is preferably 5 to 15 mm, but is not limited thereto.

共振子114および圧電振動子115は、共振子114のみの固有振動の周波数と、超音波発音体110の1次共振の周波数とが一致するように設計されている。これにより、圧電振動子115だけでなく共振子114が共振して高い音圧を得ることができる。また、音圧が高くなるとパラメトリックスピーカに必要な超音波発音体110の数を低減でき、パラメトリックスピーカ100を小型かつ安価にすることができる。なお、周波数が1kHz以内である場合「一致する」と言える。   The resonator 114 and the piezoelectric vibrator 115 are designed so that the frequency of the natural vibration of only the resonator 114 matches the frequency of the primary resonance of the ultrasonic sounding body 110. Thereby, not only the piezoelectric vibrator 115 but also the resonator 114 can resonate to obtain a high sound pressure. Further, when the sound pressure increases, the number of ultrasonic sounding bodies 110 necessary for the parametric speaker can be reduced, and the parametric speaker 100 can be made small and inexpensive. In addition, when the frequency is within 1 kHz, it can be said that “match”.

圧電振動子115の厚さは小さく、径は大きいことが好ましい。これにより、圧電振動子115の変動幅を大きくし、音圧を大きくすることができる。音圧は圧電振動子115の振動幅が大きく変位が大きいほど得られるため、変位を得るためには薄い形状の方が良い。   It is preferable that the piezoelectric vibrator 115 has a small thickness and a large diameter. Thereby, the fluctuation range of the piezoelectric vibrator 115 can be increased and the sound pressure can be increased. Since the sound pressure is obtained as the vibration width of the piezoelectric vibrator 115 is large and the displacement is large, the thin shape is better for obtaining the displacement.

(超音波発音体の動作)
図3(a)、(b)は、いずれも本発明の超音波発音体110の動作の一場面を示す側面図である。図3(a)、(b)に示すように、超音波発音体110は、厚み方向に分極された圧電素子111の両主面の電極に交流電圧を印加することで屈曲振動する。その際には、圧電振動子115の共振周波数を駆動周波数として電圧を印加する。
(Operation of ultrasonic sound generator)
3 (a) and 3 (b) are side views showing one scene of the operation of the ultrasonic sounding body 110 of the present invention. As shown in FIGS. 3A and 3B, the ultrasonic sounding body 110 bends and vibrates when an AC voltage is applied to the electrodes on both principal surfaces of the piezoelectric element 111 polarized in the thickness direction. At that time, a voltage is applied using the resonance frequency of the piezoelectric vibrator 115 as a driving frequency.

(超音波発音体の作製方法)
超音波発音体110の作製方法を説明する。まず、圧電材料により板状の圧電体を形成し、電極を設けて分極することで、圧電素子111を形成する。圧電素子111を振動板112の一方の主面に接着する。そして、リード線113a、113bを所定箇所の電極または振動板112に接続する。振動板112の他方の主面に共振子114を接着する。このようにして、超音波発音体100を作製することができる。
(Method for producing ultrasonic sound generator)
A method for producing the ultrasonic sounding body 110 will be described. First, a piezoelectric element 111 is formed by forming a plate-like piezoelectric body from a piezoelectric material, and providing an electrode for polarization. The piezoelectric element 111 is bonded to one main surface of the diaphragm 112. Then, the lead wires 113a and 113b are connected to electrodes or the diaphragm 112 at predetermined positions. The resonator 114 is bonded to the other main surface of the diaphragm 112. In this way, the ultrasonic sounding body 100 can be produced.

(パラメトリックスピーカの電気的構成)
図4は、パラメトリックスピーカ100の電気的構成を示すブロック図である。図4に示すように、パラメトリックスピーカ100は、発振器101、変調器102、増幅器105および超音波発音体110を備え、これらを介して超音波を発生させる。発振器101は、超音波帯域の所定の周波数で信号を発振する。発振される周波数は、発振信号が超音波発音体110に伝達されたとき圧電素子111を駆動する駆動周波数であり、パラメトリックスピーカ100の用途に応じてあらかじめ決定されている。
(Electric configuration of parametric speaker)
FIG. 4 is a block diagram showing an electrical configuration of the parametric speaker 100. As shown in FIG. 4, the parametric speaker 100 includes an oscillator 101, a modulator 102, an amplifier 105, and an ultrasonic sounding body 110, and generates ultrasonic waves through these. The oscillator 101 oscillates a signal at a predetermined frequency in the ultrasonic band. The frequency to be oscillated is a drive frequency for driving the piezoelectric element 111 when the oscillation signal is transmitted to the ultrasonic sounding body 110, and is determined in advance according to the application of the parametric speaker 100.

変調器102は、音声信号で発振信号をAM変調する。変調は、AM変調に代えて、DSB変調、SSB変調、FM変調であってもよい。増幅器105は、変調された発振信号を増幅し、超音波発音体110に出力する。超音波発音体110は、増幅された発振信号を音波に変換する。   The modulator 102 AM modulates the oscillation signal with the audio signal. The modulation may be DSB modulation, SSB modulation, or FM modulation instead of AM modulation. The amplifier 105 amplifies the modulated oscillation signal and outputs it to the ultrasonic sounding body 110. The ultrasonic sounding body 110 converts the amplified oscillation signal into a sound wave.

上記のように構成されたパラメトリックスピーカ100は、超音波帯域の周波数の信号を発振し、発振信号を所望の音声信号で変調し、変調信号を増幅して、超音波発音体110で音波に変換して放射する。このようにして、指向性の鋭い超音波を放射することができる。例えば狭い範囲にいる人に選択的に案内を流すことができるため、美術館や水族館、博物館、アミューズメント施設などに利用できる。今後、交通案内などでも利用可能である。   The parametric speaker 100 configured as described above oscillates a signal having a frequency in the ultrasonic band, modulates the oscillation signal with a desired audio signal, amplifies the modulation signal, and converts it into a sound wave with the ultrasonic sound generator 110. Then radiate. In this way, ultrasonic waves with sharp directivity can be emitted. For example, since guidance can be selectively sent to people in a narrow area, it can be used for art museums, aquariums, museums, amusement facilities, and the like. In the future, it can also be used for traffic information.

(インピーダンス特性)
図5は、超音波発音体のインピーダンス特性を示す図である。図5に示すように、超音波発音体は、インピーダンス特性において1次共振(圧電振動子が主となる共振)と2次共振(共振子が主となる共振)の2つの共振が現れる。1次共振、2次共振において圧電振動子と共振子は共に振動している。
(Impedance characteristics)
FIG. 5 is a diagram showing impedance characteristics of the ultrasonic sounding body. As shown in FIG. 5, in the ultrasonic sound generator, two resonances appear in the impedance characteristic: primary resonance (resonance mainly composed of piezoelectric vibrators) and secondary resonance (resonance mainly composed of resonators). In the primary resonance and the secondary resonance, both the piezoelectric vibrator and the resonator vibrate.

図6(a)〜(c)は、有限要素法(FEM)により超音波発音体の振動をシミュレーションした結果を示す図である。図中の濃淡は、振動の大きさを示している。図6(a)は、1次共振時、図6(b)は、2次共振時、図6(c)は、共振子のみの固有振動時を示している。   FIGS. 6A to 6C are diagrams showing the results of simulating the vibration of the ultrasonic sounding body by the finite element method (FEM). The shading in the figure indicates the magnitude of vibration. 6A shows the time of primary resonance, FIG. 6B shows the time of secondary resonance, and FIG. 6C shows the time of natural vibration of only the resonator.

このように、有限要素法(FEM)の解析によれば、1次共振、2次共振の他に共振子のみが固有振動する周波数が存在する。インピーダンス特性は圧電振動子の圧電素子側と振動板側を接続して測定するが、共振子の固有振動は圧電振動子が振動しないため現れない。このインピーダンス特性には現れない共振子の固有振動の周波数に1次共振を合わせることで、より共振子が振動して高い音圧を得ることが可能になる。また、音圧が高くなるとパラメトリックスピーカに必要な超音波発音体の数を低減でき、小型かつ安価にすることができる。   As described above, according to the analysis by the finite element method (FEM), there is a frequency at which only the resonator vibrates in addition to the primary resonance and the secondary resonance. The impedance characteristic is measured by connecting the piezoelectric element side and the diaphragm side of the piezoelectric vibrator, but the natural vibration of the resonator does not appear because the piezoelectric vibrator does not vibrate. By matching the primary resonance with the natural vibration frequency of the resonator that does not appear in the impedance characteristics, the resonator can vibrate and a higher sound pressure can be obtained. Further, when the sound pressure increases, the number of ultrasonic sounding bodies necessary for the parametric speaker can be reduced, and the size and cost can be reduced.

(実施例)
共振子(アルミニウム合金、外径φ6.5mm、高さ1.0mm、厚み0.1mm)と圧電振動子(φ9mm)で構成された超音波発音体の圧電振動子の厚みを変えて、FEMで解析した。
(Example)
By changing the thickness of the piezoelectric vibrator of the ultrasonic sounder composed of the resonator (aluminum alloy, outer diameter φ6.5 mm, height 1.0 mm, thickness 0.1 mm) and piezoelectric vibrator (φ9 mm), Analyzed.

表1は、圧電振動子の厚みに対する各振動の周波数の関係を示している。圧電振動子の厚みを変えると1次共振、2次共振は変化するが、共振子の固有振動の周波数はほぼ変化せず44.50kHzにとどまっている。そして、圧電振動子の厚みを0.6mmと設定したとき1次共振と共振子の固有振動の周波数が近くなった。   Table 1 shows the relationship of the frequency of each vibration to the thickness of the piezoelectric vibrator. When the thickness of the piezoelectric vibrator is changed, the primary resonance and the secondary resonance change, but the frequency of the natural vibration of the resonator hardly changes and remains at 44.50 kHz. When the thickness of the piezoelectric vibrator was set to 0.6 mm, the frequency of the primary resonance and the natural vibration of the resonator became close.

このような解析結果に基づき、解析したものと同じ寸法の超音波発音体を実際に作製し、共振周波数と音圧を測定した。音圧測定は印加電圧30Vp−p、超音波発音体とマイクの距離30cmにて行った。   Based on such analysis results, an ultrasonic sounding body having the same dimensions as the analyzed one was actually produced, and the resonance frequency and sound pressure were measured. The sound pressure was measured at an applied voltage of 30 Vp-p and a distance between the ultrasonic sounding body and the microphone of 30 cm.

表2は、圧電振動子の厚さに対する共振周波数と音圧の測定結果を示している。解析により1次共振の共振周波数が共振子の固有振動に近くなった圧電振動子の厚み0.6mmにおいて、高い音圧が得られた。その結果、共振子の固有振動に1次共振が近いと高い音圧が得られることを確認できた。また、45kHzの高音圧の超音波発音体が得られた。   Table 2 shows the measurement results of the resonance frequency and the sound pressure with respect to the thickness of the piezoelectric vibrator. As a result of analysis, a high sound pressure was obtained at a thickness of 0.6 mm of the piezoelectric vibrator in which the resonance frequency of the primary resonance was close to the natural vibration of the resonator. As a result, it was confirmed that a high sound pressure was obtained when the primary resonance was close to the natural vibration of the resonator. In addition, an ultrasonic sounding body having a high sound pressure of 45 kHz was obtained.


このように作製したい超音波発音体の周波数に共振子の固有振動の周波数を一致させるよう、解析にて共振子の形状、寸法を設計し、その後に圧電振動子の形状、寸法を調整して1次共振と固有振動の周波数を合わせた超音波発音体を実際に作製した。作製された超音波発音体は、上記以外の周波数でも、圧電振動子の1次共振周波数と共振子の固有振動の周波数が一致する設計で高い音圧が得られた。   In this way, the shape and dimensions of the resonator are designed by analysis so that the natural frequency of the resonator matches the frequency of the ultrasonic sounding body to be manufactured, and then the shape and dimensions of the piezoelectric vibrator are adjusted. An ultrasonic sounding body in which the frequencies of the primary resonance and the natural vibration were combined was actually manufactured. The produced ultrasonic sounding body was able to obtain a high sound pressure with a design in which the primary resonance frequency of the piezoelectric vibrator and the natural vibration frequency of the resonator coincided with each other at frequencies other than those described above.

また、圧電振動子の厚みを0.6mmに固定し、径を変えて解析した。表3は、圧電振動子の径に対する各振動の周波数の関係を示している。厚み変更の場合よりも若干固有振動が変化したが、径を変えても共振子の固有振動が変わらないことを確認できた。   In addition, the thickness of the piezoelectric vibrator was fixed to 0.6 mm, and the diameter was changed for analysis. Table 3 shows the relationship of the frequency of each vibration to the diameter of the piezoelectric vibrator. Although the natural vibration slightly changed compared with the case of changing the thickness, it was confirmed that the natural vibration of the resonator did not change even when the diameter was changed.

また、直径9mmの円板の振動板と圧電素子とを組み合わせた圧電振動子の変位(最大値)を解析した。表4は、振動板の厚みと圧電素子の厚みの組合せに対する変位(μm)を示している。音圧は圧電振動子の振動幅が大きいほど、つまり変位が大きいほど得られる。表4に示す結果から、変位を得るためには薄いほうが良いことがわかる。   Further, the displacement (maximum value) of a piezoelectric vibrator in which a disc-shaped diaphragm having a diameter of 9 mm and a piezoelectric element were combined was analyzed. Table 4 shows the displacement (μm) with respect to the combination of the thickness of the diaphragm and the thickness of the piezoelectric element. The sound pressure is obtained as the vibration width of the piezoelectric vibrator increases, that is, as the displacement increases. From the results shown in Table 4, it can be seen that the thinner is better for obtaining the displacement.

100 パラメトリックスピーカ
101 発振器
102 変調器
105 増幅器
110 超音波発音体
111 圧電素子
112 振動板
113a、113b リード線
114 共振子
115 圧電振動子
120 基板
100 Parametric Speaker 101 Oscillator 102 Modulator 105 Amplifier 110 Ultrasonic Sound Generator 111 Piezoelectric Element 112 Diaphragm 113a, 113b Lead Wire 114 Resonator 115 Piezoelectric Vibrator 120 Substrate

Claims (3)

パラメトリックスピーカの発振源として利用される超音波発音体であって、
板状の圧電素子および前記圧電素子が一方の主面に接着された振動板により形成される圧電振動子と、
前記振動板の他方の主面に設けられ、前記振動板の振動に共振して超音波を発生させる共振子と、を備え、
前記共振子のみの固有振動の周波数と、自己の1次共振の周波数とが一致していることを特徴とする超音波発音体。
An ultrasonic sound generator used as an oscillation source of a parametric speaker,
A piezoelectric vibrator formed by a plate-like piezoelectric element and a diaphragm having the piezoelectric element bonded to one main surface;
A resonator that is provided on the other main surface of the diaphragm and that generates ultrasonic waves by resonating with vibration of the diaphragm;
The ultrasonic sounding body, wherein the natural vibration frequency of only the resonator coincides with the frequency of its own primary resonance.
請求項1記載の超音波発音体と、
前記超音波発音体を振動の節で支持する支持部材と、を備えることを特徴とする超音波素子。
An ultrasonic sounding body according to claim 1;
An ultrasonic element comprising: a support member that supports the ultrasonic sounding body with a vibration node.
複数の発振源から超音波を放射するパラメトリックスピーカであって、
請求項2記載の超音波素子と、
配線パターンが設けられ、前記配線パターンに前記超音波素子が設けられた平板状の基板と、を備えることを特徴とするパラメトリックスピーカ。
A parametric speaker that emits ultrasonic waves from a plurality of oscillation sources,
The ultrasonic element according to claim 2;
A parametric speaker comprising: a wiring board, and a flat substrate on which the ultrasonic element is provided on the wiring pattern.
JP2013135328A 2013-06-27 2013-06-27 Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same Expired - Fee Related JP6221135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135328A JP6221135B2 (en) 2013-06-27 2013-06-27 Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135328A JP6221135B2 (en) 2013-06-27 2013-06-27 Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same

Publications (2)

Publication Number Publication Date
JP2015012384A JP2015012384A (en) 2015-01-19
JP6221135B2 true JP6221135B2 (en) 2017-11-01

Family

ID=52305203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135328A Expired - Fee Related JP6221135B2 (en) 2013-06-27 2013-06-27 Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same

Country Status (1)

Country Link
JP (1) JP6221135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023028692A (en) * 2021-08-20 2023-03-03 日本特殊陶業株式会社 ultrasonic transducer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103873B2 (en) * 2005-12-07 2012-12-19 セイコーエプソン株式会社 Electrostatic ultrasonic transducer drive control method, electrostatic ultrasonic transducer, ultrasonic speaker using the same, audio signal reproduction method, superdirective acoustic system, and display device
JP5444670B2 (en) * 2008-09-18 2014-03-19 パナソニック株式会社 Sound playback device
JP5806832B2 (en) * 2011-04-01 2015-11-10 株式会社日本セラテック Parametric speaker
JP2013077992A (en) * 2011-09-30 2013-04-25 Taiheiyo Cement Corp Ultrasonic sounding body and parametric speaker
JP2013078017A (en) * 2011-09-30 2013-04-25 Taiheiyo Cement Corp Ultrasonic sounding body for parametric speaker

Also Published As

Publication number Publication date
JP2015012384A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5103873B2 (en) Electrostatic ultrasonic transducer drive control method, electrostatic ultrasonic transducer, ultrasonic speaker using the same, audio signal reproduction method, superdirective acoustic system, and display device
US8907733B2 (en) Oscillator
WO2009141912A1 (en) Earphone apparatus
JP2007195150A (en) Electrostatic ultrasonic transducer drive control method, electrostatic ultrasonic transducer, ultrasonic speaker using the same, audio signal reproduction method, ultra-directional acoustic system, and display device
JP2008048312A (en) Speaker system
JP2007067514A (en) Speaker device
JP2013183384A (en) Electroacoustic transducer, electronic apparatus and method of manufacturing electroacoustic transducer
JP5939160B2 (en) Oscillator and electronic device
JP6221135B2 (en) Ultrasonic sound generator, ultrasonic element, and parametric speaker using the same
JP6021184B2 (en) Electronic equipment
JPWO2012090433A1 (en) Electroacoustic transducer
JP5806901B2 (en) Parametric speaker
JP2015070413A (en) Parametric speaker
JP2013078017A (en) Ultrasonic sounding body for parametric speaker
JP6186622B2 (en) Ultrasonic sound generator and parametric speaker
JP2013172237A (en) Electro-acoustic transducer and electronic apparatus
JP2009171113A (en) Variable vibration characteristic sound apparatus
JP2013077992A (en) Ultrasonic sounding body and parametric speaker
JP5958463B2 (en) Oscillator
JP6159984B2 (en) Ultrasonic sound generator and parametric speaker
JP2013157740A (en) Parametric speaker and manufacturing method of the same
JP2007215119A (en) Electroacoustic transducer
JP5806832B2 (en) Parametric speaker
JP2013077991A (en) Ultrasonic sounding body and parametric speaker
DE602004020447D1 (en) ELECTRODYNAMIC ACOUSTIC TRANSFORMER

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6221135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees