JP6219587B2 - 複数の無線ベアラにアクセスする方法及び装置 - Google Patents

複数の無線ベアラにアクセスする方法及び装置 Download PDF

Info

Publication number
JP6219587B2
JP6219587B2 JP2013081398A JP2013081398A JP6219587B2 JP 6219587 B2 JP6219587 B2 JP 6219587B2 JP 2013081398 A JP2013081398 A JP 2013081398A JP 2013081398 A JP2013081398 A JP 2013081398A JP 6219587 B2 JP6219587 B2 JP 6219587B2
Authority
JP
Japan
Prior art keywords
traffic
radio
radio bearers
user
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013081398A
Other languages
English (en)
Other versions
JP2014204393A (ja
Inventor
康史 森岡
康史 森岡
奥村 幸彦
幸彦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2013081398A priority Critical patent/JP6219587B2/ja
Publication of JP2014204393A publication Critical patent/JP2014204393A/ja
Application granted granted Critical
Publication of JP6219587B2 publication Critical patent/JP6219587B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種無線サービスへのアクセスに関し、より具体的には、複数の異なる無線サービスを提供する複数の異なる無線ベアラに対して状況に応じた適切なアクセスを行う方法と装置とに関する。
無線LAN、WiMAX、UMTS等の3Gセルラー携帯電話網あるいはLTE網などの様々な無線通信サービスは、複数の異なる無線アクセス技術(RAT(Radio Access Technology))にそれぞれ対応する。そして、無線ベアラは、これら様々な無線通信サービスに接続して利用者無線端末(UE)からアクセスするための無線接続手段を提供するものである。
非特許文献1開示の「ANDSF ISRP (Inter-System Routing Policy)」は、複数の異種RATにそれぞれ対応する複数の無線ベアラの中からUEが無線接続に使用する無線ベアラを選択する仕組みを実現する。この際に、当該複数の無線ベアラの中から特定のベアラを選択する基準は、UEがIPトラフィック・フローを介して通信相手を通信する際の送信元/宛先IPアドレス、ポート番号およびトランスポート・プロトコル種別などである。しかし、送信元/宛先IPアドレス、ポート番号およびトランスポート・プロトコル種別などは、複数の無線ベアラ間におけるベアラ選択の基準としてはあまりにも固定的である。また、「ANDSF ISRP」における無線ベアラ再選択の判断周期は、数時間から数日であり、UEに使用させる無線ベアラの選択は実質的に半固定的なものとなっている。従って、「ANDSF ISRP」においては、複数の無線ベアラ間のベアラ選択を、状況に応じて適応的に切り替えることが困難である。
しかしながら、上述した様々なRATは、通信速度、通信遅延、通信カバレージの広さ、無線通信品質が良好な地理的エリア、セキュリティ強度、提供可能なQoSクラスなどに関して互いに異なる特徴を有するので、状況の変化に応じて適切なRATを適応的に使い分ける必要が生じる。そのため、状況の変化に応じて(例えば、ユーザがどの通信サービス種別を利用しようとしているかに応じて)最適なRATに対応する無線ベアラに接続をリアルタイムにかつ適応的に切り換えるService-Based異種システム間ハンドオーバー技術が普及している。
さらに近年、セルラー電話やスマートフォンの利用が爆発的に増えるにつれ、利便性の高い無線周波数帯が枯渇し始めており、この無線周波数帯と言う限られた資源を有効利用するために、非特許文献2は、以下において後述するリンク・アグリゲーションを提案している。このリンク・アグリゲーションは、上述した異種システム間ハンドオーバーのように同時利用可能な複数の異なる種類のRATの中から、最適な一つだけを選択し、対応する無線ベアラを介して接続するのではなく、以下のような特徴を有する。すなわち、リンク・アグリゲーションにおいては、UEは、同時利用可能な複数の異なるRATの全てに対してそれぞれの無線ベアラを介して同時並列的に通信を行う。その結果、リンク・アグリゲーションは、同時並列伝送による通信容量の増加と共に、一つの無線ベアラを介した通信が電波状況の悪化により中断しても、同時並列アクセス中の他の無線ベアラを介して通信が継続できる利点を有する。
そこで、上述したリンク・アグリゲーションに関連した背景技術について以下のとおり検討する。リンク・アグリゲーションに関連した従来技術として、特許文献1は、3GPPコア網を介した無線通信サービスを提供する第1の無線ベアラを介して通信中のUEが、トラフィック通信負荷の一部を第2の無線ベアラに分配(ローカル・ブレークアウト)する。特許文献1において、第2の無線ベアラは、3GPPコア網を介さずに私設ローカル無線網やインターネットと通信するための専用ベアラである。そして、第1の無線ベアラ上でUEと通信している無線基地局が、3GPPコア網を介さずに私設ローカル無線網やインターネットへ直接接続する伝送経路を有する場合には、以下のようにしてローカル・ブレークアウトを実行する。すなわち、当該無線基地局は、第1の無線ベアラ上で3GPPコア網を介して通信中のUEの通信トラフィック負荷の一部を、他の無線アクセスポイント等へのハンドオーバーを要することなく、第2の無線ベアラ上で3GPPコア網を介さずに私設ローカル無線網内やインターネット内の通信相手(他の無線局、サーバ、情報機器など)に伝送することが可能である。
また、特許文献2は、UE(自端末)が無線ベアラを介して相手端末と通信する際に、同時利用可能な複数の異なる種類の無線ベアラの各々に関して自端末から見た好適性を評価する技術を開示している。具体的には、自端末がいずれの無線ベアラに接続すれば、エンド・ツー・エンド通信経路上での最小のシグナリング・オーバーヘッドと最短の経路ホップ数により自端末から相手端末にデータが届くかに基づいて各無線ベアラの好適性が評価される。
他方、特許文献3は、同時利用可能な複数の異なる種類の無線ベアラの各々に関して、特許文献2とは別の観点から、好適性を評価している。具体的には、UEが、同時利用可能な複数の無線ベアラにそれぞれ対応するRATへのアクセス権限を有しているか否か、およびまたは当該RATによって提供される通信サービスに加入しているか否かによって各無線ベアラの好適性を評価する。例えば、2つの無線ベアラがそれぞれ公衆無線網と私設無線網のそれぞれに無線アクセスを提供するものである場合、私設無線網へのアクセス権限を有するのは、一般には、私設無線網の所有者によって認められたユーザの無線端末のみである。同様に、公衆無線網で提供されている有料の各種通信サービスへのアクセス権限を有するのも、一般には当該通信サービスに加入している加入者の無線端末のみである。
特表2012−504898号公報 国際公開WO2010/146816号公報(再公表公報) 国際公開WO2010/150785号公報(再公表公報)
3GPP TS24.312 "ANDSF ISRP (Inter-System Routing Policy)" Web情報「http://www.kddilabs.jp/assets/files/technology/72.pdf」KDDI研究所 藤本貴、2012年8月 3GPP TS23.203 "Policy and charging control architecture" 3GPP TS33.401 "System Architecture Evolution (SAE); Security architecture" 3GPP
しかしながら、上述のリンク・アグリゲーションにおいて、同時利用可能な複数の無線ベアラのそれぞれに対して、状況に応じて端末と網側との間のトラフィックを最適に配分するにはどうすべきであるのかという問題については具体的な解決法がまだ無い。さらに、非特許文献1は、無線ベアラ間におけるトラフィック負荷の最適配分制御の全部又は一部を網側で行うよりも、全ての制御を端末側で実行した方が、網側の設備増設、ネットワーク構成変更またはプロトコル改変などを必要とせず、端末ソフトウェアの更新のみで実現できると説明している。
特許文献1開示のローカル・ブレークアウト処理は、既存の無線ベアラで伝送中のトラフィック負荷の一部を同時利用可能な他の無線ベアラに振り分けるものである。しかし、当該ローカル・ブレークアウト処理においては、単一の基地局が端末からの全てのトラフィックを受信した上で、コア網を経由する伝送経路とコア網を経由しない伝送経路との間で当該トラフィックを分配する処理を行う必要が有る。従って、ローカル・ブレークアウトを適用可能な網トポロジに制限があると同時に、端末側の制御のみでは無線ベアラ間におけるトラフィックの最適配分が不可能である。
特許文献2開示の発明においては、複数の無線ベアラそれぞれの好適性をエンド・ツー・エンド通信経路上でのシグナリング・オーバーヘッドと経路ホップ数に基づいて評価する際に、以下の処理が実行される。まず、コア網内の端末モビリティ管理ノードが相手端末から自端末に伝送される途中のパケットを検査して、相手端末と自端末が同一のコア網の配下にあるか否か、および、相手端末と自端末のそれぞれが端末モビリティ管理ノードとの間で同一のモビリティ管理機構を使用しているかを判定する。続いて、当該端末モビリティ管理ノードは、当該判定の結果を自端末に転送し、自端末は当該判定結果に基づいて各無線ベアラの好適性を評価する。従って、同時利用可能な複数の無線ベアラの好適性の評価は端末単独では実行することが出来ず、コア網内の端末モビリティ管理ノードによる上記判定動作にも依存しているので、端末側の動作のみでは無線ベアラ間におけるトラフィック配分の軽重を判定することが出来ない。
特許文献3開示の発明においては、複数の無線ベアラそれぞれの好適性を、各無線ベアラが接続するRATへのアクセスや当該RAT上で提供される通信サービスへのアクセスの権限の有無に基づいて評価する際に、端末毎のアクセス権限情報に基づいて自端末から各RATへの接続の許否を判定する主体はコア網内の端末モビリティ管理ノードである。従って、同時利用可能な複数の無線ベアラの好適性の評価は端末単独では実行することが出来ず、コア網内の端末モビリティ管理ノードによる上記判定動作にも依存しているので、端末側の動作のみでは無線ベアラ間におけるトラフィック配分の軽重を判定することが出来ない。
また、特許文献1乃至3に開示された発明は、ユーザ個人によってより関心の高い評価基準に基づいて複数の無線ベアラがそれぞれ接続する各RATの特性を評価することによって、無線ベアラ間における通信トラフィック配分を最適化することが出来ない。この場合における、「ユーザ個人によってより関心の高い評価基準」とは、例えば以下を含む。
(1) 各RATにおいて通信する際のセキュリティ強度。
(2) 各RATにおいて通信する際に提供されるQoSレベル。
(3) ユーザが自端末を利用している状況(屋外で移動中か、自宅に在宅中か、公衆WiFiスポットで作業中か、など)。
(4) 端末状態(スリープ状態か、画面オフ状態か、または画面オン状態か、など)。
さらに、特許文献1乃至3に開示された発明においては、エンド・ツー・エンドの通信相手が切り替わったり、エンド・ツー・エンドでのIPトラフィック・フローが切り替わらない限り、複数の無線ベアラ間での端末トラフィックの振り分けも変化しない。その結果、特許文献1乃至3に開示された発明においては、状況の変化に応じてリアルタイムに、かつ、キメ細かく無線ベアラ間での端末トラフィックの配分比率を制御することが困難である。
以上の問題点に鑑み、本発明は、自端末から同時利用可能な複数の無線ベアラを同時並列アクセスする際の無線ベアラ間のトラフィック配分を最適化する方法又は装置であって、端末側の制御のみで実現することが出来、かつ、ユーザ個人によって関心の高い評価基準に基づいて上記トラフィック配分を最適化することができる方法又は装置を実現することを目的とする。
また、無線ベアラ間における端末トラフィックの振り分け制御をトラフィックを構成する各パケット単位で実行できるようにすることにより、状況の変化に応じてリアルタイムに、かつ、キメ細かく無線ベアラ間でのトラフィック配分比率を制御することができる方法又は装置を実現することを目的とする。
本発明の第1の側面は、複数の異なる種類の無線アクセス網にそれぞれ接続する複数の無線ベアラに同時並列接続して通信し、制御プロセッサを備える利用者無線端末が、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:前記所定の基準に関し、前記利用者無線端末の移動速度、現在位置、端末動作状態を計測又は検知するステップ;および、前記計測又は検知された前記利用者無線端末の移動速度、現在位置または端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、を備え、パケットの送信イベントまたは受信イベントが発生するたびに、前記制御プロセッサがトラフィック配分制御プログラムを実行することにより、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分のためのトラフィック配分比率の制御をパケット単位で実行することを特徴とする構成を採る。
本発明の第2の側面は、複数の異なる種類の無線アクセス網にそれぞれ対応する複数の無線ベアラに同時並列接続して通信し、制御プロセッサを備える利用者無線端末が、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:前記所定の基準に関し、ユーザ・トラフィックが属するサービス種別のQoS要件および/又はセキュリティ要件を識別するステップ;および、前記利用者無線端末上で実行中のアプリケーションの各々が指定する前記QoS要件および/又はセキュリティ要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、を備え、パケットの送信イベントまたは受信イベントが発生するたびに、前記制御プロセッサがトラフィック配分制御プログラムを実行することにより、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分のためのトラフィック配分比率の制御をパケット単位で実行することを特徴とする構成を採る。

さらに本発明において、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する動作は、網側のトラフィック制御機能に依存せずに、前記利用者無線端末によって単独で実行されることを特徴とする。
以上より、本発明は、UEの移動速度、現在位置、端末動作状態をUE自身によって計測又は検知し、当該計測又は検知された情報に基づいてユーザ・トラフィックを無線ベアラ間で端末自身によって最適配分する。これにより、本発明は、端末移動速度、端末現在位置および端末動作状態を含むユーザ個人にとって関心の高い評価基準に基づいて、無線ベアラ間でのユーザ・トラフィックの最適な配分制御を実行することが出来る。その結果、本発明は、無線ベアラ間でのユーザ・トラフィックの最適な配分制御を、網側のトラフィック制御機能に依存することなく、UE単独で実行することが出来る。
加えて、本発明は、ユーザ・トラフィックが属するサービス種別のQoS要件および/又はセキュリティ要件をUE自身により識別し、当該識別された情報に基づいてユーザ・トラフィックを無線ベアラ間で端末自身により最適配分する。これにより、本発明は、ユーザ・トラフィックが属するサービス種別のQoS要件およびセキュリティ要件を含むユーザ個人にとって関心の高い評価基準に基づいて、無線ベアラ間でのユーザ・トラフィックの最適な配分制御を実行することが出来る。その結果、本発明は、無線ベアラ間でのユーザ・トラフィックの最適な配分制御を、網側のトラフィック制御機能に依存することなく、UE単独で実行することが出来る。
さらに本発明は、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分をパケット単位又はフレーム単位で制御することにより、状況の変化に応じてリアルタイムに、かつ、キメ細かく無線ベアラ間でのトラフィック配分比率を制御することができる。
リンク・アグリゲーションの特徴を説明する図 本実施の形態に係る無線通信システムのネットワーク構成を示す図 本実施の形態に係る無線通信システム内において使用されるUEのハードウェア構成を示す図 図3に示すUE内部のソフトウェア構成を示す図 本実施の形態に係る無線ベアラ間トラフィック配分の最適化の具体例を示す図 本実施の形態に係る無線ベアラ間トラフィック配分の最適化の具体例を示す図 通信アプリケーション種別と使用すべきQoSクラスとの間の対応表および通信アプリケーション種別と使用すべきセキュリティ機構との間の対応表を示す図 各RATが実装するQoS機構、提供可能なQoSサービス・クラスのセット、セキュリティ・クラスを記述する行列形式のテーブルを示す図 ホワイト・リストおよびブラック・リストの構成を示す図 本発明に係る第1実施例の処理の流れを説明するフローチャート 本発明に係る第2実施例の処理の流れを説明するフローチャート 本発明に係る第3実施例の処理の流れを説明するフローチャート 本発明に係る第4実施例の処理の流れを説明するフローチャート
本発明は、上述したリンク・アグリゲーションにおいて、複数の無線ベアラを介してUEが通信する際に、無線ベアラ間のトラフィック負荷の配分比率を最適化する具体的な仕組みを提案するものである。
<1>リンク・アグリゲーションの概要
まず、図1を使用して、本実施の形態に係る無線ベアラ間トラフィック配分最適化を実現する基盤となるリンク・アグリゲーションの具体的特長に関して以下のとおりに説明する。
図1の(A)〜(C)において、UE10は、インターネット内のサーバ20との間でトラフィック・データを通信するための通信アプリケーションを実行しているとする。インターネット内のサーバ20は、UE10のユーザに対して、オンライン・バンキング、クレジット・カード決済またはマルチメディア・コンテンツのダウンロードなどの各種ネットワーク・サービスを提供可能なサーバであっても良い。あるいは、図1において、サーバ20は、VoIP呼における通信相手ノードに置き換えられることも可能である。
図1の(A)は、同一の通信アプリケーションに関して、LTE網に接続する第1の無線ベアラと無線LAN網に接続する第2の無線ベアラを同時並列的に使用して無線通信する場合のリンク・アグリゲーションの例である。図1の(A)においては、UEからの上りリンク伝送においては、UEは、第2の無線ベアラのみを使用して通信する。これに対して、下りリンク伝送においては、同一の通信アプリケーションに関して、UEは、第1の無線ベアラ上での通信と第2の無線ベアラ上での通信を同時並列的に実行する。これにより、UEは、下りリンク伝送に関して、上りリンク伝送よりも高い通信スループットを達成することが出来る。
また、図1(A)に示したリンク・アグリゲーションの変形実施例として、LTE網に接続する第1の無線ベアラと無線LAN網に接続する第2の無線ベアラを同時並列的に使用する無線通信を上りリンク伝送と下りリンク伝送の両者に関して実行することも可能である。この場合、UEは、上りリンク伝送と下りリンク伝送の両者に関して多重無線リンク上での並列伝送による高い通信スループットを達成することが出来る。
図1の(B)は、UEにおいて、LTE網に接続する第1の無線ベアラと無線LAN網に接続する第2の無線ベアラとが同時に利用可能であり、これらの中から利用料金が最も安い無線ベアラを選択して通信する場合のリンク・アグリゲーションの例である。例えば、自宅内に居るユーザが私設の宅内無線LANエリア内に在圏しているUEを使用して、大容量のマルチメディア・コンテンツをダウンロードしたい場合を考える。この場合、第2の無線ベアラが接続する無線LAN網は、ユーザが私有する私設ローカル網であるので、第2の無線ベアラを使用して大量のデータをダウンロードしても、通信料金は無料である。従って、UEの通信料金を節約するために、ユーザは、UEに第1の無線ベアラよりも第2の無線ベアラを優先的に選択させ、マルチメディア・コンテンツのダウンロードを実行することが出来る。
図1の(C)は、UEにおいて、LTE網に接続する第1の無線ベアラと無線LAN網に接続する第2の無線ベアラとが同時に利用可能であり、通信アプリケーションの種類に応じてUEが無線通信に使用する第1と第2の無線ベアラを使い分ける場合のリンク・アグリゲーションの例である。例えば、UEは、オンライン・バンキングまたはクレジット・カード決済などの様に高いセキュリティと強力なユーザ認証機能を必要とする通信アプリケーションをLTE網に接続する第1の無線ベアラを介して実行することができる。同様に、UEは、高水準のQoS保証機能(通信帯域保証機能および通信遅延保証機能など)を必要とするVoIPなどの通信アプリケーションをLTE網に接続する第1の無線ベアラを介して実行することができる。これとは別に、UEは、セキュリティ機能やQoS保証機能が重要ではない大容量マルチメディア・コンテンツのダウンロードなどを無線LAN網に接続する第2の無線ベアラを使用して実行することが出来る。この際、例えば、第1の無線ベアラを介したVoIPアプリケーションによる通信と第2の無線ベアラを介したコンテンツ・ダウンロードのための通信とをUEが同時並列的に実行することが出来る。その結果、UEは、強力なセキュリティ機能と高水準のQoS保証機能を備えたLTE網を経由して、オンライン・バンキングのようなセキュリティ要件の厳しい通信アプリケーションを実行したり、VoIPのような高水準のQoS保証を要する通信アプリケーションを実行したりすることができる。同時に、UEは、高い転送速度を有し、通信料金が安価な無線LAN網を経由して、セキュリティ機能やQoS保証機能が重要ではない他の通信アプリケーションを実行することが出来る。加えて、第1の無線ベアラと第2の無線ベアラのそれぞれを介して別々の通信アプリケーションを同時並列的に実行することにより、単一の無線ベアラしか利用可能で無い場合よりも高いスループットをUE全体として達成することが出来る。
<2>本実施の形態に係る無線通信システムのネットワーク構成
以下、図2を使用して、本実施の形態に係る無線通信システムのネットワーク構成を説明する。図2の無線通信システムは、UE10、一つ以上の無線アクセス網40A〜40C、無線アクセス網40A〜40Cとコア網ゲートウェイ61〜63を介して接続された一つ以上のコア網(CN: Core Network)51/52、コア網51/52と外部接続ゲートウェイ71/72を介して接続されたインターネット網80およびインターネット網80に接続されたサーバ20から構成される。
無線アクセス網40A〜40Cは、無線通信を介したコア網への無線アクセス経路をUE10に対して提供するネットワークであり、無線アクセス網40A〜40Cの各々は、互いに異なるRATに基づくことが可能である。例えば、無線アクセス網40Aは、3GPPが標準化を進めるE−UTRAN標準に基づいたLTE網とすることが出来、無線アクセス網40Bは、IEEE802.16e標準に基づいたWiMAX網とすることが出来、無線アクセス網40Cは、Wi−Fiのような無線LAN網とすることが出来る。
コア網51および52は、無線通信サービス提供事業者内において多数のルータ機器やネットワーク制御用サーバ機器を高速回線で接続することによって形成され、UEのインターネットへの接続(E−UTRANのコア網においてはP−GW(PDN-Gateway)の機能に相当する)、UEの端末モビリティ管理(E−UTRANのコア網においてはMMEの機能に相当する)またはUEの通信サービス認証(E−UTRANのコア網においてはHSSの機能に相当する)などの機能を実行する。2つ以上の異なる無線アクセス網を介して同一のコア網に無線アクセスすることも可能である。例えば、コア網51は、無線アクセス網40Aおよびコア網ゲートウェイ61を介してUE10から無線アクセスが可能であるのと同時に、無線アクセス網40Bおよびコア網ゲートウェイ62を介してUE10から無線アクセスが可能である。他方、コア網52は、無線アクセス網40Cおよびコア網ゲートウェイ63を介してUE10から無線アクセスが可能である。
外部接続ゲートウェイ71/72は、コア網51/52をインターネット網80にそれぞれ接続し、これにより、コア網51/52は、インターネット網80との間でトラフィックを通信することが可能となる。コア網51がE−UTRAN標準に基づいて構成されている場合には、外部接続ゲートウェイ71は、P−GW(PDN-Gateway)とすることが可能である。
図2において、無線ベアラ30Aは、UE10をLTE網である無線アクセス網40Aに接続する無線接続手段である。同様に、無線ベアラ30Bは、UE10をWiMAX網である無線アクセス網40Bに接続する無線接続手段である。無線ベアラ30Cは、UE10をWi−Fi網である無線アクセス網40Cに接続する無線接続手段である。
図2において、UE10は、無線ベアラ30A〜30Cのいずれか一つ以上を使用して、無線アクセス網40A〜40Cのいずれか一つ以上と無線接続する。続いて、UE10は、無線アクセス網、コア網51/52およびインターネット網80を経由してサーバ20との間でTCP/IPに基づくエンド・ツー・エンド通信を行う。
<3>本実施の形態において使用されるUEのハードウェア構成
以下、図3を使用して、本実施の形態に係る無線通信システム内において使用されるUE10のハードウェア構成を説明する。
図3において、UEは、無線信号を送受信するアンテナ101、アンテナ101と接続された無線インターフェース102a〜102n、メモリ103、制御プロセッサ104、制御プロセッサ104との間で入出力データをやり取りしながらユーザとUE10との間のユーザ・インターフェースを制御するユーザ入出力装置105、およびUE10の設定パラメータなどを記憶する永続的な記憶媒体であるストレージ106およびバス107から構成される。上述した無線インターフェース102、メモリ103、制御プロセッサ104、ユーザ入出力装置105、およびストレージ106は、バス107を介して相互に接続されている。
無線インターフェース102a〜102nの各々は、受信したRF信号を周波数ダウンコンバートしてデジタル化し、復調し、そして復号化することにより、デジタル情報に変換して後続の情報処理のために提供する。これとは逆に、無線インターフェース102a〜102nの各々は、UE10内で生成されたデジタル情報を、符号化し、変調し、そして周波数アップコンバートすることによりRF信号に変換して無線送信のためにアンテナ101に提供する。無線インターフェース102a〜102nの各々は、LTE、WiMAXまたは無線LANなどのような複数の異なる種類のRATに対応した信号処理を実行可能となるように構成されている。すなわち、無線インターフェース102a〜102nの各々は、n種類のRATの各々と一対一に対応する。例えば、無線インターフェース102aは、LTE網に対応した無線信号の送受信処理を実行可能に構成され、無線インターフェース102bは、WiMAX網に対応した無線信号の送受信処理を実行可能に構成され、無線インターフェース102cは、無線LAN網に対応した無線信号の送受信処理を実行可能に構成されている。
メモリ103は、無線インターフェース102a〜102nが後述する制御プロセッサ104との間でやり取りするデジタル情報やUE10全体を制御するプログラムなどを記憶する。
制御プロセッサ104は、メモリ103からプログラムを読み出してUE10全体の制御、無線インターフェース102a〜102nを介してアンテナ101から送信されるデジタル情報の生成、無線インターフェース102a〜102nを介してアンテナ101から受信したデジタル情報の更なる処理などを実行する。
制御プロセッサ104は、無線インターフェース102a〜102nの中のいずれか一つ以上を選択的にイネーブルし、バス107を介して当該イネーブルされた無線インターフェースのみを介してデジタル情報をやり取りすることにより、特定のRATを選択的に使用して通信することが出来る。また、制御プロセッサ104は、無線インターフェース102a〜102nの全てをイネーブルし、バス107を介して全ての無線インターフェース102a〜102nを介してデジタル情報をやり取りすることにより、同時利用可能な全てのRAT(無線アクセス網)を同時に使用して通信することが出来る。
ユーザ入出力装置105は、UE10上に設けられた画面表示ディスプレイやキーパッドと制御プロセッサ104との間で入出力データのやり取りを行うと同時に、ユーザとUE10の間のユーザ・インターフェースの制御を行う。加えて、ユーザ入出力装置105は、UE10上に設けられた画面表示ディスプレイやキーパッドのデバイス状態や入出力ステータスが変化した際に、バス107を介して当該変化と関係付けられた割り込み処理を制御プロセッサ104に対して指示する。このような割り込み制御を可能とするために、ユーザ入出力装置105は、自身が管理する画面表示ディスプレイやキーパッドなどの入出力デバイス状態を電気的にモニタリングする機能を備えている。
<4>本実施の形態において使用されるUE内のソフトウェア構成
以下、図4を使用して、本実施の形態において使用されるUE10の内部のソフトウェア構成について説明する。
図4において、UE10内において本実施の形態に係る無線ベアラ間トラフィック配分最適化を実装するためのソフトウェア構造は、一つ以上の無線インターフェース・ソフトウェア200A〜200C、ベアラ間トラフィック分配モジュール300、TCP/IPプロトコル・モジュール400、一つ以上の通信アプリケーション500a〜500kおよびトラフィック配分制御プログラム600から構成される。ベアラ間トラフィック分配モジュール300、TCP/IPプロトコル・モジュール400、一つ以上の通信アプリケーション500a〜500kおよびトラフィック配分制御プログラム600は、図3中の制御プロセッサ104によってメモリ103から読み出されて実行される。無線インターフェース・ソフトウェア200A〜200Cは、以下の説明において後述するように、全ての処理が図3中の無線インターフェース102a〜102nのいずれかによって実行されても良い。または、無線インターフェース・ソフトウェア200A〜200Cは、一部の処理が図3の無線インターフェース102a〜102nのいずれかによって実行され、残りの処理が図3の制御プロセッサ104によって実行されても良い。
図4において、無線インターフェース・ソフトウェア200A〜200Cは、LTE、WiMAXまたは無線LANなどのような複数の異なる種類のRATのそれぞれに固有の無線信号処理を実行するプロトコル・ソフトウェアである。すなわち、無線インターフェース・ソフトウェア200A〜200Cの各々は、3種類のRATの各々と一対一に対応する。無線インターフェース・ソフトウェア200A〜200Cが実行する処理は、プロトコル階層における物理層の一部、データリンク層およびネットワーク層のレベルの処理を含む。当該無線信号処理は、アンテナ101から無線インターフェース102を介して受信した信号から受信デジタル情報を復元して制御プロセッサ104による更なる処理のために提供し、制御プロセッサ104が無線インターフェース102を介してアンテナから送信しようとするデジタル情報をRF信号に変換するための処理の一部である。
例えば、無線インターフェース・ソフトウェア200Aは、無線アクセス網としてLTE網を使用する場合の無線信号処理を実行する。具体的には、無線インターフェース・ソフトウェア200Aは、LTE網に固有のプロトコル・スタックであるRRC層、PDCP層、RLC層、MAC層およびPHY層のプロトコル処理を実行する。無線インターフェース・ソフトウェア200Bは、無線アクセス網としてWiMAX網を使用する場合の無線信号処理を実行する。具体的には、無線インターフェース・ソフトウェア200Bは、WiMAX網に固有のプロトコル・スタックであるLLC層、上位MAC層、下位MAC層およびPHY層のプロトコル処理を実行する。無線インターフェース・ソフトウェア200Cは、無線アクセス網として無線LAN網を使用する場合の無線信号処理を実行する。具体的には、無線インターフェース・ソフトウェア200Cは、無線LAN網に固有のプロトコル・スタックであるLLC層、MAC層およびPHY層のプロトコル処理を実行する。
無線インターフェース・ソフトウェア200A〜200Cの各々は、通信アプリケーション500a〜500kから(TCP/IPプロトコル・モジュール400およびベアラ間トラフィック分配モジュール300を介して)セッション開始要求を受け取ることにより、対応するRAT(無線アクセス網)と無線接続するための無線ベアラを生成する。無線インターフェース・ソフトウェア200A〜200Cの各々は、上記セッション開始要求に応じて、対応するRATとの間でデータリンク・レベルの論理接続を確立することにより当該RATに接続するための無線ベアラを生成する。
例えば、無線インターフェース・ソフトウェア200Aは、上記セッション開始要求に応じて、RRC層のプロトコル機能を使用してセッションに割り当てるべき通信リソースを確保し、図2中のLTE網40Aとの間でRRCコネクションを確立することにより、図2中のLTE網40Aに接続するための無線ベアラ30Aを生成することが出来る。
上述したシナリオとは逆に、UE10が、RAT 40A〜40Cのいずれかからデータリンク・レベルの接続要求を受信した場合には、無線インターフェース・ソフトウェア200A〜200Cの中で当該接続要求を発したRATに対応する一つは、以下のようにして無線ベアラを生成する。まず、当該RATからの当該接続要求に応じてデータリンク・レベルの論理接続を確立する。続いて、当該新たな論理接続の確立を制御プロセッサ104上で実行されているベアラ間トラフィック分配モジュール300およびトラフィック配分制御プログラム600に通知し、当該RATに接続する新たな無線ベアラをこれらのソフトウェア・モジュール300および600の内部に登録する。
例えば、無線インターフェース・ソフトウェア200Aは、図2中のLTE網40Aから受信したRRCコネクション要求に応じて、RRC層のプロトコル機能を使用して新たなRRCコネクションに割り当てるべき通信リソースを確保し、図2のLTE網40Aとの間で新たなRRCコネクションを確立する。これにより、無線インターフェース・ソフトウェア200Aは、図2中のLTE網40Aに接続するための無線ベアラ30Aを生成することが出来る。
これらのプロトコル・ソフトウェア処理の全てが、RAT毎に、対応する図3中の無線インターフェース102の上で実行されても良い。あるいは、これらのプロトコル・ソフトウェア処理の一部が対応する無線インターフェース102の上で実行され、残りの処理が図3中の制御プロセッサ104の上で実行される構成とすることも可能である。
ベアラ間トラフィック分配モジュール300は、トラフィック配分制御プログラム600によって同時利用中の複数の無線ベアラ間のトラフィック配分比率を設定される。さらに、ベアラ間トラフィック分配モジュール300は、TCP/IPプロトコル・モジュール400から受け取った送信トラフィック・データを、上記設定されたトラフィック配分比率に従って、無線インターフェース・ソフトウェア200A〜200Cの各々に対してパケット単位で分配する。同時に、トラフィック分配モジュール300は、無線インターフェース・ソフトウェア200A〜200Cの各々がバッファリングしている受信トラフィック・データを上記設定されたトラフィック配分比率に従ってパケット単位で混合して多重化し、TCP/IPプロトコル・モジュール400に渡す。
TCP/IPプロトコル・モジュール400は、一つ以上の通信アプリケーション500a〜500kが通信相手ノード(例えば、図2のサーバ20)とエンド・ツー・エンドでトラフィック・データを通信するためのTCP/IPプロトコルを実行する。
通信アプリケーション500a〜500kは、UE10の上で実行されるWebブラウザであっても良い。また、通信アプリケーション500a〜500kは、VoIPアプリケーション、オンライン・バンキングを利用するためのクライアント・ソフトウェア、サーバ20からコンテンツをダウンロードするためのダウンローダー・アプリケーションであっても良い。通信アプリケーション500a〜500kは、TCP/IPプロトコル・モジュール400との間でトラフィック・データを送受信しながら制御プロセッサ104によって互いに並列に実行される。
トラフィック配分制御プログラム600は、本実施の形態に係る無線ベアラ間トラフィック配分比率の最適化制御を実行するソフトウェアであり、無線インターフェース・ソフトウェア200A〜200Cにそれぞれ対応する3つの無線ベアラの間でのトラフィックの最適な配分比率を決定する。続いて、トラフィック配分制御プログラム600は、上記決定した最適配分比率をベアラ間トラフィック分配モジュール300内に設定し、ベアラ間トラフィック分配モジュール300が最適な配分比率に従って、トラフィックを無線インターフェース・ソフトウェア200A〜200Cにそれぞれ対応する3つの無線ベアラの間において配分することを可能にする。
<5>本実施の形態に係る無線ベアラ間トラフィック配分比率の最適化の概要
以下、本実施の形態に係る無線ベアラ間トラフィック配分比率の最適化の概要について説明する。本実施の形態に係る当該トラフィック配分比率の最適化は、UE10が同時利用可能な複数の無線ベアラの間において、通信トラフィックの配分比率を、トラフィック配分制御プログラム600が状況に応じて動的に調整することにより達成される。具体的には、制御プロセッサ104の上で実行中のトラフィック配分制御プログラム600は、無線ベアラ間のトラフィック配分比率を状況に応じて、例えば以下のように調整する。
(i)UE10が頻繁にまたは大量にデータの送受信を行っている場合には、同時利用可能な全ての無線ベアラ上で割り当て可能な全帯域幅を目一杯使って複数の無線ベアラを介した同時並列通信を実行することにより、ネットワーク応答性と通信速度を最速にする。
(ii)UE10が静止状態/中低速移動状態/高速移動状態の中の何れの状態にあるかにより、同時利用可能な複数の無線ベアラの中でいずれのベアラに優先的に多くのトラフィック量を割り当てるかを制御することにより、UE10の移動速度に応じた適切な無線ベアラを重点的に使用するようにする。
(iii)UE10が静止状態にあり、かつUE10の現在位置情報からユーザが自宅でUE10を使用中と判定できる場合には、自宅内の私設無線LANと接続する無線ベアラに優先的に多くのトラフィック量を割り当てることにより、通信料金を安く抑える。
(iv)UE10がVoIPアプリケーションなどの高水準なQoS保証機能を要する通信アプリケーションを実行中である場合には、QoS保証機能に優れたRAT(例えばLTE網)に接続する無線ベアラのように高水準のQoS保証を達成することが可能な無線ベアラを重点的に使用するようにする。
(V)UE10がオンライン・バンキングなどの厳格な個人認証と強力なセキュリティ機能を必要とする通信アプリケーションを実行中である場合には、当該通信アプリケーションに対して、厳格な個人認証機能と強力なセキュリティ機能を有するRAT(例えばLTE網)に接続する無線ベアラだけを排他的に割り当てるようにする。
トラフィック配分制御プログラム600は、TCP/IPプロトコル・モジュール400がベアラ間トラフィック分配モジュール300を介して無線インターフェース・ソフトウェア200との間でIPパケットを送受信するたびに、無線ベアラ間におけるトラフィック配分比率をその時の状況に応じて制御する。具体的には、IPパケットの送信イベントまたは受信イベントが発生するたびに、制御プロセッサ104が対応するネットワーク・イベント割り込みを発生させ、当該割り込み発生に応じてトラフィック配分制御プログラム600が起動される。これにより、トラフィック配分制御プログラム600は、無線ベアラ間トラフィック配分比率の制御をパケット単位で実行することが可能となる。その結果、エンド・ツー・エンドのIPトラフィック・フローや通信相手ノードが切り替わるまで無線ベアラ間トラフィック配分比率を変更しない特許文献1乃至3開示の発明よりもキメ細かいトラフィック配分制御を実行することが出来る。
なお、トラフィック配分制御プログラム600がパケット単位で無線ベアラ間トラフィック配分を制御することに対応して、トラフィック分配モジュール300は、TCP/IPプロトコル・モジュール400から受け取った送信トラフィックをパケット単位で各無線ベアラに対応する各無線インターフェース・ソフトウェアに分配する。
さらに本実施の形態は、状況に変化に応じた無線ベアラ間トラフィック配分の制御を、UE10の上で実行中のトラフィック配分制御プログラム600およびベアラ間トラフィック分配モジュール300のみによって実現する。従って、本実施の形態は、無線ベアラ間でのユーザ・トラフィックの最適な配分制御を、網側のトラフィック制御機能に依存すること無しに、UE10単独で実行することが出来る。
さらに本発明は、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分をパケット単位又はフレーム単位で制御することにより、状況の変化に応じてリアルタイムに、かつ、キメ細かく無線ベアラ間でのトラフィック配分比率を制御することができる。
<6>本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第1実施例
本実施例は、UE10の端末動作状況に応じて、同時利用可能な複数の無線ベアラ間でのトラフィック配分比率の最適化を実施するための実施例である。ここで言うUE10の端末動作状況とは、ユーザの頻繁な端末操作により活発に(アクティブに)使用されているか、またはUE10が頻繁なデータ通信や大量のデータ通信を実行しているか等の状況を意味する。
以下、図10のフローチャートを使用して、本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第1実施例の処理の流れを具体的に説明する。当該第1実施例に係る無線ベアラ間トラフィック配分の最適化は、IPパケットの送信イベントまたは受信イベントが発生するたびに、対応するネットワーク・イベント割り込みに応じて起動されたトラフィック配分制御プログラム600が以下のステップを順に実行することにより実現される。
(ステップA1)まず、トラフィック配分制御プログラム600は、ユーザがUE10をアクティブに使用しているかを判定する。
具体的には、トラフィック配分制御プログラム600は、UE上の画面がオン状態であるかを判定する。画面のオン状態とは、例えば、UE10が備える画面表示ディスプレイが液晶ディスプレイ(LCD)である場合、当該LCDのバックライト照明の電源がオンされており、当該LCDを構成する各画素が画面表示内容に従って駆動可能となっているデバイス状態である。トラフィック配分制御プログラム600を実行している制御プロセッサ104は、ユーザ入出力装置105からバス107を介して割り込み指示を受け取ることにより、画面表示ディスプレイに関してこのようなデバイス状態の変化を検知することが出来る。
また、別の実施態様として、トラフィック配分制御プログラム600は、UE10が備えるキーパッドが、ユーザによって所定時間周期内に一定の回数以上操作されたか否かを判定する。ユーザによるキーパッドの操作は、ユーザ入出力装置105によってキーパッドに関するデバイス状態の変化として検知される。トラフィック配分制御プログラム600を実行している制御プロセッサ104は、ユーザ入出力装置105からバス107を介して割り込み指示を受け取ることにより、キーパッドに関してこのようなデバイス状態の変化を検知することが出来る。
以上のようにして、トラフィック配分制御プログラム600は、ユーザがUE10をアクティブに使用しているかを判定する。
(ステップA2)続いて、トラフィック配分制御プログラム600は、ユーザがUE10を使用してデータを大量に送受信しているか否かを判定する。
具体的には、トラフィック配分制御プログラム600は、UE10内で実行中の全ての通信アプリケーション500が所定時間周期内に送受信した総データビット量を所定の閾値と比較し、当該送受信した総データビット量が当該閾値を上回るならば、ユーザがUE10を使用してデータを大量に送受信していると判定する。
また、別の実施態様として、トラフィック配分制御プログラム600は、UE10内で実行中の全ての通信アプリケーション500が所定時間周期内に生成したセッション数を所定の閾値と比較し、当該生成したセッション数が当該閾値を上回るならば、ユーザがデータを大量に送受信していると判定する。
(ステップA3)続いて、トラフィック配分制御プログラム600は、ステップA1に基づいてユーザがUE10をアクティブに使用していると判定するならば、以下のステップA5を実行し、そうでなければ以下のステップA4を実行する。
(ステップA4)トラフィック配分制御プログラム600は、ステップA2に基づいてユーザがUE10を使用してデータを大量に送受信していると判定するならば、以下のステップA5を実行し、そうでなければ処理を終える。
(ステップA5)トラフィック配分制御プログラム600は、UE10が同時利用可能な全ての無線ベアラにおいて使用可能な全帯域幅を目一杯使用して、全ての無線ベアラ上での並列伝送を実行する。具体的には、トラフィック配分制御プログラム600は、UE10が同時利用可能な全ての無線ベアラにおいて使用可能な全帯域幅を目一杯使用して並列伝送することが可能となるように無線ベアラ間のトラフィック配分比率を計算し、当該計算結果をベアラ間トラフィック分配モジュール300内に設定する。加えて、トラフィック配分制御プログラム600は、UE10が同時利用可能な全ての無線ベアラにおいて使用可能な全帯域幅を目一杯使用して達成可能な通信スループットをTCP/IPプロトコル・モジュール400内のフロー制御機構に対して通知する。
(第1実施例の効果)
以上のとおり、第1実施例に係る方法は、ユーザがUE10をアクティブに使用している際には、UE10が同時利用可能な全ての無線ベアラにおいて使用可能な全帯域幅を目一杯使用して並列伝送することにより、ユーザが感じるネットワーク応答性を最速なものとすることが出来る。同時に、第1実施例に係る方法は、ユーザがUE10を使用して大量のデータを送受信している際には、UE10が同時利用可能な全ての無線ベアラにおいて使用可能な全帯域幅を目一杯使用して並列伝送することにより、データの送受信速度を最速なものとすることが出来る。無線ベアラ間トラフィック配分比率最適化に関するこの態様は、下りリンク伝送に関して図1の(A)に示されるシナリオに対応する。
<7>本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第2実施例
本実施例は、ユーザ状態に応じて、同時利用可能な複数の無線ベアラ間でのトラフィック配分比率の最適化を実施するための実施例である。ここで言うユーザ状態とは、UE10の端末移動速度、またはUE10を使用しているユーザが屋外で移動中であるかそれとも屋内(自宅やオフィス)に滞在中であるか等の状況を意味する。
以下、図11のフローチャートを使用して、本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第2実施例の処理の流れを具体的に説明する。当該第2実施例に係る無線ベアラ間トラフィック配分の最適化は、IPパケットの送信イベントまたは受信イベントが発生するたびに、対応するネットワーク・イベント割り込みに応じて起動されたトラフィック配分制御プログラム600が以下のステップを順に実行することにより実現される。
(ステップB1)まず、トラフィック配分制御プログラム600は、UE10の現在の端末移動速度と地理的な位置を検出する。端末移動速度と地理的位置の検出は、トラフィック配分制御プログラム600が制御プロセッサ104に対して、例えば当業者にとって周知な以下の方法を実行するように指示することによって達成される。
(a)UE10が備えるGPS受信機(図示なし)を使用して、制御プロセッサ104が一定時間間隔で周期的にGPS測位信号を受信する。これと並行して、当該測位信号からUE10の端末位置の時系列的な変化を計算すると共に、当該端末位置の単位時間当たりの変化量と変化方向を計算する。
(b)無線ベアラのいずれかを使用して、制御プロセッサ104が近隣の3個の無線基地局(またはeNB)の各々からレンジング信号(距離測定信号)を一定時間間隔で周期的に受信する。これと並行して、当該3つのレンジング信号から三角測量の原理に基づいてUE10の端末位置の時系列的な変化を計算すると共に、当該端末位置の単位時間当たりの変化量と変化方向を計算する。
(ステップB2)続いて、トラフィック配分制御プログラム600は、ステップB1において検出したUE10の端末移動速度が高速移動状態/中低速移動状態/静止状態のいずれに対応するのかを判定する。具体的には、トラフィック配分制御プログラム600は、当該検出した端末移動速度を第1の閾値と比較し、当該端末移動速度が第1の閾値を上回るならば、UE10は高速移動状態にあると判定する。一方、当該端末移動速度が第1の閾値以下であるならば、トラフィック配分制御プログラム600は、当該端末移動速度を第1の閾値よりも小さい第2の閾値と比較する。その結果、当該端末移動速度が第2の閾値を上回るならば、UE10は中低速移動状態にあると判定し、第2の閾値以下であるならば、UE10は静止状態にあると判定する。
続いて、トラフィック配分制御プログラム600は、ステップB2においてUE10が高速移動状態にあると判定された場合には、ステップB3の実行に移り、中低速状態にあると判定された場合には、ステップB4の実行に移り、静止状態にあると判定された場合には、ステップB5の実行に移る。
(ステップB3)トラフィック配分制御プログラム600は、同時利用可能な複数の無線ベアラの中でWiMAX網に接続するベアラに対して通信トラフィックを重点的に配分するように無線ベアラ間トラフィック配分比率を制御する。具体的には、トラフィック配分制御プログラム600は、WiMAX網に接続する無線ベアラにおいて使用可能な全ての帯域幅を目一杯使用し、それでも帯域幅が不足する場合には、同時利用可能な他の無線ベアラを使用してトラフィックを送受信するように無線ベアラ間トラフィック配分比率を制御する。これにより、トラフィック配分制御プログラム600は、端末の高速移動時でもハンドオーバーの精度が高く、端末の高速移動時における通信品質や実効スループットに優れるWiMAX網に接続する無線ベアラに対してトラフィック量を重点的に配分することが出来る。
(ステップB4)トラフィック配分制御プログラム600は、同時利用可能な複数の無線ベアラの中でWiMAX網およびLTE網にそれぞれ接続する2つのベアラに対して通信トラフィックを重点的に配分するように無線ベアラ間トラフィック配分比率を制御する。具体的には、トラフィック配分制御プログラム600は、UE10が送受信する全トラフィック量を、WiMAX網およびLTE網にそれぞれ接続する2つのベアラに対して、当該2つのベアラ間の実効スループット比に応じて振り分けるように、無線ベアラ間トラフィック配分比率を制御する。それでもなお、当該2つの無線ベアラだけでは必要な帯域幅が不足するようであれば、トラフィック配分制御プログラム600は、他の無線ベアラを併用して帯域幅の不足分を埋めるように無線ベアラ間トラフィック配分比率を制御する。これにより、トラフィック配分制御プログラム600は、端末移動時の実効スループットが著しく低下する3Gセルラー網や良好な通信が限られた狭い地域内に限定される無線LANなどを除く複数のRAT(無線アクセス網)を同時並列的に使用して無線伝送を行うことが出来る。
(ステップB5)トラフィック配分制御プログラム600は、ユーザが自宅の位置として登録した地理的位置を含むマップ情報をストレージ106から読み出してメモリ103に一時記憶させ、ステップB1において検出したUE10の現在の地理的な位置を当該マップ情報と照合する。その結果、UE10の現在の地理的な位置がマップ情報内の自宅の位置と一致するまたは近接している場合には、図5に示すように、トラフィック配分制御プログラム600は、自宅内の私設の無線LAN網に接続する無線ベアラに対して通信トラフィックを重点的に配分するように無線ベアラ間トラフィック配分比率を制御する。具体的には、トラフィック配分制御プログラム600は、自宅内の無線LAN網に接続する無線ベアラにおいて使用可能な全ての帯域幅を目一杯使用し、それでも帯域幅が不足する場合には、同時利用可能な他の無線ベアラを使用してトラフィックを送受信するように無線ベアラ間トラフィック配分比率を制御する(図5)。
なお、図11のフローチャートを使用して上述した第2実施例においては、トラフィック配分制御プログラム600によるトラフィック配分先の候補となるRATの例として、高速移動時に対応するWiMAX、中低速移動時に対応するLTEおよび静止時に対応する無線LANを例示したが、上記以外のRATをトラフィック配分先の候補とすることも可能である。
(第2実施例の効果)
これにより、トラフィック配分制御プログラム600は、UE10が高速で移動している場合には、高速移動時においてもハンドオーバーの失敗や通信エラーによる実効スループット低下が起きにくいWiMAX網に接続する無線ベアラを重点的に使用することが出来る。また、トラフィック配分制御プログラム600は、UE10が中低速で移動している場合には、端末移動時の実効スループットが著しく低下する3Gセルラー網や良好な通信が限られた狭い地域内に限定される無線LANなどを除く複数のRATを同時並列的に使用して無線伝送を行うことが出来る。
他方、UE10が静止状態にあり、かつ、自宅内の私設の無線LAN網の通信エリア内に位置している場合には、トラフィック配分制御プログラム600は、UE10が送受信するトラフィック量を、通信料金が全く課金されない自宅内の私設の無線LAN網に重点的に配分することにより、通信料金の低減や節約を図ることが出来る(図5)。
<8>本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第3実施例
本実施例は、UE10上でQoS保証型の通信を必要とする通信アプリケーションが実行されている際には、当該通信アプリケーションに対して、QoS保証機能に優れたRAT(例えばLTE網)に接続する無線ベアラを重点的に使用させるための実施例である。
以下、図12のフローチャートを使用して、本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第3実施例の処理の流れを具体的に説明する。当該第3実施例に係る無線ベアラ間トラフィック配分の最適化は、IPパケットの送信イベントまたは受信イベントが発生するたびに、対応するネットワーク・イベント割り込みに応じて起動されたトラフィック配分制御プログラム600が以下のステップを順に実行することにより実現される。
(ステップC1)トラフィック配分制御プログラム600は、図7の(A)に示す対応表および図8に示すテーブルをストレージ106から読み出してメモリ103に一時記憶させる。
図7の(A)に示す対応表は、UE10上で実行可能な多種多様な通信アプリケーションの種別と当該種別の通信アプリケーションを実行する際に必要とされるQoSサービス・クラスとの間の対応関係を記述した対応表である。本明細書の説明において、QoSサービス・クラスとは、様々なRAT(無線アクセス網)がそれぞれ実装するQoS保証機構毎に、当該QoS保証機構がユーザに提供することが出来るQoSレベルやサービス優先順位に対応する。すなわち、図7の(A)に示す対応表は、UE10上で実行可能な多種多様な通信アプリケーションの種別をキーとして当該種別の通信アプリケーションが要求するQoS要件を検索するための表である。
図8に示す行列形式のテーブルにおいて、各列は、各無線ベアラがそれぞれ接続するRATの種別に対応する。図8のテーブルの第1行乃至第3行は、各列にそれぞれ対応するRATの種別が実装しているQoS機構の種類、QoSサービスクラス・セットおよびセキュリティ機構をそれぞれ表す。例えば、図8のテーブルにおいて、第1列は、無線ベアラが接続するRATがLTE網であった場合に対応し、第1列の第1行目の欄は、無線ベアラと接続するLTE網が実装するQoS機構が国際標準「3GPP TS 23.203 Policy and charging control architecture」において定義されるQoS機構であることを表す。さらに、図8のテーブルにおいて、第1列の第2行目の欄は、無線ベアラと接続するLTE網が実装するQoS機構において、ユーザに提供されるQoSサービス・クラスがGBR QCI=1からnon-GBR QCI=9までの9段階のクラスに分かれていることを表している。図8における別の例として、第2列は、無線ベアラが接続するRATがWiMAX網であった場合に対応し、第2列の第1行目の欄は、無線ベアラと接続するWiMAX網が実装するQoS機構が国際標準「IEEE802.16e-2005 モバイルWiMAX規格」において定義されるQoS機構であることを表す。さらに、図8のテーブルにおいて、第2列の第2行目の欄は、無線ベアラと接続するWiMAX網が実装するQoS機構において、ユーザに提供されるQoSサービス・クラスがUGSからBEまでの5段階のクラスに分かれていることを表している。
(ステップC2)続いて、トラフィック配分制御プログラム600は、UE10上で現在実行中の通信アプリケーション500の各々について、アプリケーション種別を識別し、ステップC1においてメモリ103中に格納した図7(A)の対応表に基づいて、当該識別したアプリケーション種別に対応するQoSサービス・クラスを取得する。
例えば、図7(A)に示す対応表において、当該識別したアプリケーション種別がVoIPアプリケーションであった場合、VoIPアプリケーションの実行に必要とされるQoSサービス・クラスは、LTE網を含むE−UTRANネットワークにおけるQoS機構の実装のために国際標準「3GPP TS 23.203 Policy and charging control architecture」が規定するQoSサービス・クラス「GBR QCI=1」である。また、図7(A)に示す対応表における別の例として、当該識別したアプリケーション種別が低解像度のビデオ・ストリーミングであった場合、低解像度ビデオ・ストリーミングの実行に必要とされるQoSサービス・クラスは、IEEE802.11e無線LANにおけるQoS機構の実装のために国際標準「IEEE802.11e-2005 Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements 7.3.2.27 EDCA Parameter Set element」が規定するQoSサービス・クラス(アクセス・カテゴリ)「AC_VI」である。また、図7の(A)に示す対応表におけるさらに別の例として、識別されたアプリケーション種別が電子メールやWebアクセスであった場合、対応するQoSサービス・クラスは、「ベストエフォート型サービス」や「バックグラウンド・サービス」でも良い。
(ステップC3)続いて、トラフィック配分制御プログラム600は、ステップC2においてアプリケーション種別と図7(A)の対応表に基づいて取得された対応するQoSサービス・クラスと合致するQoS機構とQoSサービスクラス・セットを有する列を、図8記載のテーブル内の複数の列の中から選択する。図8記載のテーブル内の複数の列はUE10が無線アクセスに使用可能な複数の無線ベアラにそれぞれ対応するので、ここで選択された列に対応する無線ベアラは、アプリケーション種別に対応するQoSサービス・クラスをユーザに提供可能な無線ベアラであると判定される。
例えば、ステップC1においてアプリケーション種別がVoIPアプリケーションであると識別され、続いて、ステップC2においてVoIPアプリケーションに対応するQoSサービス・クラスが、国際標準「3GPP TS 23.203 Policy and charging control architecture」において規定されるQoSサービス・クラス「GBR QCI=1」であると識別された場合について考える。この時、図8記載のテーブルにおいて、第1行目(QoS機構)の欄が「3GPP TS 23.203 Policy and charging control architecture」であり、第2行目(QoSサービスクラス・セット)の欄中にQoSサービス・クラス「GBR QCI=1」が含まれている第1列が選択され、当該選択された列に対応する無線ベアラは、VoIPアプリケーションに対応するQoSサービス・クラスをユーザに提供可能な無線ベアラであると判定される。
(ステップC4)トラフィック配分制御プログラム600は、ステップC3において、アプリケーション種別に対応するQoSサービス・クラスをユーザに提供可能であると判定された無線ベアラに対して、当該種別の通信アプリケーション(例えばVoIPアプリケーション)が通信するパケットを配分するように無線ベアラ間トラフィック配分比率を制御する。その際、当該種別の通信アプリケーションがQoSとして要求する帯域幅が不足する場合には、トラフィック配分制御プログラム600は、以下の制御を行う。すなわち、当該QoSサービス・クラスをユーザに提供可能であると判定された無線ベアラにおいて使用可能な全ての帯域幅を目一杯使用し、それでも帯域幅が不足する場合には、同時利用可能な他の無線ベアラを使用して当該種別の通信アプリケーションのパケットを送受信するように無線ベアラ間トラフィック配分比率を制御する(図6の(A))。同時に、図6(A)に示すように、UE10上で実行されている通信アプリケーションのうち、QoS保証型のデータ通信を必要としない他の通信アプリケーションに対しては、同時利用可能な他の無線ベアラを使用してパケットを送受信させるように無線ベアラ間トラフィック配分比率を制御する。
(第3実施例の効果)
これにより、第3実施例は、UE10が実行中の通信アプリケーションが必要とするQoS保証レベルを達成可能な無線ベアラに対して当該通信アプリケーションが送受信するトラフィック量を重点的に配分し、当該通信アプリケーションを使用しているユーザに対して最適なQoSを提供することが出来る。すなわち、第3実施例は、各アプリケーション種別に対してQoS機構とQoSサービスクラス・セットの最適なペアが対応付けられるように図7(A)の対応表を最適化しておくことにより、UE10が実行中の通信アプリケーションが必要とするQoS保証レベルを達成するのに最適な無線ベアラを選択することが出来る。
例えば、ステップC1乃至ステップC3に関して上述した実例においては、VoIPアプリケーションが必要とするQoS保証レベルを達成するのに最適なRATはLTE網であるとの前提で図7(A)の対応表が設計されている。これは、LTE網が実装するQoS機構「3GPP TS 23.203 Policy and charging control architecture」においては、9段階に分かれたキメ細かいQoSレベルの制御が可能である。同時に、当該QoS機構が提供するGBRサービス・クラスは、単なるトラフィック・フロー間の優先制御とは異なり、通信アプリケーションに事前に割り当てた通信リソースを保証すること(例えば、帯域幅保証機能)が可能である。これに対して、IEEE802.11e無線LANのEDCAが実装するQoS機構はQoSレベルが4段階にしか分かれておらず、当該QoS機構は当該4段階に分かれたQoSレベル間での優先制御を実行するだけである。IEEE802.11e無線LANが実装するQoS機構として、LTE網におけるGBRのような帯域幅保証機能を有するHCCAも存在するが、HCCAをサポートする無線LAN設備は殆ど普及しておらず、UE側もHCCAに対応していなければHCCAに基づく帯域保証機能を利用できないため、無線LANにおいては、帯域幅保証機能は事実上ほとんど利用できない。
以上から、VoIPアプリケーションが必要とするQoS保証レベルを達成するのに最適なRATとしてLTE網を選択することにより、第3実施例は、VoIPアプリケーションに対して、帯域幅保証機能などの高水準のQoS保証機能を提供することが出来る。
同時に、UE10上で実行されている通信アプリケーションのうち、QoS保証型のデータ通信を必要としない他の通信アプリケーションに対しては、同時利用可能な他の無線ベアラを使用してパケットを送受信させることにより、本実施例は、複数の無線ベアラを同時並列的に使用した無線伝送スループットの向上も実現することができる。
<9>本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第4実施例
本実施例は、UE10上で強力なセキュリティ機能に基づく安全な通信を必要とする通信アプリケーションが実行されている際には、当該通信アプリケーションに対して、強力な暗号化機能と厳格な個人認証機能を有するRAT(例えばLTE網)に接続する無線ベアラだけを排他的に使用させるための実施例である。
以下、図13のフローチャートを使用して、本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第4実施例の処理の流れを具体的に説明する。当該第4実施例に係る無線ベアラ間トラフィック配分の最適化は、IPパケットの送信イベントまたは受信イベントが発生するたびに、対応するネットワーク・イベント割り込みに応じて起動されたトラフィック配分制御プログラム600が以下のステップを順に実行することにより実現される。
(ステップD1)トラフィック配分制御プログラム600は、図7の(B)に示す対応表および図8に示すテーブルをストレージ106から読み出してメモリ103に一時記憶させる。
図7の(B)に示す対応表は、UE10上で実行可能な多種多様な通信アプリケーションの種別と当該種別の通信アプリケーションを実行する際に必要とされるセキュリティ・クラスとの間の対応関係を記述した対応表である。本明細書の説明において、セキュリティ・クラスとは、様々なRAT(無線アクセス網)がそれぞれ実装するセキュリティ機構毎に、当該セキュリティ機構がユーザに提供することが出来る認証/暗号化の機能やそれらのセキュリティ強度に対応する。すなわち、図7の(B)に示す対応表は、UE10上で実行可能な多種多様な通信アプリケーションの種別をキーとして当該種別の通信アプリケーションが要求するセキュリティ要件を検索するための表である。
図8のテーブルの構成については、以下の点を除いて、第3実施例のステップC1に関して上述した内容と同様である。図8のテーブルにおいて、第1列は、無線ベアラが接続するRATがLTE網であった場合に対応し、第1列の第3行目の欄は、無線ベアラと接続するLTE網が実装するセキュリティ機構が国際標準「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」において定義されるセキュリティ機構であることを表す。同様に、図8のテーブルにおいて、第3列は、無線ベアラが接続するRATが無線LAN網であった場合に対応し、第3列の第3行目の欄は、無線ベアラと接続する無線LAN網が実装するセキュリティ機構が国際標準「IEEE802.11i-2004 Amendment 6: Medium Access Control (MAC) Security Enhancements 3 Definitions 3.95」において定義されるセキュリティ機構であることを表す。
(ステップD2)続いて、トラフィック配分制御プログラム600は、UE10上で現在実行中の通信アプリケーション500の各々について、アプリケーション種別を識別し、ステップC1においてメモリ103中に格納した図7(B)の対応表に基づいて、当該識別したアプリケーション種別に対応するQoSセキュリティ・クラスを取得する。
例えば、図7の(B)に示す対応表において、当該識別したアプリケーション種別がオンライン・バンキング用アプリケーションであった場合、当該アプリケーションの実行に必要とされるセキュリティ・クラスは、LTE網を含むE−UTRANネットワークにおけるセキュリティ機構の実装のために国際標準「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」が規定する認証/暗号化機能に対応する。また、図7の(B)に示す対応表における別の例として、当該識別したアプリケーション種別が非業務用の暗号化テキストの転送アプリケーションであった場合、当該アプリケーションの実行に必要とされるセキュリティ・クラスは、以下の3種類の認証/暗号化機能の何れに対応するものであっても良い。
(1) IEEE802.11無線LANにおけるセキュリティ機構の実装のために国際標準「IEEE802.11i-2004 Amendment 6: Medium Access Control (MAC) Security Enhancements 3 Definitions 3.95」において規定される認証/暗号化機能。
(2) WiMAX ForumがモバイルWiMAXサービスに関して推奨する認証/暗号化方式において規定される認証/暗号化機能。
(3) 国際標準「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」が規定する認証/暗号化機能
また、図7の(B)に示す対応表におけるさらに別の例として、識別されたアプリケーション種別が電子メールやWebアクセスであった場合、対応するセキュリティ・クラスは、「WEP」や「WPA」を含む任意のセキュリティ機構に対応するものであっても良い。
(ステップD3)続いて、トラフィック配分制御プログラム600は、ステップD2においてアプリケーション種別と図7(B)の対応表に基づいて取得された対応するセキュリティ・クラスと合致する認証/暗号化機能を有する列を、図8記載のテーブル内の複数の列の中から選択する。図8記載のテーブル内の複数の列はUE10が無線アクセスに使用可能な複数の無線ベアラにそれぞれ対応するので、ここで選択された列に対応する無線ベアラは、アプリケーション種別に対応する認証/暗号化機能をユーザに提供可能な無線ベアラであると判定される。
例えば、ステップD1においてアプリケーション種別がオンライン・バンキング用アプリケーションであると識別され、続いて、ステップD2において当該アプリケーションに対応するセキュリティ・クラスが、国際標準「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」において規定される認証/暗号化機能に対応すると識別された場合について考える。この時、図8記載のテーブルにおいて、第3行目(セキュリティ・クラス)の欄が「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」である第1列が選択される。その結果、当該選択された第1列に対応する無線ベアラは、オンライン・バンキング用アプリケーションに必要な認証/暗号化機能と当該アプリケーションと個人情報保護のために必要十分なセキュリティ強度をユーザに提供可能な無線ベアラであると判定される。
図8における別の例として、ステップD1においてアプリケーション種別が非業務用の暗号化テキスト送信用アプリケーションであると識別され、続いて、ステップD2において当該アプリケーションに対応するセキュリティ・クラスが、以下の3つの何れでも良いと識別された場合について考える。
(1) IEEE802.11無線LANにおけるセキュリティ機構の実装のために国際標準「IEEE802.11i-2004 Amendment 6: Medium Access Control (MAC) Security Enhancements 3 Definitions 3.95」において規定される認証/暗号化機能。
(2) WiMAX ForumがモバイルWiMAXサービスに関して推奨する認証/暗号化方式において規定される認証/暗号化機能。
(3) 国際標準「3GPP TS33.401 3GPP System Architecture Evolution (SAE); Security architecture」が規定する認証/暗号化機能
この時、図8記載のテーブルにおいて、第3行目(セキュリティ・クラス)の欄が上記の(1)〜(3)のいずれか一つと一致する列が選択されるので、第1列〜第3列の全ての列が選択されることとなる。その結果、当該選択された第1列〜第3列に対応する3つの無線ベアラのいずれもが、非業務用の暗号化テキスト送信用アプリケーションに必要な認証/暗号化機能と当該アプリケーションと個人情報保護のために必要十分なセキュリティ強度をユーザに提供可能な無線ベアラであると判定される。
(ステップD4)トラフィック配分制御プログラム600は、ステップD3において、所定の種別のアプリケーションにとって必要な認証/暗号化機能とセキュリティ強度を有すると判定された無線ベアラだけに対して、当該種別の通信アプリケーションのパケットを排他的に配分するように無線ベアラ間トラフィック配分比率を制御する(図6の(B))。具体的には、トラフィック配分制御プログラム600は、当該必要な認証/暗号化機能とセキュリティ強度をユーザに提供可能であると判定された無線ベアラだけを排他的に使用してオンライン・バンキング用アプリケーションやクレジット・カード決済アプリケーション等のパケットを送受信するように無線ベアラ間トラフィック配分比率を制御する。同時に、図6(B)に示すように、UE10上で実行されている通信アプリケーションのうち、強力なセキュリティ機能に基づく安全なデータ通信を必要としない他の通信アプリケーションに対しては、同時利用可能な他の無線ベアラを使用してパケットを送受信させるように無線ベアラ間トラフィック配分比率を制御する。
(第4実施例の効果 その1)
これにより、第4実施例は、UE10が実行中の通信アプリケーションが必要とする認証/暗号化機能とセキュリティ強度を達成可能な無線ベアラのみに対して当該通信アプリケーションが送受信するトラフィック量を排他的に配分し、当該通信アプリケーションを使用しているユーザに対して個人情報保護のために十分なセキュリティ強度を提供することが出来る。すなわち、第4実施例は、各アプリケーション種別に対して認証方式と暗号化方式の最適なペアが対応付けられるように図7(B)の対応表を最適化しておくことにより、UE10が実行中の通信アプリケーションが必要とするセキュリティ強度を達成するのに最適な無線ベアラを排他的に選択することが出来る。
例えば、ステップD1乃至ステップD3に関して上述した実例においては、オンライン・バンキング用アプリケーションが必要とするセキュリティ強度を達成するのに最適なRATはLTE網であるとの前提で図7(B)の対応表が設計されている。図7(B)の対応表がこのように設計されている理由は、LTE網が実装する認証/暗号化に関する鍵管理方式が、以下の点で他のRATの認証/暗号化方式よりもセキュリティ強度において優れているからである。
すなわち、LTE網も無線LAN等のような他のRATも、暗号鍵の階層化(Key Hierachy)を行っているが、LTE網においては、鍵階層がUEとeNBとの間の各リンク、およびeNBからコア網に至る各ホップ・リンクに関して、異なる最下位暗号鍵K_eNBが展開されるように鍵階層全体が構成されている。しかも、LTE網においては、UE単位で異なる鍵Kが用いられる為、最下位暗号鍵K_eNBのみならず、鍵階層全体でUE個別の暗号鍵が展開される。この場合、UE側においてはUSIMからME (Mobile Equipment)、網側においてはeNBからコア網に至るeNB、MME、HSS,およびAuCに関して、それぞれ暗号鍵が展開される。そして、LTE網においては、eNB間ハンドオーバーが発生し、ハンドオーバー先のeNBとUEとの間でSecurity Associationが確立される途中に、K_eNBが窃取されたとしても、アクセス網からコア網に至る各ホップ・リンクと各eNB毎のUE接続毎に異なるK_eNBを使用しているため、ハンドオーバー先のeNB内での上記窃取によるセキュリティ脆弱性が網内の他のリンクに波及しないようになっている。また、LTE網においては、任意のUEが張るリンクに関しても、そのリンクで用いられるK_eNBはハンドオーバー毎に計算量的に予測不可能な方法で更新されるため、単一のUEに着目した場合においても、あるeNBでのK_eNB窃取による無線リンクの脆弱性が、他のeNBとの間の無線リンクの脆弱性に影響しないように構成されている。
加えて、LTE網のようなセルラー系RATにおいては、網側は、ユーザ認証手続により通信サービスにアクセスしようとするユーザが入力したUser−IDやパスワードの正確性のみならず、ユーザ個人の詳細な個人情報までも一意に特定することが出来る。
これに対して、無線LAN等のような他のRATにおいては、UEが無線アクセスポイントとの間で4−wayハンドシェイクを実行することによりSecurity Association を確立する際に、鍵階層内における上位の鍵であるPMKが第三者によって盗聴された下位の鍵PSKから推測される能性がある。従って、無線LAN等のような他のRATにおいては、LTE網のようなセルラー系RATと比較して、「鍵の改ざん」や「なりすまし」の危険性が高い。
また、LTE網のようなセルラー系RATにおいては、基地局が物理的にアクセスしづらい場所に設置されることが多く、基地局(eNB)が偽装され、第三者が偽装されたeNBに接続するリスクが少ない。これに対して、無線LAN等のような他のRATにおいては、無線アクセスポイントは攻撃者が容易にアクセス可能な場所に設置されることが多い。
以上から、オンライン・バンキング用アプリケーションが必要とするセキュリティ強度を達成するのに最適なRATとしてLTE網を選択することにより、第4実施例は、オンライン・バンキング用アプリケーションに対して、ユーザの個人情報の保護に必要十分なセキュリティ強度を提供することが出来る。
(第4実施例の効果 その2)
UE10上で実行されている通信アプリケーションのうち、強力なセキュリティ機能に基づく安全なデータ通信を必要としない他の通信アプリケーションに対しては、同時利用可能な他の無線ベアラを使用してパケットを送受信させることにより、本実施例は、複数の無線ベアラを同時並列的に使用した無線伝送スループットの向上も実現することができる。
<10>本実施の形態に係る無線ベアラ間トラフィック配分の最適化の第5実施例
本実施例は、上述した第1実施例乃至第4実施例に対する変形実施例である。本実施例は、トラフィック配分制御プログラム600による無線ベアラ間トラフィック配分比率の自動設定のみならず、ユーザ自身の嗜好(プリファレンス)に基づいてユーザが手動設定により、無線ベアラ間トラフィック配分比率を操作することを可能にする。すなわち、本実施例は、UE10上で実行される通信アプリケーションの各種別毎に、状況の如何にかかわわらず、必ず割り当てるべき無線ベアラをユーザが指定することができるホワイト・リストと状況の如何にかかわらず、決して割り当てるべきではない無線ベアラをユーザが指定することが出来るブラック・リストを設けている。
図9の(A)および(B)にユーザが設定したホワイト・リストとブラック・リストの設定例を示す。
図9(A)に示すホワイト・リストにおいて、UE10が実行中の通信アプリケーション種別がVoIPアプリケーションであった場合、VoIPアプリケーションの全ての送受信トラフィックには必ず無線ベアラ(c)が割り当てられる。トラフィック配分制御プログラム600は、ホワイト・リストによって指定されたこのような割り当てを、第1実施例乃至第4実施例に基づいて実行する無線ベアラ間トラフィック配分比率の自動制御よりも優先して適用する。
他方、図9(B)に示すブラック・リストにおいて、UE10が実行中の通信アプリケーション種別がコンテンツ・ダウンロード用のアプリケーションであった場合、当該アプリケーションの送受信トラフィックの伝送に使用可能な無線ベアラの中から無線ベアラ(a)が除外される。トラフィック配分制御プログラム600は、このようにして複数の無線ベアラの中からブラック・リストによって指定された無線ベアラを除外する制御を、第1実施例乃至第4実施例に基づいて実行する無線ベアラ間トラフィック配分比率の自動制御よりも優先して適用する。
具体的には、トラフィック配分制御プログラム600は、第1実施例乃至第4実施例に基づく無線ベアラ間トラフィック配分比率の自動制御を実行するのに先立って、ホワイト・リストに従って、通信アプリケーションに種類に応じた無線ベアラの割り当て制御を実行する。続いて、トラフィック配分制御プログラム600は、通信アプリケーションの種別毎に、当該種別の通信アプリケーションのパケットがブラック・リストによって指定された無線ベアラ上で送受信されないように、アプリケーション種別毎にベアラ間トラフィック分配モジュール300内にパケット・フィルターを設定する。続いて、トラフィック配分制御プログラム600は、ホワイト・リストによる無線ベアラの指定がされなかった通信アプリケーションの各々に対して、以下のいずれかの通信帯域幅を割り当てる。
(1) ホワイト・リストによって指定されている無線ベアラ中において何れの通信アプリケーションによっても使用されていない余剰帯域幅。
(2) ホワイト・リストによる指定が全くされていない無線ベアラの帯域幅。
続いて、トラフィック配分制御プログラム600は、ホワイト・リストによって指定されなかった他の通信プリケーションに関して、上記(1)または(2)の帯域幅を使用して第1実施例乃至第4実施例に基づく無線ベアラ間トラフィック配分比率の自動制御を実行する。
以下、本明細書に開示される構成を列挙する。
(第1項)
複数の異なる種類の無線アクセス網にそれぞれ接続する複数の無線ベアラに同時並列接続して通信するUEが、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:
前記所定の基準に関し、前記UEの移動速度、現在位置、端末動作状態を計測又は検知するステップ;および、
前記計測又は検知された前記UEの移動速度、現在位置または端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、
を備える、方法。
(第2項)
複数の異なる種類の無線アクセス網にそれぞれ対応する複数の無線ベアラに同時並列接続して通信するUEが、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:
前記所定の基準に関し、ユーザ・トラフィックが属するサービス種別のQoS要件および/又はセキュリティ要件を識別するステップ;および、
前記UE上で実行中のアプリケーションの各々が指定する前記QoS要件および/又はセキュリティ要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、
を備える、方法。
(第3項)
第1項または第2項に記載の方法であって:
所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する動作は、網側のトラフィック制御機能に依存せずに、前記UEによって単独で実行されることを特徴とする、方法。
(第4項)
第1項乃至第3項のいずれか一項に記載の方法であって:
前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分をパケット単位又はフレーム単位で実行することにより、無線ベアラ間でのトラフィック配分制御を実行することを特徴とする、方法。
(第5項)
前記計測又は検知された前記UEの端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
前記検知された端末動作状態が、第1の閾値を上回るデータ通信量でのデータ送受信を実行している端末動作状態、または第2の閾値を上回る頻度でユーザ操作が実行されている端末動作状態のいずれか一方に対応する場合、前記UEが同時利用可能な全ての無線ベアラ上で使用可能な全帯域幅を使用して無線伝送を行うステップであって、前記データ通信量の単位は、少なくともビットレートおよび同時セッション数を含む、ステップ;
を備えることを特徴とする、第1項または第3項に記載の方法。
(第6項)
前記計測又は検知された前記UEの移動速度に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
前記移動速度が高速移動状態に対応する場合には、UEの高速移動時におけるハンドオーバー精度に優れ、UEの高速移動による実効スループットの低下が少ない無線アクセス網に接続する無線ベアラへのトラフィック配分比率を最大化するステップ;
を備えることを特徴とする、第1項または第3項に記載の方法。
(第7項)
前記計測又は検知された前記UEの現在位置に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
前記現在位置において利用可能な無線アクセス網の中で、相対的に低コストな無線アクセス網に接続する無線ベアラに対してトラフィックを優先的に配分するステップ;
を備えることを特徴とする、第1項または第3項に記載の方法。
(第8項)
前記QoS要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは、前記アプリケーションの各々に関して:
複数の異なる無線アクセス網の各々に関して、提供可能なQoSサービス・クラスを検索し、各アプリケーションが指定する前記QoS要件を充足する前記QoSサービス・クラスを提供可能な無線アクセス網を識別するステップ;および、
各アプリケーションが送受信する前記ユーザ・トラフィックに関して、各アプリケーションのQoS要件を充足すると識別された無線アクセス網に接続する無線ベアラへのトラフィック配分比率を最大化するステップ;
を実行する動作を備えることを特徴とする、第2項または第3項に記載の方法。
(第9項)
前記セキュリティ要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは、前記アプリケーションの各々に関して:
複数の異なる無線アクセス網の各々に関して、提供可能なセキュリティ・クラスを検索し、各アプリケーションが指定する前記セキュリティ要件を充足する前記セキュリティ・クラスを提供可能な無線アクセス網を識別するステップ;および、
各アプリケーションが送受信する前記ユーザ・トラフィックに関して、各アプリケーションのセキュリティ要件を充足すると識別された無線アクセス網に接続する無線ベアラだけに対して排他的に前記ユーザ・トラフィックを配分するステップ;
を実行する動作を備えることを特徴とする、第2項または第3項に記載の方法。
(第10項)
複数の異なる種類の無線アクセス網にそれぞれ接続する複数の無線ベアラに同時並列接続して通信する際に、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分するUEであって:
前記所定の基準に関し、前記UEの移動速度、現在位置、端末動作状態を計測又は検知する手段;および、
前記計測又は検知された前記UEの移動速度、現在位置または端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する手段;
を備える、UE。


本発明は、複数の異なる種類の無線接続手段を同時利用可能な移動無線端末において、通信サービス品質、通信スループットを改善し、あるいは通信コストを節約するための無線通信制御ソフトウェアまたは無線通信制御装置として利用することが出来る。
10 UE
20 UEにネットワーク・サービスを提供するサーバ
30 無線ベアラ
40 無線アクセス網
50 コア網
60 コア網ゲートウェイ
70 外部接続ゲートウェイ
101 アンテナ
102 無線インターフェース
103 メモリ
104 制御プロセッサ
105 ユーザ入出力装置
106 ストレージ
107 バス
200 無線インターフェース・ソフトウェア
300 ベアラ間トラフィック分配モジュール
400 TCP/IPプロトコル・モジュール
500 通信アプリケーション
600 トラフィック配分制御プログラム

Claims (9)

  1. 複数の異なる種類の無線アクセス網にそれぞれ接続する複数の無線ベアラに同時並列接続して通信し、制御プロセッサを備えるUEが、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:
    前記所定の基準に関し、前記UEの移動速度、現在位置、端末動作状態を計測又は検知するステップ;および、
    前記計測又は検知された前記UEの移動速度、現在位置または端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、を備える、方法であり、
    パケットの送信イベントまたは受信イベントが発生するたびに、前記制御プロセッサがトラフィック配分制御プログラムを実行することにより、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分のためのトラフィック配分比率の制御をパケット単位で実行することを特徴とする、方法。
  2. 複数の異なる種類の無線アクセス網にそれぞれ対応する複数の無線ベアラに同時並列接続して通信し、制御プロセッサを備えるUEが、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する方法であって:
    前記所定の基準に関し、ユーザ・トラフィックが属するサービス種別のQoS要件および/又はセキュリティ要件を識別するステップ;および、
    前記UE上で実行中のアプリケーションの各々が指定する前記QoS要件および/又はセキュリティ要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分するステップ、を備える、方法であり、
    パケットの送信イベントまたは受信イベントが発生するたびに、前記制御プロセッサがトラフィック配分制御プログラムを実行することにより、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分のためのトラフィック配分比率の制御をパケット単位で実行することを特徴とする、方法。
  3. 請求項1または請求項2に記載の方法であって:
    所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分する動作は、網側のトラフィック制御機能に依存せずに、前記UEによって単独で実行されることを特徴とする、方法。
  4. 前記計測又は検知された前記UEの端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
    前記検知された端末動作状態が、第1の閾値を上回るデータ通信量でのデータ送受信を実行している端末動作状態、または第2の閾値を上回る頻度でユーザ操作が実行されている端末動作状態のいずれか一方に対応する場合、前記UEが同時利用可能な全ての無線ベアラ上で使用可能な全帯域幅を使用して無線伝送を行うステップであって、前記データ通信量の単位は、少なくともビットレートおよび同時セッション数を含む、ステップ;
    を備えることを特徴とする、請求項1または、請求項1に従属する請求項3に記載の方法。
  5. 前記計測又は検知された前記UEの移動速度に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
    前記移動速度が高速移動状態に対応する場合には、UEの高速移動時におけるハンドオーバー精度に優れ、UEの高速移動による実効スループットの低下が少ない無線アクセス網に接続する無線ベアラへのトラフィック配分比率を最大化するステップ;
    を備えることを特徴とする、請求項1または、請求項1に従属する請求項3に記載の方法。
  6. 前記計測又は検知された前記UEの現在位置に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは:
    前記現在位置において利用可能な無線アクセス網の中で、相対的に低コストな無線アクセス網に接続する無線ベアラに対してトラフィックを優先的に配分するステップ;
    を備えることを特徴とする、請求項1または、請求項1に従属する請求項3に記載の方法。
  7. 前記QoS要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは、前記アプリケーションの各々に関して:
    複数の異なる無線アクセス網の各々に関して、提供可能なQoSサービス・クラスを検索し、各アプリケーションが指定する前記QoS要件を充足する前記QoSサービス・クラスを提供可能な無線アクセス網を識別するステップ;および、
    各アプリケーションが送受信する前記ユーザ・トラフィックに関して、各アプリケーションのQoS要件を充足すると識別された無線アクセス網に接続する無線ベアラへのトラフィック配分比率を最大化するステップ;
    を実行する動作を備えることを特徴とする、請求項2または、請求項2に従属する請求項3に記載の方法。
  8. 前記セキュリティ要件に基づき、前記アプリケーションの各々が送受信する前記ユーザ・トラフィックを無線ベアラ間で最適配分する前記ステップは、前記アプリケーションの各々に関して:
    複数の異なる無線アクセス網の各々に関して、提供可能なセキュリティ・クラスを検索し、各アプリケーションが指定する前記セキュリティ要件を充足する前記セキュリティ・クラスを提供可能な無線アクセス網を識別するステップ;および、
    各アプリケーションが送受信する前記ユーザ・トラフィックに関して、各アプリケーションのセキュリティ要件を充足すると識別された無線アクセス網に接続する無線ベアラだけに対して排他的に前記ユーザ・トラフィックを配分するステップ;
    を実行する動作を備えることを特徴とする、請求項2または、請求項2に従属する請求項3に記載の方法。
  9. 複数の異なる種類の無線アクセス網にそれぞれ接続する複数の無線ベアラに同時並列接続して通信する際に、所定の基準に基づき、ユーザ・トラフィックを前記複数の無線ベアラ間において最適比率により配分するUEであって:
    制御プロセッサ;
    前記所定の基準に関し、前記UEの移動速度、現在位置、端末動作状態を計測又は検知する手段;および、
    前記計測又は検知された前記UEの移動速度、現在位置または端末動作状態に基づいて前記ユーザ・トラフィックを無線ベアラ間で最適配分する手段;を備える、UEであり、
    パケットの送信イベントまたは受信イベントが発生するたびに、前記制御プロセッサがトラフィック配分制御プログラムを実行することにより、前記複数の無線ベアラ間における前記ユーザ・トラフィックの前記最適配分のためのトラフィック配分比率の制御をパケット単位で実行することを特徴とする、UE。
JP2013081398A 2013-04-09 2013-04-09 複数の無線ベアラにアクセスする方法及び装置 Expired - Fee Related JP6219587B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081398A JP6219587B2 (ja) 2013-04-09 2013-04-09 複数の無線ベアラにアクセスする方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081398A JP6219587B2 (ja) 2013-04-09 2013-04-09 複数の無線ベアラにアクセスする方法及び装置

Publications (2)

Publication Number Publication Date
JP2014204393A JP2014204393A (ja) 2014-10-27
JP6219587B2 true JP6219587B2 (ja) 2017-10-25

Family

ID=52354447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081398A Expired - Fee Related JP6219587B2 (ja) 2013-04-09 2013-04-09 複数の無線ベアラにアクセスする方法及び装置

Country Status (1)

Country Link
JP (1) JP6219587B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010511B1 (ko) 2015-03-12 2019-08-13 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법 및 장치, 프로세서, 및 이동 단말기
JP6491018B2 (ja) * 2015-04-09 2019-03-27 株式会社メディア4u 情報処理装置、情報処理方法、及びプログラム
JP6468564B2 (ja) * 2016-01-19 2019-02-13 日本電信電話株式会社 無線通信システム及びその通信制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190769A (ja) * 2000-12-21 2002-07-05 Sharp Corp 移動体通信機及び移動体通信システム
JP4421590B2 (ja) * 2001-09-19 2010-02-24 ソフトバンクモバイル株式会社 ベアラ選択方法および移動通信端末
JP5093671B2 (ja) * 2008-03-31 2012-12-12 独立行政法人情報通信研究機構 通信ネットワークシステム及びネットワーク通信方法、通信管理装置
US9232559B2 (en) * 2008-05-15 2016-01-05 Mformation Software Technologies Llc System and method to provide dynamic bearer selection for data transfers in multi-bearer wireless data terminals
JP5382764B2 (ja) * 2008-07-28 2014-01-08 独立行政法人情報通信研究機構 通信端末及び通信ネットワークシステム
JP5327864B2 (ja) * 2009-09-04 2013-10-30 独立行政法人情報通信研究機構 通信ネットワークシステム及びネットワーク通信方法
WO2011114471A1 (ja) * 2010-03-17 2011-09-22 富士通株式会社 移動局、基地局、通信システムおよび通信方法
JP5559711B2 (ja) * 2011-01-13 2014-07-23 株式会社Nttドコモ 無線通信システムおよび移動端末
JP2012253605A (ja) * 2011-06-03 2012-12-20 Fujitsu Ten Ltd 通信装置、及び通信制御方法
JP5532067B2 (ja) * 2012-03-12 2014-06-25 富士通株式会社 移動局

Also Published As

Publication number Publication date
JP2014204393A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
Panwar et al. A survey on 5G: The next generation of mobile communication
US9356865B2 (en) Method for dynamically controlling data paths, MTC gateway and network device using the same
Chen et al. Cognitive radio network architecture: part I--general structure
ES2855161T3 (es) Funciones de red auto-organizativa en redes de telecomunicaciones
CN107005919B (zh) 用于使用未授权频带的单独lte ran的方法和装置
EP2804422B1 (en) Offloading at a small cell access point
CA3026841A1 (en) User plane function selection for isolated network slice
Ling et al. Enhanced capacity and coverage by Wi-Fi LTE integration
US9474028B2 (en) Methods of transmitting data using at least one of a plurality of wireless accesses, user equipment, and network element
US8264978B1 (en) System and method for operating a wireless communication system to process packet payloads to determine RF signal adjustments
JP2012511863A (ja) 統合したマルチ無線アクセス方式のマルチ周波数アドミッション制御
WO2013006254A1 (en) Wireless communication device, wireless communication system, and related methods
EP2472957A2 (en) Telecommunication network
US20230036645A1 (en) Tunnel Failure Procedures
JP6219587B2 (ja) 複数の無線ベアラにアクセスする方法及び装置
WO2022068371A1 (zh) 通信方式的确定方法、装置及存储介质
US20240073848A1 (en) Network Slice in a Wireless Network
GB2481899A (en) An application aware scheduling system for mobile network resources
WO2015018324A1 (zh) 一种多接入系统中实现ip流移动性的方法和装置
Hinger et al. Review of mobile data offloading through Wi-Fi
JP2014230037A (ja) 複数の無線ベアラにアクセスする方法及び装置
GB2481723A (en) Broadband data services provision irrespective of terminal communicating via a macro base station or an access point
US11929907B2 (en) Endpoint assisted selection of routing paths over multiple networks
US20230261976A1 (en) Systems and methods for providing multipath connectivity intelligence
US20220386401A1 (en) Multiple Access

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6219587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees