JP6170456B2 - Slave node, control server, time synchronization destination determination method and computer program - Google Patents

Slave node, control server, time synchronization destination determination method and computer program Download PDF

Info

Publication number
JP6170456B2
JP6170456B2 JP2014064693A JP2014064693A JP6170456B2 JP 6170456 B2 JP6170456 B2 JP 6170456B2 JP 2014064693 A JP2014064693 A JP 2014064693A JP 2014064693 A JP2014064693 A JP 2014064693A JP 6170456 B2 JP6170456 B2 JP 6170456B2
Authority
JP
Japan
Prior art keywords
master node
time
node
master
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014064693A
Other languages
Japanese (ja)
Other versions
JP2015188152A (en
Inventor
豪 矢沢
豪 矢沢
秀胤 村山
秀胤 村山
浩治 渡部
浩治 渡部
小林 正啓
正啓 小林
克俊 行田
克俊 行田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone East Corp
Original Assignee
Nippon Telegraph and Telephone East Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone East Corp filed Critical Nippon Telegraph and Telephone East Corp
Priority to JP2014064693A priority Critical patent/JP6170456B2/en
Publication of JP2015188152A publication Critical patent/JP2015188152A/en
Application granted granted Critical
Publication of JP6170456B2 publication Critical patent/JP6170456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Description

本発明は、時刻同期の技術に関する。   The present invention relates to a time synchronization technique.

近年、複数の基地局間で連係した動作を行うため、高精度な時刻同期が求められている。そこで、ネットワーク接続された複数の機器の時刻をマイクロ秒以下の精度で同期させる技術として、IEEE1588で定義されたPTP(Precision Time Protocol)が知られている(例えば、非特許文献1参照)。PTPでは、マスターノードとスレーブノードとの間で時刻情報を含むメッセージが定期的に交換される。スレーブノードは、マスターノード及びスレーブノードにおけるメッセージが送受信された時刻情報から、マスターノードに対するスレーブノードの時刻のずれ(Offset)を計算する。そして、スレーブノードは、計算したOffsetに基づいてスレーブノードの時刻を補正して、スレーブノードの時刻をマスターノードの時刻に同期させる。また、PTPでは、マスターノードの時刻源の品質を255段階でスレーブノードに通知することができ、同期確立によって期待される時刻同期精度の品質を255段階でスレーブノードに通知することができる。   In recent years, highly accurate time synchronization has been demanded in order to perform coordinated operations between a plurality of base stations. Therefore, PTP (Precision Time Protocol) defined by IEEE 1588 is known as a technique for synchronizing the times of a plurality of devices connected to the network with an accuracy of microseconds or less (see, for example, Non-Patent Document 1). In PTP, messages including time information are periodically exchanged between a master node and a slave node. The slave node calculates a time lag (Offset) of the slave node with respect to the master node from the time information at which the messages at the master node and the slave node are transmitted and received. Then, the slave node corrects the time of the slave node based on the calculated offset, and synchronizes the time of the slave node with the time of the master node. In addition, in PTP, the quality of the time source of the master node can be notified to the slave node in 255 steps, and the quality of time synchronization accuracy expected by establishing synchronization can be notified to the slave node in 255 steps.

“IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” IEEE Standard 1588-2008.“IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,” IEEE Standard 1588-2008.

しかしながら、通常、マスターノードは、経年劣化による時刻源の品質の変化をモニターする機能を有さないため、マスターノードの時刻源の精度が緩やかに劣化した場合、時刻源の精度の劣化に気付くことができない。したがって、複数のマスターノードのいずれかのマスターノードの時刻源の精度が劣化した場合に、スレーブノードは複数のマスターノードのうち、時刻源の精度が劣化したマスターノードに同期してしまうおそれがある。このような場合、スレーブノードの時刻同期の精度が劣化してしまうという問題があった。このような問題は、PTPに限らず、時刻同期を行う全ての通信プロトコルに共通する問題である。   However, since the master node usually does not have a function to monitor the change in the quality of the time source due to aging, when the accuracy of the time source of the master node gradually deteriorates, the master node notices the deterioration of the accuracy of the time source. I can't. Accordingly, when the accuracy of the time source of any one of the plurality of master nodes is degraded, the slave node may be synchronized with the master node having the degraded accuracy of the time source among the plurality of master nodes. . In such a case, there is a problem that the accuracy of time synchronization of the slave node is deteriorated. Such a problem is not limited to PTP but is common to all communication protocols that perform time synchronization.

上記事情に鑑み、本発明は、複数のマスターノードのいずれかのマスターノードの時刻源の精度が劣化した場合におけるスレーブノードの時刻同期の精度低下を抑えることができる技術の提供を目的としている。   In view of the above circumstances, an object of the present invention is to provide a technique capable of suppressing a decrease in time synchronization accuracy of a slave node when the accuracy of the time source of any one of a plurality of master nodes is deteriorated.

本発明の一態様は、自装置における時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を自装置との間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定部、を備えるスレーブノードである。   One aspect of the present invention is the accuracy of the time source of the master node of any of a plurality of master nodes that performs time synchronization processing with the own device, which is processing for synchronizing the time in the own device with the time in the master node. When a condition indicating deterioration of the condition is satisfied, the slave node includes a determination unit that determines other master nodes other than the master node that satisfies the condition as a master node to which the own apparatus synchronizes.

本発明の一態様は、上記のスレーブノードであって、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部をさらに備え、前記決定部は、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻のいずれかが、算出された前記平均値に所定の値を加減して得られる閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する。   One aspect of the present invention is the above-described slave node, further comprising a calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node, The determination unit is a threshold range obtained by adding or subtracting a predetermined value to the calculated average value for any of the times acquired at a predetermined timing during time synchronization processing performed with each master node. If it is outside, the master node other than the master node related to the time outside the threshold range is determined as the master node with which the own device synchronizes.

本発明の一態様は、上記のスレーブノードであって、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部をさらに備え、前記決定部は、各マスターノードにおける時刻同期処理時の所定のタイミングの時刻と、算出された前記平均値との差分値のいずれかが、所定の閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する。   One aspect of the present invention is the above-described slave node, further comprising a calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node, The determination unit is out of the threshold range when any of the difference values between the time at the predetermined timing at the time synchronization processing in each master node and the calculated average value is out of the predetermined threshold range. Other master nodes excluding the master node related to the current time are determined as master nodes to which the own device synchronizes.

本発明の一態様は、上記のスレーブノードであって、前記決定部は、他のスレーブノードに対して前記マスターノードの時刻源の精度の劣化を示す通知を送信する送信部をさらに備え、前記送信部は、前記閾値の範囲外となった時刻に関連するマスターノードの劣化を示す通知を前記他のスレーブノードに送信する。   One aspect of the present invention is the slave node described above, wherein the determination unit further includes a transmission unit that transmits a notification indicating degradation in accuracy of the time source of the master node to another slave node, A transmission part transmits the notification which shows deterioration of the master node relevant to the time which became out of the range of the said threshold value to said other slave node.

本発明の一態様は、上記のスレーブノードであって、前記決定部は、他装置から前記マスターノードの時刻源の精度の劣化を示す通知が受信された場合に、受信された通知で示されるマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する。   One aspect of the present invention is the slave node described above, wherein the determination unit is indicated by the received notification when a notification indicating deterioration in accuracy of the time source of the master node is received from another device. A master node other than the master node is determined as a master node with which the device synchronizes.

本発明の一態様は、上記のスレーブノードであって、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部と、他装置から前記マスターノードの時刻源の精度の劣化を示す通知を受信する受信部と、をさらに備え、前記決定部は、所定の優先度に基づいて、前記通知により特定される、時刻源の精度が劣化しているマスターノード又は前記平均値に基づいて特定されるマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する。   One aspect of the present invention is the above-described slave node, from a calculation unit that calculates an average value of time acquired at a predetermined timing during time synchronization processing performed between each master node and another device. A receiving unit that receives a notification indicating a deterioration in accuracy of the time source of the master node, and the determination unit is identified by the notification based on a predetermined priority, and the accuracy of the time source is deteriorated A master node that is synchronized with the own device is determined to be a master node other than the master node that is currently operating or the master node that is specified based on the average value.

本発明の一態様は、複数のノードを制御する制御サーバであって、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部と、各マスターノードにおける時刻同期処理時の所定のタイミングの時刻と、算出された前記平均値との差分値のいずれが、所定の閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードの時刻源の精度の劣化を示す通知を前記マスターノードに接続するスレーブノードに送信する送信部と、を備える制御サーバである。   One aspect of the present invention is a control server that controls a plurality of nodes, and a calculation unit that calculates an average value of times acquired at a predetermined timing during a time synchronization process performed with each master node; The time when the difference between the time at the predetermined timing at the time synchronization processing in each master node and the calculated average value is out of the predetermined threshold range, A transmission unit that transmits a notification indicating deterioration of the accuracy of the time source of the master node related to the information to a slave node connected to the master node.

本発明の一態様は、スレーブノードにおける時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を前記スレーブノードとの間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定ステップ、を有する時刻同期先決定方法である。   One aspect of the present invention provides a time synchronization process for synchronizing a time at a slave node with a time at a master node. A time synchronization destination determination method including a determination step of determining, as a master node to which the own device synchronizes, other master nodes excluding the master node that satisfies the condition when a condition indicating degradation in accuracy is satisfied .

本発明の一態様は、スレーブノードにおける時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を前記スレーブノードとの間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定ステップ、をコンピュータに実行させるためのコンピュータプログラムである。   One aspect of the present invention provides a time synchronization process for synchronizing a time at a slave node with a time at a master node. A computer program for causing a computer to execute a determination step of determining, as a master node to which the own apparatus synchronizes, other master nodes excluding a master node that satisfies the condition when a condition indicating deterioration in accuracy is satisfied It is.

本発明により、複数のマスターノードのいずれかのマスターノードの時刻源の精度が劣化した場合におけるスレーブノードの時刻同期の精度低下を抑えることが可能となる。   According to the present invention, it is possible to suppress a decrease in time synchronization accuracy of the slave node when the accuracy of the time source of any one of the plurality of master nodes is deteriorated.

IEEE1588の時刻同期アルゴリズムによる通信シーケンスの動作を表すシーケンス図である。It is a sequence diagram showing the operation | movement of the communication sequence by the time synchronous algorithm of IEEE1588. 本発明の時刻同期システム100のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the time synchronization system 100 of this invention. マスターノード10及びスレーブノード20の概略ブロック図である。2 is a schematic block diagram of a master node 10 and a slave node 20. FIG. 判定処理の判定基準に関する概略図である。It is the schematic regarding the determination criterion of a determination process. 本実施形態におけるスレーブノード20の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the slave node 20 in this embodiment. 変形例における判定処理の判定基準に関する概略図である。It is the schematic regarding the determination criteria of the determination process in a modification.

以下、本発明の一実施形態を、図面を参照しながら説明する。
まず、図1を用いてIEEE1588の時刻同期アルゴリズムについて説明する。図1は、IEEE1588の時刻同期アルゴリズムによる通信シーケンスの動作を表すシーケンス図である。図1では、マスターノードとスレーブノードとが双方向通信を行っており、スレーブノードが定期的にマスターノードの時刻にスレーブノードの時刻を同期させる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, an IEEE 1588 time synchronization algorithm will be described with reference to FIG. FIG. 1 is a sequence diagram showing the operation of a communication sequence according to the IEEE 1588 time synchronization algorithm. In FIG. 1, the master node and the slave node perform two-way communication, and the slave node periodically synchronizes the time of the slave node with the time of the master node.

マスターノードは、スレーブノードに対して定期的にSyncメッセージを送信する(ステップS100)。Syncメッセージは、時刻同期の動作を開始するために送信されるメッセージである。マスターノードは、Syncメッセージの送信時刻(以下、「Sync送信時刻」という。)Tm(0)を記録する(ステップS101)。次に、マスターノードは、スレーブノードに対して、Follow_upメッセージを送信する(ステップS102)。この際、マスターノードは、Follow_upメッセージの中に、Sync送信時刻Tm(0)を格納する。Follow_upメッセージは、Syncメッセージが送信された後に、Sync送信時刻Tm(0)の時刻情報を通知するために送信されるメッセージである。   The master node periodically sends a Sync message to the slave node (step S100). The Sync message is a message transmitted to start the time synchronization operation. The master node records the transmission time of the Sync message (hereinafter referred to as “Sync transmission time”) Tm (0) (step S101). Next, the master node transmits a Follow_up message to the slave node (step S102). At this time, the master node stores the Sync transmission time Tm (0) in the Follow_up message. The Follow_up message is a message transmitted to notify the time information of the Sync transmission time Tm (0) after the Sync message is transmitted.

スレーブノードは、Syncメッセージを受信すると、この受信処理をトリガとしてSyncメッセージの受信時刻(以下、「Sync受信時刻」という。)Ts(0)を記録する(ステップS103)。次に、スレーブノードはFollow_upメッセージを受信し、Follow_upメッセージ中に格納されるSync送信時刻Tm(0)を抽出し記録する。次に、スレーブノードは、マスターノードに対して、Delay_Requestメッセージを送信する(ステップS104)。Delay_Requestメッセージは、スレーブノードがマスターノードから送信されるFollow_upメッセージを受信した後に、マスターノードにDelay_Responseメッセージを要求するために送信されるメッセージである。そして、スレーブノードは、Delay_Requestメッセージの送信時刻(以下、「Delay送信時刻」という。)Ts(1)を記録する(ステップS105)。   Upon receiving the Sync message, the slave node records the reception time of the Sync message (hereinafter referred to as “Sync reception time”) Ts (0) using this reception process as a trigger (Step S103). Next, the slave node receives the Follow_up message and extracts and records the Sync transmission time Tm (0) stored in the Follow_up message. Next, the slave node transmits a Delay_Request message to the master node (step S104). The Delay_Request message is a message transmitted to request a Delay_Response message from the master node after the slave node receives the Follow_up message transmitted from the master node. Then, the slave node records the transmission time of the Delay_Request message (hereinafter referred to as “Delay transmission time”) Ts (1) (step S105).

マスターノードは、Delay_Requestメッセージを受信すると、この受信処理をトリガとしてDelay_Requestメッセージの受信時刻(以下、「Delay受信時刻」という。)Tm(1)を記録する(ステップS106)。次に、マスターノードは、スレーブノードに対してDelay_Responseメッセージを送信する(ステップS107)。この際、マスターノードは、Delay_Responseメッセージの中に、Delay受信時刻Tm(1)を格納する。Delay_Responseメッセージは、Delay_Requestメッセージの応答として送信されるメッセージである。   When receiving the Delay_Request message, the master node records the reception time of the Delay_Request message (hereinafter referred to as “Delay reception time”) Tm (1) using this reception process as a trigger (step S106). Next, the master node transmits a Delay_Response message to the slave node (step S107). At this time, the master node stores the Delay reception time Tm (1) in the Delay_Response message. The Delay_Response message is a message transmitted as a response to the Delay_Request message.

スレーブノードは、Delay_Responseメッセージを受信すると、Delay_Responseメッセージ中に格納されるDelay受信時刻Tm(1)を抽出し記録する。
スレーブノードは、Sync送信時刻Tm(0)、Sync受信時刻Ts(0)に基づいて、以下の式1によってマスターノードにおける時刻(以下、「マスター時刻」という。)とスレーブノードにおける時刻(以下、「スレーブ時刻」という。)との差分MS_Diffを算出する。

Figure 0006170456
When the slave node receives the Delay_Response message, the slave node extracts and records the Delay reception time Tm (1) stored in the Delay_Response message.
Based on the Sync transmission time Tm (0) and the Sync reception time Ts (0), the slave node uses the following equation 1 to calculate the time at the master node (hereinafter referred to as “master time”) and the time at the slave node (hereinafter referred to as “master time”). Difference MS_Diff from “slave time” is calculated.
Figure 0006170456

また、スレーブノードは、Delay送信時刻Ts(1)、Delay受信時刻Tm(1)に基づいて、以下の式2によってスレーブ時刻とマスター時刻との差分SM_Diffを求める。

Figure 0006170456
Further, the slave node obtains a difference SM_Diff between the slave time and the master time by the following formula 2 based on the Delay transmission time Ts (1) and the Delay reception time Tm (1).
Figure 0006170456

式1のMS_Delayはマスターノードからスレーブノードへの伝送遅延を表し、式2のSM_Delayはスレーブノードからマスターノードへの伝送遅延を表し、式1及び式2のOffset(オフセット)はマスターノードに対するスレーブノードの時刻オフセット(進み)を表す。なお、伝送遅延MS_Delay及びSM_Delayは、マスターノードとスレーブノードとの間の伝播遅延と、マスターノードとスレーブノードとの間のネットワーク上の中継ノードで生じるキューイング遅延から構成される。   MS_Delay in Equation 1 represents the transmission delay from the master node to the slave node, SM_Delay in Equation 2 represents the transmission delay from the slave node to the master node, and Offset in (Equation 1 and Equation 2) is the slave node relative to the master node. Represents the time offset (advance). The transmission delays MS_Delay and SM_Delay are composed of a propagation delay between the master node and the slave node and a queuing delay that occurs at a relay node on the network between the master node and the slave node.

以上のように、マスターノードに対するスレーブノードの時刻のずれであるOffsetに関して、式1及び式2の2つの式が得られる。しかし、この2つの式には、Offsetの他にMS_Delay及びSM_Delayという未知のパラメータが含まれている。したがって、3つの未知のパラメータに対し2つの式しか存在しないため、Offsetを算出することができない。そのため、IEEE1588では、マスターノードからスレーブノードへの伝送遅延MS_Delayと、スレーブノードからマスターノードへの伝送遅延SM_Delayとが等しく、いずれの値もDelayであると仮定して、上記の式1及び式2を以下の式3及び式4に変形する。   As described above, two expressions, Expression 1 and Expression 2, are obtained with respect to Offset, which is a time lag of the slave node with respect to the master node. However, these two expressions include unknown parameters MS_Delay and SM_Delay in addition to Offset. Therefore, since there are only two equations for the three unknown parameters, Offset cannot be calculated. Therefore, in IEEE 1588, assuming that the transmission delay MS_Delay from the master node to the slave node is equal to the transmission delay SM_Delay from the slave node to the master node, and both values are Delay, the above Equations 1 and 2 Is transformed into the following equations 3 and 4.

Figure 0006170456
Figure 0006170456
式3及び式4の連立方程式を解くことによって、以下の式5が導出される。
Figure 0006170456
Figure 0006170456
Figure 0006170456
By solving the simultaneous equations of Equation 3 and Equation 4, the following Equation 5 is derived.
Figure 0006170456

スレーブノードは、導出された式5に基づいてOffsetを算出する。スレーブノードは、算出したOffsetに基づいてスレーブ時刻を補正することによって、スレーブ時刻をマスター時刻に同期させる。以上が、IEEE1588に規定される時刻同期アルゴリズムである。なお、以下の説明では、上述した時刻同期アルゴリズムによる処理を時刻同期処理と称する。   The slave node calculates Offset based on the derived formula 5. The slave node corrects the slave time based on the calculated offset to synchronize the slave time with the master time. The time synchronization algorithm defined in IEEE 1588 has been described above. In the following description, the process based on the above time synchronization algorithm is referred to as a time synchronization process.

図2は、本発明の時刻同期システム100のシステム構成を示す図である。本発明の時刻同期システム100は、複数のマスターノード10−1〜10−M(Mは2以上の整数)及び複数のスレーブノード20−1〜20−N(Nは2以上の整数)を備える。マスターノード10−1〜10−M及びスレーブノード20−1〜20−Nはそれぞれ、ネットワーク30−1〜30−L(Lは2以上の整数)を介して互いに通信可能に接続される。なお、以下の説明では、マスターノード10−1〜10−Mについて特に区別しない場合にはマスターノード10と記載する。また、スレーブノード20−1〜20−Nについて特に区別しない場合にはスレーブノード20と記載する。また、以下の説明では、ネットワーク30−1〜30−Lについて特に区別しない場合にはネットワーク30と記載する。   FIG. 2 is a diagram showing a system configuration of the time synchronization system 100 of the present invention. The time synchronization system 100 of the present invention includes a plurality of master nodes 10-1 to 10-M (M is an integer of 2 or more) and a plurality of slave nodes 20-1 to 20-N (N is an integer of 2 or more). . Master nodes 10-1 to 10-M and slave nodes 20-1 to 20-N are connected to each other via networks 30-1 to 30-L (L is an integer of 2 or more), respectively. In the following description, the master nodes 10-1 to 10-M will be described as the master node 10 unless otherwise distinguished. Also, the slave nodes 20-1 to 20-N are described as slave nodes 20 unless otherwise distinguished. In the following description, the networks 30-1 to 30-L will be referred to as the network 30 unless otherwise distinguished.

マスターノード10は、定期的にスレーブノード20との間でPTPメッセージ(制御メッセージ)を送受信する。PTPメッセージとは、時刻同期処理に使用される制御メッセージであり、例えばAnnounceメッセージ、Syncメッセージ、Follow_upメッセージ、Delay_Requestメッセージ、Delay_Responseメッセージである。
スレーブノード20は、マスターノード10との間で時刻同期処理を行うことによって自装置の時刻をマスターノード10の時刻に同期させる。
ネットワーク30は、どのように構成されたネットワークでもよい。例えば、ネットワーク30はLAN(Local Area Network)を用いて構成されてもよい。
以下、マスターノード10及びスレーブノード20の構成の詳細についてそれぞれ説明する。
The master node 10 periodically transmits and receives PTP messages (control messages) to and from the slave node 20. The PTP message is a control message used for time synchronization processing, and is, for example, Announce message, Sync message, Follow_up message, Delay_Request message, and Delay_Response message.
The slave node 20 synchronizes the time of its own device with the time of the master node 10 by performing time synchronization processing with the master node 10.
The network 30 may be a network configured in any way. For example, the network 30 may be configured using a LAN (Local Area Network).
Hereinafter, details of the configurations of the master node 10 and the slave node 20 will be described.

図3は、マスターノード10及びスレーブノード20の概略ブロック図である。
まず、マスターノード10の具体的な機能構成について説明する。マスターノード10は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、時刻同期用プログラムを実行する。時刻同期用プログラムの実行によって、マスターノード10は、マスタークロック生成部101、時計部102、パケット生成部103、通信部104を備える装置として機能する。なお、マスターノード10の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。また、時刻同期用プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、時刻同期用プログラムは、電気通信回線を介して送受信されてもよい。
FIG. 3 is a schematic block diagram of the master node 10 and the slave node 20.
First, a specific functional configuration of the master node 10 will be described. The master node 10 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a time synchronization program. By executing the time synchronization program, the master node 10 functions as an apparatus including the master clock generation unit 101, the clock unit 102, the packet generation unit 103, and the communication unit 104. All or some of the functions of the master node 10 may be realized by using hardware such as an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA). The time synchronization program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. The time synchronization program may be transmitted / received via a telecommunication line.

マスタークロック生成部101は、例えば、VCXO(Voltage controlled xtal oscillators)等の電圧可変型の水晶発振器等を用いて構成される。また、マスタークロック生成部101は、マスタークロックを生成する。具体的には、マスタークロック生成部101は、マスターノード10における1秒の時間幅を決定する。なお、マスタークロック生成部101は、マスターノード10の外部に存在してもよい。   The master clock generation unit 101 is configured by using a voltage variable crystal oscillator such as VCXO (Voltage controlled xtal oscillators), for example. The master clock generation unit 101 generates a master clock. Specifically, the master clock generation unit 101 determines a time width of 1 second in the master node 10. Note that the master clock generation unit 101 may exist outside the master node 10.

時計部102は、マスタークロック生成部101が生成したマスタークロックに従い、マスター時刻を決定する。具体的には、時計部102は、マスターノード10において何時何分何秒であるかを決める。時計部102は、マスター時刻の時刻情報をパケット生成部103に出力する。   The clock unit 102 determines the master time according to the master clock generated by the master clock generation unit 101. Specifically, the clock unit 102 determines what hour, minute, and second in the master node 10. The clock unit 102 outputs the time information of the master time to the packet generation unit 103.

パケット生成部103は、Syncメッセージ、Follow_upメッセージ、Delay_Responseメッセージを生成する。例えば、パケット生成部103は、定期的にSyncメッセージを生成する。パケット生成部103は、通信部104を介してスレーブノード20にSyncメッセージを送信し、略同時に時計部102を参照してSync送信時刻Tm(0)を記録する。また、例えば、パケット生成部103は、Syncメッセージ送信後に、Sync送信時刻Tm(0)を格納したFollow_upメッセージを生成する。パケット生成部103は、通信部104を介してスレーブノード20にFollow_upメッセージを送信する。   The packet generation unit 103 generates a Sync message, a Follow_up message, and a Delay_Response message. For example, the packet generation unit 103 periodically generates a Sync message. The packet generation unit 103 transmits a Sync message to the slave node 20 via the communication unit 104, and records the Sync transmission time Tm (0) with reference to the clock unit 102 almost simultaneously. For example, the packet generation unit 103 generates a Follow_up message storing the Sync transmission time Tm (0) after transmitting the Sync message. The packet generation unit 103 transmits a Follow_up message to the slave node 20 via the communication unit 104.

また、パケット生成部103は、通信部104によって受信されるDelay_Requestメッセージの受信時刻(Delay受信時刻)Tm(1)を時計部102を参照して記録する。その後、パケット生成部103は、記録した受信時刻Tm(1)を格納したDelay_Responseメッセージを生成し、通信部104を介してスレーブノード20にDelay_Responseメッセージを送信する。   Further, the packet generation unit 103 records the reception time (Delay reception time) Tm (1) of the Delay_Request message received by the communication unit 104 with reference to the clock unit 102. Thereafter, the packet generation unit 103 generates a Delay_Response message storing the recorded reception time Tm (1), and transmits the Delay_Response message to the slave node 20 via the communication unit 104.

通信部104は、スレーブノード20との間で通信を行う。例えば、通信部104は、スレーブノード20からDelay_Requestメッセージを受信し、パケット生成部103に転送する。また、通信部104は、Syncメッセージ、Follow_upメッセージ、Delay_Responseメッセージをスレーブノード20に送信する。   The communication unit 104 communicates with the slave node 20. For example, the communication unit 104 receives a Delay_Request message from the slave node 20 and transfers it to the packet generation unit 103. In addition, the communication unit 104 transmits a Sync message, a Follow_up message, and a Delay_Response message to the slave node 20.

次に、スレーブノード20の機能構成を説明する。
スレーブノード20は、バスで接続されたCPUやメモリや補助記憶装置などを備え、時刻同期用プログラムを実行する。時刻同期用プログラムの実行によって、スレーブノード20は、通信部201、制御部202、同期処理部203、時計部204、算出部205、判定部206、決定部207を備える装置として機能する。なお、スレーブノード20の各機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。また、時刻同期用プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、時刻同期用プログラムは、電気通信回線を介して送受信されてもよい。
Next, the functional configuration of the slave node 20 will be described.
The slave node 20 includes a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and executes a time synchronization program. By executing the time synchronization program, the slave node 20 functions as an apparatus including the communication unit 201, the control unit 202, the synchronization processing unit 203, the clock unit 204, the calculation unit 205, the determination unit 206, and the determination unit 207. All or some of the functions of the slave node 20 may be realized using hardware such as an ASIC, PLD, or FPGA. The time synchronization program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. The time synchronization program may be transmitted / received via a telecommunication line.

通信部201は、各マスターノード10との間で通信を行う。例えば、通信部201は、各マスターノード10からSyncメッセージ、Follow_upメッセージ、Delay_Responseメッセージを受信し、Delay_Requestメッセージを各マスターノード10に送信する。
制御部202は、スレーブノード20の各機能部を制御する。制御部202は、Follow_upメッセージの受信後、Delay_Requestメッセージを生成する。その後、制御部202は、生成したDelay_Requestメッセージを通信部201に送信させ、略同時に時計部204を参照してDelay送信時刻Ts(1)を記録する。また、制御部202は、Syncメッセージが通信部201から転送された際にSync受信時刻Ts(0)を記録する。また、制御部202は、Follow_upメッセージ中に格納されているSync送信時刻Tm(0)を抽出し記録する。また、制御部202は、Delay_Responseメッセージ中に格納されているDelay受信時刻Tm(1)を抽出し記録する。その後、制御部202は、各時刻情報(Sync送信時刻Tm(0)、Sync受信時刻Ts(0)、Delay送信時刻Ts(1)、Delay受信時刻Tm(1))に基づいてOffsetを算出する。そして、制御部202は、算出したOffsetに基づいてスレーブノード20の時刻を補正する。つまり、制御部202は、算出したOffsetに基づいて時計部204の時刻を補正する。
The communication unit 201 communicates with each master node 10. For example, the communication unit 201 receives a Sync message, a Follow_up message, and a Delay_Response message from each master node 10 and transmits a Delay_Request message to each master node 10.
The control unit 202 controls each functional unit of the slave node 20. After receiving the Follow_up message, the control unit 202 generates a Delay_Request message. Thereafter, the control unit 202 causes the communication unit 201 to transmit the generated Delay_Request message, and records the delay transmission time Ts (1) with reference to the clock unit 204 substantially simultaneously. Further, the control unit 202 records the Sync reception time Ts (0) when the Sync message is transferred from the communication unit 201. Further, the control unit 202 extracts and records the Sync transmission time Tm (0) stored in the Follow_up message. Further, the control unit 202 extracts and records the Delay reception time Tm (1) stored in the Delay_Response message. Thereafter, the control unit 202 calculates Offset based on each time information (Sync transmission time Tm (0), Sync reception time Ts (0), Delay transmission time Ts (1), Delay reception time Tm (1)). . Then, the control unit 202 corrects the time of the slave node 20 based on the calculated Offset. That is, the control unit 202 corrects the time of the clock unit 204 based on the calculated Offset.

また、制御部202は、時刻同期処理時の所定のタイミングの時刻(以下、「絶対時刻」という。)をマスターノード10毎に取得する。所定のタイミングは、例えばOffsetが算出されたタイミングであってもよいし、スレーブノード20の時刻が補正されたタイミングであってもよいし、その他のタイミングであってもよい。絶対時刻は、時、分、秒で表される。   In addition, the control unit 202 acquires a time at a predetermined timing (hereinafter referred to as “absolute time”) during the time synchronization process for each master node 10. For example, the predetermined timing may be a timing at which Offset is calculated, a timing at which the time of the slave node 20 is corrected, or another timing. Absolute time is expressed in hours, minutes, and seconds.

同期処理部203は、スレーブノード20における1秒の時間幅を決定する。具体的には、同期処理部203は、通信部201によって受信されたSyncメッセージに基づいてスレーブクロックを生成することによって、スレーブノード20における1秒の時間幅を決定する。生成されたスレーブクロックは、マスターノード10のマスタークロックに同期される。同期処理部203は、自身のクロックから生成するタイムスタンプとマスターノード10から受信したタイムスタンプとの差分を計算し、計算された差分を元に自身のクロックを調整できる構成であれば、どのような構成であってもよい。
時計部204は、同期処理部203によって生成されたスレーブクロックに従い、スレーブ時刻を決定する。具体的には、時計部204は、スレーブノード20において何時何分何秒であるかを決める。時計部204は、スレーブ時刻の時刻情報を制御部202に出力する。
The synchronization processing unit 203 determines a time width of 1 second in the slave node 20. Specifically, the synchronization processing unit 203 determines a time width of 1 second in the slave node 20 by generating a slave clock based on the Sync message received by the communication unit 201. The generated slave clock is synchronized with the master clock of the master node 10. The synchronization processing unit 203 calculates the difference between the time stamp generated from its own clock and the time stamp received from the master node 10, and any configuration can adjust its own clock based on the calculated difference. It may be a simple configuration.
The clock unit 204 determines the slave time according to the slave clock generated by the synchronization processing unit 203. Specifically, the clock unit 204 determines what hour, minute, and second in the slave node 20. The clock unit 204 outputs the time information of the slave time to the control unit 202.

算出部205は、マスターノード10毎に取得された絶対時刻の平均値を算出する。
判定部206は、算出部205によって算出された絶対時刻の平均値と、各マスターノード10から取得された絶対時刻とに基づいて、時刻源の精度が劣化しているマスターノード10が存在するか否か判定する。
The calculation unit 205 calculates an average value of absolute times acquired for each master node 10.
The determination unit 206 determines whether there is a master node 10 whose time source accuracy is deteriorated based on the average value of the absolute time calculated by the calculation unit 205 and the absolute time acquired from each master node 10. Judge whether or not.

決定部207は、判定結果に応じて複数のマスターノード10の中から自装置が同期するマスターノード10を決定する。具体的には、時刻源の精度が劣化しているマスターノード10が存在すると判定された場合、決定部207は時刻源の精度が劣化していると判定されたマスターノード10を除くマスターノード10を、時刻源の精度が劣化していないマスターノード10と判断して自装置が同期するマスターノード10に決定する。一方、時刻源の精度が劣化しているマスターノード10が存在しないと判定された場合、決定部207は全てのマスターノード10を自装置が同期するマスターノード10に決定する。決定部207は、決定結果を制御部202に出力する。   The determination unit 207 determines the master node 10 to which the own device synchronizes among the plurality of master nodes 10 according to the determination result. Specifically, when it is determined that there is a master node 10 whose accuracy of the time source is deteriorated, the determination unit 207 excludes the master node 10 excluding the master node 10 that is determined that the accuracy of the time source is deteriorated. Is determined to be the master node 10 with which the accuracy of the time source has not deteriorated, and is determined as the master node 10 with which the own device is synchronized. On the other hand, when it is determined that there is no master node 10 whose time source accuracy is degraded, the determination unit 207 determines all the master nodes 10 to be the master nodes 10 to which the own device is synchronized. The determination unit 207 outputs the determination result to the control unit 202.

図4は、判定部206が行う判定処理の判定基準に関する概略図である。以下、図4を用いて、判定部206が行う判定処理について具体的に説明する。なお、図4では、1台のスレーブノード20が時刻同期処理を行っているマスターノード10の台数が3台である場合を例に説明する。
図4において、縦軸は絶対時刻(時、分、秒)を表し、横軸tは時間を表す。図4には、5つの遷移線が表されている。5つの遷移線は、遷移線31、遷移線32、遷移線33、遷移線34、遷移線35である。遷移線31〜33は、スレーブノード20が各マスターノード10(図4では、3台)との時刻同期処理時の所定のタイミングで取得した絶対時刻の推移を表す。遷移線34は、取得された絶対時刻の平均値Mに所定の値Aを加算した上限値(M+A)の推移を表す。遷移線35は、取得された絶対時刻の平均値Mを所定の値Aだけ減算した下限値(M−A)の推移を表す。
FIG. 4 is a schematic diagram regarding the determination criteria of the determination process performed by the determination unit 206. Hereinafter, the determination process performed by the determination unit 206 will be specifically described with reference to FIG. FIG. 4 illustrates an example in which the number of master nodes 10 on which one slave node 20 performs time synchronization processing is three.
In FIG. 4, the vertical axis represents absolute time (hours, minutes, seconds), and the horizontal axis t represents time. FIG. 4 shows five transition lines. The five transition lines are a transition line 31, a transition line 32, a transition line 33, a transition line 34, and a transition line 35. Transition lines 31 to 33 represent transitions in absolute time acquired by slave node 20 at a predetermined timing during time synchronization processing with each master node 10 (three in FIG. 4). The transition line 34 represents the transition of the upper limit value (M + A) obtained by adding a predetermined value A to the acquired average value M of absolute times. The transition line 35 represents the transition of the lower limit value (MA) obtained by subtracting the average value M of the acquired absolute time by a predetermined value A.

まず、図4(A)について説明する。
図4(A)に示されるように、遷移線31〜33のいずれもが、遷移線34を超えていない、かつ、遷移線35を下回っていない場合、判定部206は遷移線31〜33の全てが絶対時刻の平均値Mに所定の値Aを加減した閾値の範囲内であると判定する。この場合、判定部206は、時刻源の精度が劣化しているマスターノード10がないと判定する。
First, FIG. 4A will be described.
As shown in FIG. 4A, when any of the transition lines 31 to 33 does not exceed the transition line 34 and does not fall below the transition line 35, the determination unit 206 determines the transition lines 31 to 33. All are determined to be within the range of a threshold value obtained by adding or subtracting a predetermined value A to the average value M of absolute time. In this case, the determination unit 206 determines that there is no master node 10 whose time source accuracy has deteriorated.

次に、図4(B)について説明する。
図4(B)に示されるように、遷移線31が、遷移線34で示される上限値(M+A)を超えている場合(円36内)、遷移線31で示される絶対時刻に関連するマスターノード10の時刻源の精度が劣化しているおそれがある。このような時刻源の精度が劣化しているおそれのあるマスターノード10を検知するため、判定部206は、各マスターノード10との間で取得される絶対時刻のいずれかが、絶対時刻の平均値Mに所定の値Aを加算した値(遷移線34)を超えている場合、時刻源の精度が劣化しているマスターノード10があると判定する。この場合、判定部206は、絶対時刻の平均値Mに所定の値Aを加算した値(遷移線34)を超えている絶対時刻に関連するマスターノード10を、時刻源の精度が劣化しているマスターノード10と判定する。
Next, FIG. 4B will be described.
As shown in FIG. 4B, when the transition line 31 exceeds the upper limit value (M + A) indicated by the transition line 34 (within the circle 36), the master related to the absolute time indicated by the transition line 31. There is a possibility that the accuracy of the time source of the node 10 is deteriorated. In order to detect the master node 10 in which the accuracy of the time source may be deteriorated, the determination unit 206 determines whether the absolute time acquired with each master node 10 is the average of the absolute time. If the value M exceeds a value obtained by adding a predetermined value A (transition line 34), it is determined that there is a master node 10 in which the accuracy of the time source is degraded. In this case, the determination unit 206 causes the master node 10 related to the absolute time exceeding the value obtained by adding the predetermined value A to the average value M of the absolute time (transition line 34) to deteriorate the accuracy of the time source. Is determined to be a master node 10.

また、図4には図示していないが、判定部206は、各マスターノード10との間で取得される絶対時刻のいずれかが、絶対時刻の平均値Mに所定の値Aを減算した値(遷移線35)を下回っている場合、時刻源の精度が劣化しているマスターノード10があると判定する。この場合、判定部206は、絶対時刻の平均値Mに所定の値Aを減算した値(遷移線35)を下回っている絶対時刻に関連するマスターノード10を、時刻源の精度が劣化しているマスターノード10と判定する。   Although not shown in FIG. 4, the determination unit 206 is a value obtained by subtracting a predetermined value A from the average value M of absolute time, which is one of the absolute times acquired with each master node 10. If it is below (transition line 35), it is determined that there is a master node 10 whose time source accuracy is degraded. In this case, the determination unit 206 determines that the master node 10 related to the absolute time that is below the value obtained by subtracting the predetermined value A from the average value M of the absolute time (transition line 35) is deteriorated in accuracy of the time source. It is determined that the master node 10 is present.

上述したように、各マスターノード10との間で取得される絶対時刻のいずれもが、絶対時刻の平均値Mに所定の値Aを加減した閾値の範囲内(遷移線34を上限値として遷移線35を下限値とした範囲内)である場合、判定部206は時刻源の精度が劣化しているマスターノード10がないと判定する。一方、各マスターノード10との間で取得される絶対時刻のいずれかが、絶対時刻の平均値Mに所定の値Aを加減した閾値の範囲外(遷移線34を上限値として遷移線35を下限値とした範囲外)である場合、判定部206は時刻源の精度が劣化しているマスターノード10があると判定する。   As described above, any absolute time acquired with each master node 10 is within the threshold range obtained by adding or subtracting the predetermined value A to the average value M of the absolute time (the transition line 34 is used as the upper limit value). If it is within the range having the line 35 as the lower limit value), the determination unit 206 determines that there is no master node 10 whose time source accuracy has deteriorated. On the other hand, one of the absolute times acquired with each master node 10 is outside the range of a threshold obtained by adding or subtracting a predetermined value A to the average value M of the absolute time (the transition line 35 is set with the transition line 34 as an upper limit value). If it is outside the range set as the lower limit value, the determination unit 206 determines that there is a master node 10 in which the accuracy of the time source is degraded.

図5は、本実施形態におけるスレーブノード20の処理の流れを示すフローチャートである。
スレーブノード20は、自装置が同期するマスターノード10との間で時刻同期処理を行う(ステップS201)。制御部202は、時刻同期処理時を行ったマスターノード10との間で絶対時刻を取得する(ステップS202)。制御部202は、自装置が同期する全てのマスターノード10との間で絶対時刻を取得したか否か判定する(ステップS203)。自装置が同期する全てのマスターノード10との間で絶対時刻を取得していない場合(ステップS203−NO)、ステップS201以降の処理が繰り返し実行される。この場合、スレーブノード20は、絶対時刻を取得していないマスターノード10との間でS201以降の処理を実行する。
一方、自装置が同期する全てのマスターノード10との間で絶対時刻を取得した場合(ステップS203−YES)、算出部205は取得された絶対時刻の平均値を算出する(ステップS204)。
FIG. 5 is a flowchart showing a processing flow of the slave node 20 in the present embodiment.
The slave node 20 performs time synchronization processing with the master node 10 with which the own device synchronizes (step S201). The control unit 202 acquires the absolute time with the master node 10 that performed the time synchronization processing (step S202). The control unit 202 determines whether or not the absolute time has been acquired with all the master nodes 10 with which the own device is synchronized (step S203). When the absolute time has not been acquired with all the master nodes 10 with which the own device is synchronized (NO in step S203), the processing after step S201 is repeatedly executed. In this case, the slave node 20 executes the processing after S201 with the master node 10 that has not acquired the absolute time.
On the other hand, when the absolute time is acquired with all the master nodes 10 with which the own device is synchronized (YES in step S203), the calculation unit 205 calculates the average value of the acquired absolute time (step S204).

判定部206は、時刻源の精度が劣化しているマスターノード10があるか否か判定する(ステップS205)。具体的には、各マスターノード10の絶対時刻のいずれかが、絶対時刻の平均値に所定の値を加減した閾値の範囲外である場合、判定部206は時刻源の精度が劣化しているマスターノード10があると判定する。一方、各マスターノード10の絶対時刻の全てが、絶対時刻の平均値に所定の値を加減した閾値の範囲内である場合、判定部206は時刻源の精度が劣化しているマスターノード10がないと判定する。   The determination unit 206 determines whether or not there is a master node 10 whose time source accuracy has deteriorated (step S205). Specifically, when one of the absolute times of each master node 10 is outside the range of a threshold obtained by adding or subtracting a predetermined value to the average value of the absolute time, the determination unit 206 has degraded the accuracy of the time source. It is determined that there is a master node 10. On the other hand, when all of the absolute times of the master nodes 10 are within a threshold range obtained by adding or subtracting a predetermined value to the average value of the absolute times, the determination unit 206 determines that the master node 10 whose accuracy of the time source has deteriorated Judge that there is no.

時刻源の精度が劣化しているマスターノード10がある場合(ステップS205−YES)、決定部207は時刻源の精度が劣化しているマスターノード10を除くマスターノード10を自装置が同期するマスターノード10に決定する(ステップS207)。つまり、決定部207は、時刻源の精度が劣化していないマスターノード10を自装置が同期するマスターノード10に決定する。
一方、時刻源の精度が劣化しているマスターノード10がない場合(ステップS205−NO)、決定部207は全てのマスターノードを自装置が同期するマスターノード10に決定する(ステップS206)。
When there is a master node 10 in which the accuracy of the time source is deteriorated (YES in step S205), the determination unit 207 is a master that synchronizes the master nodes 10 except for the master node 10 in which the accuracy of the time source is deteriorated. The node 10 is determined (step S207). That is, the determination unit 207 determines the master node 10 whose time source accuracy is not deteriorated as the master node 10 with which the own device is synchronized.
On the other hand, when there is no master node 10 in which the accuracy of the time source is deteriorated (step S205—NO), the determination unit 207 determines all the master nodes as the master nodes 10 with which the own device is synchronized (step S206).

以上のように構成されたスレーブノード20では、時刻源の精度が劣化しているおそれのあるマスターノード10が特定される。通常、時刻源の精度が劣化していない複数のマスターノード10間では、各マスターノード10の時刻に大きな違いは見られない。したがって、スレーブノード20が各マスターノード10との間で時刻同期処理を行った時のある瞬間の絶対時刻においても大きな違いは見られない。そのため、各マスターノード10との間で取得された絶対時刻のうち、各絶対時刻の平均値に所定の値を加減した閾値の範囲内に収まらない絶対時刻が存在する場合、範囲内に収まらない絶対時刻に関連するマスターノード10の時刻源の精度が劣化しているおそれがある。そこで、スレーブノード20が、時刻源の精度が劣化しているおそれがあると判定されたマスターノード10を除くマスターノード10と時刻同期するように自装置を制御する。つまり、スレーブノード20は、時刻源の精度が劣化していないマスターノード10と時刻同期処理を行うように制御する。したがって、スレーブノード20が、時刻源の精度が劣化しているマスターノード10との間で時刻同期処理を行ってしまうおそれがなくなる。そのため、複数のマスターノード10のいずれかのマスターノード10の時刻源の精度が劣化した場合におけるスレーブノード20の時刻同期の精度低下を抑えることが可能になる。   In the slave node 20 configured as described above, the master node 10 whose accuracy of the time source may be deteriorated is specified. Normally, there is no significant difference in the time of each master node 10 between a plurality of master nodes 10 whose time source accuracy is not degraded. Therefore, there is no significant difference in the absolute time at a certain moment when the slave node 20 performs time synchronization processing with each master node 10. Therefore, if there is an absolute time that does not fall within the threshold range obtained by adding or subtracting a predetermined value to the average value of each absolute time among the absolute times acquired with each master node 10, it does not fall within the range. There is a possibility that the accuracy of the time source of the master node 10 related to the absolute time is deteriorated. Therefore, the slave node 20 controls its own device so as to synchronize the time with the master nodes 10 excluding the master node 10 determined that there is a possibility that the accuracy of the time source is deteriorated. That is, the slave node 20 performs control so as to perform time synchronization processing with the master node 10 in which the accuracy of the time source has not deteriorated. Therefore, there is no possibility that the slave node 20 performs the time synchronization process with the master node 10 in which the accuracy of the time source is deteriorated. Therefore, it is possible to suppress a decrease in time synchronization accuracy of the slave node 20 when the accuracy of the time source of any one of the plurality of master nodes 10 deteriorates.

<変形例>
1台のスレーブノード20が上記判定処理を行う対象のマスターノード10は3台以上であれば何台であってもよい。また、スレーブノード20のそれぞれは、互いに異なる台数のマスターノード10と時刻同期処理を行ってもよい。
<Modification>
As long as there are three or more master nodes 10 for which one slave node 20 performs the determination process, any number of master nodes 10 may be used. Each of the slave nodes 20 may perform time synchronization processing with a different number of master nodes 10.

また、複数のスレーブノード20のうち、1台のスレーブノード20が判定処理を行い、判定結果を他のスレーブノード20に通知するように構成されてもよい。このように構成される場合、1台のスレーブノード20が判定部206を備え、その他のスレーブノード20が判定部206を備えないように構成される。以下、このように構成される場合における時刻同期システム100の動作について説明する。   Further, one slave node 20 among the plurality of slave nodes 20 may perform a determination process and notify the determination result to the other slave nodes 20. When configured in this way, one slave node 20 is configured to include the determination unit 206, and the other slave nodes 20 are configured not to include the determination unit 206. Hereinafter, the operation of the time synchronization system 100 in such a case will be described.

判定部206を備えるスレーブノード20は、複数のマスターノード10−1〜10−Mとの間で時刻同期処理を行う。そして、判定部206を備えるスレーブノード20は、各マスターノード10−1〜10−Mとの間で取得された各絶対時刻と、各絶対時刻の平均値とに基づいて判定処理を行う。判定処理の結果、時刻源の精度が劣化しているマスターノード10が存在する場合、判定部206を備えるスレーブノード20は他のスレーブノード20(判定部206を備えないスレーブノード20)に対して時刻源の精度が劣化しているマスターノード10の情報(例えば、MACアドレスなど)を通知する。   The slave node 20 including the determination unit 206 performs time synchronization processing with the plurality of master nodes 10-1 to 10-M. And the slave node 20 provided with the determination part 206 performs a determination process based on each absolute time acquired between each master node 10-1 to 10-M, and the average value of each absolute time. As a result of the determination process, when there is a master node 10 in which the accuracy of the time source is deteriorated, the slave node 20 including the determination unit 206 is compared with other slave nodes 20 (slave nodes 20 not including the determination unit 206). Information (for example, MAC address) of the master node 10 in which the accuracy of the time source is degraded is notified.

一方、時刻源の精度が劣化しているマスターノード10が存在しない場合、判定部206を備えるスレーブノード20は他のスレーブノード20に対して全てのマスターノード10の時刻源の精度が正常である旨の情報を通知する。
他のスレーブノード20の決定部207は、判定部206を備えるスレーブノード20から通知された情報に基づいて自装置が同期するマスターノード10を決定する。例えば、他のスレーブノード20の決定部207は、判定部206を備えるスレーブノード20から通知された時刻源の精度が劣化しているマスターノード10を除くマスターノード10を、時刻源の精度が劣化していないマスターノード10と判断して自装置が同期するマスターノード10に決定する。
On the other hand, when there is no master node 10 whose time source accuracy is degraded, the slave node 20 including the determination unit 206 has normal time source accuracy for all the master nodes 10 relative to the other slave nodes 20. Notify that effect.
The determination unit 207 of the other slave node 20 determines the master node 10 to which the own device synchronizes based on information notified from the slave node 20 including the determination unit 206. For example, the determination unit 207 of the other slave node 20 determines the master node 10 except the master node 10 in which the accuracy of the time source notified from the slave node 20 provided with the determination unit 206 is degraded. The master node 10 is determined to be a master node 10 that is synchronized with the own device.

このように構成された時刻同期システム100によれば、全てのスレーブノード20が判定部206を備えている必要がない。つまり、最低1台のスレーブノード20が判定部206を備えていればよい。そのため、製造コストを抑えることができる。また、判定部206を備えないスレーブノード20では、判定処理を行う必要がないため、処理負荷を抑えることができる。さらに、他のスレーブノード20は、時刻源の精度が劣化していないマスターノード10と同期するように自装置を制御する。そのため、複数のマスターノード10のいずれかのマスターノード10の時刻源の精度が劣化した場合におけるスレーブノード20の時刻同期の精度低下を抑えることが可能になる。   According to the time synchronization system 100 configured as described above, it is not necessary that all the slave nodes 20 include the determination unit 206. That is, it is sufficient that at least one slave node 20 includes the determination unit 206. Therefore, manufacturing cost can be suppressed. Further, in the slave node 20 that does not include the determination unit 206, it is not necessary to perform the determination process, so that the processing load can be suppressed. Furthermore, the other slave nodes 20 control their own devices so as to synchronize with the master node 10 whose time source accuracy is not degraded. Therefore, it is possible to suppress a decrease in time synchronization accuracy of the slave node 20 when the accuracy of the time source of any one of the plurality of master nodes 10 deteriorates.

また、本発明の時刻同期システム100は、制御サーバを備えるように構成されてもよい。制御サーバは、パーソナルコンピュータ等の情報処理装置を用いて構成され、全てのマスターノード10及びスレーブノード20の制御を行う。制御サーバは、スレーブノード20と略同じ各機能部を有する。制御サーバは、通信部、制御部、同期処理部、時計部、算出部、判定部を備える。各機能部は、スレーブノード20における同名の各機能部と略同様に機能する。以下、スレーブノード20における同名の各機能部と異なる処理を行う機能部(通信部、制御部)について説明する。つまり、同期処理部、時計部、算出部、判定部は、スレーブノード20における同名の各機能部と同様の処理を行う。   Moreover, the time synchronization system 100 of the present invention may be configured to include a control server. The control server is configured using an information processing apparatus such as a personal computer, and controls all the master nodes 10 and slave nodes 20. The control server has substantially the same functional units as the slave node 20. The control server includes a communication unit, a control unit, a synchronization processing unit, a clock unit, a calculation unit, and a determination unit. Each functional unit functions in substantially the same manner as each functional unit having the same name in the slave node 20. Hereinafter, functional units (communication unit, control unit) that perform processing different from the functional units of the same name in the slave node 20 will be described. That is, the synchronization processing unit, the clock unit, the calculation unit, and the determination unit perform the same processing as each functional unit having the same name in the slave node 20.

通信部は、スレーブノード20における同名の機能部(通信部201)と同様の処理を行う。また、通信部は、時刻源の精度が劣化しているマスターノード10の情報を、スレーブノード20に通知する。
制御部は、スレーブノード20における同名の機能部(制御部202)と同様の処理を行う。また、制御部は、判定部の判定結果において時刻源の精度が劣化しているマスターノード10が存在すると判定された場合、時刻源の精度が劣化しているマスターノード10の情報を通信部に出力する。
The communication unit performs the same processing as the function unit (communication unit 201) of the same name in the slave node 20. In addition, the communication unit notifies the slave node 20 of information of the master node 10 in which the accuracy of the time source is degraded.
The control unit performs the same processing as the function unit (control unit 202) of the same name in the slave node 20. Further, when it is determined in the determination result of the determination unit that there is a master node 10 whose accuracy of the time source is deteriorated, the control unit transmits information of the master node 10 whose accuracy of the time source is deteriorated to the communication unit. Output.

スレーブノード20の決定部207は、通知された情報に基づいて自装置が同期するマスターノード10を決定する。例えば、スレーブノード20の決定部207は、制御サーバから通知された時刻源の精度が劣化しているマスターノード10を除くマスターノード10を、時刻源の精度が劣化していないマスターノード10と判断して自装置が同期するマスターノード10に決定する。つまり、スレーブノード20の決定部207は、制御サーバから通知されたマスターノード10の情報で示されるマスターノード10を除くマスターノード10を、時刻源の精度が劣化していないマスターノード10と判断して自装置が同期するマスターノード10に決定する。   The determination unit 207 of the slave node 20 determines the master node 10 with which the own device is synchronized based on the notified information. For example, the determination unit 207 of the slave node 20 determines that the master nodes 10 other than the master node 10 in which the accuracy of the time source notified from the control server has deteriorated are the master nodes 10 in which the accuracy of the time source has not deteriorated. Then, the master node 10 to which the own device synchronizes is determined. That is, the determination unit 207 of the slave node 20 determines that the master node 10 excluding the master node 10 indicated by the information of the master node 10 notified from the control server is the master node 10 whose time source accuracy has not deteriorated. To determine the master node 10 to synchronize with itself.

このように構成された時刻同期システム100によれば、全てのスレーブノード20に判定部206を備える必要がない。そのため、製造コストを抑えることができる。さらに、制御サーバから判定結果が通知されるため、全てのスレーブノード20は判定処理を行う必要がない。そのため、スレーブノード20の処理負荷を軽減することができる。   According to the time synchronization system 100 configured as described above, it is not necessary to provide the determination unit 206 in all the slave nodes 20. Therefore, manufacturing cost can be suppressed. Furthermore, since the determination result is notified from the control server, it is not necessary for all the slave nodes 20 to perform the determination process. Therefore, the processing load on the slave node 20 can be reduced.

また、スレーブノード20は、以下のようにして自装置が同期するマスターノード10を決定してもよい。具体的には、まず、スレーブノード20は、他装置(他のスレーブノード20又は制御サーバ)から時刻源の精度が劣化しているマスターノード10の情報(例えば、MACアドレスなど)を受信する。これにより、スレーブノード20は、時刻源の精度が劣化しているマスターノード10の情報を取得する。次に、スレーブノード20は、複数のマスターノード10−1〜10−Mとの間で時刻同期処理を行うことによって取得された各絶対時刻と、各絶対時刻の平均値とに基づいて判定処理を行う。これにより、スレーブノード20は、時刻源の精度が劣化しているマスターノード10の情報を取得する。その後、スレーブノード20の決定部207は、所定の優先度に基づいて、取得された情報のいずれかの情報で特定されるマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。つまり、スレーブノード20は、受信された情報により特定されるマスターノード10又は判定処理によって時刻源の精度が劣化していると特定されたマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。   Moreover, the slave node 20 may determine the master node 10 with which the own device synchronizes as follows. Specifically, first, the slave node 20 receives information (for example, a MAC address) of the master node 10 in which the accuracy of the time source is degraded from another device (another slave node 20 or a control server). Thereby, the slave node 20 acquires information of the master node 10 in which the accuracy of the time source is deteriorated. Next, the slave node 20 performs determination processing based on each absolute time acquired by performing time synchronization processing with the plurality of master nodes 10-1 to 10-M and an average value of each absolute time. I do. Thereby, the slave node 20 acquires information of the master node 10 in which the accuracy of the time source is deteriorated. Thereafter, the determination unit 207 of the slave node 20 determines, based on a predetermined priority, a master node with which the own device synchronizes the other master nodes 10 other than the master node 10 specified by any of the acquired information. 10 is determined. That is, the slave node 20 synchronizes the master node 10 specified by the received information or the other master nodes 10 other than the master node 10 specified that the accuracy of the time source is deteriorated by the determination process. The master node 10 to be determined is determined.

所定の優先度は、例えば他装置の時刻源の品質を表すクロック品質(以下、「他装置クロック品質」という。)及び自装置の時刻源の品質を表すクロック品質(以下、「自装置クロック品質」という。)に基づいて決定される。より具体的には、他装置クロック品質が自装置クロック品質よりも高い場合、他装置から受信された情報が優先される。この場合、決定部207は、受信された情報により特定されるマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。一方、他装置クロック品質が自装置クロック品質よりも低い場合、自装置で行った判定処理によって取得された情報が優先される。この場合、決定部207は、判定処理によって時刻源の精度が劣化していると特定されたマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。   The predetermined priority is, for example, a clock quality indicating the quality of the time source of another device (hereinafter referred to as “other device clock quality”) and a clock quality indicating the quality of the time source of the own device (hereinafter referred to as “own device clock quality”). "). More specifically, when the other device clock quality is higher than the own device clock quality, priority is given to the information received from the other device. In this case, the determination unit 207 determines the master node 10 other than the master node 10 specified by the received information as the master node 10 with which the own device synchronizes. On the other hand, when the other device clock quality is lower than the own device clock quality, priority is given to the information acquired by the determination processing performed by the own device. In this case, the determination unit 207 determines the master node 10 other than the master node 10 identified as having deteriorated time source accuracy by the determination process as the master node 10 with which the own device is synchronized.

以上のように構成されたスレーブノード20は、時刻源の品質が高い装置によって時刻源の精度が劣化していると特定されたマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。したがって、時刻源の精度が劣化していると特定されたマスターノード10の時刻が劣化している可能性が高い。そのため、精度の高い同期が可能になる。   The slave node 20 configured as described above is a master whose own device synchronizes with other master nodes 10 excluding the master node 10 that is specified as having a time source accuracy degraded by a device having a high time source quality. Node 10 is determined. Therefore, there is a high possibility that the time of the master node 10 identified as having deteriorated accuracy of the time source is deteriorated. Therefore, highly accurate synchronization is possible.

本実施形態では、スレーブノード20が各マスターノード10との時刻同期処理時の所定のタイミングで取得した絶対時刻が、取得した絶対時刻の平均値Mに所定の値Aを加減した閾値の範囲内であるか否かに応じて時刻源の精度が劣化しているマスターノード10を判定する構成を示したが、これに限定される必要はない。例えば、スレーブノード20は、スレーブノード20が各マスターノード10との時刻同期処理時の所定のタイミングで取得した絶対時刻と、取得した絶対時刻の平均値Mとの差分値が、所定の値±Aの範囲内であるか否かに応じて時刻源の精度が劣化しているマスターノード10を判定するように構成されてもよい。以下、図6を用いて具体的に説明する。   In the present embodiment, the absolute time acquired by the slave node 20 at a predetermined timing during the time synchronization process with each master node 10 is within a threshold range obtained by adding or subtracting the predetermined value A to the average value M of the acquired absolute time. Although the configuration is shown in which the master node 10 whose time source accuracy is deteriorated depending on whether or not it is, is not necessarily limited to this. For example, the slave node 20 determines that the difference value between the absolute time acquired by the slave node 20 at a predetermined timing during the time synchronization process with each master node 10 and the average value M of the acquired absolute time is a predetermined value ± Depending on whether or not it is within the range of A, the master node 10 whose accuracy of the time source is degraded may be determined. Hereinafter, this will be specifically described with reference to FIG.

図6は、判定部206が行う変形例における判定処理の判定基準に関する概略図である。なお、図6では、1台のスレーブノード20が時刻同期処理を行っているマスターノード10の台数が3台である場合を例に説明する。
図6において、縦軸は位相を表し、横軸tは時間を表す。位相は、スレーブノード20が各マスターノード10との時刻同期処理時の所定のタイミングで取得した絶対時刻と、取得した絶対時刻の平均値Mとの差分値(例えば、位相=平均値M−各絶対時刻)で表される。また、図6に示される遷移線37及び遷移線38は、時刻源の精度が劣化しているマスターノード10が存在すると判定する基準となる上限値A及び下限値−Aを表す。遷移線39、遷移線40及び遷移線41は、スレーブノード20が各マスターノード10(図6では、3台)との時刻同期処理時の所定のタイミングで取得した絶対時刻と、取得した絶対時刻の平均値Mとの差分値の推移を表す。各マスターノード10との時刻同期処理時の所定のタイミングで取得した絶対時刻と、取得した絶対時刻の平均値Mとの差分値(遷移線39、遷移線40及び遷移線41)のいずれもが、所定の値±Aの範囲内(遷移線37を上限値として遷移線38を下限値とした範囲内)である場合、判定部206は時刻源の精度が劣化しているマスターノード10がないと判定する。この場合、決定部207は、全てのマスターノード10を自装置が同期するマスターノード10に決定する。
FIG. 6 is a schematic diagram relating to a determination criterion of determination processing in a modification performed by the determination unit 206. FIG. 6 illustrates an example in which the number of master nodes 10 on which one slave node 20 performs time synchronization processing is three.
In FIG. 6, the vertical axis represents the phase, and the horizontal axis t represents time. The phase is a difference value between the absolute time acquired by the slave node 20 at a predetermined timing during the time synchronization process with each master node 10 and the average value M of the acquired absolute time (for example, phase = average value M−each (Absolute time). Moreover, the transition line 37 and the transition line 38 shown in FIG. 6 represent an upper limit value A and a lower limit value −A that are criteria for determining that there is a master node 10 whose accuracy of the time source is degraded. The transition line 39, the transition line 40, and the transition line 41 are the absolute time acquired by the slave node 20 at a predetermined timing during the time synchronization process with each master node 10 (three in FIG. 6), and the acquired absolute time. It represents the transition of the difference value from the average value M. Any of the difference values (the transition line 39, the transition line 40, and the transition line 41) between the absolute time acquired at a predetermined timing during the time synchronization process with each master node 10 and the average value M of the acquired absolute time is When the value is within the range of the predetermined value ± A (within the transition line 37 as the upper limit value and the transition line 38 as the lower limit value), the determination unit 206 does not have the master node 10 whose time source accuracy has deteriorated. Is determined. In this case, the determination unit 207 determines all the master nodes 10 as the master nodes 10 with which the own device is synchronized.

一方、各マスターノード10との時刻同期処理時の所定のタイミングで取得した絶対時刻と、取得した絶対時刻の平均値Mとの差分値(遷移線39、遷移線40及び遷移線41)のいずれかが、所定の値±Aの範囲外(遷移線37を上限値として遷移線38を下限値とした範囲外)である場合、判定部206は時刻源の精度が劣化しているマスターノード10があると判定する。この場合、決定部207は、時刻源の精度が劣化しているマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。すなわち、決定部207は、所定の値±Aの範囲外である差分値に関連するマスターノード10を除く他のマスターノード10を自装置が同期するマスターノード10に決定する。   On the other hand, any of the difference values (the transition line 39, the transition line 40, and the transition line 41) between the absolute time acquired at a predetermined timing during the time synchronization process with each master node 10 and the average value M of the acquired absolute time. Is outside the range of the predetermined value ± A (outside the range with the transition line 37 as the upper limit value and the transition line 38 as the lower limit value), the determination unit 206 determines that the master node 10 has deteriorated accuracy of the time source. Judge that there is. In this case, the determination unit 207 determines the master nodes 10 other than the master node 10 whose time source accuracy is degraded as the master nodes 10 to which the own apparatus synchronizes. That is, the determination unit 207 determines the master node 10 other than the master node 10 related to the difference value outside the range of the predetermined value ± A as the master node 10 with which the own device is synchronized.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

10(10−1〜10−M)…マスターノード, 20(20−1〜20−N)…スレーブノード, 30(30−1〜30−L)…ネットワーク, 101…マスタークロック生成部, 102…時計部, 103…パケット生成部, 104…通信部, 201…通信部, 202…制御部, 203…同期処理部, 204…時計部, 205…算出部, 206…判定部, 207…決定部 10 (10-1 to 10-M): Master node, 20 (20-1 to 20-N) ... Slave node, 30 (30-1 to 30-L) ... Network, 101 ... Master clock generation unit, 102 ... Clock unit, 103 ... Packet generation unit, 104 ... Communication unit, 201 ... Communication unit, 202 ... Control unit, 203 ... Synchronization processing unit, 204 ... Clock unit, 205 ... Calculation unit, 206 ... Determination unit, 207 ... Determination unit

Claims (9)

自装置における時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を自装置との間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定部
他のスレーブノードに対して前記マスターノードの時刻源の精度の劣化を示す通知を送信する送信部と、
を備えるスレーブノード。
The condition indicating the deterioration of the accuracy of the time source of one of the plurality of master nodes that performs time synchronization processing with the own device to synchronize the time at the own device with the time at the master node is satisfied. If it is, a determination unit which determines the other master nodes except the master node in which the condition is satisfied in the master node device itself is synchronized,
A transmission unit that transmits a notification indicating deterioration in accuracy of the time source of the master node to other slave nodes;
A slave node comprising
各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部をさらに備え、
前記決定部は、各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻のいずれかが、算出された前記平均値に所定の値を加減して得られる閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する、請求項1に記載のスレーブノード。
A calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node;
The determination unit is a threshold obtained by adding or subtracting a predetermined value to the calculated average value, at any one of the times acquired at a predetermined timing during the time synchronization process performed with each master node. 2. The slave node according to claim 1, wherein when it is out of the range, another master node excluding the master node related to the time when it is out of the threshold range is determined as a master node to which the own device synchronizes.
各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部をさらに備え、
前記決定部は、各マスターノードにおける時刻同期処理時の所定のタイミングの時刻と、算出された前記平均値との差分値のいずれかが、所定の閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する、請求項1に記載のスレーブノード。
A calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node;
The determination unit determines a threshold range when any of a difference value between a time at a predetermined timing at the time synchronization processing in each master node and the calculated average value is outside a predetermined threshold range. The slave node according to claim 1, wherein other master nodes excluding the master node related to the time when the time is out are determined as master nodes to which the own device synchronizes.
記送信部は、前記閾値の範囲外となった時刻に関連するマスターノードの劣化を示す通知を前記他のスレーブノードに送信する、請求項2又は3のいずれか1項に記載のスレーブノード。 Prior Symbol transmitting unit transmits a notification indicating the deterioration of the master node associated with the time at which it went out of the range of the threshold value to the other slave nodes, the slave node according to any one of claims 2 or 3 . 自装置における時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を自装置との間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定部、
を備え、
前記決定部は、他装置から前記マスターノードの時刻源の精度の劣化を示す通知が受信された場合に、受信された通知で示されるマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定するスレーブノード。
The condition indicating the deterioration of the accuracy of the time source of one of the plurality of master nodes that performs time synchronization processing with the own device to synchronize the time at the own device with the time at the master node is satisfied. A determination unit for determining, as a master node to which the own device synchronizes, other than the master node that satisfies the condition,
With
The determination unit, when a notification indicating deterioration in accuracy of the time source of the master node is received from another device, the master device synchronizes with other master nodes other than the master node indicated in the received notification. Luz slave node to determine the node.
各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部と、
他装置から前記マスターノードの時刻源の精度の劣化を示す通知を受信する受信部と、をさらに備え、
前記決定部は、所定の優先度に基づいて、前記通知により特定される、時刻源の精度が劣化しているマスターノード又は前記平均値に基づいて特定されるマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する、請求項1に記載のスレーブノード。
A calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node;
A receiver that receives a notification indicating deterioration in accuracy of the time source of the master node from another device, and
The determination unit determines a master node that is specified by the notification based on a predetermined priority and that is other than a master node that is specified based on the average value, or a master node that is specified based on the average value. The slave node according to claim 1, wherein the slave node is determined as a master node with which the own device is synchronized.
複数のノードを制御する制御サーバであって、
各マスターノードとの間で行われる時刻同期処理時の所定のタイミングで取得される時刻の平均値を算出する算出部と、
各マスターノードにおける時刻同期処理時の所定のタイミングの時刻と、算出された前記平均値との差分値のいずれが、所定の閾値の範囲外である場合に、閾値の範囲外となった時刻に関連するマスターノードの時刻源の精度の劣化を示す通知を前記マスターノードに接続するスレーブノードに送信する送信部と、
を備える制御サーバ。
A control server for controlling a plurality of nodes,
A calculation unit that calculates an average value of times acquired at a predetermined timing during time synchronization processing performed with each master node;
When any of the difference values between the time at a predetermined timing at the time synchronization processing in each master node and the calculated average value is outside the range of the predetermined threshold, A transmission unit that transmits a notification indicating a deterioration in accuracy of a time source of a related master node to a slave node connected to the master node;
A control server comprising:
スレーブノードにおける時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を前記スレーブノードとの間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定ステップ
他のスレーブノードに対して前記マスターノードの時刻源の精度の劣化を示す通知を送信する送信ステップと、
を有する時刻同期先決定方法。
A condition indicating deterioration in accuracy of the time source of any one of a plurality of master nodes performing time synchronization processing with the slave node, which is processing for synchronizing the time at the slave node with the time at the master node. when filled, a determination step of determining another master node, except the master node in which the condition is satisfied in the master node device itself is synchronized,
A transmission step of transmitting a notification indicating deterioration of accuracy of the time source of the master node to other slave nodes;
A method for determining a time synchronization destination.
スレーブノードにおける時刻をマスターノードにおける時刻に同期させるための処理である時刻同期処理を前記スレーブノードとの間で行う複数のマスターノードのいずれかのマスターノードの時刻源の精度の劣化を示す条件が満たされた場合に、前記条件が満たされたマスターノードを除く他のマスターノードを自装置が同期するマスターノードに決定する決定ステップ
他のスレーブノードに対して前記マスターノードの時刻源の精度の劣化を示す通知を送信する送信ステップと、
をコンピュータに実行させるためのコンピュータプログラム。
A condition indicating deterioration in accuracy of the time source of any one of a plurality of master nodes performing time synchronization processing with the slave node, which is processing for synchronizing the time at the slave node with the time at the master node. when filled, a determination step of determining another master node, except the master node in which the condition is satisfied in the master node device itself is synchronized,
A transmission step of transmitting a notification indicating deterioration of accuracy of the time source of the master node to other slave nodes;
A computer program for causing a computer to execute.
JP2014064693A 2014-03-26 2014-03-26 Slave node, control server, time synchronization destination determination method and computer program Active JP6170456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064693A JP6170456B2 (en) 2014-03-26 2014-03-26 Slave node, control server, time synchronization destination determination method and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064693A JP6170456B2 (en) 2014-03-26 2014-03-26 Slave node, control server, time synchronization destination determination method and computer program

Publications (2)

Publication Number Publication Date
JP2015188152A JP2015188152A (en) 2015-10-29
JP6170456B2 true JP6170456B2 (en) 2017-07-26

Family

ID=54430195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064693A Active JP6170456B2 (en) 2014-03-26 2014-03-26 Slave node, control server, time synchronization destination determination method and computer program

Country Status (1)

Country Link
JP (1) JP6170456B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937243B1 (en) * 2015-02-17 2016-06-22 日本電信電話株式会社 Time synchronization method and time synchronization apparatus
JP6488195B2 (en) * 2015-05-27 2019-03-20 株式会社日立製作所 Communication device for time synchronization
JP6820586B2 (en) 2016-08-31 2021-01-27 株式会社メディアリンクス Time synchronization system
US11159303B1 (en) 2018-11-20 2021-10-26 Mitsubishi Electric Corporation Communication system, list distribution station, communication method, and computer readable medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228010A (en) * 2005-02-18 2006-08-31 Ricoh Co Ltd Image forming device
JP5495323B2 (en) * 2010-07-16 2014-05-21 Kddi株式会社 Time synchronization device via network
CN104396180A (en) * 2012-06-19 2015-03-04 日本电气株式会社 Clock synchronization system, clock synchronization method, and storage medium whereupon clock synchronization program is stored
JP6079442B2 (en) * 2013-05-31 2017-02-15 三菱電機株式会社 Time synchronization apparatus, time synchronization system, and time synchronization method

Also Published As

Publication number Publication date
JP2015188152A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5561426B2 (en) Synchronization system, synchronization method, first synchronization device, second synchronization device, and computer program
JP5358813B2 (en) Network node, time synchronization method, and network system
JP5495323B2 (en) Time synchronization device via network
US8953645B2 (en) Communication system, communication apparatus and time synchronization method
JP6170415B2 (en) Time synchronization system, time synchronization method, and computer program
US20170150464A1 (en) Communication apparatus, time synchronizing method, and non-transitory computer-readable storage medium
US9749073B2 (en) Clock recovery in a packet based network
US9651984B2 (en) Feed-forward time transfer mechanism for time synchronization
JP6170456B2 (en) Slave node, control server, time synchronization destination determination method and computer program
JP6132734B2 (en) Time synchronization system and apparatus
JP2011135482A (en) Time synchronizing system, master node, slave node, repeater, time synchronizing method, and program for time synchronization
US9641269B2 (en) Apparatus and method for synchronizing clocks among communication devices
JP2017069669A (en) Time synchronizing device, base station device, and time synchronizing method
JP2013138312A5 (en)
JP6254028B2 (en) Slave node and time synchronization method
JP5736550B1 (en) Base station equipment
US8472370B2 (en) Apparatus and method for timing synchronization in a communication system
JP6010802B2 (en) Time synchronization system, time synchronization method, slave node, and computer program
US20130229982A1 (en) Synchronization method, device, and system
EP3163788B1 (en) Communication system, communication method, and communication program
JP2016025474A (en) Delay measurement method, delay measurement apparatus, and program
JP2014032055A (en) Communication system
JP6085864B2 (en) Time synchronization system, time synchronization method, slave node, and computer program
KR20100048124A (en) Time synchronization method in bridged local area network
WO2016177240A1 (en) Frequency synchronization method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170630

R150 Certificate of patent or registration of utility model

Ref document number: 6170456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250