JP6205580B2 - Liquid refinement device and sauna device using the same - Google Patents

Liquid refinement device and sauna device using the same Download PDF

Info

Publication number
JP6205580B2
JP6205580B2 JP2013192514A JP2013192514A JP6205580B2 JP 6205580 B2 JP6205580 B2 JP 6205580B2 JP 2013192514 A JP2013192514 A JP 2013192514A JP 2013192514 A JP2013192514 A JP 2013192514A JP 6205580 B2 JP6205580 B2 JP 6205580B2
Authority
JP
Japan
Prior art keywords
liquid
water
temperature
water level
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192514A
Other languages
Japanese (ja)
Other versions
JP2015058079A (en
Inventor
和大 齋藤
和大 齋藤
林 茂樹
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013192514A priority Critical patent/JP6205580B2/en
Publication of JP2015058079A publication Critical patent/JP2015058079A/en
Application granted granted Critical
Publication of JP6205580B2 publication Critical patent/JP6205580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Description

本発明は、液体微細化装置とそれを用いたサウナ装置に関するものである。   The present invention relates to a liquid miniaturization apparatus and a sauna apparatus using the same.

例えば、サウナ装置に用いられる液体微細化装置の構成は、次のような構成となっていた。   For example, the configuration of a liquid micronizer used for a sauna device has the following configuration.

すなわち、給気口と排気口を有する本体ケースと、この本体ケース内の風路に設けた送風手段と、この送風手段と排気口間に設けた液体微細化手段とを備え、前記液体微細化手段は、回転する円板の上面に液体を供給し、円板上に薄く広がった液体を遠心力により外方に飛散させて微細化させる構成となっていた(例えば、下記特許文献1参照)。   That is, a main body case having an air supply port and an exhaust port, a blower means provided in an air passage in the main body case, and a liquid refinement means provided between the blower means and the exhaust port, the liquid refinement The means is configured to supply liquid to the upper surface of the rotating disk and to finely disperse the liquid thinly spread on the disk outward by centrifugal force (for example, see Patent Document 1 below). .

特開平4−118068号公報JP-A-4-11068

上記従来例で課題となるのは、運転後に装置内を乾燥させようとした際、長時間を要してしまうということである。   The problem with the above conventional example is that it takes a long time to dry the inside of the apparatus after operation.

すなわち、従来の液体微細化装置は、上述のごとく、回転する円板の上面に液体を一定供給しているが、吸込み空気の温湿度などにより加湿量は変化するものであるため、加湿されずにタンクへと戻る水量ももちろん変化する。安定して加湿するためには、液体供給段の液体供給量のバラツキや液体微細化手段の加湿量のバラツキを考慮し、液体量は十分な水量をタンク内に保持することが必要となる。一方で、菌の繁殖等を抑えるため、運転後に装置内を乾燥させる必要がある。そこで本発明は、貯水部に溜める水の量を必要最低限とし、装置乾燥時における乾燥時間の短縮でき、さらには必要最低限量とした液体の一定供給に関しても不具合が生じていないか検知して制御することが可能なサウナ装置を提供することを目的とするものである。   That is, as described above, the conventional liquid micronizer supplies a constant amount of liquid to the upper surface of the rotating disk, but the amount of humidification varies depending on the temperature and humidity of the intake air, and so is not humidified. Of course, the amount of water returned to the tank also changes. In order to stably humidify, it is necessary to keep a sufficient amount of water in the tank in consideration of variations in the amount of liquid supplied in the liquid supply stage and variations in the amount of humidification in the liquid refinement means. On the other hand, it is necessary to dry the inside of the apparatus after operation in order to suppress the growth of bacteria. Accordingly, the present invention detects the amount of water stored in the water storage unit to the minimum necessary, shortens the drying time when drying the apparatus, and further detects whether there is a problem with the constant supply of liquid at the minimum necessary amount. An object of the present invention is to provide a sauna device that can be controlled.

そして、この目的を達成するために本発明は、吸気口と排気口を有する本体ケースと、この本体ケース内の前記吸込口と前記排気口を結ぶ風路に設けた加熱手段および送風手段と、この送風手段と前記排気口間の風路内に設けた液体微細化手段と、この液体微細化手段と加熱手段および送風手段を制御する制御手段を備えた液体微細化装置において、前記液体微細化手段は、液体を供給する液体供給手段と、供給された液体を溜める貯水部と、前記貯水部に溜められた液体を吸込口から吸上げ微細化する加湿手段を備え、前記貯水部内には、前記加湿手段の吸込口よりも上方に第一の水位と、前記加湿手段の吸込口よりも下方であって、前記貯水部の底部となる位置に第二の水位を設定するとともに、前記第一の水位に設けた第一の温度検知手段と、前記第二の水位に設けた第二の温度検知手段を備え、前記風路内には、前記加熱手段の下流側に風路温度検知手段を設け、前記制御手段は、前記第一、第二の温度検知手段と風路温度検知手段で検知した各温度から前記液体供給手段の開閉を制御する液体給水判定手段を設けるとともに、前記液体供給手段に不具合が生じて給水がされていないと認識した際には異常を発報する給水異常判定手段を設け、前記貯水部内に溜められた液体を微細化する微細化運転終了後に前記貯水部に残る液体を乾燥させるための乾燥運転を行う液体微細化装置としたことにより、上記目的を達成している。   And in order to achieve this object, the present invention comprises a main body case having an intake port and an exhaust port, a heating unit and a blower unit provided in an air passage connecting the suction port and the exhaust port in the main body case, In the liquid refinement apparatus comprising the liquid refinement means provided in the air passage between the blower means and the exhaust port, the liquid refinement means, the heating means, and the control means for controlling the blower means, the liquid refinement The means comprises a liquid supply means for supplying a liquid, a water storage part for storing the supplied liquid, and a humidifying means for sucking and refining the liquid stored in the water storage part from the suction port, and in the water storage part, A first water level above the suction port of the humidifying means and a second water level at a position below the suction port of the humidifying means and at the bottom of the water storage section, First temperature detection at the water level And a second temperature detecting means provided at the second water level, and an air path temperature detecting means is provided in the air path downstream of the heating means, and the control means The liquid supply determining means for controlling the opening and closing of the liquid supply means from each temperature detected by the second temperature detection means and the air path temperature detection means is provided, and the liquid supply means has a problem and water is not supplied. When it is recognized, a water supply abnormality determining means for reporting an abnormality is provided, and a drying operation for drying the liquid remaining in the water storage unit is performed after the refining operation for refining the liquid stored in the water storage unit is completed. The above-described object is achieved by using a liquid micronizer.

以上のように、本発明は、第一、第二の温度検知手段と風路温度検知手段で検知した各温度によって、第一の水位、第二の水位の浸水状態を判断して、前記液体供給手段の開閉を制御するので、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが出来る。また、液体供給手段に不具合が生じて給水がされていないと認識した際には異常を発報する給水異常判定手段を設けることで、液体供給手段の異常に常時対応することができ、製品の不具合に対して迅速な対応が可能となる。   As described above, the present invention determines the inundation state of the first water level and the second water level based on the temperatures detected by the first and second temperature detecting means and the air path temperature detecting means, and the liquid Since the opening and closing of the supply means is controlled, the amount of water stored in the liquid refinement means can be adjusted, and the amount of water stored in the water storage section can be minimized. And after completion | finish of refinement | miniaturization operation, the liquid supply means is closed, and the drying time at the time of performing the drying operation which applies warm air to the remaining water of a water storage part in the state which does not supply a liquid can be shortened. Also, by providing a water supply abnormality determining means for reporting an abnormality when recognizing that there is a problem with the liquid supply means and water is not being supplied, it is possible to always respond to abnormalities in the liquid supply means. Prompt response to defects is possible.

本発明の実施の形態1における液体微細化装置を用いたサウナ装置の斜視図The perspective view of the sauna apparatus using the liquid refinement | miniaturization apparatus in Embodiment 1 of this invention 同液体微細化装置の垂直断面の構成図Configuration diagram of the vertical cross section of the same liquid micronizer (a)同揚水管の側面を示す構成図、(b)同揚水管の構成を示す斜視図、(c)同揚水管のA−A断面を示す構成図(A) The block diagram which shows the side of the pumping pipe, (b) The perspective view which shows the structure of the pumping pipe, (c) The block diagram which shows the AA cross section of the pumping pipe 同制御手段のブロック図Block diagram of the control means 同サウナ運転の液体給水判定手段に関わる制御を示すフローチャートThe flowchart which shows the control in connection with the liquid water supply determination means of the sauna operation 同サウナ運転の給水異常判定手段に関わる制御を示すフローチャートThe flowchart which shows the control in connection with the water supply abnormality determination means of the sauna operation

本請求項1記載の液体微細化装置は、吸気口と排気口を有する本体ケースと、この本体ケース内の前記吸込口と前記排気口を結ぶ風路に設けた加熱手段および送風手段と、この送風手段と前記排気口間の風路内に設けた液体微細化手段と、この液体微細化手段と加熱手段および送風手段を制御する制御手段を備えた液体微細化装置において、前記液体微細化手段は、液体を供給する液体供給手段と、供給された液体を溜める貯水部と、前記貯水部に溜められた液体を吸込口から吸上げ微細化する加湿手段とを備え、前記貯水部内には、
前記加湿手段の吸込口よりも上方に第一の水位と、前記加湿手段の吸込口よりも下方であって、前記貯水部の底部となる位置に第二の水位を設定するとともに、前記第一の水位に設けた第一の温度検知手段と、前記第二の水位に設けた第二の温度検知手段を備え、前記風路内には、前記加熱手段の下流側に風路温度検知手段を設け、前記制御手段は、前記第一、第二の温度検知手段と風路温度検知手段で検知した各温度から前記液体供給手段の開閉を制御する液体給水判定手段を設けるとともに、前記液体供給手段に不具合が生じて給水がされていないと認識した際には異常を発報する給水異常判定手段を設け、前記貯水部内に溜められた液体を微細化する微細化運転終了後に前記貯水部に残る液体を乾燥させるための乾燥運転を行う液体微細化装置としたものである。
According to a first aspect of the present invention, there is provided a main body case having an intake port and an exhaust port, a heating unit and a blower unit provided in an air passage connecting the suction port and the exhaust port in the main body case, In a liquid refinement apparatus comprising a liquid refinement means provided in an air passage between a blower means and the exhaust port, and a control means for controlling the liquid refinement means, a heating means and a blower means, the liquid refinement means Comprises a liquid supply means for supplying a liquid, a water storage section for storing the supplied liquid, and a humidifying means for sucking and refining the liquid stored in the water storage section from a suction port, and in the water storage section,
A first water level above the suction port of the humidifying means and a second water level at a position below the suction port of the humidifying means and at the bottom of the water storage section, A first temperature detecting means provided at the water level and a second temperature detecting means provided at the second water level, and the air passage temperature detecting means is provided downstream of the heating means in the air passage. And the control means includes a liquid supply determining means for controlling opening and closing of the liquid supply means from each temperature detected by the first and second temperature detection means and the air path temperature detection means, and the liquid supply means When it is recognized that water supply is not performed due to a malfunction, a water supply abnormality determining means is provided for reporting an abnormality, and remains in the water storage unit after the miniaturization operation for refining the liquid stored in the water storage unit Liquid micro that performs drying operation to dry the liquid It is obtained by the apparatus.

液体供給手段の開閉を制御する基本的な考え方は下記の通りである。第一、第二の温度検知手段と風路温度検知手段は、風路内に配置されている。貯水部に水がない状態で、加熱手段及び送風手段を駆動すると、第一、第二の温度検知手段と風路温度検知手段で検知される温度は上昇し、ほぼ同じ温度を示す。一方、貯水部に水が溜められていれば、第一の温度検知手段および/または第二の温度検知手段で検知される温度は、風路温度検知手段で検知される温度よりも低くなり、第一の水位または第二の水位まで浸水されていると判断する。そして、検出された水位によって液体供給手段の開閉を制御するのである。   The basic concept for controlling the opening and closing of the liquid supply means is as follows. The first and second temperature detecting means and the air path temperature detecting means are arranged in the air path. When the heating means and the air blowing means are driven in a state where there is no water in the water storage section, the temperatures detected by the first and second temperature detecting means and the air path temperature detecting means rise and show substantially the same temperature. On the other hand, if water is stored in the water storage section, the temperature detected by the first temperature detection means and / or the second temperature detection means is lower than the temperature detected by the air path temperature detection means, It is determined that the water has been submerged to the first water level or the second water level. The opening and closing of the liquid supply means is controlled by the detected water level.

これにより、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが出来る。さらには、乾燥運転後には液体微細化装置内の残水はなくなるので、排水管は不要で、液体微細化装置設置時の施工作業を簡単に行えるようにすることが可能となるという効果を奏する。また、液体供給手段に不具合が生じて給水がされていないと認識した際には異常を発報する給水異常判定手段を設けることで、液体供給手段の異常に常時対応することができ、製品の不具合に対して迅速な対応が可能となる。   Thereby, the retention amount of the stored water in the liquid refinement means can be adjusted, and the amount of water stored in the water storage unit can be minimized. And after completion | finish of refinement | miniaturization operation, the liquid supply means is closed, and the drying time at the time of performing the drying operation which applies warm air to the remaining water of a water storage part in the state which does not supply a liquid can be shortened. Furthermore, since there is no residual water in the liquid micronizer after the drying operation, there is no need for a drain pipe, and the construction work when the liquid micronizer is installed can be easily performed. . Also, by providing a water supply abnormality determining means for reporting an abnormality when recognizing that there is a problem with the liquid supply means and water is not being supplied, it is possible to always respond to abnormalities in the liquid supply means. Prompt response to defects is possible.

また、前記液体給水判定手段は、風路温度検知手段で検知した温度(以降、風路温度)が、所定の温度Twよりも高く、且つ風路温度と第二の温度検知手段で検知した温度(以降、第二水位温度)との温度差が所定の温度差ΔTaより大きく、且つ第二水位温度と第一の水位検知手段で検知した温度(以降、第一水位温度)との温度差が所定の温度差ΔTbより小さい場合には、液体の水位は、第一の水位まで浸水していると判断し液体供給手段を閉じて給水を停止する構成を有する。   In addition, the liquid water supply determining means has a temperature detected by the air path temperature detecting means (hereinafter referred to as air path temperature) higher than a predetermined temperature Tw, and a temperature detected by the air path temperature and the second temperature detecting means. (Hereinafter, the second water level temperature) is larger than the predetermined temperature difference ΔTa, and the temperature difference between the second water level temperature and the temperature detected by the first water level detecting means (hereinafter, the first water level temperature) is When the temperature difference is smaller than the predetermined temperature difference ΔTb, the liquid level is determined to be submerged to the first level, and the liquid supply means is closed to stop the water supply.

これにより、液体の水位は、第一の水位まで浸水していると判断することができ、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it can be determined that the liquid water level has been submerged to the first water level, the amount of stored water in the liquid refinement means can be adjusted, and the amount of water stored in the water storage section is the minimum required. It can be. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、前記液体給水判定手段は、第一水位温度と第二水位温度との温度差が所定の温度差ΔTcより大きい場合には、液体の水位は、第一の水位には浸水していないと判断し液体供給手段を開けて給水する構成を有する。   Further, when the temperature difference between the first water level temperature and the second water level temperature is larger than the predetermined temperature difference ΔTc, the liquid water supply determining means is that the liquid water level is not immersed in the first water level. It has the structure which judges and opens a liquid supply means and supplies water.

これにより、液体の水位は、第一の水位には浸水していないと判断することができ、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it can be determined that the liquid water level is not submerged in the first water level, the amount of water stored in the liquid refinement means can be adjusted, and the amount of water stored in the water storage part is the minimum required. Limit. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、前記液体給水判定手段は、風路温度が所定の温度Twよりも高く、且つ風路温度と第二水位温度との温度差が所定の温度差ΔTaより小さい場合には、液体の水位は、第二の水位には浸水していないと判断し、液体供給手段を開けて給水する構成を有する。   In addition, the liquid water supply determining means determines that the liquid level is higher when the air path temperature is higher than the predetermined temperature Tw and the temperature difference between the air path temperature and the second water level temperature is smaller than the predetermined temperature difference ΔTa. The second water level is determined not to be submerged, and the liquid supply means is opened to supply water.

これにより、液体の水位は、第二の水位には浸水していないと判断することができ、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it can be determined that the liquid water level is not submerged in the second water level, the amount of water stored in the liquid refining means can be adjusted, and the amount of water stored in the water storage part is the minimum required. Limit. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、前記液体給水判定手段は、前記加熱手段が駆動していない場合に、風路温度が所定の温度Twよりも低く、且つ第二水位温度と第一水位温度との温度差が所定の温度差ΔTbより小さい場合には、液体供給手段を閉じて給水を停止する構成を有する。   In addition, the liquid water supply determination unit is configured such that when the heating unit is not driven, the air path temperature is lower than a predetermined temperature Tw, and the temperature difference between the second water level temperature and the first water level temperature is a predetermined temperature. When the difference is smaller than ΔTb, the liquid supply means is closed to stop water supply.

これにより、液体の水位は、第一の水位まで浸水している可能性があると判断することができ、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it can be determined that the liquid water level may have been submerged to the first water level, the amount of retained water in the liquid refining means can be adjusted, and the amount of water stored in the reservoir Can be minimized. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、前記液体給水判定手段は、前記加熱手段が駆動していない場合に、液体給水手段が閉じられてから所定の時間t1が経過し、且つ第一水位温度と第二水位温度の温度差が所定の温度差ΔTbより大きい場合には、液体供給手段を開けて給水する構成を有する。   In addition, the liquid water supply determination unit is configured such that, when the heating unit is not driven, a predetermined time t1 has elapsed since the liquid water supply unit was closed, and a temperature difference between the first water level temperature and the second water level temperature is When the temperature difference is larger than the predetermined temperature difference ΔTb, the liquid supply means is opened to supply water.

これにより、液体の水位は、第一の水位には浸水していない可能性があると判断することができ、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it can be determined that the liquid water level may not be submerged in the first water level, the amount of retained water in the liquid refining means can be adjusted, and the water stored in the water storage unit can be adjusted. The amount can be minimized. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、液体給水手段が開いている状態において、前記給水異常判定手段は、風路温度が所定の温度Twよりも高く、且つ風路温度と第二水位温度との温度差が所定の温度差ΔTaより小さい状態が所定の時間t2経過した場合に、前記液体供給手段の異常を認識し発報するという構成を有する。   Further, in a state where the liquid water supply means is open, the water supply abnormality determining means is configured such that the air passage temperature is higher than a predetermined temperature Tw and the temperature difference between the air passage temperature and the second water level temperature is a predetermined temperature difference ΔTa. In a case where the predetermined time t2 elapses in a smaller state, the liquid supply unit is recognized and notified.

これにより、通常の給水状態においては多少の時間経過後に浸水を検知するはずの第二の水位における浸水が検知できないということで何らかの給水異常だと判断することができ、製品の不具合に対して迅速な対応が可能となる。   As a result, under normal water supply conditions, it is possible to determine that there is some water supply abnormality because it is not possible to detect inundation at the second water level that should detect inundation after some time has passed. Is possible.

また、前記第一、第二の温度検知手段、前記風路温度検知手段として、サーミスタを用いた構成を有する。   Moreover, it has the structure which used the thermistor as said 1st, 2nd temperature detection means and said air path temperature detection means.

これにより、簡便な構成で、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, it is possible to adjust the amount of retained water in the liquid refining means with a simple configuration, and to minimize the amount of water stored in the reservoir. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

また、前記加湿手段は、上流開口部および下流開口部を有する液体微細化手段ケースと、この液体微細化手段ケース内に設けた回転手段と、前記回転手段は、回転モータと、この回転モータに固定されるとともに前記貯水部から水を吸上げる揚水管と、この揚水管の外周面に固定され、前記揚水管の回転軸に対して略直交する回転面を有した回転板とで構成され、前記回転モータの駆動によって前記揚水管を回転させて貯水部の液体を吸上げ、吸上げた液体を回転板の回転面に沿って外周方向に飛ばし、
液体を微細化し、加湿する構成を有する。
The humidifying means includes a liquid refinement means case having an upstream opening and a downstream opening, a rotation means provided in the liquid refinement means case, the rotation means includes a rotation motor, and the rotation motor. It is composed of a pumping pipe that is fixed and sucks water from the water storage section, and a rotary plate that is fixed to the outer peripheral surface of the pumping pipe and has a rotating surface that is substantially orthogonal to the rotating shaft of the pumping pipe, The pump is rotated by driving the rotary motor to suck up the liquid in the reservoir, and the sucked up liquid is blown in the outer circumferential direction along the rotating surface of the rotating plate,
The liquid is refined and humidified.

前記液体微細化手段は、遠心力によって回転板の外縁から飛散する液体が、回転板の略接線方向に飛散して、破砕部の衝突面に略直角に衝突する、つまり衝突エネルギーを有効に活用できるので、この衝突により放散された液滴が破砕されて微細化が促進される。   The liquid refining means is that the liquid splashed from the outer edge of the rotating plate due to centrifugal force is scattered in the substantially tangential direction of the rotating plate and collides with the collision surface of the crushing portion at a substantially right angle, that is, the collision energy is effectively utilized. As a result, the liquid droplets diffused by the collision are crushed and the miniaturization is promoted.

また、揚水管の開口径が底部に向かって狭くなった略円筒形状としているため、底部より吸い上げられる水を少量に制御でき得る構成となっており、この少量の供給水に回転板上で効率良く遠心力を伝えることが可能となるため、円板の外縁から飛散する際の液体の粒径をより小さく形成することが可能となり、この液体が衝突面に衝突することで液滴が破砕されて微細化が促進される。   In addition, since the opening diameter of the pumping pipe is made into a substantially cylindrical shape that narrows toward the bottom, the water sucked up from the bottom can be controlled to a small amount. Since the centrifugal force can be transmitted well, it is possible to make the liquid particle size smaller when splashing from the outer edge of the disk, and the liquid collides with the collision surface, so that the droplets are crushed. Miniaturization is promoted.

これにより、液体微細化手段における貯留水の保持量を調整でき、且つ貯水部に溜める水の量を必要最低限とすることができる。そして、微細化運転終了後に、液体供給手段を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが可能となるという効果を奏する。   Thereby, the retention amount of the stored water in the liquid refinement means can be adjusted, and the amount of water stored in the water storage unit can be minimized. And after completion | finish of refinement | miniaturization operation, there exists an effect that it becomes possible to shorten the drying time at the time of performing the drying operation which closes a liquid supply means and applies warm air to the residual water of a water storage part in the state which does not supply a liquid. .

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態における液体微細化装置を用いたサウナ装置の斜視図であり、この図1に示すように、サウナ室1の天井面2には、液体微細化装置3が取り付けられている。以下、本実施の形態では、微細化する液体を水として説明する。
(Embodiment 1)
FIG. 1 is a perspective view of a sauna apparatus using a liquid micronizer according to an embodiment of the present invention. As shown in FIG. 1, a liquid micronizer 3 is provided on a ceiling surface 2 of a sauna room 1. It is attached. Hereinafter, in the present embodiment, the liquid to be refined will be described as water.

液体微細化装置3は、図2に示すように、下面に吸気口4と排気口5を有する箱状の本体ケース6と、この本体ケース6内の吸気口4と排気口5とを結ぶ風路に設けた加熱手段としての熱交換器7および送風手段としてのファンモータ8と、このファンモータ8と排気口5との間に設けた液体微細化手段9とを備えた構成としている。   As shown in FIG. 2, the liquid micronizer 3 has a box-shaped main body case 6 having an intake port 4 and an exhaust port 5 on the lower surface, and a wind that connects the intake port 4 and the exhaust port 5 in the main body case 6. A heat exchanger 7 as a heating means provided in the passage, a fan motor 8 as a blowing means, and a liquid refinement means 9 provided between the fan motor 8 and the exhaust port 5 are provided.

また、ファンモータ8から液体微細化手段9へ通じる風路50は、ファンケーシング10により形成され、液体微細化手段9と排気口5の間に補助熱交換器11を設けている。また、補助熱交換器11の上流には大径水滴を取り除くエリミネータ23が備えられている。   Further, the air passage 50 leading from the fan motor 8 to the liquid micronization means 9 is formed by the fan casing 10, and the auxiliary heat exchanger 11 is provided between the liquid micronization means 9 and the exhaust port 5. An eliminator 23 that removes large-diameter water droplets is provided upstream of the auxiliary heat exchanger 11.

液体微細化手段9は、図2に示すように、上流開口部12aおよび下流開口部12bを有する液体微細化手段ケース12と、この液体微細化手段ケース12の内部に設けた回転手段13と、この回転手段13に水を供給する液体供給手段としての給水管14を備える。   As shown in FIG. 2, the liquid refinement means 9 includes a liquid refinement means case 12 having an upstream opening 12a and a downstream opening 12b, a rotation means 13 provided inside the liquid refinement means case 12, A water supply pipe 14 is provided as a liquid supply means for supplying water to the rotating means 13.

この給水管14には定流量弁15を設け、この定流量弁15の上流側配管16に給水弁17が設けられている。   A constant flow valve 15 is provided in the water supply pipe 14, and a water supply valve 17 is provided in an upstream pipe 16 of the constant flow valve 15.

回転手段13は、鉛直方向に向けて配置した回転軸19を有し、この回転軸19を中心として回動する複数の回転板20a,20bを、回転軸19の軸方向に上下に所定間隔で固定して設けている。本実施の形態では、回転軸19の上方から下方へ回転板20a、回転板20bと2枚の回転板を設ける構成とする。   The rotating means 13 has a rotating shaft 19 arranged in the vertical direction, and a plurality of rotating plates 20 a and 20 b that rotate about the rotating shaft 19 are vertically arranged at predetermined intervals in the axial direction of the rotating shaft 19. It is fixed. In the present embodiment, the rotary plate 20a, the rotary plate 20b, and two rotary plates are provided from the upper side to the lower side of the rotary shaft 19.

回転手段13の上部には、回転軸19を駆動するための回転モータ21を備え、回転手段13の下部には、回転板20a、回転板20bと一体に形成された、逆円錐状の揚水管22を備えている。すなわち、揚水管22は、細い先端側を吸込口22aとした円錐形状であって、吸込口22aを下にして備え付けられている。   A rotating motor 21 for driving the rotating shaft 19 is provided at the upper part of the rotating means 13, and an inverted conical pumping pipe formed integrally with the rotating plate 20a and the rotating plate 20b at the lower part of the rotating means 13. 22 is provided. That is, the pumping pipe 22 has a conical shape with the narrow end side as the suction port 22a, and is provided with the suction port 22a facing down.

また、揚水管22は、図3に示すように、揚水した水を回転による遠心力で噴出させる水平方向に長い開口24を各回転板20bと揚水管22が連結する箇所に2個設け、各回転板の間で水を噴出させる方向が異なるように、開口24の位置を周方向にずらしている。   Further, as shown in FIG. 3, the pumping pipe 22 is provided with two horizontally long openings 24 through which the pumped water is ejected by a centrifugal force by rotation at a place where each rotary plate 20 b and the pumping pipe 22 are connected. The position of the opening 24 is shifted in the circumferential direction so that the direction in which water is ejected differs between the rotating plates.

また、液体微細化手段ケース12の下部には図2に示すごとく貯水部25を有している。そして、揚水管22で揚水できない水量、すなわち微細化運転終了時の貯水量が少なくなるよう、貯水部25の底部が狭くなる形状、例えば逆台形の形状、あるいは、椀状の形状とするのがよい。   Further, as shown in FIG. 2, a water reservoir 25 is provided at the bottom of the liquid refinement means case 12. And the shape where the bottom part of the water storage part 25 becomes narrow, for example, the shape of an inverted trapezoid, or the shape of a bowl is made so that the amount of water that cannot be pumped by the pumping pipe 22, that is, the amount of water stored at the end of the refining operation is reduced. Good.

また、揚水管22の最下部すなわち加湿手段の吸込口22aよりも上方であって、加湿手段が必要とする最低限の水量を保持できる位置、吸込口22aより例えば2mm上方に第一の水位を設定する。この第一の水位を検知する手段として、第一のサーミスタ26(第一の温度検知手段)が設けられる。第一の水位は、揚水管22の吸込口22aよりわずかに水面が上に位置する位置とする。すなわち、揚水管22の吸込口22aよりも、例えば2mm程度上方に設定する。   The first water level is located at the lowermost part of the pumping pipe 22, that is, above the suction port 22a of the humidifying means, and can hold the minimum amount of water required by the humidifying means, for example, 2 mm above the suction port 22a. Set. As means for detecting the first water level, a first thermistor 26 (first temperature detecting means) is provided. The first water level is a position where the water surface is slightly above the suction port 22a of the pumping pipe 22. That is, it is set, for example, about 2 mm above the suction port 22 a of the water pump 22.

そして、揚水管22の最下部すなわち加湿手段の吸込口22aよりも下方であって、貯水部25の底部となる位置に第二の水位を設定する。この第二の水位を検知する手段として、第二のサーミスタ27(第二の温度検知手段)が設けられる。   Then, the second water level is set at a position below the lowermost part of the pumping pipe 22, that is, below the suction port 22 a of the humidifying means and serving as the bottom of the water storage unit 25. As a means for detecting this second water level, a second thermistor 27 (second temperature detecting means) is provided.

さらに、風路50内には、熱交換器7の下流側に第三のサーミスタ33(風路温度検知手段)が設けられている。   Further, a third thermistor 33 (air path temperature detecting means) is provided in the air path 50 on the downstream side of the heat exchanger 7.

次に制御手段28の構成を、図4を用いて説明する。   Next, the configuration of the control means 28 will be described with reference to FIG.

制御手段28は、表示部や運転操作スイッチ(図示なし)を備えたリモコン30と、第一のサーミスタ26及び第二のサーミスタ27、第三のサーミスタ33と、各サーミスタからの信号により給水弁17の開閉を判定する液体給水判定手段34と液体供給手段に不具合が生じて給水がされていないと認識した際には異常を表示部に発報する給水異常判定手段35で構成されている。   The control means 28 includes a remote controller 30 having a display unit and a driving operation switch (not shown), a first thermistor 26, a second thermistor 27, a third thermistor 33, and a water supply valve 17 based on signals from each thermistor. The liquid supply determining means 34 for determining whether to open or close the liquid supply means and the water supply abnormality determining means 35 for reporting an abnormality to the display unit when it is recognized that water has not been supplied due to a problem in the liquid supply means.

制御部29は、リモコン30からの操作信号及び各サーミスタの信号により、熱交換器7へ温水を供給するポンプや、ファンモータ8、回転軸19を駆動する回転モータ21、給水弁17の駆動を制御している。   The control unit 29 drives the pump that supplies hot water to the heat exchanger 7, the fan motor 8, the rotary motor 21 that drives the rotary shaft 19, and the water supply valve 17 based on the operation signal from the remote controller 30 and the signal of each thermistor. I have control.

以上の構成において、次に動作を説明する。   Next, the operation of the above configuration will be described.

サウナ室1内において、サウナを使用する場合、まず、図示していないガス湯沸かし器や電気温水器等の熱源から、図1に示すパイプ31を介し、図2に示す熱交換器7に温水が供給される。また、給水管14へは配管32により市水が供給される。給水管14に供給される市水は、定流量弁15によって設定されたきわめて少量となっている。また、回転モータ21が駆動されるまでは、給水弁17により止められ、給水管14から排出されていない。   When the sauna is used in the sauna room 1, first, hot water is supplied from a heat source such as a gas water heater or an electric water heater (not shown) to the heat exchanger 7 shown in FIG. 2 through the pipe 31 shown in FIG. Is done. Further, city water is supplied to the water supply pipe 14 through a pipe 32. The city water supplied to the water supply pipe 14 is a very small amount set by the constant flow valve 15. Further, until the rotary motor 21 is driven, it is stopped by the water supply valve 17 and is not discharged from the water supply pipe 14.

この状態で、熱交換器7が運転され、ファンモータ8が駆動されると、ファンモータ8が吸気口4を介してサウナ室1内の空気を吸い込み、吸い込まれた空気は熱交換器7によって加熱される。加熱された空気は、ファンモータ8によって、ファンケーシング10を介して、液体微細化手段ケース12へと送られる。   In this state, when the heat exchanger 7 is operated and the fan motor 8 is driven, the fan motor 8 sucks air in the sauna room 1 through the air inlet 4, and the sucked air is absorbed by the heat exchanger 7. Heated. The heated air is sent by the fan motor 8 to the liquid refinement means case 12 via the fan casing 10.

一方、回転モータ21が駆動されると、回転軸19が高速回転し、それにともない回転板20aおよび回転板20bが高速回転される。   On the other hand, when the rotary motor 21 is driven, the rotary shaft 19 rotates at a high speed, and accordingly, the rotary plate 20a and the rotary plate 20b are rotated at a high speed.

このとき、給水管14は、定流量弁15で設定された流量の水を供給し、貯水部25に水を貯留する。一方、貯水部25の上方では揚水管22が回転している。貯水部25の貯水量が増え、水面が揚水管22の下端、すなわち、揚水管22の吸込口22aに近づくと、貯水部25に貯められた水は水面上の空気と一緒に巻き上げられ、揚水管22の内壁を伝って上方へ移動していく。   At this time, the water supply pipe 14 supplies water at a flow rate set by the constant flow valve 15 and stores the water in the water storage unit 25. On the other hand, the pumping pipe 22 is rotating above the water reservoir 25. When the amount of water stored in the water storage unit 25 increases and the water surface approaches the lower end of the water pumping tube 22, that is, the suction port 22a of the water pumping tube 22, the water stored in the water storage unit 25 is rolled up together with the air on the water surface. It moves upward along the inner wall of the tube 22.

この作用は、揚水管22が、上述のごとく逆円錐状となっているので、内部には吸引力が働くようになっているために起こるものである。このため、貯水部25に貯められた水は水面上の空気と一緒に巻き上げられ、揚水管22の内壁を伝って上方へ移動していく。   This action occurs because the pumping pipe 22 has an inverted conical shape as described above, and a suction force is applied to the inside. For this reason, the water stored in the water storage section 25 is rolled up together with the air on the water surface, and moves upward along the inner wall of the pumping pipe 22.

そして揚水管22の内壁を伝って上方へ移動した水は、まず、回転による遠心力で開口24から噴出し、回転板20bへと伝い、高速回転による遠心力によって外周方向に向かって薄膜状に広がる。この薄膜状になった水は回転板20bの外周縁から接線方向へと高速で吹き飛ばされる。   Then, the water that has moved upward along the inner wall of the pumping pipe 22 is first ejected from the opening 24 by centrifugal force due to rotation, transmitted to the rotating plate 20b, and thinned toward the outer periphery by centrifugal force due to high-speed rotation. spread. The water in the form of a thin film is blown off at high speed from the outer peripheral edge of the rotating plate 20b in the tangential direction.

そして、遠心力で飛散した水滴は、液体微細化手段ケース12の内壁に衝突して破砕され、水の微細化が促進される。   Then, the water droplets scattered by the centrifugal force collide with the inner wall of the liquid refinement means case 12 and are crushed, thereby promoting the water refinement.

また揚水管22の内壁を伝って上方へ移動し、開口24から噴出しなかった水は、さらに揚水管22の内壁を伝って上昇し、高速回転による遠心力によって外周方向に向かって薄膜状に広がる。この薄膜状になった水は、回転板20aの外周縁から接線方向へと高速で吹き飛ばされる。   Further, the water that has moved upward along the inner wall of the pumping pipe 22 and has not been ejected from the opening 24 rises further along the inner wall of the pumping pipe 22, and is formed into a thin film toward the outer periphery by centrifugal force due to high-speed rotation. spread. The water in the form of a thin film is blown off at high speed from the outer peripheral edge of the rotating plate 20a in the tangential direction.

そして、遠心力で飛散した水滴は、液体微細化手段ケース12の内壁に衝突して破砕され、水の微細化が促進される。   Then, the water droplets scattered by the centrifugal force collide with the inner wall of the liquid refinement means case 12 and are crushed, thereby promoting the water refinement.

このとき揚水管22の内壁を伝って上方へ移動する水は、回転モータ21が高速回転しているため、螺旋状に旋回して上方へ移動するのではなく、内壁全周において略均一な状態で真上に移動していく。   At this time, the water that moves upward along the inner wall of the pumping pipe 22 is substantially uniform over the entire inner wall rather than turning spirally and moving upward because the rotary motor 21 rotates at high speed. To move straight up.

このように、揚水管22で揚水した水は、ほとんど全て微細化され、加熱された暖かい空気と混ざって蒸気の状態となって上方の開口から排出される。しかし、一部は微細化されずに液体微細化手段ケース12の内壁に付着したわずかな水滴や、微細化された後に内壁において結露した微量の水滴となり、液体微細化手段ケース12の内壁を伝って、貯水部25に流れ落ち、貯水される。   Thus, almost all of the water pumped by the pumping pipe 22 is refined, mixed with the heated warm air, becomes steam, and is discharged from the upper opening. However, some of the water droplets are not finely adhered to the inner wall of the liquid micronizing means case 12 or a minute amount of water droplets condensed on the inner wall after being miniaturized, and travel along the inner wall of the liquid micronizing means case 12. Then, it flows down to the water storage unit 25 and is stored.

一方、回転板20aおよび回転板20bの高速回転によって微細化された水を含む暖かい空気は、ファンモータ8の送風によって、排気口5からサウナ室1の内部へ蒸気として供給される。   On the other hand, warm air containing water refined by the high-speed rotation of the rotating plate 20 a and the rotating plate 20 b is supplied as steam from the exhaust port 5 to the inside of the sauna room 1 by blowing air from the fan motor 8.

このとき、揚水管22で揚水した水が、ほぼ完全に微細化されるためには、給水管14から供給される水の量が問題となる。すなわち、回転板20a、20bの枚数や回転モータ21の回転数等により決定される、液体微細化手段9の微細化能力により、微細化できる水の量は設定され、例えば45cc/minである。   At this time, the amount of water supplied from the water supply pipe 14 becomes a problem in order for the water pumped up by the water supply pipe 22 to be almost completely refined. That is, the amount of water that can be refined is set by the micronization capability of the liquid micronizer 9 determined by the number of rotating plates 20a and 20b, the number of rotations of the rotary motor 21, and the like, and is, for example, 45 cc / min.

一方、定流量弁15は水温や水圧により流量にバラツキを生じるため、貯水部25での貯水量及び揚水管22での揚水量にバッファ機能を持たせている。例えば定流量弁15から45cc/min以上供給された場合には、当初貯水量が増えていく。一方で、微細化水量(揚水量)も増加していくので、定常状態では定流量弁15からの供給水量と微細化水量がほぼ同じとなる。   On the other hand, since the constant flow valve 15 varies in flow rate depending on the water temperature and water pressure, a buffer function is provided for the amount of water stored in the water storage unit 25 and the amount of water pumped in the pumping pipe 22. For example, when 45 cc / min or more is supplied from the constant flow valve 15, the initial water storage amount increases. On the other hand, since the amount of refined water (pumped water) also increases, the amount of water supplied from the constant flow valve 15 and the amount of refined water are substantially the same in a steady state.

すなわち、通常のサウナ運転時、定常状態では定流量弁15からの供給水量と微細化水量がほぼ同じとなり、サウナ室1への加湿量も安定している。   That is, during normal sauna operation, in a steady state, the amount of water supplied from the constant flow valve 15 and the amount of refined water are substantially the same, and the humidification amount to the sauna chamber 1 is also stable.

しかし、このサウナ室1への加湿量はサウナ室1が低湿の場合を想定しており、例えば入浴中にサウナ運転した場合等、サウナ室1が高湿の場合には、上記の供給水量が微細化水量を上回ってくる。この供給水量が過剰にならないように、液体給水判定手段34が給水弁17の開閉を断続的に制御することが本実施形態の特徴点の一つである。   However, the humidification amount to the sauna room 1 is assumed when the sauna room 1 is low humidity. For example, when the sauna room 1 is highly humid, such as when the sauna is operated during bathing, the above-mentioned supply water amount is It exceeds the amount of fine water. One feature of the present embodiment is that the liquid supply determination means 34 intermittently controls the opening and closing of the water supply valve 17 so that the amount of supplied water does not become excessive.

液体給水判定手段34における水位の判断原理を説明する。サウナ運転時には、熱交換器7を通過した空気は温度が高く、貯水部25の周囲(風路50)は高温状態となっている。従って、風路50の温度と供給される水(すなわち、貯水部25の水温)との温度差が大きくなる。この原理を利用して、第一の水位(第一のサーミスタ26の位置)、第二の水位(第二のサーミスタ27の位置)まで水が溜まっているかどうかを判断する。   The principle of determination of the water level in the liquid supply determination unit 34 will be described. During the sauna operation, the temperature of the air that has passed through the heat exchanger 7 is high, and the surroundings of the water reservoir 25 (the air passage 50) are in a high temperature state. Therefore, the temperature difference between the temperature of the air passage 50 and the supplied water (that is, the water temperature of the water storage unit 25) increases. Using this principle, it is determined whether water has accumulated up to the first water level (the position of the first thermistor 26) and the second water level (the position of the second thermistor 27).

液体給水判定手段34における5つの判断について具体的に説明する。   The five determinations in the liquid supply determination unit 34 will be specifically described.

第一の判断は、以下の3つの条件がそろったときに、貯水部25の液体の水位が、第一の水位まで浸水していると判断し給水弁17を閉じて給水を停止する。すなわち、揚水管22の吸込口22aが水を吸い上げられる水位のときには給水を停止するものである。
1)第三のサーミスタ33で検知した温度(すなわち、風路50の温度。以降、風路温度)が、所定の温度Twよりも高い。
2)風路温度と第二のサーミスタ27で検知した温度(すなわち、貯水部25における第二の水位の温度。以降、第二水位温度)との温度差が所定の温度差ΔTaより大きい。
3)第二水位温度と第一のサーミスタ26で検知した温度(すなわち、貯水部25における第一の水位の温度。以降、第一水位温度)との温度差が所定の温度差ΔTbより小さい。
In the first determination, when the following three conditions are met, it is determined that the liquid level of the water storage section 25 is submerged to the first level, and the water supply valve 17 is closed to stop water supply. That is, the water supply is stopped when the suction port 22a of the pumping pipe 22 is at a water level at which water can be sucked up.
1) The temperature detected by the third thermistor 33 (that is, the temperature of the air passage 50. Hereinafter, the air passage temperature) is higher than the predetermined temperature Tw.
2) The temperature difference between the air path temperature and the temperature detected by the second thermistor 27 (that is, the temperature of the second water level in the water storage section 25. Hereinafter, the second water level temperature) is larger than the predetermined temperature difference ΔTa.
3) The temperature difference between the second water level temperature and the temperature detected by the first thermistor 26 (that is, the temperature of the first water level in the water storage unit 25. Hereinafter, the first water level temperature) is smaller than the predetermined temperature difference ΔTb.

第二の判断は、以下の条件を満たしたときに、貯水部25の液体の水位が、第一の水位まで浸水していないと判断し給水弁17を開けて給水する。すなわち、揚水管22の吸込口22aが水を吸い上げられない水位、あるいは、もう少し水位が下がると揚水管22の吸込口22aが水を吸い上げられなくなる水位のときには給水を開始するものである。
1)第一水位温度と第二水位温度との温度差が所定の温度差ΔTcより大きい。
In the second determination, when the following conditions are satisfied, it is determined that the liquid level of the water storage section 25 is not submerged to the first water level, and the water supply valve 17 is opened to supply water. That is, the water supply is started when the suction port 22a of the pumping pipe 22 cannot absorb water, or when the water level of the pumping pipe 22 cannot absorb water when the water level drops a little further.
1) The temperature difference between the first water level temperature and the second water level temperature is larger than a predetermined temperature difference ΔTc.

第三の判断は、以下の2つの条件を満たしたときに、貯水部25の液体の水位が、第二の水位に達していないと判断し、給水弁17を開けて給水する。すなわち、貯水部25にはほとんど水がない状態である。
1)風路温度が所定の温度Twよりも高い。
2)風路温度と第二水位温度との温度差が所定の温度差ΔTaより小さい
第四の判断は、以下の3つの条件がそろったときに、貯水部25の液体の水位は、第一の水位まで到達していると判断し、給水弁17を閉じて給水を停止する。
1)熱交換器7が駆動していない(温水を通水していない。)
2)風路温度が所定の温度Twよりも低い。
3)第二水位温度と第一水位温度との温度差が所定の温度差ΔTbより小さい
第五の判断は、以下の3つの条件がそろったときに、貯水部25の液体の水位は、第一の水位に到達していないと判断し、給水弁17を開けて給水する
1)熱交換器7が駆動していない(温水を通水していない。)
2)給水弁17が閉じられてから所定の時間t1が経過している。
3)第一水位温度と第二水位温度の温度差が所定の温度差ΔTbより大きい。
In the third determination, when the following two conditions are satisfied, it is determined that the liquid level of the water storage section 25 has not reached the second water level, and the water supply valve 17 is opened to supply water. That is, there is almost no water in the water reservoir 25.
1) The air path temperature is higher than the predetermined temperature Tw.
2) The temperature difference between the air passage temperature and the second water level temperature is smaller than the predetermined temperature difference ΔTa. The fourth judgment is that when the following three conditions are met, the water level of the liquid in the reservoir 25 is It is determined that the water level has been reached, and the water supply valve 17 is closed to stop water supply.
1) The heat exchanger 7 is not driven (not passing hot water)
2) The air path temperature is lower than the predetermined temperature Tw.
3) The temperature difference between the second water level temperature and the first water level temperature is smaller than the predetermined temperature difference ΔTb. The fifth judgment is that when the following three conditions are met, the water level of the liquid in the reservoir 25 is It is determined that the water level has not reached one, and the water supply valve 17 is opened to supply water 1) The heat exchanger 7 is not driven (warm water is not passed through).
2) A predetermined time t1 has elapsed since the water supply valve 17 was closed.
3) The temperature difference between the first water level temperature and the second water level temperature is larger than the predetermined temperature difference ΔTb.

次に給水弁17の開閉の制御について、図5のフローチャートをもとに説明する。   Next, opening / closing control of the water supply valve 17 will be described with reference to the flowchart of FIG.

図5に示すように、通常のサウナ運転時には、熱交換器7に温水を通水し、ファンモータ8及び回転モータ21を運転し、給水弁17を開放している(S0)。   As shown in FIG. 5, during normal sauna operation, hot water is passed through the heat exchanger 7, the fan motor 8 and the rotary motor 21 are operated, and the water supply valve 17 is opened (S0).

ここで、通常のサウナ運転時には、第三のサーミスタ33で検知される温度(風路温度)は60℃以上になる。   Here, during normal sauna operation, the temperature (airway temperature) detected by the third thermistor 33 is 60 ° C. or higher.

また、給水される水の温度は低く、第一のサーミスタ26、第二のサーミスタ27が浸水している場合には、第一のサーミスタ26で検知される温度(第一水位温度)、第二のサーミスタ27で検知される温度(第二水位温度)は、風路温度が約60℃、給水用の水として水道水を用いているとき、概ね40℃以下となる。一方、第一のサーミスタ26、第二のサーミスタ27が浸水していないときには、風路温度とほぼ同じ温度を示すことになる。   The temperature of the supplied water is low, and when the first thermistor 26 and the second thermistor 27 are submerged, the temperature detected by the first thermistor 26 (first water level temperature), the second The temperature (second water level temperature) detected by the thermistor 27 is approximately 40 ° C. or lower when the air passage temperature is about 60 ° C. and tap water is used as water for water supply. On the other hand, when the first thermistor 26 and the second thermistor 27 are not submerged, the temperature is substantially the same as the air path temperature.

S1以降では、第一水位温度、第二水位温度、風路温度と熱交換器7の運転状態(通水状態)によって、液体給水判定手段34は給水弁17の開閉を制御する。   After S1, the liquid water supply determining means 34 controls the opening and closing of the water supply valve 17 according to the first water level temperature, the second water level temperature, the air path temperature, and the operation state (water flow state) of the heat exchanger 7.

サウナ室1内の温度が目標温度より低い場合は、熱交換器7への通水を継続しているため、貯水部25周囲は高温状態となっており供給される水との温度差が大きく明確に判定できる。その場合、空気が十分に暖められて風路温度が高く(例えば60℃以上)、給水される水の温度と加熱された空気の温度差が明確に判断できる。また、第二のサーミスタ27が浸水していると、風路温度と第二水位温度の温度差が大きく(例えば10℃以上)なる。さらに、揚水管22が回転して攪拌されているので、貯水部25内の貯留水は温度が略均一になる。   When the temperature in the sauna room 1 is lower than the target temperature, the water passage to the heat exchanger 7 is continued, so the temperature around the water storage unit 25 is high and the temperature difference from the supplied water is large. Can be judged clearly. In that case, the air is sufficiently warmed and the air path temperature is high (for example, 60 ° C. or more), and the temperature difference between the temperature of the supplied water and the heated air can be clearly determined. Further, when the second thermistor 27 is submerged, the temperature difference between the air passage temperature and the second water level temperature becomes large (for example, 10 ° C. or more). Further, since the pumping pipe 22 is rotated and agitated, the temperature of the stored water in the water storage unit 25 becomes substantially uniform.

すなわち、風路温度が高く(例えば60℃以上)、風路温度と第二水位温度の温度差が大きく(例えば10℃以上)、第二水位温度と第一水位温度の温度差が小さくなる場合(例えば2℃未満)には、第一のサーミスタ26まで浸水していると判断することができるため給水弁17を閉じる。(S1)
その後、第一水位温度と第二水位温度の温度差が大きい場合(例えば5℃以上)には、第二のサーミスタ27は浸水しているが、第一のサーミスタ26は浸水していないと判断することができるため給水弁17を開ける。(S2)
通常上記の条件が交互に整い給水弁17の開閉を制御するが、稀に長時間の高温運転後に、温度設定を大きく下げた場合など熱交換器7の通水を長時間止める場合がある。そして、給水弁17を閉鎖が続くと貯水部25内の底部に配置した第二のサーミスタ27まで乾く場合がある。このときには、第一水位温度、第二水位温度、風路温度がほぼ均一となる。その場合には、風路温度が高く(例えば60℃以上)、風路温度と第二水位温度の温度差が小さく(例えば10℃未満)なるので、第二のサーミスタ27が浸水していないと判断し、給水弁17を開け給水する。(S3)
また、サウナ室1内の温度が目標温度より高い場合は熱交換器7への通水を止めてしまうため、貯水部25周囲の温度が下がり、供給される水との温度差が小さくなる。その場合には、風路温度が低く(例えば60℃未満)、第二水位温度と第一水位温度の温度差が小さく(例えば2℃未満)なるので、第一のサーミスタ26まで浸水している可能性があるとして給水弁17を閉じる。(S4)
また、給水弁17が閉じられてから所定の時間t1(例えば4分以上)経過したとき、通常であれば、貯水部25内の水は加湿に用いられて第一のサーミスタ26は浸水していないはずである。従って、給水弁17が閉じられてから所定の時間t1(例えば4分以上)経過し、且つ第一水位温度と第二水位温度の温度差が大きい場合(例えば2℃以上)には、第一のサーミスタ26は浸水していない可能性があるとして給水弁17を開ける。(S5)
上記制御により、熱交換器7が通水していない場合においても、水位の調整ができる。
That is, when the airway temperature is high (eg, 60 ° C. or higher), the temperature difference between the airway temperature and the second water level temperature is large (eg, 10 ° C. or higher), and the temperature difference between the second water level temperature and the first water level temperature is small. Since it can be determined that the first thermistor 26 has been submerged (for example, less than 2 ° C.), the water supply valve 17 is closed. (S1)
Thereafter, when the temperature difference between the first water level temperature and the second water level temperature is large (for example, 5 ° C. or more), it is determined that the second thermistor 27 is submerged, but the first thermistor 26 is not submerged. Therefore, the water supply valve 17 is opened. (S2)
Normally, the above conditions are alternately set to control the opening and closing of the water supply valve 17, but the water flow of the heat exchanger 7 may be stopped for a long time, such as when the temperature setting is greatly lowered after a long time of high-temperature operation. When the water supply valve 17 continues to be closed, the second thermistor 27 disposed at the bottom of the water storage unit 25 may be dried. At this time, the first water level temperature, the second water level temperature, and the air path temperature are substantially uniform. In that case, since the air path temperature is high (for example, 60 ° C. or more) and the temperature difference between the air path temperature and the second water level temperature is small (for example, less than 10 ° C.), the second thermistor 27 is not submerged. The water supply valve 17 is opened and water is supplied. (S3)
Moreover, since the water flow to the heat exchanger 7 is stopped when the temperature in the sauna room 1 is higher than the target temperature, the temperature around the water storage unit 25 is lowered, and the temperature difference from the supplied water is reduced. In that case, since the air passage temperature is low (for example, less than 60 ° C.) and the temperature difference between the second water level temperature and the first water level temperature is small (for example, less than 2 ° C.), the first thermistor 26 is submerged. There is a possibility that the water supply valve 17 is closed. (S4)
Further, when a predetermined time t1 (for example, 4 minutes or more) has elapsed since the water supply valve 17 was closed, normally, the water in the water storage unit 25 is used for humidification, and the first thermistor 26 is submerged. There should be no. Therefore, when a predetermined time t1 (for example, 4 minutes or more) has passed since the water supply valve 17 was closed and the temperature difference between the first water level temperature and the second water level temperature is large (for example, 2 ° C. or more), the first The thermistor 26 opens the water supply valve 17 because there is a possibility that the thermistor 26 is not flooded. (S5)
With the above control, the water level can be adjusted even when the heat exchanger 7 is not passing water.

次に給水異常判定手段35について、図6のフローチャートをもとに説明する。   Next, the water supply abnormality determination means 35 will be described based on the flowchart of FIG.

通常のサウナ運転時には熱交換器7に温水を通水し、ファンモータ8及び回転モータ21を運転し、給水弁17を開放している。この給水弁17が開いている状態においては、通常状態では貯水部25への給水が始まることとなるので、一定時間経過時には第二のサーミスタ27が浸水し、高い風路温度(例えば60℃以上)と第二水位温度の温度差が大きく(例えば10℃以上)なるはずである。つまりは、サウナ運転が開始して給水弁17が開いた状態から所定の時間t2(例えば10分以上)経過する間、風路温度と第二水位温度の温度差が小さいままの状態(例えば10℃未満)を維持するようであれば、給水経路に何らかの異常があり給水が正しくされていないと判断して、給水の異常を表示部へと発報する。また、発報と同時に装置の運転は停止する。つまり、熱交換器7への通水、ファンモータ8および回転モータ21の運転停止、給水弁17の閉塞を行う。(E1)
上記制御により、給水経路に起こる何らかの異常を検知することが可能となり、製品の不具合に対して迅速な対応が可能となる。
During normal sauna operation, warm water is passed through the heat exchanger 7, the fan motor 8 and the rotary motor 21 are operated, and the water supply valve 17 is opened. In a state in which the water supply valve 17 is open, water supply to the water storage unit 25 starts in a normal state. Therefore, the second thermistor 27 is submerged when a certain period of time has elapsed, and a high airway temperature (for example, 60 ° C. or higher). ) And the second water level temperature should be large (eg, 10 ° C. or more). That is, the temperature difference between the air passage temperature and the second water level temperature remains small (for example, 10 minutes) while a predetermined time t2 (for example, 10 minutes or more) has elapsed since the sauna operation was started and the water supply valve 17 was opened. If the temperature is kept below (° C.), it is determined that there is some abnormality in the water supply path and the water supply is not correct, and the abnormality in the water supply is reported to the display unit. In addition, the operation of the apparatus is stopped simultaneously with the notification. That is, water is supplied to the heat exchanger 7, the operation of the fan motor 8 and the rotary motor 21 is stopped, and the water supply valve 17 is closed. (E1)
With the control described above, it is possible to detect any abnormality that occurs in the water supply path, and it is possible to quickly respond to product defects.

なお、本実施の形態においては、給水される水の温度は低い状態である構成としたが、菌の発生や加湿効率を考えると温水(例えば70℃以上)を給水してもその効果には問題ない。例え高温の温水が給水されても、躯体への熱移動や気化潜熱の影響により、貯水部25で保持される水の温度は概ね40℃以下となるためである。   In this embodiment, the temperature of the supplied water is low. However, considering the generation of bacteria and the humidification efficiency, even if hot water (for example, 70 ° C. or higher) is supplied, the effect is not achieved. no problem. This is because even if high-temperature hot water is supplied, the temperature of the water retained in the water storage unit 25 is approximately 40 ° C. or less due to the influence of heat transfer to the housing and the latent heat of vaporization.

また、ここでは加熱手段として熱交換器7および補助熱交換器11を備えた構成としているが、空気を加熱する手段であればこれに拘るものではなく、電気式のヒータ等を用いても問題はない。また、加熱手段を備える位置関係に関しても、液体微細化手段9の上流に備えられていることが重要であるため、その位置関係となるのであれば、本実施の形態の構成によるものでなくても問題はない。   In addition, here, the heat exchanger 7 and the auxiliary heat exchanger 11 are provided as the heating means. However, the heating means is not limited to this as long as it is means for heating air, and there is a problem even if an electric heater or the like is used. There is no. Further, regarding the positional relationship including the heating unit, it is important that the positional relationship is provided upstream of the liquid micronization unit 9, so that the positional relationship does not depend on the configuration of the present embodiment. There is no problem.

以上、本実施の形態では、上記の液体微細化装置3をサウナ室1に設置してサウナ装置として利用した場合、給水弁を断続的に開閉させることにより、液体微細化手段における液体微細化量を調整でき、結果として、サウナ室の湿度状態に応じて、サウナ室への加湿量を調整でき、サウナ室内を過加湿状態にせず、無駄な水の排出を抑制することができる。   As mentioned above, in this Embodiment, when said liquid refinement | miniaturization apparatus 3 is installed in the sauna chamber 1 and it uses as a sauna apparatus, the amount of liquid refinement | miniaturization in a liquid refinement | miniaturization means is carried out by opening and closing a water supply valve intermittently. As a result, the amount of humidification to the sauna room can be adjusted according to the humidity state of the sauna room, and the sauna room is not over-humidified, and wasteful water discharge can be suppressed.

さらに、供給した水をほぼ完全に微細化することができ、貯水部25にわずかに残った微細化できなかった水を特別に排出せずとも、サウナ運転終了後の乾燥運転によって乾燥できるので、微細化できなかった水を排水として処理するための配管施工の工事が不要となり、結果として、サウナ装置の施工作業が簡単になるという効果を奏する。   Furthermore, the supplied water can be almost completely refined, and it can be dried by the drying operation after the sauna operation is completed, without draining the water that has not been refined slightly remaining in the water reservoir 25, Piping construction for treating the water that could not be refined as wastewater is unnecessary, and as a result, the construction work of the sauna device is simplified.

すなわち定流量弁15のバラツキで設定した流量より多く水が上方の回転板20aの上面に供給された場合にも、貯水部25により貯水できるとともに、揚水管22によりその貯水を回転板に供給できるので、サウナ運転終了時の残水を少なくして乾燥運転時間を短くすることができる。   That is, even when more water is supplied to the upper surface of the upper rotating plate 20a than the flow rate set by the variation of the constant flow valve 15, water can be stored by the water storage unit 25 and the stored water can be supplied to the rotating plate by the pumping pipe 22. Therefore, the remaining water at the end of the sauna operation can be reduced and the drying operation time can be shortened.

以上のように、本発明の液体微細化装置は、
給水弁の開閉を制御することにより、液体微細化手段における貯留水の保持量を調整でき、結果として微細化運転終了後に、給水弁を閉じ、液体を供給しない状態で貯水部の残水に温風を当てる乾燥運転を行う際の乾燥時間を短縮することが出来る。さらには、乾燥運転後には液体微細化装置内の残水はなくなるので、排水管は不要で、液体微細化装置設置時の施工作業を簡単に行えるようにすることができるという効果を奏する。
As described above, the liquid micronizer of the present invention is
By controlling the opening and closing of the water supply valve, the amount of retained water in the liquid refinement means can be adjusted. As a result, after the refinement operation is completed, the water supply valve is closed and the remaining water in the water storage section is heated without supplying liquid. It is possible to shorten the drying time when performing the drying operation in which the wind is applied. Furthermore, since there is no remaining water in the liquid micronizer after the drying operation, there is no need for a drain pipe, and there is an effect that the construction work can be easily performed when the liquid micronizer is installed.

したがって、例えば、サウナ装置、加湿装置、冷却装置、噴霧装置、洗浄装置、植物育成設備等への活用が期待される。また、水だけでなく、油や洗剤等のその他の液体の微細化設備にも利用することが可能である。   Therefore, for example, utilization to a sauna device, a humidifier, a cooling device, a spraying device, a cleaning device, a plant growing facility, and the like is expected. Moreover, it can be used not only for water but also for other liquid refining equipment such as oil and detergent.

1 サウナ室
2 天井面
3 液体微細化装置
4 吸気口
5 排気口
6 本体ケース
7 熱交換器
8 ファンモータ
9 液体微細化手段
10 ファンケーシング
11 補助熱交換器
12 液体微細化手段ケース
12a 上流開口部
12b 下流開口部
13 回転手段
14 給水管
15 定流量弁
16 上流側配管
17 給水弁
19 回転軸
20a、20b 回転板
21 回転モータ
22 揚水管
22a 吸込口
23 エリミネータ
24 開口
25 貯水部
26 第一のサーミスタ
27 第二のサーミスタ
28 制御手段
30 リモコン
31 パイプ
32 配管
33 第三のサーミスタ
34 液体給水判定手段
35 給水異常判定手段
DESCRIPTION OF SYMBOLS 1 Sauna room 2 Ceiling surface 3 Liquid refinement apparatus 4 Intake port 5 Exhaust port 6 Main body case 7 Heat exchanger 8 Fan motor 9 Liquid refinement means 10 Fan casing 11 Auxiliary heat exchanger 12 Liquid refinement means case 12a Upstream opening 12b Downstream opening 13 Rotating means 14 Water supply pipe 15 Constant flow valve 16 Upstream piping 17 Water supply valve 19 Rotating shaft 20a, 20b Rotating plate 21 Rotating motor 22 Pumping pipe 22a Suction port 23 Eliminator 24 Opening 25 Water storage section 26 First thermistor 27 Second Thermistor 28 Control Unit 30 Remote Control 31 Pipe 32 Piping 33 Third Thermistor 34 Liquid Water Supply Determination Unit 35 Water Supply Abnormality Determination Unit

Claims (9)

吸気口と排気口を有する本体ケースと、
この本体ケース内の前記吸込口と前記排気口を結ぶ風路に設けた加熱手段および送風手段と、
この送風手段と前記排気口間の風路内に設けた液体微細化手段と、
この液体微細化手段と加熱手段および送風手段を制御する制御手段を備えた液体微細化装置において、
前記液体微細化手段は、
液体を供給する液体供給手段と、
供給された液体を溜める貯水部と、
前記貯水部に溜められた液体を吸込口から吸上げ微細化する加湿手段とを備え、
前記貯水部内には、
前記加湿手段の吸込口よりも上方に第一の水位と、
前記加湿手段の吸込口よりも下方であって、前記貯水部の底部となる位置に第二の水位を設定するとともに、
前記第一の水位に設けた第一の温度検知手段と、
前記第二の水位に設けた第二の温度検知手段を備え、
前記風路内には、前記加熱手段の下流側に風路温度検知手段を設け、
前記制御手段は、
前記第一、第二の温度検知手段と風路温度検知手段で検知した各温度から前記液体供給手段の開閉を制御する液体給水判定手段を設けるとともに、
前記液体供給手段に不具合が生じて給水がされていないと認識した際には異常を発報する給水異常判定手段を設け、
前記貯水部内に溜められた液体を微細化する微細化運転終了後に前記貯水部に残る液体を乾燥させるための乾燥運転を行う液体微細化装置。
A body case having an air inlet and an air outlet;
A heating means and a blowing means provided in an air passage connecting the suction port and the exhaust port in the main body case;
Liquid refinement means provided in the air passage between the air blowing means and the exhaust port;
In the liquid refinement apparatus provided with a control means for controlling the liquid refinement means, the heating means and the blowing means,
The liquid refinement means includes
Liquid supply means for supplying a liquid;
A water reservoir for storing the supplied liquid;
Humidifying means for sucking up and refining the liquid stored in the water storage part from the suction port;
In the water reservoir,
A first water level above the inlet of the humidifying means;
While setting a second water level at a position below the suction port of the humidifying means and serving as the bottom of the water storage unit,
First temperature detecting means provided at the first water level;
A second temperature detecting means provided at the second water level;
In the air passage, air passage temperature detecting means is provided downstream of the heating means,
The control means includes
While providing liquid supply determination means for controlling the opening and closing of the liquid supply means from each temperature detected by the first and second temperature detection means and the air path temperature detection means,
Providing a water supply abnormality determining means for reporting an abnormality when recognizing that a malfunction has occurred in the liquid supply means and water has not been supplied;
A liquid micronizer for performing a drying operation for drying the liquid remaining in the water reservoir after completion of the micronization operation for micronizing the liquid stored in the water reservoir.
前記液体給水判定手段は、
風路温度検知手段で検知した温度(以降、風路温度)が、所定の温度Twよりも高く、
且つ風路温度と第二の温度検知手段で検知した温度(以降、第二水位温度)との温度差が所定の温度差ΔTaより大きく、
且つ第二水位温度と第一の水位検知手段で検知した温度(以降、第一水位温度)との温度差が所定の温度差ΔTbより小さい場合には、液体の水位は、第一の水位まで浸水していると判断し液体供給手段を閉じて給水を停止する請求項1記載の液体微細化装置。
The liquid water supply determining means includes
The temperature detected by the air path temperature detecting means (hereinafter, air path temperature) is higher than the predetermined temperature Tw,
And the temperature difference between the air path temperature and the temperature detected by the second temperature detection means (hereinafter, the second water level temperature) is larger than a predetermined temperature difference ΔTa,
When the temperature difference between the second water level temperature and the temperature detected by the first water level detection means (hereinafter referred to as the first water level temperature) is smaller than the predetermined temperature difference ΔTb, the liquid level is up to the first water level. 2. The liquid refinement apparatus according to claim 1, wherein it is determined that the liquid is immersed and the liquid supply means is closed to stop water supply.
前記液体給水判定手段は、
第一水位温度と第二水位温度との温度差が所定の温度差ΔTcより大きい場合には、液体の水位は、第一の水位には浸水していないと判断し液体供給手段を開けて給水する判定をする請求項1または2記載の液体微細化装置。
The liquid water supply determining means includes
When the temperature difference between the first water level temperature and the second water level temperature is larger than the predetermined temperature difference ΔTc, it is determined that the liquid water level is not immersed in the first water level, and the liquid supply means is opened to supply water. The liquid refinement apparatus according to claim 1, wherein the determination is made.
前記液体給水判定手段は、
風路温度が所定の温度Twよりも高く、
且つ風路温度と第二水位温度との温度差が所定の温度差ΔTaより小さい場合には、液体の水位は、第二の水位には浸水していないと判断し、液体供給手段を開けて給水する判定をする請求項1〜3いずれかひとつに記載の液体微細化装置。
The liquid water supply determining means includes
The air path temperature is higher than the predetermined temperature Tw,
If the temperature difference between the air passage temperature and the second water level temperature is smaller than the predetermined temperature difference ΔTa, it is determined that the liquid water level is not immersed in the second water level, and the liquid supply means is opened. The liquid refinement apparatus according to any one of claims 1 to 3, wherein determination is made to supply water.
前記液体給水判定手段は、前記加熱手段が駆動していない場合に、
風路温度が所定の温度Twよりも低く、
且つ第二水位温度と第一水位温度との温度差が所定の温度差ΔTbより小さい場合には、液体供給手段を閉じて給水を停止する請求項1〜4いずれかひとつに記載の液体微細化装置。
When the heating means is not driven, the liquid supply determination means
The air path temperature is lower than the predetermined temperature Tw,
The liquid refinement according to any one of claims 1 to 4, wherein when the temperature difference between the second water level temperature and the first water level temperature is smaller than a predetermined temperature difference ΔTb, the liquid supply means is closed and the water supply is stopped. apparatus.
前記液体給水判定手段は、前記加熱手段が駆動していない場合に、
液体給水手段が閉じられてから所定の時間t1が経過し、
且つ第一水位温度と第二水位温度の温度差が所定の温度差ΔTbより大きい場合には、
液体供給手段を開けて給水する請求項1〜5いずれかひとつに記載の液体微細化装置。
When the heating means is not driven, the liquid supply determination means
A predetermined time t1 has elapsed since the liquid water supply means was closed,
And when the temperature difference between the first water level temperature and the second water level temperature is larger than the predetermined temperature difference ΔTb,
The liquid refinement apparatus according to any one of claims 1 to 5, wherein water is supplied by opening the liquid supply means.
前記給水異常判定手段は、
前記液体供給手段が開かれた状態において、
風路温度が所定の温度Twよりも高く、
且つ風路温度と第二水位温度との温度差が所定の温度差ΔTaより小さい状態が所定の時間t2経過した場合に、前記液体供給手段の異常を認識し発報する、請求項1〜6いずれかひとつに記載の液体微細化装置。
The water supply abnormality determining means includes
In a state where the liquid supply means is opened,
The air path temperature is higher than the predetermined temperature Tw,
In addition, when a predetermined time t2 has elapsed when the temperature difference between the air passage temperature and the second water level temperature is smaller than a predetermined temperature difference ΔTa, an abnormality of the liquid supply means is recognized and reported. The liquid refinement apparatus according to any one of the above.
前記第一、第二の温度検知手段、前記風路温度検知手段として、サーミスタを用いた請求項1〜7いずれかひとつに記載の液体微細化装置。 The liquid refinement apparatus according to any one of claims 1 to 7, wherein a thermistor is used as the first and second temperature detection means and the air path temperature detection means. 前記加湿手段は、
上流開口部および下流開口部を有する液体微細化手段ケースと、
この液体微細化手段ケース内に設けた回転手段と、
前記回転手段は、
回転モータと、
この回転モータに固定されるとともに前記貯水部から水を吸上げる揚水管と、
この揚水管の外周面に固定され、前記揚水管の回転軸に対して略直交する回転面を有した回転板とで構成され、
前記回転モータの駆動によって前記揚水管を回転させて貯水部の液体を吸上げ、
吸上げた液体を回転板の回転面に沿って外周方向に飛ばし、液体を微細化することを特徴とする請求項1〜7いずれかひとつに記載の液体微細化装置。
The humidifying means is
A liquid refinement means case having an upstream opening and a downstream opening;
Rotating means provided in the liquid refinement means case;
The rotating means includes
A rotary motor;
A pumping pipe fixed to the rotary motor and sucking up water from the water reservoir;
It is fixed to the outer peripheral surface of this pumping pipe, and is composed of a rotating plate having a rotating surface substantially orthogonal to the rotating shaft of the pumping pipe,
The pump is rotated by driving the rotary motor to suck up the liquid in the reservoir,
The liquid refining apparatus according to any one of claims 1 to 7, wherein the sucked liquid is blown in an outer peripheral direction along a rotating surface of a rotating plate to refine the liquid.
JP2013192514A 2013-09-18 2013-09-18 Liquid refinement device and sauna device using the same Active JP6205580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192514A JP6205580B2 (en) 2013-09-18 2013-09-18 Liquid refinement device and sauna device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192514A JP6205580B2 (en) 2013-09-18 2013-09-18 Liquid refinement device and sauna device using the same

Publications (2)

Publication Number Publication Date
JP2015058079A JP2015058079A (en) 2015-03-30
JP6205580B2 true JP6205580B2 (en) 2017-10-04

Family

ID=52816112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192514A Active JP6205580B2 (en) 2013-09-18 2013-09-18 Liquid refinement device and sauna device using the same

Country Status (1)

Country Link
JP (1) JP6205580B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335328Y2 (en) * 1988-09-30 1991-07-26
JP2006010244A (en) * 2004-06-28 2006-01-12 Yamaha Livingtec Corp Steam generator
EP2140199A4 (en) * 2007-04-19 2013-08-14 Pertti Harvia Steam generator, method for operating a steam generator and a vessel of a steam generator
CN104812111B (en) * 2007-06-05 2017-05-10 瑞思迈有限公司 Electrical heater with particular application to humidification and fluid warming
US8809417B2 (en) * 2008-12-19 2014-08-19 Coloplast A/S Soft shapeable adhesive paste
WO2012026120A1 (en) * 2010-08-26 2012-03-01 パナソニック株式会社 Liquid atomizing device and sauna device using same

Also Published As

Publication number Publication date
JP2015058079A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6255571B2 (en) Liquid refinement device and sauna device using the same
WO2012026120A1 (en) Liquid atomizing device and sauna device using same
JP6255568B2 (en) Sauna equipment
JP7308383B2 (en) humidifier
JP2012200639A (en) Liquid refinement apparatus and sauna apparatus using the same
JP2012152308A (en) Liquid atomizing device and sauna apparatus using the same
JP2015024350A (en) Liquid atomizing device and sauna apparatus using the same
JP6205580B2 (en) Liquid refinement device and sauna device using the same
WO2020136986A1 (en) Humidifier
JP5600950B2 (en) Liquid refinement device and sauna device using the same
WO2020070772A1 (en) Air conditioner, control method, and control device
JP2014158649A (en) Liquid atomizer and sauna apparatus using the same
JP2012250015A (en) Liquid atomizer and sauna apparatus using the same
JP5625786B2 (en) Liquid refinement device and sauna device using the same
JP6240888B2 (en) Liquid refinement device and sauna device
JP5824611B2 (en) Liquid refinement device and sauna device using the same
JP6167285B2 (en) Liquid refinement device and sauna device
JP5696287B2 (en) Liquid refinement device and sauna device using the same
JP2012112612A (en) Liquid atomizing device and sauna device using the same
JP6167286B2 (en) Liquid refinement device and sauna device
JP2012066046A (en) Liquid atomizing device and sauna apparatus using the same
JP7442031B2 (en) Humidification equipment and ventilation equipment
JP2014158650A (en) Liquid atomizer and sauna apparatus using the same
JP5696288B2 (en) Liquid refinement device and sauna device using the same
JP5810324B2 (en) Liquid refinement device and sauna device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R151 Written notification of patent or utility model registration

Ref document number: 6205580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151