JP6204767B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP6204767B2
JP6204767B2 JP2013191437A JP2013191437A JP6204767B2 JP 6204767 B2 JP6204767 B2 JP 6204767B2 JP 2013191437 A JP2013191437 A JP 2013191437A JP 2013191437 A JP2013191437 A JP 2013191437A JP 6204767 B2 JP6204767 B2 JP 6204767B2
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
auxiliary
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013191437A
Other languages
Japanese (ja)
Other versions
JP2015061325A (en
Inventor
宮内 靖
靖 宮内
大貫 悟
悟 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2013191437A priority Critical patent/JP6204767B2/en
Publication of JP2015061325A publication Critical patent/JP2015061325A/en
Application granted granted Critical
Publication of JP6204767B2 publication Critical patent/JP6204767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、送電装置に具備された送電コイルと受電装置に具備された受電コイルを介して、非接触(ワイヤレス)で電力の伝送を行う非接触電力伝送装置に関する。 The present invention, through the power receiving coil provided in the power transmission coil and the power receiving device provided in the power transmitting device, a non-contact (wireless) relates to the power non-contact power transmission equipment which transmits a.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導方式、磁界共鳴を介したLC共振間伝送による磁界共鳴方式、電波(数GHz)によるマイクロ波送電方式、あるいは可視光領域の電磁波(光)によるレーザ送電方式が知られている。この中で既に実用化されているのは、電磁誘導方式である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   Non-contact power transmission methods include electromagnetic induction using electromagnetic induction (several hundreds of kHz), magnetic resonance using LC resonance transmission via magnetic resonance, microwave power transmission using radio waves (several GHz), or visible light region. A laser power transmission method using electromagnetic waves (light) is known. Among them, the electromagnetic induction method has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって磁界共鳴方式の電力伝送が注目を浴びてきた。磁界共鳴方式は人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる点と、伝送距離が長いことが注目を浴びてきている理由である。   Therefore, recently, magnetic resonance type power transmission has attracted attention. The magnetic field resonance method is attracting attention because the human body hardly absorbs energy and avoids dielectric loss and the long transmission distance.

近年、非接触電力伝送装置を携帯電話等の小型機器に搭載することが検討されており、非接触電力伝送装置の小型化や薄型化への要求が大きい。そのため、前述の電磁誘導方式や磁界共鳴方式による非接触電力伝送装置では、受電装置には受電コイルとして平面コイルが採用される。受電装置は受電回路や充電池を含む場合が多いが、受電装置の薄型化の観点から、受電コイルはその面が充電池や受電回路の面と平行になるように配置される。この場合、受電コイルを通る磁束が受電装置の受電回路や充電池と鎖交するため、電磁誘導により渦電流が発生してしまう。渦電流は伝送効率を低下させ、回路部品が発熱したり誤動作してしまうといった問題があった。   In recent years, it has been studied to mount a non-contact power transmission device on a small device such as a mobile phone, and there is a great demand for downsizing and thinning the non-contact power transmission device. Therefore, in the above-described non-contact power transmission device using the electromagnetic induction method or the magnetic field resonance method, a planar coil is adopted as the power receiving coil in the power receiving device. In many cases, the power receiving device includes a power receiving circuit and a rechargeable battery. From the viewpoint of reducing the thickness of the power receiving device, the power receiving coil is disposed so that the surface thereof is parallel to the surface of the rechargeable battery or the power receiving circuit. In this case, since the magnetic flux passing through the power receiving coil is linked to the power receiving circuit and the rechargeable battery of the power receiving device, an eddy current is generated due to electromagnetic induction. Eddy currents have a problem in that transmission efficiency is reduced, and circuit components generate heat or malfunction.

その問題を解決するために、特許文献1では受電コイルと二次電池や基板との間に磁性箔や磁性シートを設けている。磁性箔体や磁性シートによって、充電時に受電コイルを通る磁束をシールドすることができる。これにより、回路基板と鎖交する磁束が減少するため、電磁誘導による渦電流の発生を抑制できる。   In order to solve the problem, in Patent Document 1, a magnetic foil or a magnetic sheet is provided between the power receiving coil and the secondary battery or substrate. The magnetic foil or the magnetic sheet can shield the magnetic flux passing through the power receiving coil during charging. As a result, the magnetic flux interlinking with the circuit board is reduced, so that the generation of eddy current due to electromagnetic induction can be suppressed.

特許5231993号公報Japanese Patent No. 5231993

特許文献1では、渦電流の発生を防止するために磁性箔や磁性シートを用いているが、受電電力が大きい場合には、二次電池や基板などで生じる渦電流によるエネルギー損失が大きいため、磁性箔や磁性シートの厚さを厚くする必要がある。その結果、受電装置が大きくかつ重くなってしまい、受電装置の小型・軽量化の妨げになっていた。さらに、磁性箔や磁性シートは高価であるので、受電装置の低価格化の妨げにもなっていた。特許文献1は電磁誘導方式に基づくが、このような問題は磁界共鳴方式においても同様である。   In Patent Document 1, a magnetic foil or a magnetic sheet is used to prevent the generation of eddy current. However, when the received power is large, energy loss due to eddy current generated in the secondary battery or the substrate is large. It is necessary to increase the thickness of the magnetic foil or magnetic sheet. As a result, the power receiving device becomes large and heavy, which hinders the reduction in size and weight of the power receiving device. Furthermore, since the magnetic foil and the magnetic sheet are expensive, it has also hindered the price reduction of the power receiving apparatus. Although Patent Document 1 is based on an electromagnetic induction method, such a problem is the same in the magnetic field resonance method.

本発明は、このような従来における問題点を解決するものであり、磁界共鳴方式において、従来に比べて磁性シートを薄くしたり、場合によっては磁性シートを省略しても確実に電力伝送が行えると共に、充電池や回路部品での発熱や誤動作が生じることのない、低コスト化かつ小型・軽量化が可能な非接触電力伝送装置を提供することを目的とする。 The present invention solves such problems in the prior art, and in the magnetic field resonance method, even if the magnetic sheet is made thinner than the conventional one, or even if the magnetic sheet is omitted, it is possible to reliably transmit power. together, it is not to occur heat generation and malfunctions in battery or circuit components, and to provide a non-contact power transmission equipment provides low cost and small size and weight.

上記課題を解決するために、本発明の非接触電力伝送装置は、送電コイルと共振容量により構成された送電共振器を有する送電装置と、受電コイルと共振容量により構成された受電共振器および受電回路を有する受電装置とを備え、送電コイルと受電コイルの間の磁界共鳴により送電装置から受電装置へ電力を伝送する非接触電力伝送装置において、補助コイルと共振容量により構成された補助共振器を有する送電補助装置を更に備え、前記送電装置と前記送電補助装置を互いに対向させて配置することにより、前記送電コイルと前記補助コイルの間に前記受電コイルを配置するための受電空間を形成し、前記受電空間において、前記受電コイルが配置されている領域の磁場を強くし、前記受電回路が配置されている領域の磁場を弱くするように補助共振器の共振周波数を設定することを特徴とする。   In order to solve the above-described problems, a contactless power transmission device according to the present invention includes a power transmission device including a power transmission resonator including a power transmission coil and a resonance capacitor, a power reception resonator including a power reception coil and a resonance capacitor, and a power reception device. A non-contact power transmission device comprising a power receiving device having a circuit and transmitting power from the power transmitting device to the power receiving device by magnetic field resonance between the power transmitting coil and the power receiving coil. Further comprising a power transmission auxiliary device having the power transmission device and the power transmission auxiliary device facing each other to form a power reception space for arranging the power reception coil between the power transmission coil and the auxiliary coil, In the power receiving space, the magnetic field in the region where the power receiving coil is disposed is strengthened, and the magnetic field in the region where the power receiving circuit is disposed is weakened. And sets the resonant frequency of the auxiliary resonator.

本発明によれば、補助共振器の共振周波数を調整することにより受電空間内における磁場の強度分布を制御できる。これにより受電装置内の受電コイルが配置されている領域の磁場を強くするとともに、受電装置内の受電回路や充電池などが配置されている領域の磁場を弱くすることが可能となる。その結果、確実に電力伝送が行えると共に、受電回路や充電池などで生じる渦電流によるエネルギー損失を低減でき、伝送効率の低下、回路部品での発熱や回路の誤動作といった従来の問題を解決できる。また、受電回路との間に設けたフェライトなどの磁性シートの厚さを薄くしたり、あるいは省略することもできるので、従来に比べて受電装置の低コスト化が可能となる。   According to the present invention, the intensity distribution of the magnetic field in the power receiving space can be controlled by adjusting the resonance frequency of the auxiliary resonator. As a result, the magnetic field in the region where the power receiving coil in the power receiving device is arranged can be strengthened, and the magnetic field in the region where the power receiving circuit, the rechargeable battery, etc. in the power receiving device are arranged can be weakened. As a result, power can be transmitted reliably, energy loss due to eddy current generated in a power receiving circuit or a rechargeable battery can be reduced, and conventional problems such as a decrease in transmission efficiency, heat generation in circuit components and circuit malfunction can be solved. Further, since the thickness of a magnetic sheet such as ferrite provided between the power receiving circuit and the power receiving circuit can be reduced or omitted, the power receiving device can be reduced in cost as compared with the prior art.

実施の形態1における電力伝送のための各要素装置の配置を示す模式図Schematic diagram showing the arrangement of each element device for power transmission in the first embodiment コイル中心位置での送電コイルと受電コイル間の距離Xに対する受電パワー依存性を示すグラフThe graph which shows the power receiving power dependence with respect to the distance X between the power transmission coil in a coil center position, and a power receiving coil 図2の受電空間における磁場測定結果を示すグラフThe graph which shows the magnetic field measurement result in the receiving space of FIG. 実施の形態2における電力伝送のための各要素装置の配置と受電空間内の磁場強度の関係を示す図The figure which shows the relationship between arrangement | positioning of each element apparatus for electric power transmission in Embodiment 2, and the magnetic field intensity in a receiving space 実施の形態2で用いた筐体の中にラジオコントロールカーを配置して電力伝送を行う場合の模式図Schematic diagram in the case where a radio control car is arranged in the housing used in Embodiment 2 to perform power transmission 実施の形態3における電力伝送のための各要素装置の配置と受電空間内の磁場強度の関係を示す図The figure which shows the relationship between arrangement | positioning of each element apparatus for electric power transmission in Embodiment 3, and the magnetic field intensity in a receiving space 実施の形態3で用いた筐体の中にラジオコントロールカーを配置して電力伝送を行う場合の模式図Schematic diagram in the case where a radio control car is arranged in the housing used in Embodiment 3 to perform power transmission 実施の形態4における筐体の形状と受電装置を筐体内に入れる方向を示す模式図Schematic diagram illustrating the shape of the housing and the direction in which the power receiving device is placed in the housing in Embodiment 4. 送電コイルと補助コイル間の距離を変えた場合の伝送効率を示す模式図Schematic diagram showing transmission efficiency when the distance between the power transmission coil and auxiliary coil is changed

以下、本発明の実施の形態について、図面を参照しながら説明する。各実施の形態は、本発明を具現化する為の一例を示したものであり、これに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each embodiment shows an example for embodying the present invention, and the present invention is not limited to this.

<実施の形態1>
図1は、実施の形態1における磁界共鳴型の非接触電力伝送装置の構成を示す模式図である。本発明の非接触電力伝送装置20は、送電装置1と受電装置2に加えて送電補助装置3を備えるのが特徴である。
<Embodiment 1>
FIG. 1 is a schematic diagram illustrating a configuration of a magnetic field resonance type non-contact power transmission apparatus according to the first embodiment. The contactless power transmission device 20 of the present invention is characterized by including a power transmission auxiliary device 3 in addition to the power transmission device 1 and the power reception device 2.

送電装置1は、送電コイル4と交流電源5と高周波電力ドライバー6を備える。高周波電力ドライバー6は、交流電源5の電力を送電可能な高周波電力に変換し、送電コイル4に高周波電力を供給する。高周波電力は送電コイル4を介して受電装置2の受電コイル7に送電される。   The power transmission device 1 includes a power transmission coil 4, an AC power source 5, and a high frequency power driver 6. The high-frequency power driver 6 converts the power of the AC power source 5 into high-frequency power that can be transmitted, and supplies the power transmission coil 4 with the high-frequency power. The high frequency power is transmitted to the power receiving coil 7 of the power receiving device 2 through the power transmitting coil 4.

送電装置1には、送電用のループコイルを設けても良い。なお、図示は省略するが、送電コイル4には共振容量が接続されており、送電コイル4と共振容量とで送電共振器を構成している。共振容量としては、可変コンデンサ(バリコンあるいはトリマコンデンサなど)あるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。   The power transmission device 1 may be provided with a power transmission loop coil. Although illustration is omitted, a resonance capacitor is connected to the power transmission coil 4, and the power transmission coil 4 and the resonance capacitor constitute a power transmission resonator. As the resonance capacitance, a variable capacitor (variable capacitor or trimmer capacitor) or a fixed capacitor may be connected, or a configuration using a stray capacitance may be used.

受電装置2は、受電コイル7と受電用ループコイル8を備える。送電コイル4から受電コイル7に伝送された高周波電力は、電磁誘導の作用により受電用ループコイル8に伝送される。受電用ループコイル8で得られた電力は、整流回路を搭載した受電回路9を経由して、負荷の充電池10に蓄えられる。なお、図1の受電装置2では電力を充電池10に蓄積した例を示すが、充電池10を用いないで直接負荷へ電力を伝送する構成にしてもよい。また、場合によっては受電用ループコイル8を用いない構成としても良い。   The power receiving device 2 includes a power receiving coil 7 and a power receiving loop coil 8. The high frequency power transmitted from the power transmission coil 4 to the power reception coil 7 is transmitted to the power reception loop coil 8 by the action of electromagnetic induction. The electric power obtained by the power receiving loop coil 8 is stored in a load rechargeable battery 10 via a power receiving circuit 9 equipped with a rectifier circuit. In addition, although the example which accumulate | stored electric power in the rechargeable battery 10 is shown in the power receiving apparatus 2 of FIG. 1, you may make it the structure which transmits electric power directly to load without using the rechargeable battery 10. FIG. In some cases, the power receiving loop coil 8 may not be used.

また、充電池10としてコイン電池等の小型電池を用いる場合には、受電用ループコイル8と受電回路9との間に、磁性シート11を配置してもよい。磁性シート11の材料は、伝送時の共振周波数において高透磁率を有するフェライトが好ましい。   When a small battery such as a coin battery is used as the rechargeable battery 10, the magnetic sheet 11 may be disposed between the power receiving loop coil 8 and the power receiving circuit 9. The material of the magnetic sheet 11 is preferably ferrite having high permeability at the resonance frequency during transmission.

送電補助装置3は、補助コイル12と調整用コンデンサ13で構成される補助共振器を有する。なお、調整用コンデンサ13は可変コンデンサ(バリコンあるいはトリマコンデンサなど)や固定コンデンサを複数個接続することにより構成してもよい。ただし、補助共振器の共振周波数を調整する方法は、調整用コンデンサ13の容量を調整する方法に限るものではない。   The power transmission auxiliary device 3 includes an auxiliary resonator including an auxiliary coil 12 and an adjustment capacitor 13. The adjusting capacitor 13 may be configured by connecting a plurality of variable capacitors (variable capacitors or trimmer capacitors) or fixed capacitors. However, the method of adjusting the resonance frequency of the auxiliary resonator is not limited to the method of adjusting the capacitance of the adjustment capacitor 13.

次に、本実施の形態の特徴である送電補助装置3の機能について説明する。図9は、電力伝送効率の周波数依存性を模式的に示した図である。送電コイル4と補助コイル12の距離が十分に離れている場合には、送電共振器と補助共振器の相互インダクタンスがほとんど無視できる(結合力が弱い)。この場合、図9(a)に示すように、送電側共振系の共振周波数ftは送電装置1の共振周波数f1と同じ1つのピークを持つ単峰特性となる(疎結合状態)。送信側共振系とは、送電コイル4と共振容量で構成されている送電共振器と、補助コイル12と共振容量で構成されている補助共振器の磁気的な結合によって構成される共振系である。一方、送電コイル4と補助コイル12の距離が短い場合には、送電共振器と補助共振器の相互インダクタンスが無視できなる(結合力が強い)。この場合、図9(b)に示すように、送信側共振系の共振周波数ftは2つのピーク(ftLとftH)を持つ双峰特性となる(密結合状態)。   Next, the function of the power transmission auxiliary device 3 that is a feature of the present embodiment will be described. FIG. 9 is a diagram schematically showing the frequency dependence of the power transmission efficiency. When the distance between the power transmission coil 4 and the auxiliary coil 12 is sufficiently large, the mutual inductance between the power transmission resonator and the auxiliary resonator can be almost ignored (the coupling force is weak). In this case, as shown in FIG. 9A, the resonance frequency ft of the power transmission side resonance system has a single peak characteristic having the same peak as the resonance frequency f1 of the power transmission device 1 (loosely coupled state). The transmission-side resonance system is a resonance system configured by magnetic coupling of a power transmission resonator that is configured by the power transmission coil 4 and the resonant capacitor, and an auxiliary resonator that is configured by the auxiliary coil 12 and the resonant capacitor. . On the other hand, when the distance between the power transmission coil 4 and the auxiliary coil 12 is short, the mutual inductance between the power transmission resonator and the auxiliary resonator cannot be ignored (the coupling force is strong). In this case, as shown in FIG. 9B, the resonance frequency ft of the transmission-side resonance system has a bimodal characteristic having two peaks (ftL and ftH) (tightly coupled state).

このように、送電コイルと受電コイルの距離が近く、電力伝送効率の周波数特性が双峰特性となる場合には、最大の伝送効率が得られる周波数は共振周波数ftではなくなってしまう。双峰特性における周波数ftでの伝送効率は、送電コイルと受電コイルの距離によって変化するので、送電装置における高周波電力の周波数が一定のままでは、高効率の電力伝送ができないという問題点があった。   As described above, when the distance between the power transmission coil and the power reception coil is short and the frequency characteristic of the power transmission efficiency is a bimodal characteristic, the frequency at which the maximum transmission efficiency is obtained is not the resonance frequency ft. Since the transmission efficiency at the frequency ft in the bimodal characteristics changes depending on the distance between the power transmission coil and the power reception coil, there is a problem that high-efficiency power transmission cannot be performed if the frequency of the high-frequency power in the power transmission device remains constant. .

本発明においては、補助コイル12に接続されるコンデンサとして容量が可変な調整用コンデンサ13を用い、調整用コンデンサ13の容量を調整して送電補助装置3の共振周波数f3を変えることにより、送電側共振系の共振周波数ftを変化させることができる。これにより、送電コイル4と補助コイル12で形成される受電空間内の磁場の強度を制御することが可能となる。なお、送電補助装置3の具体的な機能や共振周波数などの調整方法については、先に出願されている特開2013−85436公報に記載されている。   In the present invention, an adjustment capacitor 13 having a variable capacity is used as a capacitor connected to the auxiliary coil 12, and the resonance frequency f3 of the power transmission auxiliary device 3 is changed by adjusting the capacity of the adjustment capacitor 13, thereby transmitting the transmission side. The resonance frequency ft of the resonance system can be changed. As a result, the strength of the magnetic field in the power receiving space formed by the power transmission coil 4 and the auxiliary coil 12 can be controlled. Note that a specific function of the power transmission auxiliary device 3 and a method for adjusting the resonance frequency and the like are described in Japanese Patent Application Laid-Open No. 2013-85436 filed earlier.

送電補助装置3による受電空間内における磁場強度の制御機能を十分に得るためには、送電補助装置3を構成する補助コイル12は、送電コイル4の形状とほぼ同じとし、両者のコイルの中心軸もほぼ同軸に配置することが望ましい。   In order to sufficiently obtain the function of controlling the magnetic field strength in the power receiving space by the power transmission auxiliary device 3, the auxiliary coil 12 constituting the power transmission auxiliary device 3 is substantially the same as the shape of the power transmission coil 4, and the central axis of both coils Also, it is desirable to arrange them almost coaxially.

送電補助装置3を用いれば電力の伝送距離を拡大することができる。そのためには、送電コイル4の直径をd1、受電コイル7の直径をd2、補助コイル12の直径をd3とした時、d1>d2、かつd2<d3の関係を満足すればよい。送電コイル4の直径d1が受電コイル7の直径d2よりも大きければ、補助コイル12との間の磁束を有効に利用することができ、また、補助コイル12の直径d3が受電コイル7の直径d2よりも大きければ送電コイル4との間の磁束を利用することができるためである。   If the power transmission auxiliary device 3 is used, the transmission distance of power can be increased. For this purpose, when the diameter of the power transmission coil 4 is d1, the diameter of the power reception coil 7 is d2, and the diameter of the auxiliary coil 12 is d3, the relationship of d1> d2 and d2 <d3 may be satisfied. If the diameter d1 of the power transmission coil 4 is larger than the diameter d2 of the power receiving coil 7, the magnetic flux between the auxiliary coil 12 can be used effectively, and the diameter d3 of the auxiliary coil 12 is equal to the diameter d2 of the power receiving coil 7. This is because the magnetic flux between the power transmission coil 4 can be used as long as it is larger.

図2は、図1の非接触電力伝送装置を用いて実際に電力伝送を行い、送電コイル4から受電コイル7までの距離Xと、受電回路9内の整流回路の出力電力との関係を調べた結果のグラフである。なお、整流回路の出力電力は受電パワーに相当する。ここで各共振器における共振周波数は、送電装置1のf1、受電装置2のf2、高周波電力ドライバー6の共振周波数f0、全て13.6MHzと同じにした。送電コイル4と補助コイル12間の距離Zは50mmとした。受電コイル7の位置に応じた受電パワーの変化を調べる為に、送電コイル4と送電補助コイル12で形成される受電空間内で、受電コイル7を距離Z方向に移動させた。このとき、送電コイル4から受電コイル7までの距離をXとした。そして、補助コイル12に接続した調整用コンデンサ13の容量を変化させることにより、送電補助装置3の共振周波数f3を、12MHz、13MHz、13.6MHz、14MHz、及び15MHzにそれぞれ設定し、各f3値において距離Xと受電パワーの関係を測定した。   FIG. 2 shows the relationship between the distance X from the power transmission coil 4 to the power reception coil 7 and the output power of the rectifier circuit in the power reception circuit 9 by actually performing power transmission using the non-contact power transmission device of FIG. It is a graph of the result. Note that the output power of the rectifier circuit corresponds to the received power. Here, the resonance frequency in each resonator is the same as f1 of the power transmission device 1, f2 of the power reception device 2, and the resonance frequency f0 of the high-frequency power driver 6, all at 13.6 MHz. The distance Z between the power transmission coil 4 and the auxiliary coil 12 was 50 mm. In order to examine a change in the received power according to the position of the power receiving coil 7, the power receiving coil 7 was moved in the distance Z direction within the power receiving space formed by the power transmitting coil 4 and the power transmission auxiliary coil 12. At this time, the distance from the power transmission coil 4 to the power reception coil 7 was set to X. Then, by changing the capacitance of the adjustment capacitor 13 connected to the auxiliary coil 12, the resonance frequency f3 of the power transmission auxiliary device 3 is set to 12 MHz, 13 MHz, 13.6 MHz, 14 MHz, and 15 MHz, respectively. The relationship between the distance X and the received power was measured.

図2に示す通り、送電補助装置3の共振周波数f3が12MHzの時には、距離X=35mm以上の領域では受電パワーがほとんどゼロであることがわかる。これは、送電共振器と補助共振器の相互インダクタンスがほとんど無視できる状態であり、送電装置1の共振周波数f1が送電側共振系の共振周波数ftとなっているからである。   As shown in FIG. 2, when the resonance frequency f3 of the power transmission auxiliary device 3 is 12 MHz, it can be seen that the received power is almost zero in the region where the distance X = 35 mm or more. This is because the mutual inductance between the power transmission resonator and the auxiliary resonator is almost negligible, and the resonance frequency f1 of the power transmission device 1 is the resonance frequency ft of the power transmission side resonance system.

送電補助装置3の共振周波数f3を13MHzとして1MHz大きくした時には、送電共振器と補助共振器の相互インダクタンスが大きくなり、距離X=約30mm付近で受電パワーが最低となる。   When the resonance frequency f3 of the power transmission auxiliary device 3 is 13 MHz and is increased by 1 MHz, the mutual inductance between the power transmission resonator and the auxiliary resonator increases, and the received power becomes the lowest in the vicinity of the distance X = about 30 mm.

送電補助装置3の共振周波数f3が、送電装置1の共振周波数f1と同じ共振周波数(13.6MHz)の時には、送電コイル4に近い距離Xが小さい領域で受電パワーが最も小さく、距離Xが大きくなるに従って受電パワーが上昇していき、補助コイル12に近い領域で最も大きくなる。   When the resonance frequency f3 of the power transmission auxiliary device 3 is the same resonance frequency (13.6 MHz) as the resonance frequency f1 of the power transmission device 1, the received power is the smallest and the distance X is large in the region where the distance X close to the power transmission coil 4 is small. As the power increases, the received power increases and becomes the largest in the region close to the auxiliary coil 12.

送電補助装置3の共振周波数f3が14MHzの時には、受電コイル7が送電コイル4と送電補助コイル12で形成される受電空間内のどの位置にあっても、高い受電パワーを得ることができる。即ち、送電コイル4と補助コイル12間の距離Zが一定の場合、送電補助装置の共振周波数f3を適切な値にすることにより、受電コイル4の受電空間内における位置が変わっても安定な受電パワーを得ることができる。   When the resonance frequency f3 of the power transmission auxiliary device 3 is 14 MHz, high power reception power can be obtained regardless of the position in the power reception space where the power reception coil 7 is formed by the power transmission coil 4 and the power transmission auxiliary coil 12. That is, when the distance Z between the power transmission coil 4 and the auxiliary coil 12 is constant, stable power reception can be achieved even if the position of the power reception coil 4 in the power reception space is changed by setting the resonance frequency f3 of the power transmission auxiliary device to an appropriate value. You can get power.

送電補助装置3の共振周波数f3が15MHzの時には、距離Xが大きくなるのに従って受電パワーが低下していくことがわかる。これは送電共振器と補助共振器の相互インダクタンスが小さくなる為と考えられる。   It can be seen that when the resonance frequency f3 of the power transmission auxiliary device 3 is 15 MHz, the received power decreases as the distance X increases. This is considered because the mutual inductance of the power transmission resonator and the auxiliary resonator is reduced.

このように送電補助装置3の共振周波数f3を適切に設定することにより、受電コイル4の受電空間内の位置に応じて、受電パワーを制御することができることがわかる。   Thus, it can be seen that by appropriately setting the resonance frequency f3 of the power transmission auxiliary device 3, it is possible to control the received power according to the position of the power receiving coil 4 in the power receiving space.

図3は、図1の非接触電力伝送装置を用いて実際に電力伝送を行い、送電コイル4から受電コイル7までの距離Xと、受電空間内の磁場強度との関係を調べたグラフである。   FIG. 3 is a graph showing the relationship between the distance X from the power transmission coil 4 to the power reception coil 7 and the magnetic field strength in the power reception space by actually performing power transmission using the non-contact power transmission device of FIG. .

磁場強度を測定する為に用いたプローブの電圧値を磁場強度とした。送電補助装置3の共振周波数f3は図2と同じように、12MHz、13MHz、13.6MHz、14MHz、及び15MHzにそれぞれ設定した。図2と図3を比較すると、図3の結果は図2の結果とほぼ同じ傾向を示していることがわかる。すなわち、受電パワーの大きさはその位置での磁場強度の大きさで決まるといってもよい。このように、送電補助装置3の共振周波数f3を変えることにより、受電空間内の磁場強度の分布を制御することができる。   The voltage value of the probe used for measuring the magnetic field strength was defined as the magnetic field strength. The resonance frequency f3 of the power transmission auxiliary device 3 was set to 12 MHz, 13 MHz, 13.6 MHz, 14 MHz, and 15 MHz, respectively, as in FIG. Comparing FIG. 2 and FIG. 3, it can be seen that the result of FIG. 3 shows almost the same tendency as the result of FIG. That is, it can be said that the magnitude of the received power is determined by the magnitude of the magnetic field strength at that position. In this way, by changing the resonance frequency f3 of the power transmission auxiliary device 3, the distribution of the magnetic field strength in the power receiving space can be controlled.

本発明は、送電補助装置を用いれば受電空間内の磁場強度の分布を制御できることを見出し、磁場の影響を受けやすい受電回路や充電池などが配置されている領域では磁場を弱くし、電力伝送効率を大きく取りたい受電コイルが配置されている領域では磁場が強くなるように、送電補助装置3の共振周波数f3を設定することを特徴とする。   The present invention finds that the distribution of the magnetic field strength in the receiving space can be controlled by using the power transmission auxiliary device, and weakens the magnetic field in a region where a power receiving circuit or a rechargeable battery that is easily affected by the magnetic field is disposed, thereby transmitting power. It is characterized in that the resonance frequency f3 of the power transmission auxiliary device 3 is set so that the magnetic field becomes stronger in the region where the power receiving coil for which efficiency is desired to be increased is arranged.

本発明は、送電コイルと受電コイルの距離が近く相互インダクタンスが無視できなくなり、電力伝送効率の周波数特性が2つの峰を持つ双峰特性となる(密結合状態)場合に効果を発揮する。送電装置1に搭載されている高周波電力ドライバー6から出力される高周波電力の周波数をf0、送電共振器の共振周波数をf1、受電共振器の共振周波数をf2、補助共振器の共振周波数をf3とすると、f3≦f1の条件を満たせば、受電空間内で磁場の弱い領域を作り出すことができる(図3においては、例えばf3が12MHzから13.6MHzの間)。例えば、磁場の弱い領域を送電コイル側に形成したり、逆に磁場の弱い領域を補助コイル側に形成することもできる。特に、f0=f1=f2≧f3の条件を満たせば、伝送効率が大きくなるので好ましい。   The present invention is effective when the distance between the power transmission coil and the power reception coil is short and the mutual inductance cannot be ignored, and the frequency characteristic of the power transmission efficiency is a bimodal characteristic having two peaks (tightly coupled state). The frequency of the high frequency power output from the high frequency power driver 6 mounted on the power transmission device 1 is f0, the resonance frequency of the power transmission resonator is f1, the resonance frequency of the power reception resonator is f2, and the resonance frequency of the auxiliary resonator is f3. Then, if the condition of f3 ≦ f1 is satisfied, a region having a weak magnetic field can be created in the power receiving space (in FIG. 3, for example, f3 is between 12 MHz and 13.6 MHz). For example, a region having a weak magnetic field can be formed on the power transmission coil side, or a region having a weak magnetic field can be formed on the auxiliary coil side. In particular, it is preferable to satisfy the condition of f0 = f1 = f2 ≧ f3 because the transmission efficiency is increased.

なお、本実施の形態では、共振周波数をMHz帯としたが、KHz帯(例えば、f1などが100kHz)でも同様な効果が得られる。   In this embodiment, the resonance frequency is in the MHz band, but the same effect can be obtained even in the KHz band (for example, f1 is 100 kHz).

また、図示は省略しているが、送電装置1、受電装置2、送電補助装置3の相互間での通信手段及び回路等を設けている。また、必要に応じて送電コイル4の反射電力、共振周波数、電流値、あるいは電圧値などをモニターする手段を含んでもよい。   Although not shown, communication means, a circuit, and the like between the power transmission device 1, the power reception device 2, and the power transmission auxiliary device 3 are provided. Moreover, a means for monitoring the reflected power, resonance frequency, current value, voltage value, etc. of the power transmission coil 4 may be included as necessary.

<実施の形態2>
図4は、実施の形態2における磁界共鳴型の非接触電力伝送装置の構成と受電空間内の磁場強度分布の対応関係を示す図である。送電コイル4と補助コイル12間の距離Zは50mmとした。
<Embodiment 2>
FIG. 4 is a diagram illustrating a correspondence relationship between the configuration of the magnetic field resonance type non-contact power transmission apparatus according to the second embodiment and the magnetic field strength distribution in the power receiving space. The distance Z between the power transmission coil 4 and the auxiliary coil 12 was 50 mm.

図4に示したように、実施の形態2における受電装置2では、受電コイル7が送電コイル4に近い位置に配置され、受電回路9や充電池10が送電コイル4と補助コイル12のほぼ中間位置に配置されている。送電装置1に搭載されている高周波電力ドライバー6から出力される高周波電力の周波数をf0、送電共振器の共振周波数をf1、受電共振器の共振周波数をf2、補助共振器の共振周波数をf3とすると、それぞれf0=f1=f2=13.6MHz、f3=13MHzに設定した。   As shown in FIG. 4, in the power receiving device 2 according to the second embodiment, the power receiving coil 7 is disposed at a position close to the power transmitting coil 4, and the power receiving circuit 9 and the rechargeable battery 10 are substantially between the power transmitting coil 4 and the auxiliary coil 12. Placed in position. The frequency of the high frequency power output from the high frequency power driver 6 mounted on the power transmission device 1 is f0, the resonance frequency of the power transmission resonator is f1, the resonance frequency of the power reception resonator is f2, and the resonance frequency of the auxiliary resonator is f3. Then, f0 = f1 = f2 = 13.6 MHz and f3 = 13 MHz were set, respectively.

図4の磁場強度分布のグラフに示したように、受電コイル7が配置されている領域の磁場を強くしつつ(高磁場領域A)、受電回路9や充電地10が配置されている領域の磁場を弱くできる(低磁場領域A)。受電コイル7が配置されている領域の磁場が強いので確実に電力伝送が行える。また、受電回路9や充電地10が配置されている領域の磁場が弱いので、受電回路9や充電池10で生じる渦電流によるエネルギー損失が発生しにくい。その結果、伝送効率の低下や受電回路9での発熱や誤動作といった従来の問題を解決できる。さらに、受電回路9や充電地10が配置されている領域の磁場が弱いので、受電コイル7と受電回路9の間に設けた磁性シート11の厚さを薄くしても問題がない。これにより受電装置2の小型化と低コスト化を実現できる。   As shown in the graph of the magnetic field strength distribution in FIG. 4, while strengthening the magnetic field in the region where the power receiving coil 7 is disposed (high magnetic field region A), the region in which the power receiving circuit 9 and the charging ground 10 are disposed. The magnetic field can be weakened (low magnetic field region A). Since the magnetic field in the region where the power receiving coil 7 is disposed is strong, power transmission can be reliably performed. In addition, since the magnetic field in the region where the power receiving circuit 9 and the charging ground 10 are arranged is weak, energy loss due to eddy current generated in the power receiving circuit 9 and the rechargeable battery 10 hardly occurs. As a result, conventional problems such as a decrease in transmission efficiency, heat generation in the power receiving circuit 9, and malfunction can be solved. Furthermore, since the magnetic field in the region where the power receiving circuit 9 and the charging ground 10 are disposed is weak, there is no problem even if the thickness of the magnetic sheet 11 provided between the power receiving coil 7 and the power receiving circuit 9 is reduced. Thereby, size reduction and cost reduction of the power receiving apparatus 2 are realizable.

図5は、図4のように受電コイル7が送電コイル4に近い位置に配置され、受電回路9や充電池10が送電コイル4と補助コイル12の中間の位置に配置されている非接触電力伝送装置の具体例を示したものである。受電装置2がラジオコントロールカーである場合を例示している。   5, the non-contact power in which the power receiving coil 7 is disposed at a position close to the power transmitting coil 4 and the power receiving circuit 9 and the rechargeable battery 10 are disposed at an intermediate position between the power transmitting coil 4 and the auxiliary coil 12 as illustrated in FIG. A specific example of a transmission apparatus is shown. The case where the power receiving apparatus 2 is a radio control car is illustrated.

筐体14は、受電空間が形成されるように、送電装置1と送電補助装置3を互いに対向させて保持する。筐体14は、上部に開閉自在の蓋15を備え、筺体14の上部から受電装置2を受電空間に挿脱できる。また筐体14及び蓋15の内側にシールド材(Cu板)を設けている。送電コイル4から受電コイル7へ電力伝送は、送電コイル4と補助コイル12と受電コイル7の周囲が電磁シールドされた状態で行われる。そのため、受電空間内に受電コイル7を配置した状態で、蓋15を閉めることにより電力伝送を開始する。なお、電力伝送中に蓋15が開いた場合は、電力伝送を停止する。   The casing 14 holds the power transmission device 1 and the power transmission auxiliary device 3 so as to face each other so that a power reception space is formed. The housing 14 includes an openable / closable lid 15 at the top, and the power receiving device 2 can be inserted into and removed from the power receiving space from the top of the housing 14. A shield material (Cu plate) is provided inside the casing 14 and the lid 15. Power transmission from the power transmission coil 4 to the power reception coil 7 is performed in a state where the power transmission coil 4, the auxiliary coil 12, and the power reception coil 7 are electromagnetically shielded. Therefore, power transmission is started by closing the lid 15 in a state where the power receiving coil 7 is arranged in the power receiving space. If the lid 15 is opened during power transmission, the power transmission is stopped.

なお、受電コイル7と受電回路9及び充電地10の間に、磁性シート11を設けているが、受電回路9及び充電地10が配置されている領域の磁場強度が弱いため、従来の磁性シートに比べて薄くした。受電回路9と充電地10とは逆の位置に配置しても良い。
<実施の形態3>
図6は、実施の形態3における磁界共鳴型の非接触電力伝送装置の構成と受電空間内の磁場強度分布の対応関係を示す図である。送電コイル4と補助コイル12間の距離Zは50mmとした。
In addition, although the magnetic sheet 11 is provided between the receiving coil 7, the receiving circuit 9, and the charging place 10, since the magnetic field intensity of the area | region where the receiving circuit 9 and the charging place 10 is arrange | positioned is weak, the conventional magnetic sheet Thinner than. The power receiving circuit 9 and the charging ground 10 may be disposed at opposite positions.
<Embodiment 3>
FIG. 6 is a diagram illustrating a correspondence relationship between the configuration of the magnetic field resonance type non-contact power transmission apparatus according to the third embodiment and the magnetic field strength distribution in the power receiving space. The distance Z between the power transmission coil 4 and the auxiliary coil 12 was 50 mm.

図6に示したように、実施の形態3における受電装置2では、受電コイル7が補助コイル12に近い位置に配置され、受電回路9や充電池10が送電コイル4に近い位置に配置されている。送電装置1に搭載されている高周波電力ドライバー6から出力される高周波電力の周波数をf0、送電共振器の共振周波数をf1、受電共振器の共振周波数をf2、補助共振器の共振周波数をf3とすると、f0=f1=f2=f3=13.6MHzに設定した。   As shown in FIG. 6, in the power receiving device 2 according to the third embodiment, the power receiving coil 7 is disposed near the auxiliary coil 12, and the power receiving circuit 9 and the rechargeable battery 10 are disposed near the power transmitting coil 4. Yes. The frequency of the high frequency power output from the high frequency power driver 6 mounted on the power transmission device 1 is f0, the resonance frequency of the power transmission resonator is f1, the resonance frequency of the power reception resonator is f2, and the resonance frequency of the auxiliary resonator is f3. Then, f0 = f1 = f2 = f3 = 13.6 MHz was set.

図6の磁場強度分布のグラフに示したように、受電コイル7が配置されている領域の磁場を強くしつつ(高磁場領域B)、受電回路9や充電地10が配置されている領域の磁場を弱くできる(低磁場領域B)。   As shown in the graph of the magnetic field strength distribution in FIG. 6, while strengthening the magnetic field in the region where the power receiving coil 7 is disposed (high magnetic field region B), the region where the power receiving circuit 9 and the charging ground 10 are disposed. The magnetic field can be weakened (low magnetic field region B).

実施の形態2の図4と実施の形態3の図6では、補助共振器の共振周波数f3の値が異なる。このように、送電補助装置3の共振周波数f3を適切に設定すれば、設定磁場の影響を受けやすい受電回路や充電池などが配置されている領域では磁場を弱くし、電力伝送効率を大きく取りたい受電コイルが配置されている領域では磁場を強くできる。   The value of the resonance frequency f3 of the auxiliary resonator is different between FIG. 4 of the second embodiment and FIG. 6 of the third embodiment. As described above, if the resonance frequency f3 of the power transmission auxiliary device 3 is appropriately set, the magnetic field is weakened in the region where the power receiving circuit or the rechargeable battery that is easily affected by the set magnetic field is disposed, and the power transmission efficiency is increased. The magnetic field can be increased in the region where the power receiving coil is arranged.

図6に示した場合では、従来に比べて受電コイル7と受電回路9及び充電地10との距離が大幅に離れており、さらに受電回路9及び充電地10が配置されている領域の磁場強度も弱い。すなわち、f3=f1とすれば、磁場の強い領域と磁場の弱い領域との距離を離して形成できる。そのため、従来用いていた磁性シートを省略することができ、受電装置2の低コスト化が図れるという利点がある。   In the case shown in FIG. 6, the distance between the power receiving coil 7, the power receiving circuit 9, and the charging ground 10 is far away from that of the conventional case, and the magnetic field strength in the region where the power receiving circuit 9 and the charging ground 10 are further arranged. Is also weak. That is, if f3 = f1, the distance between the strong magnetic field region and the weak magnetic field region can be increased. Therefore, there is an advantage that the conventionally used magnetic sheet can be omitted, and the cost of the power receiving device 2 can be reduced.

図7は、図6のように受電コイル7が補助コイル12に近い位置に配置され、受電回路9や充電池10が送電コイル4に近い位置に配置されている非接触電力伝送装置の具体例を示したものである。その他の構成は、図5と同様であるので説明は省略する。   FIG. 7 shows a specific example of the non-contact power transmission apparatus in which the power receiving coil 7 is disposed near the auxiliary coil 12 and the power receiving circuit 9 and the rechargeable battery 10 are disposed near the power transmitting coil 4 as shown in FIG. Is shown. The other configuration is the same as that shown in FIG.

受電装置2は、筺体の蓋15を介して筺体14の上部から受電空間に挿脱されるので、例えば、金属などの異物16が送電コイル4付近に落ちる可能性がある。しかし、図7の場合は送電コイル4に近い方の磁場を弱く設定するので、金属などの異物16により発熱する可能性が低くなるという利点がある。
<実施の形態4>
図8(a)乃至図8(d)は、本発明における非接触電力伝送装置の筐体14へ受電装置2を出し入れする方法の例を示したものである。図8(a)は、図5及び図7と同じで、筐体14の上部の蓋15が開閉する場合を示す。図8(b)では、筐体14の上部がシャッター17となっており、受電装置2を受電空間に挿脱する際はこのシャッター17を開閉する。この場合には、補助コイル12は中心付近にはコイルが無い空芯コイル型であり、筐体14の上部に固定されている。図8(c)では、筐体14の横側に蓋15があり、受電装置2を受電空間に挿脱する際はこの蓋15を開閉する。図8(d)では、筐体14の横側にシャッター17があり、受電装置2を受電空間に挿脱する際はこのシャッター17を開閉する。蓋15やシャッター17を閉じることにより、筐体14内は電磁シールドされた状態となる。
Since the power receiving device 2 is inserted into and removed from the power receiving space from the upper portion of the housing 14 via the housing lid 15, for example, a foreign material 16 such as metal may fall near the power transmission coil 4. However, in the case of FIG. 7, since the magnetic field closer to the power transmission coil 4 is set weak, there is an advantage that the possibility of heat generation by the foreign material 16 such as metal is reduced.
<Embodiment 4>
FIGS. 8A to 8D show an example of a method for putting the power receiving device 2 in and out of the housing 14 of the non-contact power transmission device according to the present invention. FIG. 8A is the same as FIG. 5 and FIG. 7 and shows the case where the lid 15 at the top of the housing 14 opens and closes. In FIG. 8B, the upper portion of the housing 14 is a shutter 17, and the shutter 17 is opened and closed when the power receiving device 2 is inserted into and removed from the power receiving space. In this case, the auxiliary coil 12 is an air-core coil type having no coil near the center, and is fixed to the upper portion of the housing 14. In FIG. 8C, there is a lid 15 on the side of the housing 14, and the lid 15 is opened and closed when the power receiving apparatus 2 is inserted into and removed from the power receiving space. In FIG. 8D, there is a shutter 17 on the side of the housing 14, and the shutter 17 is opened and closed when the power receiving device 2 is inserted into and removed from the power receiving space. By closing the lid 15 and the shutter 17, the inside of the casing 14 is electromagnetically shielded.

図8(a)乃至図8(d)のいずれの場合でも、筐体14に受電装置2が挿入された場合は、受電装置2における受電コイル7や受電回路9や充電池10の位置情報を受電装置2から送電補助装置3に送り、その情報に基づいて、送電補助装置3の共振周波数を設定する機能を有している。具体的には、補助コイル12に接続されている調整用コンデンサ13の容量を調整して行う。これにより、受電装置2内に配置されている受電コイルが配置されている領域の磁場を強くし、充電池や受電回路などが配置されている領域の磁場を弱くすることにより、確実に電力伝送が行える。すなわち、受電コイル7や受電回路9や充電池10の位置に応じて、磁場の強度を的確に制御できる。   8A to 8D, when the power receiving device 2 is inserted into the housing 14, positional information of the power receiving coil 7, the power receiving circuit 9, and the rechargeable battery 10 in the power receiving device 2 is obtained. The power receiving device 2 has a function of sending to the power transmission auxiliary device 3 and setting the resonance frequency of the power transmission auxiliary device 3 based on the information. Specifically, the adjustment is performed by adjusting the capacitance of the adjustment capacitor 13 connected to the auxiliary coil 12. As a result, the magnetic field in the region where the power receiving coil disposed in the power receiving device 2 is arranged is strengthened, and the magnetic field in the region where the rechargeable battery, the power receiving circuit, etc. is arranged is weakened, thereby reliably transmitting power. Can be done. That is, the strength of the magnetic field can be accurately controlled according to the positions of the power receiving coil 7, the power receiving circuit 9, and the rechargeable battery 10.

本発明の非接触電力伝送装置は、受電領域の磁場の強度を制御できるので、ラジオコントロールカーに限らず、軽量化が求められる飛行体、また、実際の自動車、バス、電車のような電気車両等への適用も可能である。   Since the non-contact power transmission device of the present invention can control the strength of the magnetic field in the power receiving area, the invention is not limited to a radio control car, but an aircraft that requires weight reduction, and an electric vehicle such as an actual automobile, bus, or train. Etc. are also possible.

1 送電装置
2 受電装置
3 送電補助装置
4 送電コイル
5 交流電源
6 高周波電力ドライバー
7 受電コイル
8 受電用ループコイル
9 受電回路
10 充電池
11 磁性シート
12 補助コイル
13 調整用コンデンサ
14 筺体
15 蓋
16 金属異物
17 シャッター
20 非接触電力伝送装置
DESCRIPTION OF SYMBOLS 1 Power transmission device 2 Power reception device 3 Power transmission auxiliary device 4 Power transmission coil 5 AC power supply 6 High frequency power driver 7 Power reception coil 8 Power reception loop coil 9 Power reception circuit 10 Rechargeable battery 11 Magnetic sheet 12 Auxiliary coil 13 Adjustment capacitor 14 Housing 15 Cover 16 Metal Foreign object 17 Shutter 20 Non-contact power transmission device

Claims (8)

送電コイルと共振容量により構成された送電共振器を有する送電装置と、受電コイルと共振容量により構成された受電共振器および受電回路を有する受電装置とを備え、送電コイルと受電コイルの間の磁界共鳴により送電装置から受電装置へ電力を伝送する非接触電力伝送装置において、
補助コイルと共振容量により構成された補助共振器を有する送電補助装置を更に備え、
前記送電装置と前記送電補助装置を互いに対向させて配置することにより、前記送電コイルと前記補助コイルの間に前記受電コイルを配置するための受電空間を形成し、
前記受電空間において、前記受電回路が配置されている領域の磁場を、前記受電コイルが配置されている領域の磁場よりも弱くするように、補助共振器の共振周波数を設定することを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonance capacitor, a power reception device composed of a power reception coil and a resonance capacitor, and a power reception device having a power reception circuit, and a magnetic field between the power transmission coil and the power reception coil In a non-contact power transmission device that transmits power from a power transmission device to a power reception device by resonance,
A power transmission auxiliary device having an auxiliary resonator composed of an auxiliary coil and a resonant capacitor;
By arranging the power transmission device and the power transmission auxiliary device so as to face each other, a power reception space for arranging the power reception coil between the power transmission coil and the auxiliary coil is formed,
In the power receiving space, the resonance frequency of the auxiliary resonator is set so that the magnetic field in the region where the power receiving circuit is disposed is weaker than the magnetic field in the region where the power receiving coil is disposed. Non-contact power transmission device.
前記送電補助装置の共振容量として可変コンデンサを設け、前記可変コンデンサの容量を調整することにより補助共振器の共振周波数を設定するように構成された請求項1記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 1, wherein a variable capacitor is provided as a resonance capacity of the power transmission auxiliary device, and the resonance frequency of the auxiliary resonator is set by adjusting a capacity of the variable capacitor. 前記受電装置内における前記受電コイルと前記受電回路の位置情報を、前記受電装置から前記送電補助装置に送信し、前記位置情報に基づいて送電補助装置の共振周波数が設定された後、前記送電装置から前記受電装置へ電力伝送を開始することを特徴とする請求項1記載の非接触電力伝送装置。   After the position information of the power receiving coil and the power receiving circuit in the power receiving device is transmitted from the power receiving device to the power transmission auxiliary device, and the resonance frequency of the power transmission auxiliary device is set based on the position information, the power transmission device The non-contact power transmission apparatus according to claim 1, wherein power transmission is started from the power to the power receiving apparatus. 前記送電共振器の共振周波数をf1、前記補助共振器の共振周波数をf3とすると、f3≦f1を満足するように前記補助共振器の共振周波数f3を設定することを特徴とする請求項1記載の非接触電力伝送装置。   2. The resonance frequency f3 of the auxiliary resonator is set to satisfy f3 ≦ f1, where f1 is a resonance frequency of the power transmission resonator and f3 is a resonance frequency of the auxiliary resonator. Non-contact power transmission device. 前記受電コイルを配置するための前記受電空間が形成されるように、前記送電補助装置と前記送電装置を互いに対向させて保持する筐体を備え、
前記筐体は開閉自在の蓋若しくはシャッターを備え、
前記受電装置は前記蓋若しくは前記シャッターを介して前記筐体内の前記受電空間に挿脱可能であり、
前記送電コイルから前記受電コイルへ電力伝送を行う場合には、前記蓋若しくは前記シャッターが閉まった状態で、前記送電コイルと前記補助コイルと前記受電コイルの周囲が電磁シールドされることを特徴とする請求項1記載の非接触電力伝送装置。
A housing for holding the power transmission auxiliary device and the power transmission device facing each other so that the power reception space for arranging the power reception coil is formed;
The housing includes an openable / closable lid or shutter,
The power receiving device can be inserted into and removed from the power receiving space in the housing through the lid or the shutter.
When power is transmitted from the power transmission coil to the power reception coil, the power transmission coil, the auxiliary coil, and the power reception coil are shielded electromagnetically with the lid or the shutter closed. The contactless power transmission device according to claim 1.
前記送電コイルを前記筺体の下部に配置するとともに、前記補助コイルを前記筺体の上部に配置し、前記補助共振器の共振周波数を調整することにより、前記補助コイル側よりも前記送電コイル側の磁場の強度を弱くすることを特徴とする請求項5記載の非接触電力伝送装置。   The power transmission coil is disposed below the housing, the auxiliary coil is disposed above the housing, and the resonance frequency of the auxiliary resonator is adjusted so that the magnetic field on the power transmission coil side rather than the auxiliary coil side. The non-contact power transmission device according to claim 5, wherein the strength of the non-contact power transmission device is weakened. 前記送電共振器の共振周波数をf1、前記補助共振器の共振周波数をf3とすると、f3=f1を満足するように前記補助共振器の共振周波数f3を設定することを特徴とする請求項5記載の非接触電力伝送装置。   6. The resonance frequency f3 of the auxiliary resonator is set so as to satisfy f3 = f1, where f1 is a resonance frequency of the power transmission resonator and f3 is a resonance frequency of the auxiliary resonator. Non-contact power transmission device. 前記送電コイルと前記受電コイルとの間に前記受電回路が配置された状態で電力伝送を行うことを特徴とする請求項5記載の非接触電力伝送装置 The contactless power transmission device according to claim 5, wherein power transmission is performed in a state where the power reception circuit is disposed between the power transmission coil and the power reception coil .
JP2013191437A 2013-09-17 2013-09-17 Non-contact power transmission device Active JP6204767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191437A JP6204767B2 (en) 2013-09-17 2013-09-17 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191437A JP6204767B2 (en) 2013-09-17 2013-09-17 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2015061325A JP2015061325A (en) 2015-03-30
JP6204767B2 true JP6204767B2 (en) 2017-09-27

Family

ID=52818488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191437A Active JP6204767B2 (en) 2013-09-17 2013-09-17 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP6204767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122110A (en) * 2017-12-28 2019-07-22 株式会社ダイヘン Non-contact power supply device and non-contact power supply method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029365B2 (en) * 1996-11-29 2008-01-09 吉川アールエフシステム株式会社 Data carrier system
JP4071202B2 (en) * 2004-02-23 2008-04-02 日本電信電話株式会社 Non-contact device power suppression method and non-contact device
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5890170B2 (en) * 2011-09-29 2016-03-22 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method
JP5918563B2 (en) * 2012-02-17 2016-05-18 日立マクセル株式会社 Non-contact power transmission device
JP5859346B2 (en) * 2012-03-08 2016-02-10 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method

Also Published As

Publication number Publication date
JP2015061325A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
EP2575264B1 (en) Wireless power transfer device and wireless power transfer method
Ahn et al. Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer
US10581284B2 (en) Wireless charger and wireless power receiver
EP2515314B1 (en) Non-contact power reception device and corresponding transmission device
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
EP2761723B1 (en) Wireless power transmitter, wirless power repeater and wireless power transmission method
EP2332096B1 (en) Passive receivers for wireless power transmission
EP3167531B1 (en) Wireless power transfer through a metal object
KR101436063B1 (en) Wiress Power Transmission Apparatus
US20130234529A1 (en) Wireless power transfer apparatus and wireless power transfer method
Ahn et al. Enhanced wireless power transmission using strong paramagnetic response
JP2011142724A (en) Noncontact power transmission device and near field antenna for same
JP6584971B2 (en) Wireless power supply system
KR20130028446A (en) A wireless power transmission apparatus and method thereof
KR20130048438A (en) A wireless power transmission apparatus and method thereof
KR102524585B1 (en) Wireless charger and wireless power receiver
US20210281122A1 (en) Wireless power transfer transmitter, system and method of wirelessly transferring power
Etemadrezaei Wireless power transfer
JP6204767B2 (en) Non-contact power transmission device
JP5705079B2 (en) Non-contact power transmission apparatus and non-contact power transmission method
KR101856564B1 (en) Combo antenna module and mobile electronic device having the same
JP2015109762A (en) Device and method for non-contact power transmission
JP2012143093A (en) Proximity wireless charging ac adapter
Sahany et al. Receiver coil position selection through magnetic field coupling of a WPT system used for powering multiple electronic devices
JP2013081331A (en) Non-contact power transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250