JP6165207B2 - Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet - Google Patents

Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet Download PDF

Info

Publication number
JP6165207B2
JP6165207B2 JP2015181655A JP2015181655A JP6165207B2 JP 6165207 B2 JP6165207 B2 JP 6165207B2 JP 2015181655 A JP2015181655 A JP 2015181655A JP 2015181655 A JP2015181655 A JP 2015181655A JP 6165207 B2 JP6165207 B2 JP 6165207B2
Authority
JP
Japan
Prior art keywords
reinforced resin
resin base
base sheet
fiber reinforced
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015181655A
Other languages
Japanese (ja)
Other versions
JP2017057255A (en
Inventor
剛志 馬場
剛志 馬場
功司 団
功司 団
正俊 小林
正俊 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015181655A priority Critical patent/JP6165207B2/en
Publication of JP2017057255A publication Critical patent/JP2017057255A/en
Application granted granted Critical
Publication of JP6165207B2 publication Critical patent/JP6165207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、長繊維を含む樹脂でシート状に形成され、複数層に積層された状態で所定形状にプレス加工される繊維強化樹脂基材シートと、その繊維強化樹脂基材シートの内部流動確認方法とに関する。   The present invention is a fiber reinforced resin base sheet that is formed into a sheet with a resin containing long fibers and is pressed into a predetermined shape in a state of being laminated in a plurality of layers, and internal flow confirmation of the fiber reinforced resin base sheet With respect to methods.

長繊維強化樹脂を金型で加熱プレス加工する際に、成形条件に応じて長繊維強化樹脂の温度を算出し、所定の温度範囲毎に設けられた複数の粘度フィッティングモデルから前記算出された温度に対応する粘度フィッティングモデルを選択し、前記選択された粘度フィッティングモデルを用いて長繊維強化樹脂の粘度を算出することで、樹脂の流動状態の解析精度を高めるものが、下記特許文献1により公知である。   When heat-pressing the long fiber reinforced resin with a mold, the temperature of the long fiber reinforced resin is calculated according to the molding conditions, and the calculated temperature is calculated from a plurality of viscosity fitting models provided for each predetermined temperature range. Patent Document 1 below discloses that a viscosity fitting model corresponding to the above is selected, and the viscosity of the long fiber reinforced resin is calculated using the selected viscosity fitting model, thereby improving the analysis accuracy of the flow state of the resin. It is.

また繊維強化樹脂基材シートの表面に耐熱性を有するホワイトマーカー等で予めラインを引いておき、加熱プレス加工後の製品の表面に残るラインの歪みから樹脂の流動状態を推察する方法も知られている。   Also known is a method of drawing a line in advance with a heat-resistant white marker on the surface of a fiber reinforced resin base sheet and inferring the flow state of the resin from the distortion of the line remaining on the surface of the product after hot press processing. ing.

特開2015−66873号公報Japanese Patent Laying-Open No. 2015-66873

しかしながら、上記前者の技術は、金型のキャビティ面に接する樹脂は冷却され易いために粘度が高くなり、金型のキャビティ面に接しない樹脂は冷却され難いために粘度が低くなることから、製品の厚さ方向の各部において異なる樹脂の流動状態を高精度に解析することは困難である。   However, the former technique has a high viscosity because the resin in contact with the cavity surface of the mold is easily cooled, and the viscosity is low because the resin not in contact with the cavity surface of the mold is difficult to cool. It is difficult to analyze with high accuracy the flow state of different resins in each part in the thickness direction.

また上記後者の技術は、製品の表面における樹脂の流動状態を確認することは可能であるが、製品の内部における樹脂の流動挙動を確認することは不可能である。   The latter technique can confirm the flow state of the resin on the surface of the product, but cannot confirm the flow behavior of the resin inside the product.

本発明は前述の事情に鑑みてなされたもので、繊維強化樹脂基材シートを複数層に積層して所定形状にプレス加工した製品の内部における樹脂の流動状態および長繊維の移動状態を精度良く確認することを目的とする。   The present invention has been made in view of the above circumstances, and the flow state of resin and the movement state of long fibers in a product obtained by laminating a plurality of fiber reinforced resin base sheets into a predetermined shape and pressing into a predetermined shape are accurately obtained. The purpose is to confirm.

上記目的を達成するために、請求項1に記載された発明によれば、長繊維を含む樹脂でシート状に形成され、複数層に積層された状態で所定形状に加熱プレス加工される繊維強化樹脂基材シートであって、少なくとも一方の表面にX線不透過材料を含むインクで前記樹脂の流動状態や長繊維の移動状態が読み取れるマーキングを印刷したことを特徴とする繊維強化樹脂基材シートが提案される。   In order to achieve the above object, according to the invention described in claim 1, the fiber reinforcement is formed into a sheet shape with a resin containing long fibers, and is hot pressed into a predetermined shape in a state of being laminated in a plurality of layers. A fiber reinforced resin base sheet, wherein a resin base sheet is printed with markings on at least one surface of the resin containing a radiopaque material so that the flow state of the resin and the movement state of the long fibers can be read. Is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記マーキングはグリッド形状であることを特徴とする繊維強化樹脂基材シートが提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, a fiber-reinforced resin base sheet is proposed in which the marking has a grid shape.

また請求項3に記載された発明によれば、請求項2の構成に加えて、前記グリッド形状の一辺の長さは、前記繊維強化樹脂基材シートの板厚から最大繊維長の半分の範囲内であることを特徴とする繊維強化樹脂基材シートが提案される。   According to the invention described in claim 3, in addition to the configuration of claim 2, the length of one side of the grid shape ranges from the plate thickness of the fiber reinforced resin base sheet to half the maximum fiber length. A fiber-reinforced resin base sheet is proposed which is characterized in that it is inside.

