JP6215572B2 - Displacement measuring device - Google Patents

Displacement measuring device Download PDF

Info

Publication number
JP6215572B2
JP6215572B2 JP2013110295A JP2013110295A JP6215572B2 JP 6215572 B2 JP6215572 B2 JP 6215572B2 JP 2013110295 A JP2013110295 A JP 2013110295A JP 2013110295 A JP2013110295 A JP 2013110295A JP 6215572 B2 JP6215572 B2 JP 6215572B2
Authority
JP
Japan
Prior art keywords
light receiving
light
diffraction grating
receiving region
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013110295A
Other languages
Japanese (ja)
Other versions
JP2014228491A (en
Inventor
勝弘 小山
勝弘 小山
冬樹 宮澤
冬樹 宮澤
貴樹 浜本
貴樹 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2013110295A priority Critical patent/JP6215572B2/en
Publication of JP2014228491A publication Critical patent/JP2014228491A/en
Application granted granted Critical
Publication of JP6215572B2 publication Critical patent/JP6215572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光干渉を利用した変位計測装置及び変位計測方法に関する。   The present invention relates to a displacement measuring apparatus and a displacement measuring method using optical interference.

例えば特許文献1には、光干渉を利用した変位計測装置が開示されている。この変位計測装置は、光源側から順に、レーザ光源、コリメータレンズ、第1の回折格子、第2の回折格子及び光センサを備えている。光センサは、第1の回折格子で回折された回折光(例えば1次)と、第1の回折格子を直進した0次光が第2の回折光で回折されて発生する回折光(例えば1次)との干渉光を検出する。この変位計測装置は、光センサで検出される干渉光の明暗による光量の変化に基づき、第1及び第2の回折格子の距離の変化、つまり計測対象となる変位を計測する(例えば、特許文献1の明細書段落[0020]、[0023]、[0027]、図1〜3等参照)。   For example, Patent Document 1 discloses a displacement measuring device using optical interference. This displacement measuring device includes a laser light source, a collimator lens, a first diffraction grating, a second diffraction grating, and an optical sensor in this order from the light source side. The optical sensor diffracted light (for example, 1st order) diffracted by the first diffraction grating and diffracted light (for example, 1st order) generated by diffracting the 0th order light traveling straight through the first diffraction grating with the second diffracted light. Next, the interference light is detected. This displacement measuring device measures a change in the distance between the first and second diffraction gratings, that is, a displacement to be measured based on a change in the amount of light due to the brightness of the interference light detected by the optical sensor (for example, patent document). 1 specification paragraphs [0020], [0023], [0027], see FIGS.

特許文献2に記載の光電式エンコーダは、2つの回折格子と、移動格子とを備える。移動格子には、2つの回折格子で回折されて生成された6つの光束(21a,21b,22a,22b,23a,23b)が入射し、この移動格子5から出射される3つの異なる方向の光束を、3つの受光素子によりそれぞれ受ける。これらの受光素子の出力信号に基づき、エンコーダ処理回路が干渉光強度の位相情報の演算を行うことで、移動格子のx及びz方向の変位と、y軸周りの傾きであるピッチ角の変位の情報が得られる(例えば、特許文献2の明細書段落[0008]〜[0014]、図1等参照)。   The photoelectric encoder described in Patent Document 2 includes two diffraction gratings and a moving grating. Six light beams (21a, 21b, 22a, 22b, 23a, 23b) generated by being diffracted by two diffraction gratings are incident on the moving grating, and light beams in three different directions are emitted from the moving grating 5. Are received by three light receiving elements, respectively. Based on the output signals of these light receiving elements, the encoder processing circuit calculates the phase information of the interference light intensity, so that the displacement of the moving grating in the x and z directions and the displacement of the pitch angle that is the inclination around the y axis are reduced. Information is obtained (see, for example, paragraphs [0008] to [0014] in FIG. 1 of Patent Document 2).

国際公開第2011/043354号パンフレットInternational Publication No. 2011/043354 Pamphlet 特開2005−326232号公報JP 2005-326232 A

特許文献2の光電式エンコーダでは、上記のように直線方向の変位及び軸周りの角度変位を計測するために、光学部品数が多くなり小型化が難しい。   In the photoelectric encoder of Patent Document 2, since the linear displacement and the angular displacement around the axis are measured as described above, the number of optical components is increased and it is difficult to reduce the size.

本発明の目的は、多数の光学部品を用いることなく、少なくとも所定の軸周りの角度変位を計測可能な変位計測装置及び変位計測方法を提供することにある。   An object of the present invention is to provide a displacement measuring apparatus and a displacement measuring method capable of measuring at least an angular displacement around a predetermined axis without using a large number of optical components.

上記目的を達成するため、本発明に係る変位計測装置は、光源と、回折格子対と、複数の受光領域と、演算手段とを具備する。
前記回折格子対は、前記光源からの光線の進路に沿って配置され、相対移動可能であり、回折光をそれぞれ発生する。
前記複数の受光領域は、前記回折格子対のうちいずれか1つの回折格子から発生したn次回折光(nは0以外の整数)の進路に沿う一組の回折光の干渉光を検出可能である。
前記演算手段は、前記複数の受光領域でそれぞれ得られた信号に基づき、前記回折格子対の相対的な回転の角度変位を算出する。
In order to achieve the above object, a displacement measuring apparatus according to the present invention includes a light source, a diffraction grating pair, a plurality of light receiving regions, and an arithmetic means.
The diffraction grating pair is disposed along the path of the light beam from the light source, is relatively movable, and generates diffracted light.
The plurality of light receiving regions can detect interference light of a set of diffracted light along the path of n-order diffracted light (n is an integer other than 0) generated from any one of the diffraction grating pairs. .
The arithmetic means calculates an angular displacement of a relative rotation of the diffraction grating pair based on signals obtained from the plurality of light receiving regions.

上記変位計測装置は、対向する回折格子対と、干渉光を検出可能な複数の受光領域とを主に備えることにより、演算手段の演算処理によって、回折格子対の相対的な角度変位を算出することができる。すなわち、少ない光学部品でその角度変位を計測することができ、装置の小型化を実現することができる。   The displacement measuring apparatus mainly includes an opposing diffraction grating pair and a plurality of light receiving regions capable of detecting interference light, thereby calculating the relative angular displacement of the diffraction grating pair by the arithmetic processing of the arithmetic means. be able to. That is, the angular displacement can be measured with a small number of optical components, and the apparatus can be miniaturized.

前記回折格子対は、複数の格子線をそれぞれ有し、前記複数の受光領域は、前記複数の格子線の配列方向である第1の方向に配列されてもよい。また、前記演算手段は、前記格子線の方向である第2の方向に沿う軸の周りの前記角度変位を算出してもよい。各受光領域が受ける上記干渉光の光量は、その第2の方向に沿う軸周りの回折格子対の角度変位に応じてそれぞれ変化する。したがって、演算手段は、第2の方向に沿う軸の周りの角度変位を算出することができる。   The diffraction grating pair may have a plurality of grating lines, and the plurality of light receiving regions may be arranged in a first direction that is an arrangement direction of the plurality of grating lines. Further, the calculation means may calculate the angular displacement around an axis along a second direction that is a direction of the lattice line. The amount of the interference light received by each light receiving region changes according to the angular displacement of the diffraction grating pair around the axis along the second direction. Therefore, the calculation means can calculate the angular displacement around the axis along the second direction.

演算手段が上記角度変位を算出するためには、複数の受光領域全体を検出領域とすると、検出領域の第1の方向の幅より、前記検出領域で検出される干渉光の干渉縞の前記第1の方向の幅が狭い、という条件が必要となる。   In order for the calculation means to calculate the angular displacement, if the entire plurality of light receiving areas are set as the detection area, the interference fringes of the interference light detected in the detection area are determined based on the width of the detection area in the first direction. The condition that the width in the direction 1 is narrow is necessary.

前記演算手段は、前記複数の受光領域として2つの受光領域でそれぞれ得られた信号の演算値に基づいて、前記第2の方向に沿う軸の周りの前記角度変位を算出してもよい。   The calculation means may calculate the angular displacement about an axis along the second direction based on calculation values of signals obtained in two light receiving areas as the plurality of light receiving areas.

前記変位計測装置は、前記第2の方向でさらに配列されて構成された複数の受光領域をさらに具備してもよい。また、前記演算手段は、前記第1の方向での複数の受光領域及び前記第2の方向での複数の受光領域でそれぞれ得られた信号に基づき、前記回折格子対の光軸の方向である第3の方向に沿う軸の周りの前記角度変位を算出してもよい。それらの受光領域が受ける上記干渉光の光量に基づく所定の演算値は、第3の方向に沿う軸周りの回折格子対の角度変位に応じて変化する。したがって、演算手段は、第3の方向に沿う軸周りの角度変位を算出することができる。   The displacement measuring device may further include a plurality of light receiving regions configured to be further arranged in the second direction. Further, the calculation means is the direction of the optical axis of the diffraction grating pair based on signals obtained from the plurality of light receiving regions in the first direction and the plurality of light receiving regions in the second direction, respectively. The angular displacement around the axis along the third direction may be calculated. The predetermined calculation value based on the amount of the interference light received by these light receiving regions changes according to the angular displacement of the diffraction grating pair around the axis along the third direction. Therefore, the calculation means can calculate the angular displacement around the axis along the third direction.

例えば、前記複数の受光領域は、マトリクス状に配置された4つの受光領域であってもよい。そして、前記演算手段は、前記4つの受光領域のうち、第1の対角線上に位置する2つの受光領域でそれぞれ得られた信号の演算値と、前記第1の対角線に交わる第2の対角線上に位置する2つの受光領域でそれぞれ得られた信号の演算値とに基づく値を算出することで、前記第3の方向に沿う軸の周りの前記角度変位を算出してもよい。   For example, the plurality of light receiving regions may be four light receiving regions arranged in a matrix. The calculation means is configured to calculate a signal obtained in each of the two light receiving areas located on the first diagonal line among the four light receiving areas, and a second diagonal line intersecting the first diagonal line. The angular displacement around the axis along the third direction may be calculated by calculating a value based on the calculated values of the signals respectively obtained in the two light receiving regions located at the position.

前記複数の受光領域は、前記n次回折光のうち、+n次回折光(nは1以上の自然数)の進路側に配置される第1の受光領域群と、−n次回折光(nは1以上の自然数)の進路側に配置される第2の受光領域群として構成されてもよい。第1及び第2の受光領域群を用いることにより、回折格子対の角度変位に応じた干渉光の変化の検出感度を高めることができる。あるいは、演算手段は、第1の受光領域群で得られた信号に基づき、所定方向に沿う軸周りの角度変位を検出し、第2の受光領域群で得られた信号に基づき、その軸とは異なる方向の軸周りの角度変位を検出することもできる。   The plurality of light receiving regions include a first light receiving region group arranged on a path side of + n order diffracted light (n is a natural number of 1 or more), and -n order diffracted light (n is 1 or more). It may be configured as a second light receiving region group disposed on the path of (natural number). By using the first and second light receiving region groups, it is possible to increase the detection sensitivity of the change in the interference light according to the angular displacement of the diffraction grating pair. Alternatively, the calculation means detects an angular displacement around an axis along a predetermined direction based on the signal obtained from the first light receiving region group, and based on the signal obtained from the second light receiving region group, Can also detect angular displacements about axes in different directions.

前記回折格子対は、複数の格子線をそれぞれ有してもよい。前記第1の受光領域群は、前記複数の格子線の配列方向である第1の方向で配列された第1の受光領域及び第2の受光領域を有し、前記第2の受光領域群は、前記第1の方向で配列された第3の受光領域及び第4の受光領域を有してもよい。そして、前記第3の受光領域は、前記回折格子対の光軸を中心として、前記第1の方向で前記第1の受光領域と同じ側に位置し、前記第4の受光領域は、前記第1の方向で前記第2の受光領域と同じ側に位置してもよい。また、前記演算手段は、前記第1及び前記第3の受光領域でそれぞれ得られた信号の演算値と、前記第2及び前記第4の受光領域でそれぞれ得られた信号の演算値とに基づく値を算出することで、前記格子線の方向である第2の方向に沿う軸の周りの前記角度変位を算出してもよい。   The diffraction grating pair may have a plurality of grating lines. The first light receiving region group includes a first light receiving region and a second light receiving region arranged in a first direction that is an arrangement direction of the plurality of lattice lines, and the second light receiving region group includes: And a third light receiving region and a fourth light receiving region arranged in the first direction. The third light receiving region is located on the same side as the first light receiving region in the first direction with the optical axis of the diffraction grating pair as a center, and the fourth light receiving region is the first light receiving region. It may be located on the same side as the second light receiving region in the direction of 1. Further, the calculation means is based on the calculated values of the signals obtained in the first and third light receiving areas and the calculated values of the signals obtained in the second and fourth light receiving areas, respectively. By calculating the value, the angular displacement around the axis along the second direction that is the direction of the lattice line may be calculated.

本発明に係る変位計測方法は、光源からの光線の進路に沿って配置された相対移動可能な回折格子対に、前記光源からの光が入射することにより、前記回折格子対から回折光をそれぞれ発生させることを含む。
複数の受光領域により、前記回折格子対のうちいずれか1つの回折格子から発生したn次回折光(nは0以外の整数)の進路に沿う一組の回折光の干渉光が検出される。
前記複数の受光領域でそれぞれ得られた信号に基づき、前記回折格子対の相対的な回転の角度変位が算出される。
In the displacement measuring method according to the present invention, light from the light source is incident on a pair of relatively movable diffraction gratings arranged along a path of light from the light source, so that diffracted light is emitted from the diffraction grating pair. Including generating.
Interference light of a set of diffracted light along the path of n-order diffracted light (n is an integer other than 0) generated from any one of the diffraction grating pairs is detected by the plurality of light receiving regions.
Based on the signals obtained in the plurality of light receiving regions, the angular displacement of the relative rotation of the diffraction grating pair is calculated.

以上、本発明によれば、多数の光学部品を用いることなく、少なくとも所定の軸周りの角度変位を計測可能である。   As described above, according to the present invention, it is possible to measure an angular displacement around at least a predetermined axis without using a large number of optical components.

図1は、本発明の第1の実施形態に係る変位計測装置の基本的な光学系の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a basic optical system of a displacement measuring apparatus according to the first embodiment of the present invention. 図2は、図1に示す変位計測装置の斜視図である。FIG. 2 is a perspective view of the displacement measuring device shown in FIG. 図3は、図1に示したPDの受光領域を模式的に示す図である。FIG. 3 is a diagram schematically showing a light receiving region of the PD shown in FIG. 図4は、回折格子対から出射される各回折光の干渉パターンを示す。FIG. 4 shows an interference pattern of each diffracted light emitted from the diffraction grating pair. 図5A〜Cは、回折格子対間のy軸周りのチルト角ごとの、上記干渉パターンの変化を示す。5A to 5C show the change in the interference pattern for each tilt angle around the y-axis between the diffraction grating pair. 図6は、第2の実施形態に係る変位計測装置の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of the displacement measuring apparatus according to the second embodiment. 図7は、図6に示したPD41の検出領域を示す。FIG. 7 shows a detection region of the PD 41 shown in FIG. 図8は、回折格子対間の相対的なy軸周りのチルト角と、演算値との関係を示す実測のグラフである。FIG. 8 is an actually measured graph showing the relationship between the tilt angle between the diffraction grating pair around the y-axis and the calculated value. 図9は、本発明の第3の実施形態を説明するために、回折格子間のz軸周りのチルト角の発生を示す図である。FIG. 9 is a diagram showing the generation of a tilt angle around the z-axis between diffraction gratings in order to explain the third embodiment of the present invention. 図10A〜Eは、回折格子対20のz軸回りのチルト角ごとの、干渉パターンの変化を示す。10A to 10E show changes in the interference pattern for each tilt angle around the z-axis of the diffraction grating pair 20. 図11は、回折格子対間の相対的なz軸周りのチルト角と、演算値との関係を示す実測のグラフである。FIG. 11 is an actual measurement graph showing the relationship between the calculated tilt and the tilt angle about the relative z-axis between the diffraction grating pair. 図12は、本発明の第4の実施形態に係る変位計測装置の構成を示す斜視図である。FIG. 12 is a perspective view showing a configuration of a displacement measuring apparatus according to the fourth embodiment of the present invention. 図13は、第4の実施形態において、回折格子対間の相対的なy軸周りのチルト角が発生した時の干渉パターンと、2つのPDがそれぞれ受ける光量を示す。FIG. 13 shows an interference pattern when the relative tilt angle about the y-axis between the diffraction grating pairs is generated and the amounts of light received by the two PDs in the fourth embodiment. 図14は、本発明の第5の実施形態に係る変位計測装置の構成を示す斜視図である。FIG. 14 is a perspective view showing a configuration of a displacement measuring apparatus according to the fifth embodiment of the present invention. 図15は、本発明の第8の実施形態において、回折格子対間の相対的なz方向の変位と、PDで検出される信号との関係を模式的に示すグラフである。FIG. 15 is a graph schematically showing the relationship between the relative displacement in the z direction between the diffraction grating pairs and the signal detected by the PD in the eighth embodiment of the present invention. 図16は、図2及び6等に示す光学系及びこれを収容する筐体を示す断面図である。FIG. 16 is a cross-sectional view showing the optical system shown in FIGS. 2 and 6 and a housing for housing the optical system.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

1.第1の実施形態
(1)変位計測装置の基本的構成
図1及び2は、本発明の第1の実施形態に係る変位計測装置の基本的な光学系の構成を模式的に示す図である。
1. First Embodiment (1) Basic Configuration of Displacement Measuring Device FIGS. 1 and 2 are diagrams schematically showing a basic optical system configuration of a displacement measuring device according to a first embodiment of the present invention. .

変位計測装置100は、光源12、コリメータレンズ14、回折格子対20、光センサとしてのPD(Photo Detector)31を備える。   The displacement measuring apparatus 100 includes a light source 12, a collimator lens 14, a diffraction grating pair 20, and a PD (Photo Detector) 31 as an optical sensor.

光源12は、LD(Laser Diode)、あるいはLED(Light Emitting Diode)であり、図示しないドライバにより駆動される。   The light source 12 is an LD (Laser Diode) or an LED (Light Emitting Diode), and is driven by a driver (not shown).

コリメータレンズ14は、光源12から出射された光を平行光15にする。少なくともこれら光源12及びコリメータレンズ14により、平行光を発生する光学系が構成される。   The collimator lens 14 turns the light emitted from the light source 12 into parallel light 15. At least the light source 12 and the collimator lens 14 constitute an optical system that generates parallel light.

回折格子対20には、光源12及びコリメータレンズ14からの光が入射され、回折光を出射する。回折格子対20は、第1の回折格子21及び第2の回折格子22によって構成される。第1の回折格子21及び第2の回折格子22は、光源12及びコリメータレンズ14からの光線の進路に沿って、ここでは光源12及びコリメータレンズ14の光軸に沿って対向して配置されており、後述するように所定方向に相対的に移動可能となっている。   Light from the light source 12 and the collimator lens 14 enters the diffraction grating pair 20 and emits diffracted light. The diffraction grating pair 20 includes a first diffraction grating 21 and a second diffraction grating 22. The first diffraction grating 21 and the second diffraction grating 22 are arranged so as to face each other along the paths of the light beams from the light source 12 and the collimator lens 14, here along the optical axes of the light source 12 and the collimator lens 14. As described later, it is relatively movable in a predetermined direction.

第1の回折格子21は、入射した平行光15を、0次光である直進光30と、n次回折光(nは0以外の整数)23とに分けて進行させる。なお、本明細書において「n」の正負の符号を示さない場合は、nは0以外の整数を取り得、正負のうちいずれか一方のnに着目している。   The first diffraction grating 21 advances the incident parallel light 15 by dividing it into a straight-ahead light 30 that is zero-order light and an n-order diffracted light (n is an integer other than 0) 23. In the present specification, when the positive / negative sign of “n” is not indicated, n can be an integer other than 0, and attention is paid to one of positive and negative n.

また、−n次回折光(nは1以上の自然数)とは、z方向に沿った軸線について、+n次回折光(nは1以上の自然数)と線対称となる回折光である。本実施形態では、回折光23として、1次回折光が利用される。   The -n-order diffracted light (n is a natural number of 1 or more) is diffracted light that is line-symmetric with + n-order diffracted light (n is a natural number of 1 or more) about the axis along the z direction. In the present embodiment, first-order diffracted light is used as the diffracted light 23.

第2の回折格子22は、第1の回折格子21から出射して第2の回折格子22に入射した直進光30を、さらに直進光30(0次光)と、n次回折光25とに分けて進行させる。本実施形態では、回折光25として、上記1次回折光23の進路に沿って進む1次回折光が利用される。   The second diffraction grating 22 further divides the straight traveling light 30 emitted from the first diffraction grating 21 and incident on the second diffraction grating 22 into a straight traveling light 30 (0th order light) and an nth order diffracted light 25. To proceed. In the present embodiment, the first-order diffracted light traveling along the path of the first-order diffracted light 23 is used as the diffracted light 25.

また、第2の回折格子22は、第1の回折格子21から出射した1次回折光23を、それと同方向に進行させる0次光も発生する。ここでは、説明の便宜上、第1の回折格子21の1次回折光23及びその進路に沿った第2の回折格子22の0次光を、まとめて1次回折光23と表現する。さらに、第1の回折格子21及び第2の回折格子22を経由した後に、平行光15と同方向に進行する0次光をまとめて直進光30と表現している。   The second diffraction grating 22 also generates zero-order light that travels the first-order diffracted light 23 emitted from the first diffraction grating 21 in the same direction. Here, for convenience of explanation, the first-order diffracted light 23 of the first diffraction grating 21 and the zero-order light of the second diffraction grating 22 along the path thereof are collectively expressed as the first-order diffracted light 23. Further, after passing through the first diffraction grating 21 and the second diffraction grating 22, the 0th order light traveling in the same direction as the parallel light 15 is collectively expressed as a straight traveling light 30.

まとめると、回折光23及び25の構成は以下のようになる。   In summary, the configurations of the diffracted beams 23 and 25 are as follows.

回折光23:回折格子21の1次回折光と回折格子22の0次光
回折光25:回折格子21の0次光と回折格子22の1次回折光
Diffraction light 23: 1st-order diffracted light of diffraction grating 21 and 0th-order light of diffraction grating 22 Diffraction light 25: 0th-order light of diffraction grating 21 and 1st-order diffracted light of diffraction grating 22

第1の回折格子21及び第2の回折格子22で発生した各回折光のうち、第1の回折格子21による1次回折光23の進路に沿う少なくとも一組の回折光の干渉光27が、この回折格子対20から発生する。例えば、第1の回折格子21による1次回折光23と、直進光30が第2の回折格子22に入射して発生する1次回折光25とが干渉して干渉光27が発生する。   Among the diffracted lights generated by the first diffraction grating 21 and the second diffraction grating 22, the interference light 27 of at least one set of diffracted lights along the path of the first-order diffracted light 23 by the first diffraction grating 21 is It is generated from the diffraction grating pair 20. For example, the first-order diffracted light 23 from the first diffraction grating 21 interferes with the first-order diffracted light 25 generated when the straight light 30 enters the second diffraction grating 22 to generate interference light 27.

なお、本実施形態では、0次光及び1次回折光を利用することとしているが、他の所定次数の回折光を利用して、変位の計測が行われてもよい。また、実際には、図1に示す以外にも多数の回折光が存在するが、以下の説明を容易にするため、図示を省略している。   In the present embodiment, the 0th-order light and the 1st-order diffracted light are used. However, the displacement may be measured using other predetermined orders of diffracted light. In practice, there are many diffracted lights other than those shown in FIG. 1, but the illustration is omitted to facilitate the following description.

第1の回折格子21及び第2の回折格子22は、実質的に同じ形状及び同じサイズを有する。例えば、回折格子21(及び22)は、図1において、z方向に直交するy方向に沿った溝である複数の格子線21a(及び22a)を有する。第1の回折格子21の格子線21aのピッチPと、第2の回折格子21の格子線22aのピッチPとは実質的に同じに形成されている。格子線21a及び22aの例として、ピッチPが3.3μmであり、溝深さが473μmである。もちろん、これらの値に限られない。   The first diffraction grating 21 and the second diffraction grating 22 have substantially the same shape and the same size. For example, the diffraction grating 21 (and 22) has a plurality of grating lines 21a (and 22a) which are grooves along the y direction orthogonal to the z direction in FIG. The pitch P of the grating lines 21a of the first diffraction grating 21 and the pitch P of the grating lines 22a of the second diffraction grating 21 are formed substantially the same. As an example of the lattice lines 21a and 22a, the pitch P is 3.3 μm and the groove depth is 473 μm. Of course, it is not restricted to these values.

本実施形態に係る変位計測装置100は、格子線21a及び22aに沿う軸であるy軸の周りの、第1の回折格子21及び第2の回折格子22の相対的な回転の角度変位Δθを計測対象とする。すなわち、第1の回折格子21と第2の回折格子22とのy軸周りのチルト角Δθが計測対象とされる。   The displacement measuring apparatus 100 according to the present embodiment calculates the angular displacement Δθ of the relative rotation of the first diffraction grating 21 and the second diffraction grating 22 around the y axis that is an axis along the grating lines 21a and 22a. Measured. That is, the tilt angle Δθ around the y-axis between the first diffraction grating 21 and the second diffraction grating 22 is to be measured.

本明細書では、z方向に直交する2軸をx、y軸と定めている。上述したように、各回折格子の格子線21a及び22aに沿う方向をy方向(第2の方向)とし、格子線21a及び22aの配列方向をx方向(第1の方向)としている。PD31は、この干渉光27を検出することが可能な位置に配置されている。具体的には図2に示すように、PD31は、回折格子対20の光軸であるz軸からx方向へずれて配置されている。   In this specification, two axes orthogonal to the z direction are defined as x and y axes. As described above, the direction along the grating lines 21a and 22a of each diffraction grating is the y direction (second direction), and the arrangement direction of the grating lines 21a and 22a is the x direction (first direction). The PD 31 is disposed at a position where the interference light 27 can be detected. Specifically, as shown in FIG. 2, the PD 31 is arranged so as to be shifted in the x direction from the z axis that is the optical axis of the diffraction grating pair 20.

図3は、PD31の受光領域を模式的に示す図である。PD31は、複数の受光領域を有する。具体的には、PD31は、受光面全体の領域である検出領域が2つに分割されて構成された受光領域A及びBを有する。このように1つのPD31の検出領域が分割されて構成される受光領域A及びBが、回折格子対20の格子線21a及び22aの配列方向、つまりx方向に沿って配列されるように、PD31と回折格子対20とが相対的に配置される。   FIG. 3 is a diagram schematically showing a light receiving region of the PD 31. The PD 31 has a plurality of light receiving areas. Specifically, the PD 31 has light receiving areas A and B configured by dividing a detection area, which is an entire area of the light receiving surface, into two. The light receiving areas A and B configured by dividing the detection area of one PD 31 in this way are arranged along the arrangement direction of the grating lines 21a and 22a of the diffraction grating pair 20, that is, along the x direction. And the diffraction grating pair 20 are relatively arranged.

演算手段として機能する演算回路40は、PD31で得られる信号に基づいて、所定の演算処理を行うことで、チルト角Δθを算出する。演算回路40は、例えばMPU(Micro Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等のハードウェアを主に備える。演算回路40は、MPUに加え、またはMPUに代えて、FPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)を備えていてもよいし、あるいは、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)等を備えていてもよい。また、演算回路40は、物理的に分離した複数のチップパッケージや素子等で構成されていてもよい。   The arithmetic circuit 40 functioning as an arithmetic means calculates a tilt angle Δθ by performing predetermined arithmetic processing based on a signal obtained by the PD 31. The arithmetic circuit 40 mainly includes hardware such as an MPU (Micro Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). The arithmetic circuit 40 may include a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) in addition to or instead of the MPU, or a DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit) or the like may be provided. The arithmetic circuit 40 may be configured by a plurality of physically separated chip packages or elements.

(2)回折格子対のy軸周りのチルト角の検出原理
図4は、回折格子対20から出射される各回折光の干渉パターンを示す。図では、干渉パターンが、5つのほぼ円形の領域に分かれ、それらがx方向に沿って並んでいる。つまり、この図4は、概念的には5つのPDをx方向に沿って並べて配置した状態でそれらのPDが検出する光量(あるいは明度)の状態を示す。それらの5つのPDのうち中央のPDが、主に直進光30を含む光を受ける。
(2) Principle of Detection of Tilt Angle Around Y-axis of Diffraction Grating Pair FIG. 4 shows an interference pattern of each diffracted light emitted from the diffraction grating pair 20. In the figure, the interference pattern is divided into five substantially circular regions, which are arranged along the x direction. That is, FIG. 4 conceptually shows the state of the amount of light (or brightness) detected by these PDs in a state where five PDs are arranged along the x direction. Among these five PDs, the central PD mainly receives light including the straight light 30.

その中央のPDの両側のうち右側に位置する2つのPDが、主に1次回折光の進路に沿って進む光(代表的には回折光23及び25)を受けるPD31である。   Two PDs located on the right side of both sides of the central PD are PDs 31 that mainly receive light (typically diffracted light 23 and 25) traveling along the path of the first-order diffracted light.

図5A〜Cは、第1の回折格子21及び第2の回折格子22間のy軸周りのチルト角Δθごとの、上記干渉パターンの変化を示す。チルト角Δθの変化に伴って、PD31で検出される光量も変化する。特に、本発明者らは、チルト角Δθが大きくなるにしたがって、PD31の検出領域で受ける光(つまり主に干渉光27)の、当該検出領域のx方向での中心線mを境とした明度の差が大きくなることを発見した。したがって、受光領域A、Bで得られる信号(例えば電圧信号レベル)をそれぞれSA、SBとすると、それら受光領域A及びBで得られた信号の差分値SA−SBを算出することで、チルト角Δθを検出することができることがわかった。 5A to 5C show changes in the interference pattern for each tilt angle Δθ around the y-axis between the first diffraction grating 21 and the second diffraction grating 22. As the tilt angle Δθ changes, the amount of light detected by the PD 31 also changes. In particular, as the tilt angle Δθ increases, the inventors of the present invention have the lightness of the light received in the detection region of the PD 31 (that is, mainly the interference light 27) with the center line m in the x direction of the detection region as a boundary. I found that the difference between the two becomes larger. Therefore, if the signals (for example, voltage signal levels) obtained in the light receiving areas A and B are S A and S B , the difference value S A −S B between the signals obtained in the light receiving areas A and B is calculated. Thus, it was found that the tilt angle Δθ can be detected.

演算回路40は、算出した差分値SA−SBとチルト角Δθとの関係を示すルックアップテーブルによるデータを予め記憶しておくことにより、チルト角Δθを出力することができる。また、演算回路40は、算出した差分値SA−SBの正負符号の違いにより、回折格子対20間の相対的な回転方向を判別することができる。 The arithmetic circuit 40 can output the tilt angle Δθ by storing in advance data based on a look-up table indicating the relationship between the calculated difference value S A −S B and the tilt angle Δθ. Further, the arithmetic circuit 40 can determine the relative rotation direction between the diffraction grating pair 20 based on the difference in the sign of the calculated difference value S A −S B.

以上のように、本実施形態に係る変位計測装置100は、対向する回折格子対20と、複数の受光領域A及びBを有するPD31を備えることにより、演算回路40の演算処理によって、回折格子対20の相対的な回転の角度変位を算出することができる。すなわち、少ない光学部品でその角度変位を計測することができ、装置の小型化を実現することができる。   As described above, the displacement measuring apparatus 100 according to the present embodiment includes the diffraction grating pair 20 and the PD 31 having the plurality of light receiving regions A and B, and thus the diffraction grating pair is obtained by the arithmetic processing of the arithmetic circuit 40. An angular displacement of 20 relative rotations can be calculated. That is, the angular displacement can be measured with a small number of optical components, and the apparatus can be miniaturized.

2.第2の実施形態
次に、本発明の第2の実施形態に係る変位計測装置について説明する。以降の説明では、上記第1の実施形態に係る変位計測装置100が含む部材や機能等について同様のものは説明を簡略化または省略し、異なる点を中心に説明する。
2. Second Embodiment Next, a displacement measuring apparatus according to a second embodiment of the present invention will be described. In the following description, the same members, functions, etc. included in the displacement measuring apparatus 100 according to the first embodiment will be simplified or omitted, and different points will be mainly described.

図6は、第2の実施形態に係る変位計測装置の構成を示す斜視図である。この変位計測装置200は、上記変位計測装置100のPD31の受光領域と異なる受光領域を有するPD41を備える。   FIG. 6 is a perspective view showing the configuration of the displacement measuring apparatus according to the second embodiment. The displacement measuring apparatus 200 includes a PD 41 having a light receiving area different from the light receiving area of the PD 31 of the displacement measuring apparatus 100.

図7は、そのPD41の検出領域を示す。PD41は、x方向に配列された複数の受光領域を有するだけでなく、y方向に配列された複数の受光領域を有する。すなわち、当該検出領域は、例えばマトリクス状に4つの受光領域A、B、C及びDに分割されている。   FIG. 7 shows the detection area of the PD 41. The PD 41 has not only a plurality of light receiving areas arranged in the x direction but also a plurality of light receiving areas arranged in the y direction. That is, the detection area is divided into four light receiving areas A, B, C, and D, for example, in a matrix.

PD41は、上記第1の実施形態におけるPD31と同様に、例えば1次回折光の進路に沿う干渉光27(図1参照)を受ける。演算回路40(図1参照)は、このPD41の4つの受光領域で得られた信号に基づき演算し、上記第1の実施形態と同様の趣旨で、回折格子対20間のy軸周りの相対的な回転の角度変位Δθを算出する。   The PD 41 receives the interference light 27 (see FIG. 1) along the path of the first-order diffracted light, for example, similarly to the PD 31 in the first embodiment. The arithmetic circuit 40 (see FIG. 1) calculates based on signals obtained in the four light receiving regions of the PD 41, and relative to the diffraction grating pair 20 around the y-axis for the same purpose as in the first embodiment. An angular displacement Δθ of a typical rotation is calculated.

受光領域A、B、C及びDで得られる信号レベルをそれぞれSA、SB、SC及びSDとする。演算回路40は、以下の演算値S1を求める。 The signal levels obtained in the light receiving areas A, B, C and D are S A , S B , S C and S D , respectively. The arithmetic circuit 40 calculates the following calculated value S 1 .

1=(SA+SB)−(SC+SDS 1 = (S A + S B ) − (S C + S D )

この演算式により求められた演算値は、第1の実施形態に係るPD31での受光領域A及びBで得られる信号の差分値SA−SBと等価である。 The calculated value obtained by this calculation formula is equivalent to the difference value S A −S B of the signals obtained in the light receiving areas A and B in the PD 31 according to the first embodiment.

図8は、回折格子対20間の相対的なチルト角Δθ(deg)と、演算値S1との関係を示す実測のグラフである。縦軸の演算値は正規化されている。本実験では、回折格子対20の格子線間のピッチPが3.3μm、PD41の光の検出領域のサイズが1mm四方とされた。 FIG. 8 is an actual measurement graph showing the relationship between the relative tilt angle Δθ (deg) between the diffraction grating pair 20 and the calculated value S 1 . The calculated value on the vertical axis is normalized. In this experiment, the pitch P between the grating lines of the diffraction grating pair 20 was 3.3 μm, and the size of the light detection area of the PD 41 was 1 mm square.

このような条件下では、チルト角Δθが0.98°以下の場合、干渉縞のx方向の幅がPD41の検出領域のx方向の幅以上になるため、演算値S1は0であった。チルト角Δθが0.98°を超えると、演算値S1が0より大きくなり、チルト角Δθを算出することができる。 Under such conditions, when the tilt angle Δθ is 0.98 ° or less, the width in the x direction of the interference fringes to become equal to or larger than the width of the x-direction of a detection region of the PD 41, the arithmetic values S 1 was 0 . When the tilt angle Δθ exceeds 0.98 °, the calculated value S 1 becomes larger than 0, and the tilt angle Δθ can be calculated.

回折格子対20の格子線間のピッチPが3.3μmの場合において、PD41の検出領域のサイズが1mm四方を超えるサイズであれば、チルト角Δθが0.98°以下であっても、原理的にはそのチルト角Δθを検出可能である。また、図8の実験データでは示されていないが、チルト角Δθが1.5°より大きい場合にも、演算回路40は演算値S1を算出可能である。 In the case where the pitch P between the grating lines of the diffraction grating pair 20 is 3.3 μm, if the size of the detection region of the PD 41 exceeds 1 mm square, even if the tilt angle Δθ is 0.98 ° or less, the principle Specifically, the tilt angle Δθ can be detected. Although not shown in the experimental data of FIG. 8, the arithmetic circuit 40 can calculate the arithmetic value S 1 even when the tilt angle Δθ is larger than 1.5 °.

演算回路40は、以上のようなチルト角Δθと、演算値S1との関係を示すデータを予め記憶しておくことにより、(SA+SB)−(SC+SD)を演算し、その演算値に対応するチルト角Δθを求めることができる。また、演算回路40は、演算値の正負符号の違いにより、チルト角Δθのチルト方向を判別することができる。 The arithmetic circuit 40 calculates (S A + S B ) − (S C + S D ) by storing in advance data indicating the relationship between the tilt angle Δθ and the calculation value S 1 as described above. The tilt angle Δθ corresponding to the calculated value can be obtained. In addition, the arithmetic circuit 40 can determine the tilt direction of the tilt angle Δθ based on the difference in the sign of the calculated value.

3.第3の実施形態
本発明の第3の実施形態に係る変位計測装置の構成は、上記4分割の受光領域A〜Dを有するPD41を備えた変位計測装置200と同様である。両者の異なる点は、検出対象である回折格子対20の相対的な回転の方向と、その検出ための演算回路40による演算方法である。
3. Third Embodiment The configuration of a displacement measuring apparatus according to a third embodiment of the present invention is the same as that of the displacement measuring apparatus 200 including the PD 41 having the four-divided light receiving areas A to D. The difference between the two is the direction of relative rotation of the diffraction grating pair 20 to be detected and the calculation method by the calculation circuit 40 for detection.

本実施形態に係る演算回路は、図9に示すように、2つの回折格子21及び22間の、光軸方向(第3の方向)であるz軸周りの角度変位であるチルト角Δφを算出する。   As shown in FIG. 9, the arithmetic circuit according to the present embodiment calculates a tilt angle Δφ that is an angular displacement about the z axis that is the optical axis direction (third direction) between the two diffraction gratings 21 and 22. To do.

図10A〜Eは、2つの回折格子21及び22のz軸回りのチルト角Δφごとの、干渉パターンの変化を示す。このように、チルト角Δφが発生すると、干渉縞はその回転方向に捩れるように現れる。この場合、図10において、PD41の受光領域A〜Dに注目すると、チルト角Δφが大きいほど、受光領域A及びDで得られる光量が、受光領域B及びCで得られる光量より少なくなることがわかった。   10A to 10E show changes in the interference pattern for each tilt angle Δφ around the z-axis of the two diffraction gratings 21 and 22. As described above, when the tilt angle Δφ occurs, the interference fringes appear to twist in the rotation direction. In this case, in FIG. 10, focusing on the light receiving areas A to D of the PD 41, the larger the tilt angle Δφ, the smaller the amount of light obtained in the light receiving areas A and D may be less than the amount of light obtained in the light receiving areas B and C. all right.

すなわち、第1の対角線上に位置する2つの受光領域A及びDで得られた信号の演算値と、第1の対角線に交わる第2の対角線上に位置する2つの受光領域C及びDで得られた信号の演算値とに基づく演算値S2により、チルト角Δφを求めることができる。例えば演算値S2は、以下の式により求められる。 That is, the calculated value of the signal obtained in the two light receiving areas A and D located on the first diagonal line and the two light receiving areas C and D located on the second diagonal line intersecting the first diagonal line are obtained. The tilt angle Δφ can be obtained from the calculated value S 2 based on the calculated value of the received signal. For example, the calculated value S 2 is obtained by the following equation.

2=(SA+SD)−(SB+SCS 2 = (S A + S D ) − (S B + S C )

図11は、回折格子対20間の相対的なチルト角Δφ(deg)と、演算値S2との関係を示す実測のグラフである。縦軸の演算値は正規化されている。ここでも、回折格子対20の格子線間のピッチPが3.3μm、PD41の検出領域のサイズが1mm四方とされた。 FIG. 11 is an actual measurement graph showing the relationship between the relative tilt angle Δφ (deg) between the diffraction grating pair 20 and the calculated value S 2 . The calculated value on the vertical axis is normalized. Again, the pitch P between the grating lines of the diffraction grating pair 20 was 3.3 μm, and the size of the detection region of the PD 41 was 1 mm square.

このような条件下では、チルト角Δφが0.147°以下の場合、干渉縞のx方向の幅が、PD41の検出領域のx方向の幅以上になり、その場合、演算値S2は0であった。したがって、チルト角Δφが0.147°を超えると、演算値S2が0より大きくなり、チルト角Δθを算出することができる。 Under such conditions, when the tilt angle Δφ is 0.147 ° or less, the width of the interference fringes in the x direction is equal to or greater than the width of the detection region of the PD 41 in the x direction. In this case, the calculated value S 2 is 0. Met. Therefore, when the tilt angle Δφ exceeds 0.147 °, the calculated value S 2 becomes larger than 0, and the tilt angle Δθ can be calculated.

回折格子対20の格子線間のピッチPが3.3μmの場合において、PD41の検出領域のサイズが1mm四方を超えるサイズであれば、チルト角Δθが0.147°以下であっても、原理的にはそのチルト角Δθを検出可能である。また、図11の実験データでは示されていないが、チルト角Δθが0.3°より大きい場合にも、演算回路40は演算値S2を算出可能である。 In the case where the pitch P between the grating lines of the diffraction grating pair 20 is 3.3 μm, if the size of the detection region of the PD 41 exceeds 1 mm square, even if the tilt angle Δθ is 0.147 ° or less, the principle Specifically, the tilt angle Δθ can be detected. Although not shown in the experimental data of FIG. 11, the arithmetic circuit 40 can calculate the arithmetic value S 2 even when the tilt angle Δθ is larger than 0.3 °.

4.第4の実施形態
図12は、本発明の第4の実施形態に係る変位計測装置の構成を示す斜視図である。この変位計測装置300では、回折格子対20の光軸であるz軸を中心として、x軸上で対称位置に、第1のPD41(第1の光センサ)及び第2のPD42(第2の光センサ)が配置されている。すなわち、第1のPD41は、例えば第1の回折格子21による+n次回折光(例えば+1次回折光)の進路に沿う干渉光を検出し、第2のPD42は、例えば第1の回折格子21による−n次回折光(例えば−1次回折光)の進路に沿う干渉光を検出する。
4). Fourth Embodiment FIG. 12 is a perspective view showing a configuration of a displacement measuring apparatus according to a fourth embodiment of the present invention. In this displacement measuring apparatus 300, the first PD 41 (first optical sensor) and the second PD 42 (second optical sensor) are located symmetrically on the x axis with the z axis that is the optical axis of the diffraction grating pair 20 as the center. An optical sensor) is arranged. That is, the first PD 41 detects, for example, interference light along the path of + n-order diffracted light (for example, + 1st-order diffracted light) by the first diffraction grating 21, and the second PD 42 is, for example, by the first diffraction grating 21 − Interference light along the path of nth order diffracted light (for example, −1st order diffracted light) is detected.

PD41は、上記したようにそれぞれ4分割された受光領域A〜D(第1の受光領域群)を有する(図7参照)。また、PD42は、同様にマトリクス状に4分割された受光領域E、F、G及びH(第2の受光領域群)を有する。回折格子対20の光軸であるz軸を中心として、受光領域A+B(第1の受光領域)と、受光領域E+F(第3の受光領域)とが、x方向で検出領域内の同じ側に位置する。また、z軸を中心として、受光領域C+D(第2の受光領域)と、受光領域G+H(第4の受光領域)とが、x方向で検出領域内の同じ側に位置する。   As described above, the PD 41 has light receiving areas A to D (first light receiving area group) divided into four parts (see FIG. 7). Similarly, the PD 42 has light receiving areas E, F, G, and H (second light receiving area group) divided into four in a matrix. The light receiving region A + B (first light receiving region) and the light receiving region E + F (third light receiving region) are on the same side in the detection region in the x direction, with the z axis being the optical axis of the diffraction grating pair 20 as the center. To position. Further, the light receiving region C + D (second light receiving region) and the light receiving region G + H (fourth light receiving region) are located on the same side in the detection region in the x direction with the z axis as the center.

図13は、回折格子対20間の相対的な回転の角度変位であるチルト角Δθが発生した時の干渉パターンと、PD41及び42がそれぞれ受ける光量を示す。受光領域E、F、G及びHで得られた信号をそれぞれSE、SF、SG、SHとする。図13に示した明度の分布から理解できるように、演算回路40は、以下の演算値S3を求める。 FIG. 13 shows an interference pattern when the tilt angle Δθ, which is a relative rotational angular displacement between the diffraction grating pair 20, and the amounts of light received by the PDs 41 and 42, respectively. Signals obtained in the light receiving areas E, F, G, and H are denoted as S E , S F , S G , and SH , respectively. As can be understood from the lightness distribution shown in FIG. 13, the arithmetic circuit 40 obtains the following arithmetic value S 3 .

3=(SA+SB+SE+SF)−(SC+SD+SG+SHS 3 = (S A + S B + S E + S F ) − (S C + S D + S G + S H )

つまり、演算回路40は、z軸を中心として、x方向で同じ側に位置する受光領域同士を加算して得られた演算値の差分値を求める。このようにして得られた出力値は、上記第2の実施形態のようにPD41のみで得られた出力値に比べて大きくなるので、結果的に検出感度を高めることができ、高精度にチルト角Δθを求めることができる。   That is, the arithmetic circuit 40 obtains a difference value between arithmetic values obtained by adding the light receiving areas located on the same side in the x direction with the z axis as the center. Since the output value obtained in this way is larger than the output value obtained only by the PD 41 as in the second embodiment, the detection sensitivity can be increased as a result, and the tilt can be performed with high accuracy. The angle Δθ can be obtained.

5.第5の実施形態
図14は、本発明の第5の実施形態に係る変位計測装置の構成を示す斜視図である。この変位計測装置400は、x方向に2分割された受光領域A及びB(第1の受光領域群)を有する第1のPD31(第1の光センサ)と、これと同じようにx方向に2分割された受光領域E及びF(第2の受光領域群)を有する第2のPD(第2の光センサ)32とを備える。これらPD31及び32は、z軸を中心としてx方向で対称位置に配置されている。これにより、演算回路40は以下の式により演算値S4を算出し、チルト角Δθを求めることができる。
5. Fifth Embodiment FIG. 14 is a perspective view showing a configuration of a displacement measuring device according to a fifth embodiment of the present invention. The displacement measuring apparatus 400 includes a first PD 31 (first optical sensor) having light receiving areas A and B (first light receiving area group) divided into two in the x direction, and in the same way in the x direction. And a second PD (second optical sensor) 32 having light receiving areas E and F (second light receiving area group) divided into two. The PDs 31 and 32 are arranged at symmetrical positions in the x direction around the z axis. As a result, the arithmetic circuit 40 can calculate the calculated value S 4 by the following equation and obtain the tilt angle Δθ.

4=(SA+SE)−(SB+SFS 4 = (S A + S E ) − (S B + S F )

本実施形態に係る変位計測装置によっても、上記第4の実施形態に係る変位計測装置と同様の効果を得ることができる。   Also by the displacement measuring apparatus according to the present embodiment, the same effect as that of the displacement measuring apparatus according to the fourth embodiment can be obtained.

6.第6の実施形態
第6の実施形態に係る変位計測装置は、例えば図6に示した変位計測装置200の構成を備え、回折格子対20間の相対的なy及びz軸周りの両方のチルト角Δθ及びΔφを検出するものである。
6). Sixth Embodiment A displacement measuring apparatus according to a sixth embodiment has the configuration of the displacement measuring apparatus 200 shown in FIG. 6, for example, and the tilt between the diffraction grating pair 20 around both the y and z axes is relative. The angles Δθ and Δφ are detected.

例えば、演算回路40は、PD41の各受光領域A〜Dから信号をそれぞれ取得する。そして演算回路40は、y軸周りのチルト角Δθを、第2の実施形態と同様に演算値S1=(SA+SB)−(SC+SD)に基づいて算出し、z軸周りのチルト角Δφを、第3の実施形態と同様に演算値S2=(SA+SD)−(SB+SC)に基づいて算出する。 For example, the arithmetic circuit 40 acquires signals from the respective light receiving areas A to D of the PD 41. Then, the arithmetic circuit 40 calculates the tilt angle Δθ around the y-axis based on the calculated value S 1 = (S A + S B ) − (S C + S D ), as in the second embodiment, and around the z-axis. The tilt angle Δφ is calculated based on the calculated value S 2 = (S A + S D ) − (S B + S C ) as in the third embodiment.

演算回路40は、計測対象としてチルト角Δθ及びΔφのうちいずれか1つを選択するためのソフトウェアによるスイッチを有していればよい。例えば、変位計測装置は、ユーザの操作に基づくスイッチの切り替え、または、所定のアルゴリズムにしたがった自動的なスイッチの切り替えにより、計測対象を選択して出力することができる。   The arithmetic circuit 40 only needs to have a software switch for selecting one of the tilt angles Δθ and Δφ as a measurement target. For example, the displacement measuring device can select and output a measurement target by switching a switch based on a user's operation or automatically switching a switch according to a predetermined algorithm.

本実施形態の場合、回折格子対20がy及びz軸の両方の軸周りに、軸ごとに個別に回転できるような機構を、変位計測装置が備えることが望ましい。   In the case of this embodiment, it is desirable that the displacement measuring device includes a mechanism that allows the diffraction grating pair 20 to rotate individually for each axis around both the y and z axes.

ここで、上記特許文献2に記載の光電式エンコーダは、直交2軸方向の変位及び1軸の周りの角度変位、つまり合計3つの変位を計測する。このため、この光電式エンコーダは、レーザのドップラーシフトの原理を応用し、3つの回折格子及び3つの受光素子を用いて位相情報を演算しているので、処理回路は複雑な計算を行う必要がある。これに対して本実施形態に係る変位計測装置は、2つの回折格子及び1つの光センサを備える。本変位計測装置がこのようにΔθ及びΔφの両方の変位を計測する場合、特許文献2の光電式エンコーダの計測対象より1つ少ないものの、その光電式エンコーダに比べ、回折格子及び光センサを1つずつ減らすことができる。したがって、装置の小型化を実現することができる。 Here, the photoelectric encoder described in Patent Document 2 measures displacement in two orthogonal axes and angular displacement around one axis, that is, a total of three displacements. For this reason, this photoelectric encoder applies the principle of laser Doppler shift and calculates phase information using three diffraction gratings and three light receiving elements, so the processing circuit needs to perform complicated calculations. is there. On the other hand, the displacement measuring apparatus according to this embodiment includes two diffraction gratings and one optical sensor. When this displacement measuring apparatus measures the displacements of both Δθ and Δφ in this way, it is one less than the measurement target of the photoelectric encoder of Patent Document 2, but has one diffraction grating and one optical sensor compared to the photoelectric encoder. It can be reduced one by one. Therefore, it is possible to reduce the size of the apparatus.

7.第7の実施形態
第7の実施形態に係る変位計測装置は、例えば図12に示した変位計測装置300の構成を備え、回折格子対20間の相対的なy及びz軸周りの両方のチルト角Δθ及びΔφを検出するものである。
7). Seventh Embodiment A displacement measuring apparatus according to a seventh embodiment has the configuration of the displacement measuring apparatus 300 shown in FIG. 12, for example, and the tilt between the diffraction grating pair 20 around both the y and z axes is relative. The angles Δθ and Δφ are detected.

例えば、演算回路40は、PD41の各受光領域A〜Dから、また、PD42の各受光領域E〜Hから、信号をそれぞれ取得する。そして演算回路40は、y軸周りのチルト角Δθを、第2の実施形態と同様に演算値S1=(SA+SB)−(SC+SD)に基づいて算出する。一方、演算回路40は、z軸周りのチルト角Δφを、第3の実施形態と同様に演算値S5=(SE+SH)−(SF+SG)に基づいて算出する。 For example, the arithmetic circuit 40 acquires signals from the light receiving areas A to D of the PD 41 and from the light receiving areas E to H of the PD 42, respectively. Then, the arithmetic circuit 40 calculates the tilt angle Δθ around the y-axis based on the calculated value S 1 = (S A + S B ) − (S C + S D ) as in the second embodiment. On the other hand, the arithmetic circuit 40 calculates the tilt angle Δφ around the z-axis based on the calculated value S 5 = (S E + S H ) − (S F + S G ) as in the third embodiment.

本実施形態の場合、回折格子対20がy及びz軸の両方の軸周りに、軸ごとに個別に回転できるような機構を、変位計測装置が備えることが望ましい。   In the case of this embodiment, it is desirable that the displacement measuring device includes a mechanism that allows the diffraction grating pair 20 to rotate individually for each axis around both the y and z axes.

本実施形態に係る変位計測装置は、2つの回折格子及び2つの光センサを備える。本計測装置がこのようにΔθ及びΔφの両方の変位を計測する場合、特許文献2の光電式エンコーダの計測対象より1つ少ないものの、その光電式エンコーダに比べ、回折格子を1つ減らし、光センサを2つ減らすことができる。したがって、装置の小型化を実現することができる。


Displacement measurement equipment according to the present embodiment is provided with two diffraction gratings and two light sensors. When this measurement apparatus measures the displacements of both Δθ and Δφ in this way, it is one less than the measurement target of the photoelectric encoder disclosed in Patent Document 2, but the number of diffraction gratings is reduced by one compared to the photoelectric encoder. Two sensors can be reduced. Therefore, it is possible to reduce the size of the apparatus.


8.第8の実施形態
本発明の第8の実施形態に係る変位計測装置は、例えば上記第1〜7の実施形態に係る変位計測装置のうちいずれか1つの変位計測装置の構成を備え、チルト角Δθ及びΔφのうち少なくとも1つを検出し、また、回折格子対20間の相対的なz方向の直線上での変位Δzを検出するものである。
8). Eighth Embodiment A displacement measurement device according to an eighth embodiment of the present invention includes, for example, the configuration of any one of the displacement measurement devices according to the first to seventh embodiments, and a tilt angle. At least one of Δθ and Δφ is detected, and the displacement Δz on the straight line in the z direction between the diffraction grating pair 20 is detected.

図1を参照して、例えば第1の回折格子21に対して第2の回折格子22がz方向に変位すると、回折光23及び25のそれぞれの行路(光路)差が発生する。したがって、第1の回折格子21による回折光23と、第2の回折格子22による回折光25との干渉光27による干渉縞が発生する。PD31は、この干渉縞の光量の変化を検出する。   Referring to FIG. 1, for example, when the second diffraction grating 22 is displaced in the z direction with respect to the first diffraction grating 21, a difference in path (optical path) between the diffracted lights 23 and 25 occurs. Therefore, interference fringes are generated by the interference light 27 between the diffracted light 23 by the first diffraction grating 21 and the diffracted light 25 by the second diffraction grating 22. The PD 31 detects a change in the amount of interference fringes.

図15は、そのΔzと、PD31で検出される信号(電圧信号)との関係を模式的に示すグラフである。このように、PD31の検出信号は、干渉縞の明暗の繰り返しに応じてサインカーブを描く。このサインカーブは、計測対象となるz方向の変位に対応する。演算回路40は、この干渉縞のサインカーブの光量変化のうち、例えば半波長分の概ねリニアな領域を用いることにより、z方向の所定範囲の変位に応じた信号強度を得ることができる。   FIG. 15 is a graph schematically showing the relationship between Δz and a signal (voltage signal) detected by the PD 31. In this manner, the detection signal of the PD 31 draws a sine curve according to the repeated bright and dark interference fringes. This sine curve corresponds to the displacement in the z direction to be measured. The arithmetic circuit 40 can obtain a signal intensity corresponding to a displacement in a predetermined range in the z direction by using, for example, a substantially linear region corresponding to a half wavelength among the light amount change of the sine curve of the interference fringes.

本実施形態の場合、回折格子対20が、y軸周りの回転及びz軸方向の移動を個別に行うことができるような機構を、変位計測装置が備えることが望ましい。   In the case of the present embodiment, it is desirable that the displacement measuring device includes a mechanism that allows the diffraction grating pair 20 to individually rotate around the y-axis and move in the z-axis direction.

9.変位計測装置の光学部品を支持する筐体
図16は、図2及び6等に示す光学系及びこれを収容する筐体50の一実施形態を示す断面図である。
9. Housing for Supporting Optical Components of Displacement Measuring Device FIG. 16 is a cross-sectional view showing an embodiment of the optical system shown in FIGS. 2 and 6 and a housing 50 for housing the optical system.

筐体50は、光路が配置される孔部55を有する。孔部55は、光源12から回折格子対20までの第1の孔部55aと、回折格子対20からPD31までの第2の孔部55bとを含む。第2の孔部55bは、n次、ここでは1次回折光の進路に沿う干渉光27を通すような角度で形成されている。   The housing 50 has a hole 55 in which the optical path is disposed. The hole 55 includes a first hole 55a from the light source 12 to the diffraction grating pair 20 and a second hole 55b from the diffraction grating pair 20 to the PD 31. The second hole 55b is formed at an angle that allows the interference light 27 along the path of the n-th order, here, the first-order diffracted light to pass.

第1の孔部55aの長手方向に沿った軸はz軸と一致する。z軸方向における筐体50の両端部には、実装基板51及び52がそれぞれ装着されている。実装基板51には光源12が実装され、実装基板52の基板にはPD31が実装されている。   An axis along the longitudinal direction of the first hole 55a coincides with the z-axis. Mounting boards 51 and 52 are mounted on both ends of the housing 50 in the z-axis direction, respectively. The light source 12 is mounted on the mounting substrate 51, and the PD 31 is mounted on the substrate of the mounting substrate 52.

筐体50は、光源側部材50aと、センサ側部材50bと、これらの間に設けられたバネ部50cとを有する。バネ部50cは、筐体50の、対向する2つの側面にそれぞれ2つずつ切り欠き53が設けられ、かつ、内部にスリット54が設けられることにより形成されている。回折格子対20は、そのスリット54を挟むように筐体50に保持されている。バネ部50cによって、筐体50がz軸に沿う方向に伸縮可能となり、またy及びz軸周りに変形可能となるため、第1の回折格子21及び第2の回折格子22の相対移動が可能となり、Δz、Δθ、Δφの変位計測が可能となる。   The housing 50 includes a light source side member 50a, a sensor side member 50b, and a spring portion 50c provided therebetween. The spring portion 50c is formed by providing two cutouts 53 on each of two opposing side surfaces of the casing 50 and providing a slit 54 therein. The diffraction grating pair 20 is held by the housing 50 so as to sandwich the slit 54. By the spring part 50c, the casing 50 can be expanded and contracted in the direction along the z axis, and can be deformed around the y and z axes, so that the first diffraction grating 21 and the second diffraction grating 22 can be moved relative to each other. Thus, displacement measurement of Δz, Δθ, and Δφ can be performed.

なお、このようなバネ部50cの構造では、z軸周りのバネ部50cの剛性はy軸周りのそれより高くなるので、z軸周りの検出可能な角度範囲は、y軸周りの検出可能な角度範囲より狭くなる。   In such a structure of the spring portion 50c, the rigidity of the spring portion 50c around the z-axis is higher than that around the y-axis, so that the detectable angular range around the z-axis can be detected around the y-axis. Narrower than the angle range.

以上のように、光源側部材50aとセンサ側部材50bとがバネ部50cによって接続されている。したがって、光源12、コリメータレンズ14及び第1の回折格子21の組に対して、第2の回折格子21及びPD31の組が一体的に動くことができる。これにより、PD31には、z軸に沿う方向、y軸周り、またはz軸周りの変位に応じた干渉光を正確に検出することができる。   As described above, the light source side member 50a and the sensor side member 50b are connected by the spring portion 50c. Therefore, the set of the second diffraction grating 21 and the PD 31 can move integrally with the set of the light source 12, the collimator lens 14 and the first diffraction grating 21. Thereby, the PD 31 can accurately detect the interference light according to the displacement along the direction along the z axis, around the y axis, or around the z axis.

筐体50の材質としては、金属や樹脂が用いられる。金属の場合、例えばステンレス、アルミニウム等が挙げられる。光源側部材50a及びセンサ側部材50bが第1の材料で形成され、バネ部50cが、第1の材料のヤング率より低いヤング率を有する第2の材料で形成されていてもよい。この場合、第1の材料は金属であり、第2の材料が樹脂とされる。もちろん、第1及び第2の材料として共に異なる種類の金属が用いられもよいし、異なる種類の樹脂が用いられてもよい。   As a material of the housing 50, metal or resin is used. In the case of a metal, for example, stainless steel, aluminum and the like can be mentioned. The light source side member 50a and the sensor side member 50b may be formed of a first material, and the spring portion 50c may be formed of a second material having a Young's modulus lower than that of the first material. In this case, the first material is a metal and the second material is a resin. Of course, different types of metals may be used as the first and second materials, or different types of resins may be used.

上記筐体50の変形例として、例えば回折格子対20の光軸を中心に、第2の孔部55bと線対称に配置された孔部を有する筐体を、図12または14で示した光学系を支持する筐体として実現することができる。   As a modified example of the case 50, for example, a case having a hole portion arranged in line symmetry with the second hole portion 55b around the optical axis of the diffraction grating pair 20 is shown in FIG. It can be realized as a housing that supports the system.

10.その他の実施形態
本発明は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
10. Other Embodiments The present invention is not limited to the above-described embodiments, and various other embodiments can be realized.

上記各実施形態に係る演算回路40は、各受光領域で得られた信号を加算したり、減算したりしていた。しかし、その加算の代わりに乗算が行われてもよいし、または、減算の代わりに除算が行われてもよい。あるいは、他の所定の演算式にしたがって、チルト角Δθ、Δφが算出されてもよい。   The arithmetic circuit 40 according to each of the above embodiments adds or subtracts signals obtained in each light receiving area. However, multiplication may be performed instead of the addition, or division may be performed instead of the subtraction. Alternatively, the tilt angles Δθ and Δφ may be calculated according to another predetermined arithmetic expression.

上記各実施形態に係るPDは、例えば2分割または4分割の受光領域を有するセンサであった。しかし、PDの検出領域は、例えばx方向に3以上に分割されていてもよいし、y方向に3以上に分割されてもよいし、あるいは、x及びyの両方向に3以上に分割されていてもよい。そして、チルト角Δθ及び/またはΔφと、その1以上のPDによって得られる信号を所定の演算式により得られる値との関係をデータ化し、演算回路40がそのデータを予め記憶しておけばよい。   The PD according to each of the above embodiments is, for example, a sensor having a light receiving region divided into two or four. However, the PD detection area may be divided into, for example, three or more in the x direction, may be divided into three or more in the y direction, or may be divided into three or more in both the x and y directions. May be. Then, the relationship between the tilt angle Δθ and / or Δφ and the value obtained from the signal obtained by the one or more PDs by a predetermined arithmetic expression is converted into data, and the arithmetic circuit 40 stores the data in advance. .

図2に示したPD31と、図12に示したPD42とを組み合わせて、Δθ及びΔφの両方を検出することも可能である。   It is also possible to detect both Δθ and Δφ by combining the PD 31 shown in FIG. 2 and the PD 42 shown in FIG.

上記実施形態では、光源12から出射された光がコリメータレンズ14に入射し、コリメータレンズ14が平行光15を発生した。しかし、必ずしも平行光15を形成しなくてもよく、例えば所定の光の配向角を持つ拡散光または収束光を、光源、または光源を含む光学系が発生し、これら拡散光または収束光が回折格子対20に入射してもよい。回折格子対20の光軸は、典型的には、その光源または光学系の光軸と一致するように構成されるが、それらは一致しないように構成されてもよい。   In the above embodiment, the light emitted from the light source 12 is incident on the collimator lens 14, and the collimator lens 14 generates the parallel light 15. However, the parallel light 15 does not necessarily have to be formed. For example, diffused light or convergent light having a predetermined light orientation angle is generated by a light source or an optical system including the light source, and the diffused light or convergent light is diffracted. It may be incident on the grating pair 20. The optical axis of the diffraction grating pair 20 is typically configured to match the optical axis of the light source or optical system, but they may be configured not to match.

上記各実施形態で用いられたPDの複数の受光領域を含む検出領域は、矩形であったが、円、楕円等でもよく、複数の受光領域を形成するために等面積に分割されて構成されていれば、どのような形状であってもよい。   The detection region including the plurality of light receiving regions of the PD used in each of the above embodiments is rectangular, but may be a circle, an ellipse, or the like, and is configured to be divided into equal areas to form a plurality of light receiving regions. Any shape can be used.

上記各実施形態では、例えば1つのPDの検出領域が分割されることにより複数の受光領域が設けられた。しかし、1つのPDが1つの受光領域に対応するように、複数のPDが設けられていてもよい。   In each of the above embodiments, for example, a plurality of light receiving areas are provided by dividing a detection area of one PD. However, a plurality of PDs may be provided so that one PD corresponds to one light receiving region.

以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。   It is also possible to combine at least two feature portions among the feature portions of each embodiment described above.

12…光源
20…回折格子対
21a、22a…格子線
23、25…回折光
27…干渉光
30…直進光
31…PD
40…演算回路
41…第1のPD
42…第2のPD
100、200、300、400…変位計測装置
DESCRIPTION OF SYMBOLS 12 ... Light source 20 ... Diffraction grating pair 21a, 22a ... Grating line 23, 25 ... Diffraction light 27 ... Interference light 30 ... Straight light 31 ... PD
40 ... arithmetic circuit 41 ... first PD
42 ... Second PD
100, 200, 300, 400 ... displacement measuring device

Claims (8)

光源と、
複数の格子線をそれぞれ有し、前記光源からの光線の進路に沿って配置され、相対移動可能であり、回折光をそれぞれ発生する回折格子対と、
前記複数の格子線の配列方向である第1の方向に配列された複数の受光領域であって、前記回折格子対のうちいずれか1つの回折格子から発生したn次回折光(nは0以外の整数)の進路に沿う一組の回折光の干渉光を検出可能な2つの受光領域を有する光センサと、
前記2つの受光領域でそれぞれ得られた信号に基づき、前記回折格子対の相対的な回転の角度変位であって、前記格子線の方向である第2の方向に沿う軸の周りの角度変位を算出する演算手段とを具備し、
前記演算手段は、前記2つの受光領域でそれぞれ得られた信号の演算値に基づいて、前記第2の方向に沿う軸の周りの前記角度変位を算出する
変位計測装置。
A light source;
Each having a plurality of grating lines, arranged along the path of a light beam from the light source, and capable of relative movement, each generating a diffracted light; and
A plurality of light receiving regions arranged in a first direction which is an arrangement direction of the plurality of grating lines, wherein n-order diffracted light (n is other than 0) generated from any one of the diffraction grating pairs An optical sensor having two light receiving areas capable of detecting interference light of a set of diffracted light along a path of an integer) ,
Based on the signals respectively obtained in the two light receiving regions, the angular displacement of the relative rotation of the diffraction grating pair, and the angular displacement around the axis along the second direction that is the direction of the grating line , Calculating means for calculating ,
The said calculating means is a displacement measuring device which calculates the said angular displacement around the axis | shaft along a said 2nd direction based on the calculated value of the signal each obtained in the said 2 light reception area | region .
請求項1に記載の変位計測装置であって、
前記演算手段は、前記2つの受光領域でそれぞれ得られた信号の差分値、または、それら信号の除算による値を算出することで、前記第2の方向に沿う軸の周りの前記角度変位を算出する
変位計測装置。
The displacement measuring apparatus according to claim 1,
The calculation means calculates the angular displacement about the axis along the second direction by calculating a difference value between signals obtained in the two light receiving regions or a value obtained by dividing the signals. the displacement measuring device for.
光源と、
複数の格子線をそれぞれ有し、前記光源からの光線の進路に沿って配置され、相対移動可能であり、回折光をそれぞれ発生する回折格子対と、
前記複数の格子線の配列方向である第1の方向及び前記格子線の方向である第2の方向にそれぞれ配列されることでマトリクス状に配置された複数の受光領域であって、前記回折格子対のうちいずれか1つの回折格子から発生したn次回折光(nは0以外の整数)の進路に沿う一組の回折光の干渉光を検出可能な4つの受光領域を有する光センサと、
前記4つの受光領域でそれぞれ得られた信号に基づき、前記回折格子対の相対的な回転の角度変位であって、前記回折格子対の光軸の方向である第3の方向に沿う軸の周りの角度変位を算出する演算手段とを具備し、
前記演算手段は、前記4つの受光領域のうち、第1の対角線上に位置する2つの受光領域でそれぞれ得られた信号の演算値と、前記第1の対角線に交わる第2の対角線上に位置する2つの受光領域でそれぞれ得られた信号の演算値とに基づく値を算出することで、前記第3の方向に沿う軸の周りの前記角度変位を算出する
変位計測装置。
A light source;
Each having a plurality of grating lines, arranged along the path of a light beam from the light source, and capable of relative movement, each generating a diffracted light; and
A plurality of light receiving regions arranged in a matrix by being arranged in a first direction that is an arrangement direction of the plurality of grating lines and a second direction that is a direction of the grating lines, the diffraction grating An optical sensor having four light receiving regions capable of detecting interference light of a set of diffracted light along the path of nth order diffracted light (n is an integer other than 0) generated from any one diffraction grating of the pair;
Based on the signals respectively obtained in the four light receiving regions, the angular displacement of the relative rotation of the diffraction grating pair, around an axis along the third direction that is the direction of the optical axis of the diffraction grating pair comprising a calculating means for calculating the angular displacement,
The computing means is located on the second diagonal line intersecting the computed value of the signal obtained in each of the two light receiving areas located on the first diagonal line of the four light receiving areas and the first diagonal line. A displacement measuring device that calculates the angular displacement about an axis along the third direction by calculating a value based on a calculated value of a signal obtained in each of the two light receiving regions .
請求項3に記載の変位計測装置であって、  The displacement measuring apparatus according to claim 3,
前記演算手段は、前記第1の対角線上に位置する2つの受光領域でそれぞれ得られた信号の加算値または乗算値と、前記第2の対角線上に位置する2つの受光領域でそれぞれ得られた信号の加算値または乗算値との差分値を算出することで、前記第3の方向に沿う軸の周りの角度変位を算出する  The calculation means is obtained by adding or multiplying signals obtained in the two light receiving areas located on the first diagonal line and in the two light receiving areas located on the second diagonal line, respectively. An angular displacement about an axis along the third direction is calculated by calculating a difference value from the addition value or multiplication value of the signal.
変位計測装置。  Displacement measuring device.
請求項3に記載の変位計測装置であって、  The displacement measuring apparatus according to claim 3,
前記演算手段は、前記第1の対角線上に位置する2つの受光領域でそれぞれ得られた信号の加算値または乗算値と、前記第2の対角線上に位置する2つの受光領域でそれぞれ得られた信号の加算値または乗算値との除算による値を算出することで、前記第3の方向に沿う軸の周りの角度変位を算出する  The calculation means is obtained by adding or multiplying signals obtained in the two light receiving areas located on the first diagonal line and in the two light receiving areas located on the second diagonal line, respectively. An angular displacement about an axis along the third direction is calculated by calculating a value obtained by dividing the signal addition value or multiplication value.
変位計測装置。  Displacement measuring device.
光源と、
複数の格子線をそれぞれ有し、前記光源からの光線の進路に沿って配置され、相対移動可能であり、回折光をそれぞれ発生する回折格子対と、
前記複数の格子線の配列方向である第1の方向に配列され、前記回折格子対のうちいずれか1つの回折格子から発生したn次回折光(nは0以外の整数)の進路に沿う一組の回折光の干渉光を検出可能な複数の受光領域と、
前記複数の受光領域でそれぞれ得られた信号に基づき、前記回折格子対の相対的な回転の角度変位であって、前記格子線の方向である第2の方向に沿う軸の周りの角度変位を算出する演算手段とを具備し、
前記複数の受光領域は、前記n次回折光のうち、+n次回折光(nは1以上の自然数)の進路側に配置される第1の受光領域群と、−n次回折光(nは1以上の自然数)の進路側に配置される第2の受光領域群として構成され、
前記第1の受光領域群は、前記第1の方向で配列された第1の受光領域及び第2の受光領域に分割された第1の光センサで構成され、
前記第2の受光領域群は、前記第1の方向で配列された第3の受光領域及び第4の受光領域に分割された第2の光センサで構成され、
前記第3の受光領域は、前記回折格子対の光軸を中心として、前記第1の方向で前記第1の受光領域と同じ側に位置し、前記第4の受光領域は、前記第1の方向で前記第2の受光領域と同じ側に位置し、
前記演算手段は、前記第1の受光領域及び前記第3の受光領域でそれぞれ得られた信号の演算値と、前記第2の受光領域及び前記第4の受光領域でそれぞれ得られた信号の演算値とに基づく値を算出することで、前記第2の方向に沿う軸の周りの前記角度変位を算出する
変位計測装置。
A light source;
Each having a plurality of grating lines, arranged along the path of a light beam from the light source, and capable of relative movement, each generating a diffracted light; and
A set along the path of the nth-order diffracted light (n is an integer other than 0) generated from any one of the diffraction grating pairs arranged in a first direction which is an arrangement direction of the plurality of grating lines. A plurality of light receiving regions capable of detecting interference light of diffracted light of
Based on the signals obtained in the plurality of light receiving regions, the angular displacement of the relative rotation of the diffraction grating pair, and the angular displacement around the axis along the second direction, which is the direction of the grating line. Calculating means for calculating ,
The plurality of light receiving regions include a first light receiving region group arranged on a path side of + n order diffracted light (n is a natural number of 1 or more), and -n order diffracted light (n is 1 or more). It is configured as a second light receiving region group arranged on the course side of (natural number),
The first light receiving region group includes a first light sensor divided into a first light receiving region and a second light receiving region arranged in the first direction,
The second light receiving region group includes a second light sensor divided into a third light receiving region and a fourth light receiving region arranged in the first direction,
The third light receiving region is located on the same side as the first light receiving region in the first direction around the optical axis of the diffraction grating pair, and the fourth light receiving region is the first light receiving region. Located on the same side as the second light receiving region in the direction,
The computing means computes the computation values of the signals obtained in the first light receiving area and the third light receiving area, and the signals obtained in the second light receiving area and the fourth light receiving area, respectively. A displacement measuring device that calculates the angular displacement around an axis along the second direction by calculating a value based on the value .
請求項6に記載の変位計測装置であって、  The displacement measuring device according to claim 6,
前記演算手段は、前記第1の受光領域及び前記第3の受光領域でそれぞれ得られた信号の加算値または乗算値と、前記第2の受光領域及び前記第4の受光領域でそれぞれ得られた信号の加算値または乗算値との差分値を算出することで、前記第2の方向に沿う軸の周りの前記角度変位を算出する  The calculation means is obtained by adding or multiplying signals obtained in the first light receiving region and the third light receiving region, respectively, and in the second light receiving region and the fourth light receiving region, respectively. The angular displacement about the axis along the second direction is calculated by calculating a difference value from the addition value or multiplication value of the signal.
変位計測装置。  Displacement measuring device.
請求項6に記載の変位計測装置であって、  The displacement measuring device according to claim 6,
前記演算手段は、前記第1の受光領域及び前記第3の受光領域でそれぞれ得られた信号の加算値または乗算値と、前記第2の受光領域及び前記第4の受光領域でそれぞれ得られた信号の加算値または乗算値との除算による値を算出することで、前記第2の方向に沿う軸の周りの前記角度変位を算出する  The calculation means is obtained by adding or multiplying signals obtained in the first light receiving region and the third light receiving region, respectively, and in the second light receiving region and the fourth light receiving region, respectively. The angular displacement about the axis along the second direction is calculated by calculating a value obtained by dividing the addition value or the multiplication value of the signal.
変位計測装置。  Displacement measuring device.
JP2013110295A 2013-05-24 2013-05-24 Displacement measuring device Expired - Fee Related JP6215572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110295A JP6215572B2 (en) 2013-05-24 2013-05-24 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110295A JP6215572B2 (en) 2013-05-24 2013-05-24 Displacement measuring device

Publications (2)

Publication Number Publication Date
JP2014228491A JP2014228491A (en) 2014-12-08
JP6215572B2 true JP6215572B2 (en) 2017-10-18

Family

ID=52128447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110295A Expired - Fee Related JP6215572B2 (en) 2013-05-24 2013-05-24 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP6215572B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668525B (en) * 2019-01-30 2020-08-07 哈尔滨超精密装备工程技术中心有限公司 High-precision three-dimensional angle measuring method and device based on reflection grating
CN110487219A (en) * 2019-08-15 2019-11-22 卢振武 A kind of detection system and its detection method of movement mechanism straightness
CN112504122B (en) * 2020-12-03 2021-10-15 中国科学院西安光学精密机械研究所 Pointing optical axis and grating pose calibration system and method of satellite-borne double-grating collimator
CN113465550B (en) * 2021-06-30 2022-08-05 清华大学 Non-contact type rotating angular displacement measuring device and measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517753B2 (en) * 2010-06-03 2014-06-11 キヤノン株式会社 Interference measurement device

Also Published As

Publication number Publication date
JP2014228491A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6196830B2 (en) Displacement measuring device and displacement measuring method
KR101240413B1 (en) Origin detection apparatus, displacement measurement apparatus and optical apparatus
US9175987B2 (en) Displacement detecting device
JP6245941B2 (en) Displacement detector
JP5815122B2 (en) Position detector and optical deflection device
JP6215572B2 (en) Displacement measuring device
JP6329456B2 (en) Optical position measuring device
CN105547338B (en) Optical encoder
JP6231297B2 (en) Displacement measuring device and displacement measuring method
JP5391115B2 (en) Photoelectric encoder
JP2017166850A (en) Position detector, inner force sensor, and device
JP6664211B2 (en) Encoder
US10859374B2 (en) Optical angle sensor
JP5502963B2 (en) Displacement measuring device and displacement measuring method
JP6427093B2 (en) Optical position measuring device
JP6251126B2 (en) Displacement detector
WO2015004826A1 (en) Displacement measurement device and displacement measurement method
ES2928745T3 (en) Methods for computing the slit shape of an optical incremental encoder mask
JP6420630B2 (en) Displacement measuring device and displacement measuring method
JP5868058B2 (en) POSITION MEASURING DEVICE, OPTICAL COMPONENT MANUFACTURING METHOD, AND MOLD MANUFACTURING METHOD
JP2017009335A (en) Displacement measurement device, displacement measurement signal processing device and displacement measurement signal processing method
JP7139177B2 (en) optical angle sensor
JP2005083808A (en) Optical origin detection sensor, its origin detection method, and optical encoder
JP5734484B2 (en) Displacement measuring device and displacement measuring method
JP2018091769A (en) Displacement detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R150 Certificate of patent or registration of utility model

Ref document number: 6215572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees