JP6160787B2 - Thin plate and manufacturing method thereof - Google Patents

Thin plate and manufacturing method thereof Download PDF

Info

Publication number
JP6160787B2
JP6160787B2 JP2016568083A JP2016568083A JP6160787B2 JP 6160787 B2 JP6160787 B2 JP 6160787B2 JP 2016568083 A JP2016568083 A JP 2016568083A JP 2016568083 A JP2016568083 A JP 2016568083A JP 6160787 B2 JP6160787 B2 JP 6160787B2
Authority
JP
Japan
Prior art keywords
less
hardness
thin plate
rolling
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016568083A
Other languages
Japanese (ja)
Other versions
JPWO2017006843A1 (en
Inventor
木村 謙
謙 木村
文崇 市川
文崇 市川
正美 澤田
正美 澤田
慎一 寺岡
慎一 寺岡
雄一 福村
雄一 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2017006843A1 publication Critical patent/JPWO2017006843A1/en
Application granted granted Critical
Publication of JP6160787B2 publication Critical patent/JP6160787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、薄板及びその製造方法に関する。   The present invention relates to a thin plate and a manufacturing method thereof.

自動車排気ガスのシール材として用いられるガスケットには高い強度が求められる。ステンレス鋼のような金属製ガスケットは、0.1〜0.3mm程度の薄板を素材として、切断(あるいは打ち抜き)、穴あけ、張り出し、曲げ等の成形加工により所定のガスケットの形状へと加工される。   A gasket used as a sealing material for automobile exhaust gas is required to have high strength. A metal gasket such as stainless steel is processed into a predetermined gasket shape by molding such as cutting (or punching), drilling, overhanging, bending, etc., using a thin plate of about 0.1 to 0.3 mm as a raw material. .

近年、燃費効率の向上、ターボの普及等により排ガス温度は約700℃程度に高温化しているため、Inconel718等のNi基合金が使用される場合がある。Ni基合金は耐熱性に優れるものの、Niを50%超含有しているために合金コストが高いという問題があり、より安価なガスケット用耐熱合金が望まれている。   In recent years, the exhaust gas temperature has increased to about 700 ° C. due to the improvement of fuel efficiency and the spread of turbo, and therefore, Ni-based alloys such as Inconel 718 may be used. Although Ni-based alloys are excellent in heat resistance, there is a problem that the alloy cost is high because Ni is contained in excess of 50%, and a cheaper heat-resistant alloy for gaskets is desired.

一方、従来からエキマニガスケットとして用いられているオーステナイト系ステンレス鋼としてはSUS301等が知られている。SUS301は加工誘起マルテンサイトを活用して高強度化を図る材料であるが、500℃以上の高温にさらされた場合、材料強度の軟化代が大きい。   On the other hand, SUS301 or the like is known as an austenitic stainless steel conventionally used as an exhaust manifold gasket. SUS301 is a material that uses processing-induced martensite to increase the strength. However, when exposed to a high temperature of 500 ° C. or higher, the material has a large softening allowance.

一方、ステンレス鋼において耐熱性が特に優れる材料としては、Ni、Ti、Alを含有する金属間化合物による析出強化を利用したSUH660が知られている。SUH660はSUS301に比べて高温における強度は高い。しかし、Ni基合金が使用されているような700℃近傍の温度で使用された場合、強度の低下、いわゆる「へたり」が生じると言う問題があった。   On the other hand, as a material having particularly excellent heat resistance in stainless steel, SUH660 using precipitation strengthening by an intermetallic compound containing Ni, Ti, and Al is known. SUH660 has higher strength at high temperatures than SUS301. However, when used at a temperature in the vicinity of 700 ° C. where a Ni-based alloy is used, there is a problem that a decrease in strength, so-called “sagging” occurs.

上記のような背景のもと、SUH660に比べて耐熱性を高めた鋼種(合金)について、これまでにいくつかの検討がされている。   Under the background as described above, several studies have been made so far regarding the steel type (alloy) having higher heat resistance than SUH660.

特許文献1には、TiとAlの比を規定することにより、金属間化合物種を制御し、耐熱性を高めたオーステナイト系ステンレス鋼が開示されている。   Patent Document 1 discloses an austenitic stainless steel in which the intermetallic compound species is controlled and the heat resistance is improved by defining the ratio of Ti and Al.

特許文献2には、Ni:10〜50%、かつTi、Al、及びNbの合計添加量が3.0〜7.0wt%の耐熱ステンレス鋼が開示されている。特許文献3には、IVa族とVa族に含まれる元素量を規定した技術が開示されている。   Patent Document 2 discloses a heat resistant stainless steel in which Ni is 10 to 50% and the total addition amount of Ti, Al, and Nb is 3.0 to 7.0 wt%. Patent Document 3 discloses a technique that defines the amount of elements contained in IVa group and Va group.

特許文献4には、SUH660のコスト低減を目的に、Ni:15〜20%未満とし、Ni/Mn比、Ti/Al比を規定して冷間加工性と高温強度のバランスを考慮した技術が開示されている。   In Patent Document 4, there is a technology that considers the balance between cold workability and high temperature strength by defining Ni / Mn ratio and Ti / Al ratio with Ni: less than 15-20% for the purpose of reducing the cost of SUH660. It is disclosed.

特開平4−48051号公報JP-A-4-48051 特開2000−109955号公報JP 2000-109955 A 特開平7−109539号公報JP-A-7-109539 特開2012−211385号公報JP 2012-2111385 A

特許文献1の技術はSUH660に比べて耐熱性は高いものの、前述のように700℃での使用時のへたりが大きく、耐熱性が十分とは言えない。特許文献2及び特許文献3の技術は、耐熱性は高いものの、棒線形状への製造に関する技術であるために、これらの技術ではガスケット用の板を製造した際に、十分な耐熱性を発揮することはできなかった。また、薄板を製造した後のガスケット形状への加工性は考慮されておらず、また、加工性向上を示唆する記載は認められなかった。特許文献4の技術では、700℃で使用した場合耐熱性が十分でないという課題があった。   Although the technique of Patent Document 1 is higher in heat resistance than SUH660, it has a large sag at the time of use at 700 ° C. as described above, and cannot be said to have sufficient heat resistance. Although the technologies of Patent Document 2 and Patent Document 3 are high in heat resistance, they are technologies related to the production of a rod and wire, and these technologies exhibit sufficient heat resistance when manufacturing a gasket plate. I couldn't. Moreover, the workability to the gasket shape after manufacturing a thin plate was not considered, and the description which suggests an improvement in workability was not recognized. The technique of Patent Document 4 has a problem that heat resistance is not sufficient when used at 700 ° C.

以上のように、Ni基合金より安価で、700℃での使用に耐えうる十分な耐熱性を有し、かつ加工性が良好なステンレス鋼(合金)の薄板はこれまでに存在していなかった。本発明における「加工性」とは、冷延で製造した薄板をガスケット形状へ成形する際の成形しやすさ、すなわち割れなく成形可能であることを意味している。このような背景のもと、本発明は、鋼の成分、硬度及び製造方法を規定することにより、耐熱性と薄板としての加工性を両立する薄板を提供することを課題とする。   As described above, there has never been a stainless steel (alloy) thin plate that is cheaper than Ni-based alloys, has sufficient heat resistance to withstand use at 700 ° C., and has good workability. . The “workability” in the present invention means that a thin plate manufactured by cold rolling is easily formed into a gasket shape, that is, can be formed without cracking. Under such a background, an object of the present invention is to provide a thin plate that achieves both heat resistance and workability as a thin plate by defining steel components, hardness, and manufacturing method.

本発明者らは、前記課題を解決するために、耐熱性に及ぼす成分、硬度及び製造方法の影響を調査した。その結果、金属間化合物による析出強化と、熱処理及び冷間圧延の組み合わせによる転位強化を複合的に活用することにより、加工性及び耐熱性に優れた薄板を提供できることを知見した。本発明は上記の知見を基になされたものであり、その要旨は以下のとおりである。   In order to solve the above-mentioned problems, the present inventors investigated the influence of components, hardness, and manufacturing method on heat resistance. As a result, it has been found that a thin plate excellent in workability and heat resistance can be provided by utilizing the combination of precipitation strengthening by an intermetallic compound and dislocation strengthening by a combination of heat treatment and cold rolling. This invention is made | formed based on said knowledge, The summary is as follows.

(1)質量%で、C:0.002〜0.10%、Si:0.02〜3.0%、Mn:0.02〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0〜30.0%、Ni:30.0%超〜50.0%未満、N:0.0005〜0.020%、Al:0.002〜5.0%、Ti:3.0%超〜7.5%未満、Nb:0.5%超〜4.0%未満、Mo:0〜4.0%、W:0〜4.0%、B:0〜0.01%、Ca:0〜0.002%、Mg:0〜0.002%、残部が鉄及び不純物である組成を有し、結晶粒径が20.0μm以上であり、板厚の1/4〜3/4の範囲における断面硬度が400HV以上であり、前記断面硬度の700℃で400時間保持前後の硬度変化量が80HV以下である、薄板。
(1) By mass%, C: 0.002 to 0.10%, Si: 0.02 to 3.0%, Mn: 0.02 to 2.0%, P: less than 0.050%, S: Less than 0.010%, Cr: 12.0 to 30.0%, Ni: more than 30.0% to less than 50.0%, N: 0.0005 to 0.020%, Al: 0.002 to 5. 0%, Ti: more than 3.0% to less than 7.5%, Nb: more than 0.5% to less than 4.0%, Mo: 0 to 4.0%, W: 0 to 4.0%, B : 0-0.01%, Ca: 0-0.002%, Mg: 0-0.002%, the balance is iron and impurities, the crystal grain size is 20.0 μm or more, and the plate A thin plate having a cross-sectional hardness in the range of ¼ to ¾ of the thickness of 400 HV or more, and a change in hardness before and after holding the cross-sectional hardness at 700 ° C. for 400 hours is 80 HV or less.

(2)前記組成が、質量%で、Mo:0.02〜4.0%、及びW:0.02〜4.0%の1種以上を含有する、前記(1)に記載の薄板。   (2) The thin plate according to (1), wherein the composition contains at least one of Mo: 0.02 to 4.0% and W: 0.02 to 4.0% by mass.

(3)前記組成が、質量%で、B:0.0002〜0.01%、Ca:0.0002〜0.002%、及びMg:0.0002〜0.002%の1種以上を含有する、前記(1)又は(2)に記載の薄板。   (3) The composition contains one or more of mass%, B: 0.0002 to 0.01%, Ca: 0.0002 to 0.002%, and Mg: 0.0002 to 0.002%. The thin plate according to (1) or (2).

(4)下記の(A)〜(F)の工程を備え、下記の(C)〜(E)の工程を続けて2回以上繰り返す、前記(1)〜(3)のいずれかに記載の薄板の製造方法。
(A)所定の組成を有する鋼塊を溶製する工程、
(B)上記鋼塊に高温での加工を施して鋼板とする工程、
(C)1030℃以上1100℃未満で保持する工程、
(D)900℃から600℃までの平均冷却速度が30℃/s以上の条件で冷却する工程、
(E)圧延率10〜60%で冷間圧延する工程、及び、
(F)圧延率10〜60%で調質圧延をする工程。
(4) The method according to any one of (1) to (3), comprising the following steps (A) to (F), and repeating the following steps (C) to (E) twice or more: Thin plate manufacturing method.
(A) a step of melting a steel ingot having a predetermined composition;
(B) A step of processing the steel ingot at a high temperature to form a steel plate,
(C) The process of hold | maintaining at 1030 degreeC or more and less than 1100 degreeC,
(D) The process of cooling on condition that the average cooling rate from 900 degreeC to 600 degreeC is 30 degrees C / s or more,
(E) a step of cold rolling at a rolling rate of 10 to 60%, and
(F) A step of temper rolling at a rolling rate of 10 to 60%.

本発明によれば、鋼成分及び製造条件を規定することにより、加工性及び耐熱性に優れた薄板を提供できる。   According to the present invention, it is possible to provide a thin plate excellent in workability and heat resistance by defining steel components and production conditions.

以下に、本発明について詳細に説明する。まず、本発明に係る薄板の成分元素の限定理由を述べる。なお、組成についての%の表記は、特に断りがない限り質量%を意味する。   The present invention is described in detail below. First, the reasons for limiting the constituent elements of the thin plate according to the present invention will be described. In addition, the description of% about a composition means the mass% unless there is particular notice.

<C:0.002〜0.10%>
Cは、炭化物を生成し強化相として働く。C量を過度に低減すると、製鋼段階でのコストが増加するため、その含有量は0.002%以上とする。なお、安定的な製造性の観点からは0.005%以上とすることが好ましい。また、Cの含有量が高いと、加工性の劣化、及びCr炭化物析出による鋭敏化(脆化)を招く。このため、0.10%以下とする。加工度の高い成形を行う場合には0.030%以下とすることが好ましく、さらに好ましくは0.020%以下である。
<C: 0.002-0.10%>
C produces carbide and acts as a strengthening phase. If the amount of C is excessively reduced, the cost in the steelmaking stage increases, so the content is made 0.002% or more. In addition, it is preferable to set it as 0.005% or more from a viewpoint of stable manufacturability. Further, when the content of C is high, deterioration of workability and sensitization (embrittlement) due to Cr carbide precipitation are caused. For this reason, it is 0.10% or less. In the case of performing molding with a high degree of processing, the content is preferably 0.030% or less, and more preferably 0.020% or less.

<Si:0.02〜3.0%>
Siは、脱酸元素として活用する場合や、耐酸化性の向上のために積極的に添加する場合がある。極低Si化はコスト増加を招くため、その含有量は0.02%以上とする。なお、脱酸の観点から、0.05%以上とすることが好ましい。また多量の添加は材質硬質化による加工性低下を招くため、その含有量は3.0%以下とするのがよい。なお、加工度が厳しい場合は1.0%以下とすることが好ましい。
<Si: 0.02-3.0%>
Si may be used as a deoxidizing element or may be positively added to improve oxidation resistance. Since extremely low Si causes an increase in cost, its content is set to 0.02% or more. From the viewpoint of deoxidation, it is preferably 0.05% or more. Moreover, since addition of a large amount causes the workability fall by hardening of a material, the content is good to set to 3.0% or less. In addition, when the degree of processing is severe, it is preferably 1.0% or less.

<Mn:0.02〜2.0%>
MnもSi同様脱酸元素として活用する場合がある。Mnの過度な低化はコストの増加を招くため、その含有量は0.02%以上とする。なお、精錬コストの点から0.05%以上とすることが好ましく、さらに好ましくは0.07%以上である。また、多量のMn添加は材質硬質化を招くため、その含有量は2.0%以下とする。耐酸化性、安定製造性の観点からは1.5%以下とすることが好ましい。
<Mn: 0.02 to 2.0%>
Mn may also be used as a deoxidizing element like Si. Since excessive reduction of Mn causes an increase in cost, its content is set to 0.02% or more. In addition, it is preferable to set it as 0.05% or more from the point of refining cost, More preferably, it is 0.07% or more. In addition, since a large amount of Mn causes hardening of the material, its content is set to 2.0% or less. From the viewpoint of oxidation resistance and stable productivity, it is preferably 1.5% or less.

<P:0.050%未満>
Pは、不純物である。原料から不純物元素として混入する場合があるが、その含有量は少ないほどよい。Pが大量に存在すると加工性の劣化を招くため、0.050%未満と制限する。なお、加工性劣化の抑制の観点から、0.035%以下とすることが好ましい。P含有量の下限は特に決める必要はないが、過度の低減は原料及び製鋼コストの増大に繋がるため、この点から、P含有量は0.005%以上としてもよく、さらには0.010%以上としてもよい。
<P: less than 0.050%>
P is an impurity. Although it may mix as an impurity element from a raw material, the content is so preferable that it is small. When P is present in a large amount, workability is deteriorated, so the content is limited to less than 0.050%. In addition, it is preferable to set it as 0.035% or less from a viewpoint of suppression of workability deterioration. The lower limit of the P content need not be determined, but excessive reduction leads to an increase in raw material and steelmaking costs. From this point, the P content may be 0.005% or more, and further 0.010%. It is good also as above.

<S:0.010%未満>
Sは、不純物である。原料から不純物元素として混入する場合がある。熱間加工性及び耐食性を劣化させる元素であり、その含有量は少ないほどよいため、0.010%未満と制限する。また、その含有量が低いほど耐食性は良好であるため、好ましくは0.0030%未満である。さらに好ましくは0.0010%未満である。一方、過度の低減は精錬コストの増加に繋がるため、0.0002%以上としてもよい。
<S: less than 0.010%>
S is an impurity. In some cases, it is mixed as an impurity element from the raw material. It is an element that degrades hot workability and corrosion resistance, and the lower the content, the better. Therefore, it is limited to less than 0.010%. Moreover, since corrosion resistance is so favorable that the content is low, Preferably it is less than 0.0030%. More preferably, it is less than 0.0010%. On the other hand, excessive reduction leads to an increase in the refining cost, so it may be 0.0002% or more.

<Cr:12.0〜30.0%>
Crは、耐食性、耐熱性を確保する上で極めて重要な元素である。この効果を得るためには12.0%以上含有させることが好ましい。なお、耐食性及び耐熱性の観点から、14.0%以上とすることが好ましい。一方、多量の添加は製造時の靭性劣化を招くため、その含有量は30.0%以下とする。なお、製造安定性を考慮した場合は28.0%以下とすることが好ましい。さらに好ましくは26.5%以下である。
<Cr: 12.0 to 30.0%>
Cr is an extremely important element in securing corrosion resistance and heat resistance. In order to acquire this effect, it is preferable to make it contain 12.0% or more. In addition, from a viewpoint of corrosion resistance and heat resistance, the content is preferably 14.0% or more. On the other hand, addition of a large amount causes toughness deterioration during production, so the content is made 30.0% or less. In consideration of manufacturing stability, the content is preferably 28.0% or less. More preferably, it is 26.5% or less.

<Ni:30.0%超〜50.0%未満>
Niは、析出強化相である金属間化合物を生成し耐食性、耐熱性を確保する上で極めて重要な元素である。加えて後述するTi、Nbとの組み合わせで添加する際は薄板の加工性に大きな影響を及ぼす。Ni量が少ない場合は加工割れが発生するため、その含有量は30.0%超が好ましい。なお、製造安定性及び耐熱性の観点から、37.5%以上とすることが好ましい。一方、多量の添加は合金コストの増加を招くことにくわえて、薄板の加工性を低下させるため、その含有量は50.0%未満とする。なお、製造安定性(熱間加工割れ防止)を考慮した場合は46.0%以下とすることが好ましい。
<Ni: more than 30.0% to less than 50.0%>
Ni is an extremely important element for producing an intermetallic compound which is a precipitation strengthening phase and ensuring corrosion resistance and heat resistance. In addition, when added in combination with Ti and Nb described later, the workability of the thin plate is greatly affected. Since processing cracks occur when the amount of Ni is small, the content is preferably more than 30.0%. In addition, it is preferable to set it as 37.5% or more from a manufacturing stability and a heat resistant viewpoint. On the other hand, addition of a large amount leads to an increase in alloy cost and decreases the workability of the thin plate, so the content is made less than 50.0%. In consideration of manufacturing stability (prevention of hot work cracking), the content is preferably 46.0% or less.

<N:0.0005〜0.020%>
Nは窒化物の生成により、加工性を低下する場合があるため、低い方が好ましく、その含有量は0.020%以下とする。加工度の厳しい場合は0.010%未満とすることが望ましい。ただし、過度に低減することは製鋼段階でのコスト増加を招くため、その含有量は0.0005%以上とする。なお、安定的な製造性の観点からは0.0010%以上とすることが好ましい。
<N: 0.0005 to 0.020%>
Since N may reduce workability due to the formation of nitrides, N is preferably low, and its content is 0.020% or less. When the degree of processing is severe, it is desirable to make it less than 0.010%. However, excessive reduction causes an increase in cost in the steelmaking stage, so the content is made 0.0005% or more. In addition, it is preferable to set it as 0.0010% or more from a viewpoint of stable manufacturability.

<Al:0.002〜5.0%>
Alは、金属間化合物を構成する元素であり、耐熱性向上に寄与するため、この効果を得るためには、0.002%以上含有させることが好ましい。脱酸元素としても活用するため、0.005%以上とすることが好ましい。一方、多量の添加は製造時の熱間加工性を劣化させることに加えて、強化相とならない析出物を生成するため、その含有量は5.0%以下とする。製造性の安定度を考えると3.5%未満とすることが望ましい。
<Al: 0.002 to 5.0%>
Al is an element constituting an intermetallic compound and contributes to improvement in heat resistance. Therefore, in order to obtain this effect, 0.002% or more is preferably contained. In order to utilize also as a deoxidation element, it is preferable to set it as 0.005% or more. On the other hand, the addition of a large amount not only deteriorates the hot workability during production, but also produces precipitates that do not become a strengthening phase, so the content is made 5.0% or less. Considering the stability of manufacturability, it is desirable to make it less than 3.5%.

<Ti:3.0%超〜7.5%未満>
Tiは、強化相である金属間化合物を構成する元素であり、本発明においてはNbと組み合わせて添加することにより耐熱性を高め、700℃での使用に耐えうる耐熱性を確保する。この効果を得るためには3.0%超を含有させることが好ましく、より好ましくは3.5%以上であり、さらに好ましくは4.0%である。一方、多量の添加は熱間加工性の低下及び薄板製造後の成形加工性を低下させるため、その含有量は7.5%未満とする。安定製造性を考慮すると5.5%未満が好ましい。
<Ti: more than 3.0% to less than 7.5%>
Ti is an element constituting an intermetallic compound that is a strengthening phase. In the present invention, Ti is added in combination with Nb to enhance heat resistance and ensure heat resistance that can withstand use at 700 ° C. In order to acquire this effect, it is preferable to contain more than 3.0%, More preferably, it is 3.5% or more, More preferably, it is 4.0%. On the other hand, the addition of a large amount reduces the hot workability and the forming workability after manufacturing the thin plate, so the content is made less than 7.5%. Considering stable manufacturability, it is preferably less than 5.5%.

<Nb:0.5%超〜4.0%未満>
Nbは、耐熱性向上に有効な元素であり、0.5%超を含有させる。本発明においてはTiとの複合添加により、耐熱性を極めて高める効果がある。特に高温使用後のへたりを抑制する効果が大きい。この効果を得るためには、1.5%以上含有させることが好ましい。一方、多量の添加は熱間圧延及び冷間圧延時の割れを発生し、引張破断伸びを低下させるためその含有量は、4.0%未満とする。製造時の歩留まりを考慮すると3.0%未満が望ましい。
<Nb: more than 0.5% to less than 4.0%>
Nb is an element effective for improving heat resistance, and is contained in an amount exceeding 0.5%. In the present invention, the combined addition with Ti has an effect of extremely improving heat resistance. In particular, the effect of suppressing sag after use at high temperatures is great. In order to acquire this effect, it is preferable to make it contain 1.5% or more. On the other hand, the addition of a large amount generates cracks during hot rolling and cold rolling and lowers the tensile elongation at break, so the content is made less than 4.0%. Considering the yield at the time of manufacture, less than 3.0% is desirable.

以下の元素は必須の添加元素ではないが、1種以上を選択して添加してもよい。   The following elements are not essential additive elements, but one or more may be selected and added.

<Mo:0〜4.0%、W:0〜4.0%>
Mo及びWは耐熱性向上に有効にはたらく。これら元素は添加することにより、高温で母相が強化されることに加えて析出相を高強度化するためと考えられる。この効果を得るためには、いずれの元素とも0.02%以上含有させることが好ましい。広温度範囲での強化を目的とするためには0.5%以上添加することが好ましい。また、多量の添加は製造時の割れを誘発するため、それぞれの含有量は4.0%以下とする。好ましくは3.0%以下である。また、両元素を合わせて添加しても何ら問題は無い。
<Mo: 0 to 4.0%, W: 0 to 4.0%>
Mo and W are effective for improving heat resistance. The addition of these elements is thought to increase the strength of the precipitated phase in addition to strengthening the parent phase at high temperatures. In order to acquire this effect, it is preferable to contain 0.02% or more of any element. For the purpose of strengthening in a wide temperature range, 0.5% or more is preferably added. Moreover, since addition of a large amount induces cracks during production, the respective contents are set to 4.0% or less. Preferably it is 3.0% or less. Moreover, there is no problem even if both elements are added together.

不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。   An impurity means the component mixed by raw materials and other factors, such as an ore and a scrap, when manufacturing steel materials industrially.

<B:0〜0.01%、Ca:0〜0.002%、Mg:0〜0.002%>
B、Ca、及びMgは熱間加工性及び薄鋼板の成形性向上に寄与する元素である。この効果を得るためには、それぞれ0.0002%以上含有させることが好ましい。好ましくは0.0005%以上である。多量の添加は、熱間加工性を逆に低下させるばかりか、鋳造割れ、ノズル詰まり等が生じやすくするため、その含有量は、それぞれBは0.01%以下、Ca、Mgは0.002%以下とする。
<B: 0 to 0.01%, Ca: 0 to 0.002%, Mg: 0 to 0.002%>
B, Ca, and Mg are elements that contribute to improving hot workability and formability of the thin steel sheet. In order to obtain this effect, each content is preferably 0.0002% or more. Preferably it is 0.0005% or more. Addition of a large amount not only reduces hot workability, but also tends to cause casting cracks, nozzle clogging, etc., so the contents are 0.01% or less for B and 0.002 for Ca and Mg, respectively. % Or less.

また、本発明の薄板は、下記の特性を満足する。例えば本発明における「薄板」とは、板厚が0.3mm以下であることを示す。この特性を得るためには所定の冷間圧延を実施する。この条件については後述する。また、本発明では結晶粒径が20.0μm以上であることを特徴とする。結晶粒径が20.0μm未満であると、700℃にて400時間保持後の硬度変化量が大きくなるため、これを下限とした。一方、上限は耐熱性の観点からは特に規定する必要はないが、大きすぎると冷間圧延時の割れが生じやすくなったり、ガスケット形状への加工時に割れが生じる場合があるため、100.0μm以下であることが好ましい。また、この範囲を満たすことにより、冷間加工後、ガスケット形状への加工に必要な1.0%以上という伸び値を満たすことが可能となる。なおこの結晶粒径を満足するためには、熱処理温度及び冷間圧延率が重要となる。   The thin plate of the present invention satisfies the following characteristics. For example, “thin plate” in the present invention indicates that the plate thickness is 0.3 mm or less. In order to obtain this characteristic, predetermined cold rolling is performed. This condition will be described later. In the present invention, the crystal grain size is 20.0 μm or more. If the crystal grain size is less than 20.0 μm, the amount of change in hardness after holding at 700 ° C. for 400 hours becomes large, so this was made the lower limit. On the other hand, the upper limit is not particularly required from the viewpoint of heat resistance, but if it is too large, cracking during cold rolling tends to occur or cracking may occur during processing into a gasket shape. The following is preferable. Further, by satisfying this range, it is possible to satisfy an elongation value of 1.0% or more necessary for processing into a gasket shape after cold processing. In order to satisfy this crystal grain size, the heat treatment temperature and the cold rolling rate are important.

<断面硬度が400HV以上>
前述のようにシール材として使用する場合、高い材料強度が求められる。このため、断面硬度がビッカース硬度で400HVを下限とする。硬度(強度)は高いほどシール性は良好であり、硬度の上限は特に規定する必要はないが、硬すぎると成形加工に必要な延性が不十分となることがあるため、550HV以下とするのが望ましい。
<Cross section hardness is 400HV or more>
As described above, when used as a sealing material, high material strength is required. For this reason, the cross-sectional hardness is Vickers hardness and the lower limit is 400 HV. The higher the hardness (strength) is, the better the sealing performance is. It is not necessary to specify the upper limit of the hardness, but if it is too hard, the ductility necessary for the molding process may be insufficient, so that it is 550 HV or less. Is desirable.

なお、ビッカース硬度はJIS Z 2244に準拠した手法で荷重4.903N(HV0.5)で測定する。板厚の1/4〜3/4の範囲で5点以上測定し、平均値を持って代表値とする。硬度を確保するために成分組成中で特に、TiとNbの量を適正化する必要がある。加えて後述する冷間圧延によって硬度を調整する。一般的には冷間圧延の加工度を増加するだけで、ある程度までは、硬度を増加することは可能であるが、後述するように、700℃保持後硬度を確保するためには、成分と製造方法を組み合わせて硬度を調整する必要がある。   The Vickers hardness is measured with a load of 4.903N (HV0.5) by a method based on JIS Z 2244. 5 points or more are measured in the range of 1/4 to 3/4 of the plate thickness, and an average value is taken as a representative value. In order to ensure hardness, it is particularly necessary to optimize the amounts of Ti and Nb in the component composition. In addition, the hardness is adjusted by cold rolling described later. In general, it is possible to increase the hardness to a certain extent only by increasing the degree of cold rolling, but as will be described later, in order to ensure the hardness after holding at 700 ° C., the components and It is necessary to adjust the hardness by combining manufacturing methods.

<700℃にて400時間保持後の硬度変化量が80HV以下>
700℃における400時間保持後の硬度変化量は、本発明において耐熱性を示す指標である。自動車の運転を考えた場合、高速走行時にはガス温度が高まり、ガスケットが700℃近傍で長時間曝される。既存の技術では700℃で使用した場合にへたりが大きく、700℃使用後の強度(硬度)が大きく低下する。本発明では700℃での使用時のへたりを示す指標として「700℃で400時間保持したときの硬度変化量」を用いた。保持時間を400時間に限定した理由は、700℃で保持した場合の硬度低下は、特に200〜300時間経過後に硬度が変化する場合があるためであり、400時間経過後は、変化量が小さくなり時間の経過とともに硬度が徐々に低下する傾向にあるためである。本発明鋼の場合、変化量が80HVを超えるのは、化学成分や調質圧延率などにもよるが、おおよそ1000〜1500時間経過以降となる。また、同一の組成であっても、後述するように、本発明が規定する熱処理条件、冷間圧延条件および調質圧延条件を満足しない場合、700℃で保持している際に急激に硬度が上昇したり低下する場合がある。そのために、700℃、400時間の条件を選択した。
<Hardness change after holding at 700 ° C. for 400 hours is 80 HV or less>
The amount of change in hardness after holding at 700 ° C. for 400 hours is an index indicating heat resistance in the present invention. When considering driving an automobile, the gas temperature increases during high-speed driving, and the gasket is exposed to a temperature near 700 ° C. for a long time. In the existing technique, when used at 700 ° C., the settling is large, and the strength (hardness) after use at 700 ° C. is greatly reduced. In the present invention, “amount of change in hardness when held at 700 ° C. for 400 hours” is used as an index indicating a sag during use at 700 ° C. The reason why the holding time is limited to 400 hours is that the decrease in hardness when held at 700 ° C. is particularly because the hardness may change after 200 to 300 hours, and after 400 hours, the amount of change is small. This is because the hardness tends to gradually decrease with the passage of time. In the case of the steel according to the present invention, the amount of change exceeds 80 HV, although it depends on the chemical composition and the temper rolling ratio, etc., after about 1000 to 1500 hours have elapsed. Even if the composition is the same, as will be described later, when the heat treatment conditions, cold rolling conditions, and temper rolling conditions specified by the present invention are not satisfied, the hardness rapidly increases when the temperature is maintained at 700 ° C. May rise or fall. Therefore, the conditions of 700 ° C. and 400 hours were selected.

たとえば、SUS301冷延材では硬度が400HV以上あるが、700℃で400時間保持した後の室温硬度は200HVを下回る。すなわち硬度変化量は200HV以上である。本発明の合金薄板においては、700℃で400時間保持後の硬度変化量を80HV以下とする。80HV超であると走行時の強度低下が大きくなり、部材の変形による燃費低下、異音の発生等につながる。硬度変化量は小さい方がへたりが小さいことを示すため、50HV以下が好ましい。   For example, SUS301 cold rolled material has a hardness of 400 HV or more, but the room temperature hardness after holding at 700 ° C. for 400 hours is lower than 200 HV. That is, the hardness change amount is 200 HV or more. In the alloy thin plate of the present invention, the amount of change in hardness after holding at 700 ° C. for 400 hours is 80 HV or less. If it exceeds 80 HV, strength reduction during traveling increases, leading to fuel efficiency reduction due to deformation of members, generation of abnormal noise, and the like. The smaller the change in hardness, the smaller the settling, so 50HV or less is preferable.

また、本発明においては析出強化が生じるため、成分系によっては700℃保持中の析出により、400時間保持後に硬度が上昇する場合がある。その際は、断面硬度から700℃、400時間保持後の断面硬度を引いた値である硬度変化量がマイナスの値を取ることになるが、前述のように80HV以下であれば問題ない。なお、硬度はJIS Z 2244に準拠した手法で荷重4.903N(HV0.5)で測定し、板厚の1/4〜3/4の範囲で5点以上測定し、平均値を持って代表値とする。   Moreover, since precipitation strengthening occurs in the present invention, depending on the component system, the hardness may increase after holding for 400 hours due to precipitation during holding at 700 ° C. In that case, although the hardness change amount which is a value obtained by subtracting the cross-sectional hardness after holding at 700 ° C. for 400 hours from the cross-sectional hardness takes a negative value, there is no problem if it is 80 HV or less as described above. The hardness is measured with a load of 4.903N (HV0.5) in accordance with JIS Z 2244, and 5 or more points are measured in the range of 1/4 to 3/4 of the plate thickness, and the average value is representative. Value.

このように初期強度、結晶粒径といった金属組織及び組成を規定することで、700℃使用時のへたりを抑制することができる。へたりは組織軟化(金属組織変化)に起因しているため、へたり速度が小さいことは700℃で保持したときの金属組織変化が少ないことを示している。本発明者らが本発明の範囲の薄板に種々の熱履歴を加えた後に硬度を測定し、さらに700℃で400時間の保持後の硬度との差を調べたところ、いずれも80HV以下であることを確認している。すなわち、実際に使用されている材料(前の熱履歴が不明の材料を含む。)に700℃で400時間の熱処理を実施し、前後の硬度変化量が80HV以下であれば、本発明の特性を満足することになる。   By prescribing the metal structure and composition such as initial strength and crystal grain size in this way, it is possible to suppress sag during use at 700 ° C. Since sag is due to tissue softening (metal structure change), a low sag rate indicates that there is little change in metal structure when held at 700 ° C. The inventors measured the hardness after adding various heat histories to the thin plate within the scope of the present invention, and further examined the difference from the hardness after holding at 700 ° C. for 400 hours, all of which are 80 HV or less. I have confirmed that. That is, if a material actually used (including a material whose previous thermal history is unknown) is subjected to heat treatment at 700 ° C. for 400 hours and the hardness change before and after is 80 HV or less, the characteristics of the present invention are obtained. Will be satisfied.

へたりを抑制する金属組織としては、析出物の硬度、量、粗大化しやすさ、母相との格子不整合度、さらには密度等が重要な制御因子である。金属間化合物を構成する元素(Ti、Nb、Al、Ni)の添加量、及び熱処理条件、冷間圧延条件、および調質圧延条件が析出物の硬度や析出量、粗大化しやすさに影響を及ぼす。最終の冷間圧延前の熱処理工程によって強化に寄与する析出物を十分に固溶させることが重要であり、その後の冷却速度を規定することで冷間圧延前の析出を抑制し、最終の調質圧延(冷間圧延)により導入されるひずみが析出サイト数(析出密度)及び金属中の各原子の拡散速度(粗大化しやすさ)に影響を及ぼすと考えられる。   As the metal structure that suppresses sag, the hardness, amount, ease of coarsening, degree of lattice mismatch with the parent phase, density, and the like are important control factors. Addition amount of elements (Ti, Nb, Al, Ni) constituting intermetallic compounds, heat treatment conditions, cold rolling conditions, and temper rolling conditions affect the hardness, precipitation amount, and coarseness of precipitates. Effect. It is important to sufficiently dissolve the precipitates that contribute to strengthening by the heat treatment process before the final cold rolling, and by regulating the subsequent cooling rate, the precipitation before the cold rolling is suppressed and the final control is performed. It is considered that the strain introduced by quality rolling (cold rolling) affects the number of precipitation sites (precipitation density) and the diffusion rate (easiness of coarsening) of each atom in the metal.

つぎに、本発明の薄板の製造方法について説明する。   Below, the manufacturing method of the thin plate of this invention is demonstrated.

本発明の薄板は、下記の(A)〜(F)の工程を備え、下記の(C)〜(E)の工程を続けて2回以上繰り返し、製造される。   The thin plate of the present invention comprises the following steps (A) to (F) and is produced by repeating the following steps (C) to (E) twice or more.

(A)所定の組成を有する鋼塊を溶製する工程
まず、鋳造により、所定の成分組成を有する鋼塊を溶製する。鋳造は連続鋳造、及びインゴット鋳造のいずれでもよい。
(A) Step of melting an ingot having a predetermined composition First, an ingot having a predetermined composition is melted by casting. Casting may be either continuous casting or ingot casting.

(B)上記鋼塊に高温での加工を施して鋼板とする工程
得られた鋼塊を、熱間鍛造、熱間圧延等の高温での加工により熱延板とする。次工程の冷間圧延を容易に行うために、高温での加工の前に、固溶化熱処理を施してもよい。
(B) The process which makes the said steel ingot process at high temperature, and uses it as a steel plate The obtained steel ingot is made into a hot-rolled sheet by processing at high temperature, such as hot forging and hot rolling. In order to easily perform the cold rolling of the next step, a solution heat treatment may be performed before processing at a high temperature.

(C)1030℃以上1100℃未満で保持する工程
温度が1030℃未満であると、金属間化合物が固溶せずに多量に残存し、中間焼鈍の場合冷間割れが生じやすくなる。一方、最終焼鈍の場合、調質圧延時の割れや冷間圧延後の延性(破断伸び)が低下してガスケット形状に成形加工できなくなったり、700℃で保持した際の硬度低下が早期に生じやすくなる。これは、熱処理温度が低いために未固溶析出物が残存し、700℃保持時に未固溶析出物を核として析出物の粗大化が促進するためと考えられる。前述のように200〜300時間経過したときに急激に硬度の上昇や低下が生じる場合があるのは、このためと推察される。一方、到達温度が高すぎると結晶粒径が粗大化し、その後の冷間圧延によっても十分な硬度が得られないため、1100℃未満とする。材質安定化のためには1080℃未満が好ましい。この温度における長時間の保持は結晶粒粗大化が生じるために好ましくないが、材質安定化のためにある程度の保持を実施してもよい。但し、保持時間は300s以下とするのが好ましい。
(C) The process of hold | maintaining at 1030 degreeC or more and less than 1100 degreeC If temperature is less than 1030 degreeC, an intermetallic compound will remain in large quantities without forming a solid solution, and in the case of intermediate annealing, it will become easy to produce a cold crack. On the other hand, in the case of final annealing, cracks during temper rolling and ductility (breaking elongation) after cold rolling are reduced, making it impossible to form into a gasket shape, or a decrease in hardness when held at 700 ° C. occurs early. It becomes easy. This is thought to be because the insoluble precipitate remains because the heat treatment temperature is low, and the coarsening of the precipitate is promoted with the insoluble precipitate as a nucleus when kept at 700 ° C. As described above, it is presumed that the hardness may suddenly increase or decrease when 200 to 300 hours have elapsed. On the other hand, if the reached temperature is too high, the crystal grain size becomes coarse, and sufficient hardness cannot be obtained even by subsequent cold rolling, so the temperature is set to less than 1100 ° C. In order to stabilize the material, the temperature is preferably less than 1080 ° C. Holding at this temperature for a long time is not preferable because crystal grain coarsening occurs, but a certain amount of holding may be performed to stabilize the material. However, the holding time is preferably 300 s or less.

(D)900℃から600℃までの平均冷却速度が30℃/s以上の条件で冷却する工程
上記の(C)までの工程を施した冷延板を、900℃から600℃の平均冷却速度を30℃/s以上の条件で冷却する。冷却速度が遅い場合、冷却途中に析出が生じて、冷間圧延後に十分な加工性が得られないため、冷却速度を大きくする必要がある。特に強度に影響する析出が生じやすい温度は900℃から600℃であるため、この温度域における平均冷却速度を30℃/s以上とする。平均冷却速度がこれより小さい場合、冷却途中に析出が生じて高強度化する。この温度域に限定した理由は、強化に寄与する析出物が析出しやすいためである。前述の熱処理(C)において固溶した析出物を析出させることなく次工程に持って行くために、この温度域の冷却速度の確保が必要となる。平均冷却速度とは、900℃と600℃の温度差(300℃)を900℃から600℃に達するまでの時間で除した値である。平均冷却速度の上限値は特に決める必要はないが、現状の設備能力を考慮すると200℃/sを超える特殊な冷却装置(機能)が必要となるため、現実的でない。冷却の方法は、冷却速度を満足すれば問題ないが、現有設備を考慮すると空気、Ar等の気体やミスト、水などを強制的に吹き付ける方法が望ましい。
(D) Step of cooling at an average cooling rate from 900 ° C. to 600 ° C. under a condition of 30 ° C./s or more. Is cooled at 30 ° C./s or more. When the cooling rate is slow, precipitation occurs during cooling, and sufficient workability cannot be obtained after cold rolling. Therefore, it is necessary to increase the cooling rate. In particular, since the temperature at which precipitation that affects the strength is likely to occur is 900 ° C. to 600 ° C., the average cooling rate in this temperature range is set to 30 ° C./s or more. When the average cooling rate is smaller than this, precipitation occurs during cooling and the strength is increased. The reason for limiting to this temperature range is that precipitates contributing to strengthening tend to precipitate. In order to take the precipitate dissolved in the heat treatment (C) to the next step without precipitating, it is necessary to secure a cooling rate in this temperature range. The average cooling rate is a value obtained by dividing the temperature difference between 900 ° C. and 600 ° C. (300 ° C.) by the time required to reach 600 ° C. from 900 ° C. The upper limit value of the average cooling rate does not need to be determined in particular, but it is not realistic because a special cooling device (function) exceeding 200 ° C./s is required in consideration of the current facility capacity. As long as the cooling rate is satisfied, there is no problem as long as the cooling method is satisfied. However, in consideration of existing facilities, a method of forcibly blowing a gas such as air, Ar, mist, water or the like is desirable.

(E)圧延率10〜60%で冷間圧延する工程
上記の熱処理及び冷却に続いて、さらに、圧延率10〜60%の冷間圧延を施し、最終焼鈍後に行われる調質圧延率を考慮した板厚に仕上げる。圧延率が10%未満だと生産性が悪化したり、異常粒成長を招きやすくなる。また、60%を超える冷延率の場合、圧延材が硬質となり割れを発生しやすくなる。
(E) Step of cold rolling at a rolling rate of 10 to 60% Following the above heat treatment and cooling, cold rolling at a rolling rate of 10 to 60% is further performed, and the temper rolling rate performed after the final annealing is taken into consideration Finish to the finished thickness. When the rolling rate is less than 10%, productivity is deteriorated and abnormal grain growth is likely to occur. Moreover, in the case of the cold rolling rate exceeding 60%, a rolling material becomes hard and it becomes easy to generate | occur | produce a crack.

(F)圧延率10〜60%で調質圧延をする工程
調質圧延工程は、転位密度を増加させて材料の高硬度化を確保するために必要である。加えて、冷間圧延により歪を導入した上で合金薄板を使用することで、使用時の金属間化合物の析出密度が高まる。すなわち、冷間圧延は初期強度の上昇と使用時の高強度化(効率的な析出強化)の両立を図ることができる。冷間圧延率が10%未満では、初期強度が低く、シール性が劣る。また、冷間圧延率が60%を超える場合、結晶粒径が小さくなり、このため700℃保持後の硬度低下が大きくなる。また材料強度が高くなり、加工性(延性)が低下し、ガスケット加工時に割れを生じやすくなるため、60%を上限とする、好ましい冷間圧延の圧下率は20%以上55%以下である。
(F) Process of temper rolling at a rolling rate of 10 to 60% The temper rolling process is necessary for increasing the dislocation density and ensuring high hardness of the material. In addition, by using the alloy thin plate after introducing strain by cold rolling, the precipitation density of the intermetallic compound at the time of use is increased. In other words, cold rolling can achieve both an increase in initial strength and an increase in strength during use (effective precipitation strengthening). When the cold rolling rate is less than 10%, the initial strength is low and the sealing property is inferior. Further, when the cold rolling rate exceeds 60%, the crystal grain size becomes small, and therefore the hardness decrease after holding at 700 ° C. becomes large. Moreover, since material strength becomes high, workability (ductility) falls, and it becomes easy to produce a crack at the time of gasket processing, the preferable reduction rate of cold rolling which makes 60% an upper limit is 20% or more and 55% or less.

下記(C)〜(E)の工程を続けて2回以上繰り返し、最終的に(F)の工程後板厚0.3mm以下の薄板を製造する。(C)〜(E)の工程が2回未満であると保持時の硬度上昇や低下が顕著となるため、2回以上としている。   The following steps (C) to (E) are repeated twice or more to finally produce a thin plate having a thickness of 0.3 mm or less after the step (F). If the steps (C) to (E) are less than twice, the increase or decrease in hardness at the time of holding becomes remarkable, so the number of times is set to two or more.

本発明は、組成、及び製造条件を規定することで、薄板の強度(硬度)及び加工性を特定の範囲に制御する技術である。Ni、Ti、Nb、Al等は金属間化合物を構成し、これらの添加量が多い場合に耐熱性が向上することは従来から知られている。一方、本発明のようなTi、Nb、Al量範囲においてガスケットといった用途における薄板の加工性を確保することや使用時の硬度低下を防止するには、最適なNi、Ti、Nb、Alの範囲が存在することは新たな知見である。   The present invention is a technique for controlling the strength (hardness) and workability of a thin plate within a specific range by defining the composition and manufacturing conditions. It has been conventionally known that Ni, Ti, Nb, Al and the like constitute an intermetallic compound, and that the heat resistance is improved when the amount of these added is large. On the other hand, in order to ensure the workability of a thin plate in applications such as gaskets in the Ti, Nb, and Al amount ranges as in the present invention and to prevent a decrease in hardness during use, an optimal Ni, Ti, Nb, and Al range The existence of is a new finding.

上記(C)〜(E)の工程を続けて2回以上繰り返すことにより良好な耐熱性が得られる原因は詳細には分かっていないが、下記のように推測している。本発明における耐熱性は前述のごとく、使用中においての析出物による強化が主であると考えられる。析出物が粗大化して析出密度が低下した場合には、強化量は低下する。前述の(C)〜(E)の工程は強化に寄与する析出物を一旦固溶させ、冷却中に再析出させないことを意図している。しかし、熱間圧延後に析出した粗大な析出物は、短時間の固溶では十分に固溶できなく、一方で長時間の固溶を行えば結晶粒が著しく粗大となる。そのために、2回以上の冷間圧延−焼鈍−冷却を繰り返すことによって、析出物を十分に固溶できると推測される。調質圧延(冷間圧延)は材料強度を増加することに加えて、700℃保持時の析出核として冷間圧延で導入された転位を活用することで析出の分散化を図っている。   The reason why good heat resistance is obtained by repeating the steps (C) to (E) twice or more is not known in detail, but is presumed as follows. As described above, it is considered that the heat resistance in the present invention is mainly strengthened by precipitates during use. When the precipitate becomes coarse and the precipitation density decreases, the strengthening amount decreases. The steps (C) to (E) described above are intended to temporarily dissolve precipitates that contribute to strengthening and not to reprecipitate during cooling. However, coarse precipitates precipitated after hot rolling cannot be sufficiently dissolved in a short time solid solution, and on the other hand, if they are dissolved for a long time, crystal grains become extremely coarse. Therefore, it is estimated that the precipitate can be sufficiently dissolved by repeating cold rolling-annealing-cooling twice or more. In temper rolling (cold rolling), in addition to increasing the material strength, the dislocations introduced by cold rolling are used as precipitation nuclei when maintained at 700 ° C., thereby dispersing the precipitation.

実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   The effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

実施例では、下記の工程で試料を作成した。
(A)表1の成分組成(質量%)を有する30kg鋼塊を溶製した。
(B)得られた鋼塊を、鍛造、熱間圧延により板厚5.0mmの熱延板とした。
(C)所定の温度で保持を行った。
(D)900℃〜600℃までの冷却速度を所定の冷却速度で冷却した。
(E)所定の圧延率で冷間圧延を行った。
(F)所定の圧延率で調質圧延を行った。
In the example, a sample was prepared by the following process.
(A) A 30 kg steel ingot having the composition (% by mass) shown in Table 1 was melted.
(B) The obtained steel ingot was made into a hot rolled sheet having a thickness of 5.0 mm by forging and hot rolling.
(C) Holding was performed at a predetermined temperature.
(D) The cooling rate from 900 ° C. to 600 ° C. was cooled at a predetermined cooling rate.
(E) Cold rolling was performed at a predetermined rolling rate.
(F) Temper rolling was performed at a predetermined rolling rate.

Figure 0006160787
Figure 0006160787

実施例中では(C)〜(E)において、熱処理温度、冷却速度、圧延率(10〜60%)を変化させ、本発明例では本発明で規定する条件で2回以上繰り返した。その後、目的とする板厚にするために冷間圧延率を調整し、最終製品厚である0.20mmの薄板に調質圧延で仕上げた。得られた薄板を用いて、断面硬度、引張伸び、及び耐熱性の評価を行った。本発明は実際に使用(高温に保持)された後の材料においても硬度変化は満足すると考えられるため、一部の試験片については700℃保持の前に実際の使用環境における熱履歴を模擬した前熱処理を実施した。   In the examples, in (C) to (E), the heat treatment temperature, the cooling rate, and the rolling rate (10 to 60%) were changed, and in the present invention example, the process was repeated twice or more under the conditions specified in the present invention. Thereafter, the cold rolling rate was adjusted in order to obtain a target sheet thickness, and a final sheet thickness of 0.20 mm was finished by temper rolling. Using the obtained thin plate, cross-sectional hardness, tensile elongation, and heat resistance were evaluated. Since the present invention is considered to satisfy the hardness change even in the material after being actually used (held at a high temperature), the thermal history in the actual usage environment was simulated for some test pieces before holding at 700 ° C. A pre-heat treatment was performed.

断面硬度は、室温で、断面の板厚中心部におけるビッカース硬度(HV0.5)をJIS Z 2244準拠の方法にて測定した。5回測定した平均値を用いた。   The cross-sectional hardness was measured at room temperature by measuring the Vickers hardness (HV0.5) at the central portion of the cross-sectional thickness by a method in accordance with JIS Z 2244. The average value measured 5 times was used.

断面組織より結晶粒径を算出した。結晶粒径の測定方法は、JIS G 0551に準拠した。   The crystal grain size was calculated from the cross-sectional structure. The measuring method of the crystal grain size was based on JIS G 0551.

引張伸びは、JIS13号B引張試験片を用いてJIS Z 2241に準拠した方法で測定した。引張試験における伸び値が1.0%以上の場合に、ガスケット形状への成形加工が可能となるため、1.0%以上の伸び値を持つものを成形性の合格レベルとした。   The tensile elongation was measured by a method based on JIS Z 2241 using a JIS No. 13 B tensile test piece. When the elongation value in the tensile test is 1.0% or more, molding into a gasket shape is possible. Therefore, a material having an elongation value of 1.0% or more was regarded as an acceptable level of formability.

耐熱性は、700℃にて400時間保持した後の断面硬度をもって判断した。上述したのと同様に、JIS Z 2244準拠の方法で5回測定した平均値(HV0.5)を用いた。   The heat resistance was judged by the cross-sectional hardness after holding at 700 ° C. for 400 hours. As described above, an average value (HV0.5) measured five times by a method according to JIS Z 2244 was used.

製造条件、及び評価結果を表2、表3に示す。   Production conditions and evaluation results are shown in Tables 2 and 3.

Figure 0006160787
Figure 0006160787

Figure 0006160787
Figure 0006160787

表2、表3からわかるように、本発明の組成から外れる組成の鋼種を用いて得られた合金薄板、及び本発明の製造方法の製造条件から外れる製造条件に基づいて製造された合金薄板は、断面硬度、引張伸び、耐熱性のいずれかが所定の特性を満たさなかった。比較例では、その後の冷間圧延で板厚のばらつき、割れが生じた。また、最終熱処理条件を満たさない例では、ガスケット成形時に割れが生じた。一方、本発明の範囲の技術では、前熱処理条件によらず、良好な特性が得られた。   As can be seen from Tables 2 and 3, the alloy thin plate obtained using the steel type having a composition deviating from the composition of the present invention, and the alloy thin plate produced based on the production condition deviating from the production condition of the production method of the present invention are: Any of the cross-sectional hardness, tensile elongation, and heat resistance did not satisfy the predetermined characteristics. In the comparative example, variations in sheet thickness and cracks occurred in the subsequent cold rolling. Further, in the example that did not satisfy the final heat treatment condition, a crack occurred during the molding of the gasket. On the other hand, in the technology within the scope of the present invention, good characteristics were obtained regardless of the pre-heat treatment conditions.

鋼種No.15,16は特許文献3を満足する組成であるが、本発明のような製法及び組織を満足しない場合は良好な特性を発揮しない。   Steel type no. Nos. 15 and 16 are compositions that satisfy Patent Document 3, but they do not exhibit good characteristics unless they satisfy the manufacturing method and structure as in the present invention.

本発明によれば、加工性及び耐熱性に優れた薄板を得ることができ、あらゆる産業分野で利用することができる。本発明の薄板は、自動車排気系のシール材として用いられるガスケットに加えて高温で用いられる部材への適用が考えられる。
According to the present invention, a thin plate excellent in workability and heat resistance can be obtained, and can be used in all industrial fields. The thin plate of the present invention can be applied to members used at high temperatures in addition to gaskets used as sealing materials for automobile exhaust systems.

Claims (4)

質量%で、
C :0.002〜0.10%、
Si:0.02〜3.0%、
Mn:0.02〜2.0%、
P :0.050%未満、
S :0.010%未満、
Cr:12.0〜30.0%、
Ni:30.0%超〜50.0%未満、
N :0.0005〜0.020%、
Al:0.002〜5.0%、
Ti:3.0%超〜7.5%未満、
Nb:0.5%超〜4.0%未満、
Mo:0〜4.0%、
W :0〜4.0%、
B :0〜0.01%、
Ca:0〜0.002%、
Mg:0〜0.002%、
残部が鉄及び不純物である組成を有し、
結晶粒径が20.0μm以上であり、
板厚の1/4〜3/4の範囲における断面硬度が400HV以上であり、
前記断面硬度の700℃で400時間保持前後の硬度変化量が80HV以下である、薄板。
% By mass
C: 0.002-0.10%,
Si: 0.02-3.0%,
Mn: 0.02 to 2.0%,
P: less than 0.050%,
S: less than 0.010%,
Cr: 12.0-30.0%,
Ni: more than 30.0% to less than 50.0%,
N: 0.0005 to 0.020%,
Al: 0.002 to 5.0%,
Ti: more than 3.0% to less than 7.5%,
Nb: more than 0.5% to less than 4.0%,
Mo: 0 to 4.0%,
W: 0 to 4.0%,
B: 0 to 0.01%
Ca: 0 to 0.002%,
Mg: 0 to 0.002%,
Having a composition where the balance is iron and impurities,
The crystal grain size is 20.0 μm or more,
The cross-sectional hardness in the range of 1/4 to 3/4 of the plate thickness is 400 HV or more,
A thin plate having a hardness change amount of about 80 HV or less before and after holding for 400 hours at 700 ° C. in cross-sectional hardness .
前記組成が、質量%で、
Mo:0.02〜4.0%、及び
W :0.02〜4.0%
の1種以上を含有する、請求項1に記載の薄板。
The composition is in weight percent,
Mo: 0.02 to 4.0%, and W: 0.02 to 4.0%
The thin plate of Claim 1 containing 1 or more types of these.
前記組成が、質量%で、
B :0.0002〜0.01%、
Ca:0.0002〜0.002%、及び
Mg:0.0002〜0.002%
の1種以上を含有する、請求項1又は2に記載の薄板。
The composition is in weight percent,
B: 0.0002 to 0.01%
Ca: 0.0002 to 0.002%, and Mg: 0.0002 to 0.002%
The thin plate of Claim 1 or 2 containing 1 or more types of these.
下記の(A)〜(F)の工程を備え、下記の(C)〜(E)の工程を続けて2回以上繰り返す、請求項1から3までのいずれかに記載の薄板の製造方法。
(A)所定の組成を有する鋼塊を溶製する工程、
(B)上記鋼塊に高温での加工を施して鋼板とする工程、
(C)1030℃以上1100℃未満で保持する工程、
(D)900℃から600℃までの平均冷却速度が30℃/s以上の条件で冷却する工程、
(E)圧延率10〜60%で冷間圧延する工程、及び、
(F)圧延率10〜60%で調質圧延をする工程。
The method for producing a thin plate according to any one of claims 1 to 3 , comprising the following steps (A) to (F) and repeating the following steps (C) to (E) twice or more.
(A) a step of melting a steel ingot having a predetermined composition;
(B) A step of processing the steel ingot at a high temperature to form a steel plate,
(C) The process of hold | maintaining at 1030 degreeC or more and less than 1100 degreeC,
(D) The process of cooling on condition that the average cooling rate from 900 degreeC to 600 degreeC is 30 degrees C / s or more,
(E) a step of cold rolling at a rolling rate of 10 to 60%, and
(F) A step of temper rolling at a rolling rate of 10 to 60%.
JP2016568083A 2015-07-03 2016-06-30 Thin plate and manufacturing method thereof Active JP6160787B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015134540 2015-07-03
JP2015134540 2015-07-03
PCT/JP2016/069541 WO2017006843A1 (en) 2015-07-03 2016-06-30 Sheet metal and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2017006843A1 JPWO2017006843A1 (en) 2017-07-06
JP6160787B2 true JP6160787B2 (en) 2017-07-12

Family

ID=57685255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568083A Active JP6160787B2 (en) 2015-07-03 2016-06-30 Thin plate and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6160787B2 (en)
WO (1) WO2017006843A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787246B2 (en) * 2017-04-28 2020-11-18 日本製鉄株式会社 Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6960083B2 (en) * 2017-06-15 2021-11-05 日立金属株式会社 Heat resistant plate material
JP7090514B2 (en) * 2018-09-12 2022-06-24 日鉄ステンレス株式会社 How to manufacture metal gasket intermediate products and metal gaskets
JPWO2022123812A1 (en) * 2020-12-10 2022-06-16

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963842B2 (en) * 1994-06-15 1999-10-18 大同特殊鋼株式会社 Alloy for exhaust valve
JP3492531B2 (en) * 1998-10-05 2004-02-03 住友電工スチールワイヤー株式会社 Heat resistant stainless steel
JP2005002451A (en) * 2003-06-13 2005-01-06 Daido Steel Co Ltd Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP5846076B2 (en) * 2012-03-28 2016-01-20 新日鐵住金株式会社 Austenitic heat-resistant alloy
WO2016043199A1 (en) * 2014-09-19 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel sheet

Also Published As

Publication number Publication date
WO2017006843A1 (en) 2017-01-12
JPWO2017006843A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6541869B2 (en) Austenitic stainless steel plate and turbocharger part for exhaust parts excellent in heat resistance and processability, and manufacturing method of austenitic stainless steel sheet for exhaust parts
CN107075629B (en) Austenitic stainless steel sheet
KR101619008B1 (en) Heat-resistant austenitic stainless steel sheet
TWI601833B (en) Pickling property, the bolt wire excellent in delayed fracture resistance after quenching and tempering, and a bolt
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
WO2015133551A1 (en) Austenitic heat-resistant alloy
KR20150021124A (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
JP6160787B2 (en) Thin plate and manufacturing method thereof
KR102306578B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and exhaust parts
JP6879877B2 (en) Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPWO2019189576A1 (en) Alloy plate and manufacturing method thereof
JP2019218588A (en) Austenite stainless steel sheet and manufacturing method therefor
JP7205277B2 (en) Heat-resistant alloy and its manufacturing method
JP6741876B2 (en) Alloy plate and gasket
CA2930153C (en) Maraging steel
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP7131332B2 (en) Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys
JP6720828B2 (en) Austenitic stainless steel sheet and method for producing the same
JP2021167436A (en) Seal member and method for producing the same
JPH1129837A (en) Heat resistant cast steel and heat resistant cast steel part

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R151 Written notification of patent or utility model registration

Ref document number: 6160787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350