また請求項4に記載された発明によれば、請求項2または請求項3の構成に加えて、前記グリッド形状は交点が空白であることを特徴とする繊維強化樹脂基材シートが提案される。   According to the invention described in claim 4, in addition to the configuration of claim 2 or claim 3, a fiber reinforced resin base sheet is proposed in which the grid shape has a blank intersection. .

また請求項5に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、前記繊維強化樹脂基材シートの積層枚数は、製品の板厚に応じて調整されることを特徴とする繊維強化樹脂基材シートが提案される。   According to the invention described in claim 5, in addition to the configuration of any one of claims 1 to 4, the number of laminated fiber reinforced resin base sheets depends on the thickness of the product. A fiber-reinforced resin base sheet characterized by being adjusted is proposed.

また請求項6に記載された発明によれば、請求項1〜請求項5の何れか1項に記載の繊維強化樹脂基材シートの内部流動確認方法であって、加熱プレス加工された製品のX線画像における前記グリッド形状の変形状態から、前記樹脂の流動状態や前記長繊維の移動状態を確認することを特徴とする繊維強化樹脂基材シートの内部流動確認方法が提案される。   According to the invention described in claim 6, the method for confirming the internal flow of the fiber-reinforced resin base sheet according to any one of claims 1 to 5, wherein the product is subjected to hot press processing. A method for confirming the internal flow of a fiber-reinforced resin base sheet is proposed, wherein the flow state of the resin and the movement state of the long fibers are confirmed from the deformation state of the grid shape in the X-ray image.

尚、実施の形態のグリッド形状13は本発明のマーキングに対応する。   The grid shape 13 of the embodiment corresponds to the marking of the present invention.

請求項1の構成によれば、繊維強化樹脂基材シートは、長繊維を含む樹脂でシート状に形成され、複数層に積層された状態で所定形状にプレス加工される。繊維強化樹脂基材シートの少なくとも一方の表面にX線不透過材料を含むインクで樹脂の流動状態や長繊維の移動状態が読み取れるマーキングを印刷したので、プレス加工された製品のマーキングをX線で撮像することで、そのマーキングが印刷された繊維強化樹脂基材シートの樹脂の流動状態、つまり製品の内部の任意の位置における長繊維の移動状態を精度良く確認することができる。   According to the structure of Claim 1, a fiber reinforced resin base material sheet is formed in the sheet form with resin containing a long fiber, and is press-processed by the predetermined shape in the state laminated | stacked on multiple layers. Since the marking that can read the flow state of the resin and the movement state of the long fibers is printed on at least one surface of the fiber reinforced resin base sheet with the ink containing the X-ray opaque material, the marking of the pressed product is performed with the X-ray. By imaging, the flow state of the resin of the fiber reinforced resin base sheet on which the marking is printed, that is, the moving state of the long fibers at an arbitrary position inside the product can be confirmed with high accuracy.

また請求項2の構成によれば、マーキングはグリッド形状であるので、長繊維の縦横の移動状態を一層高精度で確認することができる。   According to the second aspect of the present invention, since the marking has a grid shape, the longitudinal and lateral movement states of the long fibers can be confirmed with higher accuracy.

また請求項3の構成によれば、グリッド形状の一辺の長さは、繊維強化樹脂基材シートの板厚から最大繊維長の半分の範囲内であるので、長繊維の繊維長とグリッド形状の一辺の長さとの比率が適正となり、グリッド形状の変形に基づいて長繊維のうねり状態を精度良く確認することができる。   According to the configuration of claim 3, since the length of one side of the grid shape is within the range of half of the maximum fiber length from the plate thickness of the fiber reinforced resin base sheet, the fiber length of the long fibers and the grid shape The ratio with the length of one side becomes appropriate, and the waviness state of the long fibers can be accurately confirmed based on the deformation of the grid shape.

また請求項4の構成によれば、マーキングは交点が空白であるので、交点の近傍においてタングステンの密度が局部的に高まって繊維強化樹脂基材シートの強度に影響が及ぶのを回避することができる。   According to the configuration of claim 4, since the intersection of the marking is blank, it is possible to avoid the fact that the density of tungsten is locally increased in the vicinity of the intersection and the strength of the fiber-reinforced resin base sheet is affected. it can.

また請求項5の構成によれば、繊維強化樹脂基材シートの積層枚数は、製品の板厚に応じて調整されるので、樹脂の流動を最小限に抑えて製品の強度を高めることができる。   Further, according to the configuration of the fifth aspect, since the number of laminated fiber reinforced resin base sheets is adjusted according to the thickness of the product, the flow of the resin can be minimized and the strength of the product can be increased. .

また請求項6の構成によれば、加熱プレス加工された製品のX線画像におけるマーキングの変形状態から、繊維強化樹脂基材シートの樹脂の流動状態を確認するので、製品を切断して傷つけることなく、その内部における長繊維の移動状態を確認することができる。   Moreover, according to the structure of Claim 6, since the flow state of the resin of a fiber reinforced resin base material sheet is confirmed from the deformation state of the marking in the X-ray image of the hot-pressed product, the product is cut and damaged. And the moving state of the long fibers in the interior can be confirmed.

製品の素材となる繊維強化樹脂基材シートを示す図。The figure which shows the fiber reinforced resin base material sheet used as the raw material of a product. 繊維強化樹脂製の製品を加熱プレス成形する金型を示す図。The figure which shows the metal mold | die which heat-press-molds the product made from a fiber reinforced resin. 製品の断面形状および積層された複数枚の繊維強化樹脂基材の積層状態を示す図。The figure which shows the cross-sectional shape of a product, and the lamination | stacking state of the several fiber reinforced resin base material laminated | stacked. X線撮像装置を示す図。The figure which shows an X-ray imaging device. 図3(B)のa〜f面に対応するグリッドの撮像結果を示す図。The figure which shows the imaging result of the grid corresponding to the af surface of FIG. 3 (B). 図3(C)のg〜k面に対応するグリッドの撮像結果を示す図。The figure which shows the imaging result of the grid corresponding to the gk plane of FIG.3 (C). 樹脂の流動状態に応じた繊維強化樹脂基材シートの積層状態を示す図。The figure which shows the lamination | stacking state of the fiber reinforced resin base material sheet according to the flow state of resin. 本発明による製品の好適な適用部品を示す図。The figure which shows the suitable application components of the product by this invention.

以下、図1〜図8に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、繊維強化樹脂製の製品を加熱プレス成形するための素材となる繊維強化樹脂基材シート11を示すもので、この繊維強化樹脂基材シート11は、ナイロン6のような熱可塑性のポリアミド樹脂をマトリクスとして例えば0.5mm〜2mmの一定厚さに形成されており、その内部にカーボン繊維やガラス繊維の長繊維12よりなる補強材がランダムに絡み合うように配置される。長繊維12の繊維長は、繊維強化樹脂基材シート11の板厚よりも大幅に大きい10mm〜50mmであり、従って長繊維12は繊維強化樹脂基材シート11の表面に対して略平行に配置され、繊維強化樹脂基材シート11の厚さ方向に配置されることはない。   FIG. 1 shows a fiber reinforced resin base sheet 11 which is a material for hot press molding a product made of fiber reinforced resin. The fiber reinforced resin base sheet 11 is made of a thermoplastic material such as nylon 6. A polyamide resin is used as a matrix to form a constant thickness of, for example, 0.5 mm to 2 mm, and a reinforcing material made of long fibers 12 of carbon fibers or glass fibers is arranged so as to be intertwined randomly. The fiber length of the long fibers 12 is 10 mm to 50 mm, which is significantly larger than the plate thickness of the fiber reinforced resin base sheet 11, and therefore the long fibers 12 are arranged substantially parallel to the surface of the fiber reinforced resin base sheet 11. The fiber reinforced resin base sheet 11 is not disposed in the thickness direction.

尚、図1では長繊維12を理解容易なように概念的に描いているが、実際には長繊維12はもっと長く直線的であって、繊維密度Vfも45%ぐらいあってもっと密である。また前記熱可塑性樹脂に代わりに、未硬化状態の熱硬化製樹脂を用いても良い。   In FIG. 1, the long fibers 12 are conceptually drawn so that they can be easily understood. However, in actuality, the long fibers 12 are longer and linear, and the fiber density Vf is about 45%, which is more dense. . Further, an uncured thermosetting resin may be used in place of the thermoplastic resin.

長繊維12の移動が読み取れるマーキングをするために、繊維強化樹脂基材シート11の一方の表面には、碁盤目状のグリッド形状13が印刷される。長繊維12の繊維長が最小値10mmから最大値50mmの範囲内で、繊維強化樹脂基材シート11の板厚が2mmの場合、グリッド形状13の一辺の長さは2mm〜25mmである。   In order to make a marking that allows the movement of the long fibers 12 to be read, a grid-like grid shape 13 is printed on one surface of the fiber-reinforced resin base sheet 11. When the fiber length of the long fiber 12 is within the range of the minimum value 10 mm to the maximum value 50 mm and the plate thickness of the fiber reinforced resin base sheet 11 is 2 mm, the length of one side of the grid shape 13 is 2 mm to 25 mm.

一般的に、長繊維12の繊維長は、10mm〜50mmの範囲内でばらつく場合と、全て50mmに揃った場合とがある。その長繊維12の移動状態を確認するために、グリッド形状13の一辺の長さを25mmとすると、大きすぎて長繊維12の移動状態の確認が難しくなる。また一般的に板厚が薄いと繊維強化樹脂基材シート11の樹脂流動による長繊維12のうねりは小さく、板厚が厚いと繊維強化樹脂基材シート11の樹脂流動による長繊維12のうねりは大きいため。グリッド形状13の一辺の長さを繊維強化樹脂基材シート11の板厚以上とすることで、長繊維12のうねり状態を精度良く確認することができる。一方、グリッド形状13の一辺の長さを繊維強化樹脂基材シート11の板厚以下とすると、X線による撮影時にグリッドの解析が難しくなり、長繊維12の移動状態を精度良く確認することができない。   In general, the fiber length of the long fibers 12 may vary within a range of 10 mm to 50 mm, or may be all 50 mm. If the length of one side of the grid shape 13 is 25 mm in order to confirm the movement state of the long fibers 12, it is too large to confirm the movement state of the long fibers 12. In general, when the plate thickness is thin, the undulation of the long fibers 12 due to the resin flow of the fiber reinforced resin base sheet 11 is small, and when the plate thickness is large, the undulation of the long fibers 12 due to the resin flow of the fiber reinforced resin base sheet 11 is small. Because it is big. By setting the length of one side of the grid shape 13 to be equal to or greater than the plate thickness of the fiber reinforced resin base sheet 11, the waviness state of the long fibers 12 can be accurately confirmed. On the other hand, if the length of one side of the grid shape 13 is equal to or less than the plate thickness of the fiber reinforced resin base sheet 11, it becomes difficult to analyze the grid when photographing with X-rays, and the moving state of the long fibers 12 can be accurately confirmed. Can not.

そこで、実際には5mm〜10mmぐらいあれば、長繊維12の移動状態を正確に確認することができる。本発明には、長繊維12を含む樹脂に限らず、連続繊維を含む樹脂を適用することができる。   Therefore, in practice, if the length is about 5 mm to 10 mm, the moving state of the long fibers 12 can be accurately confirmed. In the present invention, not only a resin containing long fibers 12 but also a resin containing continuous fibers can be applied.

グリッド形状13を印刷するためのインクはX線不透過材料を含む。X線不透過材料は、X線を透過しない物質であるタングステンを含むもので、純度99.9%以上で粒径が8μm以下のタングステン粉末を熱硬化型のインクに15重量%混合して製造され、水分除去のために乾燥させた繊維強化樹脂基材シート11の表面に印刷される。X線を充分に遮断するためにはインクの塗膜が厚い方が有利であるが、塗膜が厚過ぎると割れ易くなり、かつ繊維強化樹脂基材シート11を成形する際の妨げになるため、約50μmの塗膜が得られるように複数回重ねて印刷を行う。印刷の完了後、熱硬化型のインクを加熱硬化させてグリッド形状13を定着させる。X線不透過材料はタングステンに限定されず、繊維および樹脂よりもX線透過レベルが低く、コントラストが付く材料であれば良い。   The ink for printing the grid shape 13 includes a radiopaque material. The X-ray opaque material contains tungsten, which is a substance that does not transmit X-rays, and is manufactured by mixing 15 wt% of tungsten powder having a purity of 99.9% or more and a particle size of 8 μm or less with thermosetting ink. Then, it is printed on the surface of the fiber reinforced resin base sheet 11 that has been dried to remove moisture. In order to sufficiently block X-rays, it is advantageous to have a thick ink coating film. However, if the coating film is too thick, it tends to crack and hinders molding of the fiber-reinforced resin base sheet 11. , Printing is carried out several times so that a coating film of about 50 μm is obtained. After the printing is completed, the grid shape 13 is fixed by heat curing the thermosetting ink. The X-ray opaque material is not limited to tungsten, and may be any material that has a lower X-ray transmission level than fibers and resins and provides contrast.

グリッド形状13の交点部分はインクの塗膜が途切れている。これにより、グリッド形状13の交点の近傍でタングステンの密度が局部的に高まるのを防止し、繊維強化樹脂基材シート11の強度に影響が及ぶのを回避することができる。   The ink coating is interrupted at the intersections of the grid shape 13. Thereby, it can prevent that the density of tungsten increases locally in the vicinity of the intersection of the grid shape 13, and it can avoid affecting the intensity | strength of the fiber reinforced resin base material sheet 11. FIG.

図3(A)は繊維強化樹脂製の製品14の断面形状を示すもので、この製品14は厚肉部14aおよび薄肉部14bが段部14cを介して連続する一定断面の部材である。   FIG. 3A shows a cross-sectional shape of a product 14 made of fiber reinforced resin. This product 14 is a member having a constant cross section in which a thick portion 14a and a thin portion 14b are continuous through a step portion 14c.

図2は製品14を加熱プレス成形するための金型15を示すもので、金型15は上型16および下型17からなり、上型16および下型17間に予め加熱した複数枚の繊維強化樹脂基材シート11…を積層状態で配置した状態で、上型16を下型17に向けて下降させることで製品14を加熱プレス成形する。金型15内における複数枚の繊維強化樹脂基材シート11…を積層状態は任意であり、図3(B)の例では、厚肉部14aおよび薄肉部14bの両方に対応する4枚の繊維強化樹脂基材シート11…と、厚肉部14aだけに対応する2枚の繊維強化樹脂基材シート11,11とが積層され、図3(C)の例では、厚肉部14aおよび薄肉部14bの両方に対応する5枚の繊維強化樹脂基材シート11…が積層される。   FIG. 2 shows a mold 15 for heat-pressing the product 14, and the mold 15 includes an upper mold 16 and a lower mold 17, and a plurality of fibers heated in advance between the upper mold 16 and the lower mold 17. In a state where the reinforced resin base sheets 11 are arranged in a laminated state, the product 14 is heated and press-molded by lowering the upper mold 16 toward the lower mold 17. The laminated state of the plurality of fiber reinforced resin base sheets 11 in the mold 15 is arbitrary, and in the example of FIG. 3B, four fibers corresponding to both the thick part 14a and the thin part 14b. The reinforced resin base sheet 11 and two fiber reinforced resin base sheets 11 and 11 corresponding only to the thick part 14a are laminated. In the example of FIG. 3C, the thick part 14a and the thin part Five fiber reinforced resin base sheets 11 corresponding to both of 14b are laminated.

このとき、複数枚の繊維強化樹脂基材シート11…のうちの何れか1枚の繊維強化樹脂基材シート11の一方の表面にはグリッド形状13が印刷されている。複数枚の繊維強化樹脂基材シート11…のうち、グリッド形状13が印刷された繊維強化樹脂基材シート11の位置(製品14の厚さ方向の位置)は、加熱プレス加工時における繊維強化樹脂基材シート11の樹脂の流動状態を確認したい位置に設定される。特に、隣接する繊維強化樹脂基材シート11…間に配置すると、樹脂の流動状態を確認し易くなる。   At this time, the grid shape 13 is printed on one surface of any one of the plurality of fiber reinforced resin base sheets 11. Among the plurality of fiber reinforced resin base sheets 11..., The position of the fiber reinforced resin base sheet 11 on which the grid shape 13 is printed (position in the thickness direction of the product 14) is the fiber reinforced resin at the time of hot press processing. It is set at a position where it is desired to check the resin flow state of the base sheet 11. In particular, when it is disposed between adjacent fiber reinforced resin base sheets 11..., It becomes easy to confirm the flow state of the resin.

複数枚の繊維強化樹脂基材シート11…のうち、2枚以上の繊維強化樹脂基材シート11…にグリッド形状13を印刷することが可能であるが、このようにすると、製品14の二つ以上の厚さ位置のグリッド形状13が重なり合って撮像されるので注意が必要である。   The grid shape 13 can be printed on two or more of the fiber reinforced resin base sheets 11... Of the plurality of fiber reinforced resin base sheets 11. Care must be taken because the grid shapes 13 at the above thickness positions are overlapped and imaged.

図4はX線撮像装置を示すもので、イメージングプレート18上に載置した製品14に対してX線照射装置19からX線を照射し、イメージングプレート18において撮像されたグリッド形状13の画像を読み取り装置により読み取り、モニタに表示するとともに画像のデジタルデータを解析することができる。   FIG. 4 shows an X-ray imaging apparatus. The product 14 placed on the imaging plate 18 is irradiated with X-rays from the X-ray irradiation apparatus 19, and an image of the grid shape 13 captured on the imaging plate 18 is obtained. It can be read by a reading device, displayed on a monitor, and digital image data can be analyzed.

図6は、図3(C)に示す繊維強化樹脂基材シート11…の積層状態を採用したときに、製品14の内部のg〜j面および製品14の下面のk面にそれぞれ対応するグリッド形状13の画像を示すものである。例えば、図6の(g)の画像は、上から1層目の繊維強化樹脂基材シート11の下面にグリッド形状13を印刷した場合、あるいは上から2層目の繊維強化樹脂基材シート11の上面にグリッド形状13を印刷した場合に対応し、図6の(k)の画像は、上から5層目の繊維強化樹脂基材シート11の下面にグリッド形状13を印刷した場合に対応する。   FIG. 6 shows grids respectively corresponding to the gj plane inside the product 14 and the k plane on the bottom surface of the product 14 when the laminated state of the fiber reinforced resin base sheets 11... Shown in FIG. An image of the shape 13 is shown. For example, in the image of FIG. 6G, the grid shape 13 is printed on the lower surface of the first layer of the fiber reinforced resin base sheet 11 from the top, or the second layer of fiber reinforced resin base sheet 11 from the top. 6 (k) corresponds to the case where the grid shape 13 is printed on the lower surface of the fiber reinforced resin base sheet 11 in the fifth layer from the top. .

このように、積層された5層の繊維強化樹脂基材シート11…を全て同一形状とすると、図6の(g)、(h)、(i)、(j)に示すように、製品14の内部のg,h,i,j面で、厚肉部14aに対応する部分で本来は正方形であるグリッド形状13が図中左右方向に押し潰されて縦長に変形しており、繊維強化樹脂基材シート11…の樹脂が図中左右方向に流動していることが分かる。また製品14の内部のg,h,i,j面で、薄肉部14bに対応する部分のグリッド形状13が図中左右方向に引き伸ばされて横長に変形しており、繊維強化樹脂基材シート11…の樹脂が図中左右方向に流動していることが分かる。製品14の平坦な下面に対応するk面(図6の(k)参照)は、繊維強化樹脂基材シート11が殆ど変形しないため、グリッド形状13の形状は当然崩れていない。   As described above, when all of the five layers of the fiber reinforced resin base sheets 11, which are laminated, have the same shape, as shown in (g), (h), (i), and (j) of FIG. In the g, h, i, and j planes inside, the grid shape 13 that is originally a square in the portion corresponding to the thick portion 14a is crushed in the left-right direction in the figure and deformed into a vertically long shape. It can be seen that the resin of the base sheet 11 is flowing in the left-right direction in the figure. Further, on the g, h, i, j surface inside the product 14, the grid shape 13 corresponding to the thin portion 14b is stretched in the left-right direction in the drawing and deformed horizontally, and the fiber reinforced resin base sheet 11 It can be seen that the resin of ... flows in the left-right direction in the figure. Since the fiber reinforced resin base material sheet 11 hardly deforms on the k surface corresponding to the flat lower surface of the product 14 (see (k) in FIG. 6), the shape of the grid shape 13 is not naturally collapsed.

繊維強化樹脂基材シート11…の加熱プレス時に樹脂が流動すると、そこに含まれるランダム配向の長繊維12が樹脂と共に移動して長繊維12に曲がり・うねりが発生し、その部分の強度が著しく低下する虞がある。また樹脂が更に大きく流動すると、樹脂の流動方向に沿うように長繊維12が整列してしまい、長繊維12の整列方向に沿って製品14が割れ易くなる可能性もある。   When the resin flows during the hot pressing of the fiber reinforced resin base sheet 11..., The randomly oriented long fibers 12 contained therein move together with the resin, causing the long fibers 12 to bend and swell, and the strength of the portion is remarkably increased. May decrease. Further, when the resin further flows, the long fibers 12 are aligned along the resin flow direction, and the product 14 may be easily broken along the alignment direction of the long fibers 12.

一方、図5は、図3(B)に示す繊維強化樹脂基材シート11…の積層状態を採用したときに、製品14の内部のa〜e面および製品14の下面のf面にそれぞれ対応するグリッド形状13の画像を示すものである。   On the other hand, FIG. 5 corresponds to the a to e surfaces inside the product 14 and the f surface on the bottom surface of the product 14 when the laminated state of the fiber reinforced resin base sheets 11 shown in FIG. The image of the grid shape 13 to be shown is shown.

このように、積層される繊維強化樹脂基材シート11…の積層枚数を製品14の断面形状に合わせて異ならせると、図5の(a)、(b)に示すように、製品14の厚肉部14aに対応する内部のa,b面でグリッド形状13が崩れておらず、図5の(c)〜(e)に示すように、製品14の厚肉部14aおよび薄肉部14bの両方に対応する内部のc,d,e面でグリッド形状13が崩れていないことが分かる。製品14の平坦な下面に対応するf面(図5の(f)参照)は、繊維強化樹脂基材シート11が殆ど変形しないため、グリッド形状13は当然崩れていない。   In this way, when the number of laminated fiber reinforced resin base sheets 11... Is varied according to the cross-sectional shape of the product 14, the thickness of the product 14 is as shown in FIGS. 5 (a) and 5 (b). As shown in FIGS. 5C to 5E, both the thick part 14a and the thin part 14b of the product 14 are not collapsed on the inner a and b surfaces corresponding to the meat part 14a. It can be seen that the grid shape 13 is not collapsed in the internal c, d, e planes corresponding to. Since the fiber reinforced resin base material sheet 11 hardly deforms on the f surface (see FIG. 5F) corresponding to the flat lower surface of the product 14, the grid shape 13 is naturally not collapsed.

従って、製品14の厚肉部14aおよび薄肉部14bで繊維強化樹脂基材シート11…の積層枚数を異ならせることで、製品14の内部の全ての面でグリッド形状13の変形を最小限に抑制し、樹脂の流動による長繊維12に曲がり・うねりを防止して製品14の強度を確保することができる。   Therefore, by changing the number of laminated fiber reinforced resin base sheets 11 at the thick wall portion 14a and the thin wall portion 14b of the product 14, the deformation of the grid shape 13 is suppressed to the minimum on all the surfaces inside the product 14. In addition, the strength of the product 14 can be ensured by preventing the long fibers 12 from being bent or undulated by the flow of the resin.

図7は、5層に積層した繊維強化樹脂基材シート11…から逆ハット状断面の製品14を加熱プレス成形する例を示すものである。図7(A)に示すように、全ての繊維強化樹脂基材シート11…を同一形状に設定すると、製品14の角部14d,14dにおいて樹脂が引っ張られてグリッド形状13が図中横長(逆ハット状断面の底壁14e側へ伸びるように)に変形し、樹脂の流動方向に沿うように長繊維12が整列してしまい、長繊維12の整列方向に沿って製品14が割れ易くなる可能性がある。また底壁14eにおいて樹脂が圧縮されてグリッド形状13がうねり変形するため、それらの部分で長繊維12の配列が乱れて強度が低下する。   FIG. 7 shows an example in which a product 14 having a reverse hat-shaped cross section is subjected to hot press molding from a fiber reinforced resin base sheet 11 laminated in five layers. As shown in FIG. 7A, when all the fiber reinforced resin base sheets 11 are set to the same shape, the resin is pulled at the corners 14d and 14d of the product 14 so that the grid shape 13 is horizontally long (reverse) The long fibers 12 are aligned along the flow direction of the resin, and the product 14 may be easily broken along the alignment direction of the long fibers 12. There is sex. Moreover, since resin is compressed in the bottom wall 14e and the grid shape 13 swells and deforms, the arrangement of the long fibers 12 is disturbed at those portions, and the strength is reduced.

しかしながら、図7(B)に示すように、5層の繊維強化樹脂基材シート11…のうちの上から3層の繊維強化樹脂基材シート11…の中央部を予め切除しておけば、製品14の各部のグリッド形状13の変形が最小限に抑えられるため、言い換えると樹脂の流動が最小限に抑えられるため、製品14の強度を確保することができる。   However, as shown in FIG. 7 (B), if the central portion of the three-layer fiber reinforced resin base sheet 11 ... is cut out in advance from among the five layers of fiber reinforced resin base sheet 11 ... Since the deformation of the grid shape 13 of each part of the product 14 is minimized, in other words, the resin flow is minimized, so that the strength of the product 14 can be ensured.

以上のように、本実施の形態によれば、積層される何れかの繊維強化樹脂基材シート11…の少なくとも一方の表面にX線不透過材料を含むインクでマーキング(グリッド形状13)を印刷したので、加熱プレス加工された製品14のマーキング(グリッド形状13)をX線で撮像することで、そのマーキング(グリッド形状13)が印刷された繊維強化樹脂基材シート11の樹脂の流動状態、つまり製品14の内部の任意の位置における樹脂の流動状態を、製品14を切断して傷つけることなく確認することができる。よって、樹脂の流動量が小さくなるように、即ちマーキング(グリッド形状13)の変形量が小さくなるように、製品14の各部の板厚に応じて繊維強化樹脂基材シート11…の積層枚数を調整することで、製品14の強度を高めることができる。   As described above, according to the present embodiment, the marking (grid shape 13) is printed on at least one surface of any one of the fiber-reinforced resin base sheets 11 to be laminated with ink containing an X-ray opaque material. Therefore, by imaging the marking (grid shape 13) of the hot-pressed product 14 with X-rays, the flow state of the resin of the fiber reinforced resin base sheet 11 on which the marking (grid shape 13) is printed, That is, the flow state of the resin at an arbitrary position inside the product 14 can be confirmed without cutting and damaging the product 14. Therefore, the number of laminated fiber reinforced resin base sheets 11 is set according to the plate thickness of each part of the product 14 so that the flow amount of the resin is small, that is, the deformation amount of the marking (grid shape 13) is small. By adjusting, the strength of the product 14 can be increased.

またグリッド形状13の一辺の長さは、繊維強化樹脂基材シート11の板厚から最大繊維長の半分の範囲内であるので、長繊維12の繊維長とグリッド形状13の一辺の長さとの比率が適正となり、グリッド形状13の変形に基づいて長繊維12のうねり状態を精度良く確認することができる。   Moreover, since the length of one side of the grid shape 13 is within a range of half the maximum fiber length from the plate thickness of the fiber reinforced resin base sheet 11, the fiber length of the long fiber 12 and the length of one side of the grid shape 13 The ratio becomes appropriate, and the waviness state of the long fibers 12 can be accurately confirmed based on the deformation of the grid shape 13.

図8(A)は、繊維強化樹脂製の自動車のドアインナー20を示している。ドアインナー20は、ドアレギュレータを収納する凹部20aの周辺が急激に屈曲しており、ドアインナー20の加熱プレス時に凹部20aの周辺で樹脂の流動が発生し易くなるが、この部分に本発明を適用することで、ドアインナー20の強度を高めることができる。   FIG. 8A shows a door inner 20 of an automobile made of fiber reinforced resin. In the door inner 20, the periphery of the recess 20a that houses the door regulator is abruptly bent, and resin flow easily occurs around the recess 20a when the door inner 20 is heated and pressed. By applying, the strength of the door inner 20 can be increased.

図8(B)は、繊維強化樹脂製の自動車のフロアパネル21を示している。フロアパネル21は、車体前後方向に延びるフロアトンネル21aの周辺が急激に屈曲しており、フロアパネル21の加熱プレス時にフロアトンネル21aの周辺で樹脂の流動が発生し易くなるが、この部分に本発明を適用することで、フロアパネル21の強度を高めることができる。   FIG. 8B shows a vehicle floor panel 21 made of fiber reinforced resin. In the floor panel 21, the periphery of the floor tunnel 21a extending in the longitudinal direction of the vehicle body is abruptly bent, and resin flow tends to occur around the floor tunnel 21a when the floor panel 21 is heated and pressed. By applying the invention, the strength of the floor panel 21 can be increased.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、繊維強化樹脂基材シート11の樹脂はナイロン6のような熱可塑性樹脂に限定されず、エポキシのような熱硬化性樹脂であっても良い。   For example, the resin of the fiber reinforced resin base sheet 11 is not limited to a thermoplastic resin such as nylon 6, and may be a thermosetting resin such as epoxy.

また繊維強化樹脂基材シート11の長繊維12はランダムに配向されたものに限らず、略一方向に揃えて配向されたものであっても良い。この場合には、長繊維12の配向方向が相互に異なるように複数の繊維強化樹脂基材シート11を積層することで、長繊維12をランダムに配向した繊維強化樹脂基材シート11と同様の疑似等方性を与えることができる。   Further, the long fibers 12 of the fiber reinforced resin base sheet 11 are not limited to those that are randomly oriented, but may be those that are aligned in substantially one direction. In this case, it is the same as the fiber reinforced resin base sheet 11 in which the long fibers 12 are randomly oriented by laminating a plurality of fiber reinforced resin base sheets 11 so that the orientation directions of the long fibers 12 are different from each other. Pseudoisotropy can be given.

また本発明のマーキングは実施の形態のグリッド形状13に限定されず、適宜の形状を選択することができる。   The marking of the present invention is not limited to the grid shape 13 of the embodiment, and an appropriate shape can be selected.

11 繊維強化樹脂基材シート
12 長繊維
13 グリッド形状(マーキング)
14 製品
11 Fiber reinforced resin base sheet 12 Long fiber 13 Grid shape (marking)
14 products

Claims (6)

長繊維(12)を含む樹脂でシート状に形成され、複数層に積層された状態で所定形状にプレス加工される繊維強化樹脂基材シートであって、
少なくとも一方の表面にX線不透過材料を含むインクで前記樹脂の流動状態や前記長繊維(12)の移動状態が読み取れるマーキング(13)を印刷したことを特徴とする繊維強化樹脂基材シート。
A fiber-reinforced resin base sheet that is formed into a sheet with a resin containing long fibers (12) and is pressed into a predetermined shape in a state of being laminated in a plurality of layers,
A fiber reinforced resin base sheet, on which at least one surface is printed with a marking (13) that allows the flow state of the resin and the movement state of the long fibers (12) to be read with ink containing an X-ray opaque material.
前記マーキング(13)はグリッド形状であることを特徴とする、請求項1に記載の繊維強化樹脂基材シート。   The fiber-reinforced resin base sheet according to claim 1, wherein the marking (13) has a grid shape. 前記グリッド形状(13)の一辺の長さは、前記繊維強化樹脂基材シート(11)の板厚から最大繊維長の半分の範囲内であることを特徴とする、請求項2に記載の繊維強化樹脂基材シート。   3. The fiber according to claim 2, wherein the length of one side of the grid shape (13) is within a range of half the maximum fiber length from the plate thickness of the fiber reinforced resin base sheet (11). Reinforced resin base sheet. 前記グリッド形状(13)は交点が空白であることを特徴とする、請求項2または請求項3に記載の繊維強化樹脂基材シート。   The fiber-reinforced resin base sheet according to claim 2 or 3, wherein the grid shape (13) has a blank intersection. 前記繊維強化樹脂基材シート(11)の積層枚数は、製品(14)の板厚に応じて調整されることを特徴とする、請求項1〜請求項4の何れか1項に記載の繊維強化樹脂基材シート。   The fiber according to any one of claims 1 to 4, wherein the number of layers of the fiber-reinforced resin base sheet (11) is adjusted according to the thickness of the product (14). Reinforced resin base sheet. 請求項1〜請求項5の何れか1項に記載の繊維強化樹脂基材シート(11)の内部流動確認方法であって、
加熱プレス加工された製品(14)のX線画像における前記グリッド形状(13)の変形状態から、前記樹脂の流動状態や前記長繊維(12)の移動状態を確認することを特徴とする繊維強化樹脂基材シートの内部流動確認方法。
It is an internal flow confirmation method of the fiber reinforced resin base sheet (11) according to any one of claims 1 to 5,
Fiber reinforcement characterized by confirming the flow state of the resin and the movement state of the long fibers (12) from the deformation state of the grid shape (13) in the X-ray image of the hot-pressed product (14) Method for confirming internal flow of resin base sheet.
JP2015181655A 2015-09-15 2015-09-15 Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet Expired - Fee Related JP6165207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181655A JP6165207B2 (en) 2015-09-15 2015-09-15 Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181655A JP6165207B2 (en) 2015-09-15 2015-09-15 Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet

Publications (2)

Publication Number Publication Date
JP2017057255A JP2017057255A (en) 2017-03-23
JP6165207B2 true JP6165207B2 (en) 2017-07-19

Family

ID=58389589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181655A Expired - Fee Related JP6165207B2 (en) 2015-09-15 2015-09-15 Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet

Country Status (1)

Country Link
JP (1) JP6165207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244857A1 (en) 2018-06-19 2019-12-26 帝人株式会社 Method for manufacturing composite material and method for examining weight unevenness of composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160169B1 (en) * 2017-06-26 2018-12-25 General Electric Company Systems and methods of forming a composite layup structure
JP7134924B2 (en) * 2019-07-02 2022-09-12 本田技研工業株式会社 Resin behavior analysis device, resin behavior analysis method, and resin behavior analysis program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151510A (en) * 1984-08-22 1986-03-14 Shimadzu Corp Inspecting method for interlayer deviation of multilayer printed board
JPH0624726B2 (en) * 1987-06-04 1994-04-06 三菱レイヨン株式会社 Ultra thin plate
JP2001027788A (en) * 1999-07-14 2001-01-30 Nitto Denko Corp Tacky adhesive sheet for x-ray radiography
JP2011035193A (en) * 2009-08-03 2011-02-17 Dainippon Printing Co Ltd Method for evaluating fluidity of intermediate filler layer, and filler sheet used therefor
JP2014173053A (en) * 2013-03-12 2014-09-22 Toray Ind Inc Prepreg for press molding and fiber reinforced composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244857A1 (en) 2018-06-19 2019-12-26 帝人株式会社 Method for manufacturing composite material and method for examining weight unevenness of composite material

Also Published As

Publication number Publication date
JP2017057255A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6165207B2 (en) Fiber reinforced resin base sheet and method for confirming internal flow of fiber reinforced resin base sheet
Bhushan et al. An overview of additive manufacturing (3D printing) for microfabrication
JP5880791B1 (en) Manufacturing apparatus and manufacturing method for three-dimensional structure
JP6116497B2 (en) Resin flow control system and resin flow control method
DE102016209774A1 (en) Process for producing a resin molded body and press molding apparatus
JP2005324340A (en) Fiber reinforced plastic and its manufacturing method
JP6568960B2 (en) FIBER-REINFORCED LAMINATE, SHUTTER DEVICE AND OPTICAL DEVICE
JP6981100B2 (en) Laminated modeling equipment and laminated modeling method
JP6888259B2 (en) Laminated modeling structure, laminated modeling method and laminated modeling equipment
US10513058B2 (en) 3-D printing method
DE102010053636A1 (en) Processing of a fiber composite semifinished product
US20190176376A1 (en) Pattern forming method and device
Günther et al. 3D Printed Sand Tools for Thermoforming Applications of Carbon Fiber Reinforced Composites—A Perspective
DE102015119647A1 (en) Method for producing an impressed integrated circuit, embossed integrated circuit, device for forming an embossed integrated circuit and verification system for an impressed integrated circuit
WO2020218610A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
US9263400B2 (en) X-ray obscuration film and related techniques
JP7178251B2 (en) CARBON FIBER REINFORCED MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
EP2383093A1 (en) Fibre reinforced composite component and method for its production
KR102028599B1 (en) Method for transfering functional material layer on three-dimensional print object
JP6432750B2 (en) Fiber reinforced composite material molding equipment
DE102008005625A1 (en) Thermo-forming device for plastic film, has sensor attached to device for measuring environmental parameter or characteristic of formed product, where sensor is accommodated around elongator that is inserted into form cavity
EP2755808B1 (en) Heatable block-punch apparatus
DE102018002295A1 (en) Touch panel and manufacturing process of such
DE102018127661A1 (en) Magnetic core and method for producing a magnetic core
JP6582456B2 (en) Additive manufacturing apparatus and additive manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6165207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees