JP6150424B2 - Ion conductive solid electrolyte and ion secondary battery using the same - Google Patents

Ion conductive solid electrolyte and ion secondary battery using the same Download PDF

Info

Publication number
JP6150424B2
JP6150424B2 JP2013046722A JP2013046722A JP6150424B2 JP 6150424 B2 JP6150424 B2 JP 6150424B2 JP 2013046722 A JP2013046722 A JP 2013046722A JP 2013046722 A JP2013046722 A JP 2013046722A JP 6150424 B2 JP6150424 B2 JP 6150424B2
Authority
JP
Japan
Prior art keywords
group
ion
electrolyte
nitrogen
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013046722A
Other languages
Japanese (ja)
Other versions
JP2013214510A (en
Inventor
誠 守谷
誠 守谷
余語 利信
利信 余語
坂本 渉
渉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Mitsubishi Chemical Corp
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Mitsubishi Chemical Corp
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Mitsubishi Chemical Corp, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2013046722A priority Critical patent/JP6150424B2/en
Publication of JP2013214510A publication Critical patent/JP2013214510A/en
Application granted granted Critical
Publication of JP6150424B2 publication Critical patent/JP6150424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Description

本発明は、イオン伝導性固体電解質およびそれを用いたイオン二次電池(例えば、リチウムイオン電池やナトリムイオン電池)に関する。   The present invention relates to an ion conductive solid electrolyte and an ion secondary battery (for example, a lithium ion battery or a sodium ion battery) using the same.

携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。また、近年、リチウムイオン二次電池に代わる二次電池として、供給量が豊富で、安価な材料により構成することができるとされるナトリウムイオン二次電池が提案されている。
しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、電池特性の高性能化、例えばリチウム二次電池においては、高容量化、高温保存特性、サイクル特性等の向上を達成すると同時に安全性の確保を高い水準で達成することが求められている。
Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are widely used as power sources for so-called portable electronic devices such as mobile phones and notebook computers, to in-vehicle power sources for automobiles and large power sources for stationary applications. It is being put into practical use. In recent years, sodium ion secondary batteries that have been supplied in abundant amounts and can be made of inexpensive materials have been proposed as secondary batteries that can replace lithium ion secondary batteries.
However, with the recent high performance of electronic devices and the application to in-vehicle power supplies for driving and large power supplies for stationary applications, the demand for applied secondary batteries is increasing, and the performance of battery characteristics such as lithium In a secondary battery, it is required to achieve high capacity, high temperature storage characteristics, cycle characteristics, and the like, and at the same time, ensure safety at a high level.

これまでリチウム二次電池や電気二重層キャパシタ等の電気デバイスに使用される電解質としては、主に有機系溶剤に支持電解質を溶解させた有機電解液が用いられているが、有機電解液が可燃性であることから、発火性や液漏れ等の点で問題となっている。
そこで、リチウム二次電池について、電解質を固体化あるいはゲル化したり、不燃化したりすることにより、電解液の漏出を防止したり、電解液を不燃化することで電気デバイスの安全性を向上させる試みがなされている。
Until now, as electrolytes used in electric devices such as lithium secondary batteries and electric double layer capacitors, organic electrolytes in which a supporting electrolyte is dissolved in an organic solvent have been mainly used. However, organic electrolytes are combustible. Therefore, there are problems in terms of ignitability and liquid leakage.
Therefore, for lithium secondary batteries, attempts to improve the safety of electrical devices by preventing electrolyte leakage or making the electrolyte nonflammable by solidifying or gelling the electrolyte or making it nonflammable. Has been made.

従来の固体あるいはゲル電解質(以下、単に固体電解質と称することがある)は、有機系、無機系の双方共に検討が行われている。   Conventional solid or gel electrolytes (hereinafter sometimes simply referred to as solid electrolytes) have been studied for both organic and inorganic electrolytes.

有機系の電解質としてはゲル電解質、ポリマー電解質、イオンゲル電解質、プラスチッククリスタル(柔軟性結晶)電解質、液晶電解質が例示される。   Examples of organic electrolytes include gel electrolytes, polymer electrolytes, ion gel electrolytes, plastic crystal (flexible crystal) electrolytes, and liquid crystal electrolytes.

ゲル電解質はゲル化剤やホストとなるポリマーにリチウム塩を溶解させた有機溶媒を凝固体化したものである。ゲル電解質は現行の液体電解質と同等のイオン伝導度、リチウムイオン輸率、使用可能電位窓をもち、現在の電解質固体化の主流技術となっている。しかしながら、現行のリチウムイオン電池でも汎用されているゲル電解質は有機溶媒をゲル化剤で凝固体化したものであるため、上記の有機溶媒に起因する問題は本質的に解決されているとは言い難い上、機械的強度も充分とは言えない。   The gel electrolyte is obtained by solidifying an organic solvent in which a lithium salt is dissolved in a gelling agent or a host polymer. Gel electrolytes have the same ionic conductivity, lithium ion transport number and usable potential window as current liquid electrolytes, and have become the mainstream technology for solidifying electrolytes. However, since the gel electrolyte, which is widely used in current lithium ion batteries, is obtained by coagulating an organic solvent with a gelling agent, the problems caused by the organic solvent are essentially solved. It is difficult and the mechanical strength is not sufficient.

ポリマー電解質は、ポリエチレンオキシドやポリプロピレンオキシド等、自身がイオン伝導性を備えるポリマーにリチウム塩を混合したものが例示できる。ポリマー電解質はゲル電解質よりも機械的強度に優れると共に、高分子からなる自立膜を電解質として作用させるため液漏れの発生を本質的に解決することができる。しかしながら、ポリマー電解質はイオン伝導度が低く、特にポリマー鎖のセグメント運動が抑制される低温条件下での特性の低下が問題になる。   Examples of the polymer electrolyte include a polymer in which a lithium salt is mixed with a polymer having ion conductivity such as polyethylene oxide and polypropylene oxide. The polymer electrolyte is superior in mechanical strength to the gel electrolyte, and a self-supporting film made of a polymer acts as an electrolyte, so that the occurrence of liquid leakage can be essentially solved. However, the polymer electrolyte has a low ionic conductivity, and the deterioration of properties under low temperature conditions in which the polymer chain segmental movement is suppressed becomes a problem.

イオンゲル電解質はイオン液体をゲル化したものであり、プラスチッククリスタル(柔軟性結晶)電解質・液晶電解質は液体と結晶の中間に当たる柔軟性結晶相又は液晶相にある物質にリチウム塩を混合したものである。これらの電解質は比較的高いイオン伝導度が確認されているものの、高温条件下での溶融や低温下での凝固などの温度変化による相転移による急激なイオン伝導度の変化が問題になる。   An ionic gel electrolyte is a gel of an ionic liquid, and a plastic crystal (flexible crystal) electrolyte / liquid crystal electrolyte is a mixture of a lithium salt with a substance in a flexible crystal phase or a liquid crystal phase that falls between the liquid and the crystal. . Although these electrolytes have been confirmed to have relatively high ionic conductivity, rapid changes in ionic conductivity due to phase transitions due to temperature changes such as melting under high temperature conditions and solidification at low temperatures become a problem.

無機系の電解質としてはセラミックス電解質、ガラス電解質が例示される。   Examples of inorganic electrolytes include ceramic electrolytes and glass electrolytes.

セラミックス電解質は、NASICON型或いはペロブスカイト型セラミックスを利用したイオン伝導体が例示できる。セラミックス電解質は不燃性であるため、従来の固体電解質材料の中では最も安全性に優れる材料の1つである。しかしながら、電極との密着性を向上することが困難であると共に、イオン伝導性がセラミックス電解質を形成するセラミックスの結晶の方位に依存することがある。   Examples of the ceramic electrolyte include an ionic conductor using NASICON type or perovskite type ceramics. Since ceramic electrolytes are nonflammable, they are one of the most safe materials among conventional solid electrolyte materials. However, it is difficult to improve the adhesion with the electrode, and the ionic conductivity may depend on the orientation of the ceramic crystal forming the ceramic electrolyte.

ガラス電解質は、LiSやPなどの非晶質体を用いたイオン伝導体が例示できる。報告されたガラス電解質は高いイオン伝導度を示すと共に、使用可能電位が10V以上と大きい。しかしながら、電極との密着性を向上することが困難であると共に、構成材料として採用されているLiSやPは水に接触すると硫化水素を発生するという問題がある。 Examples of the glass electrolyte include an ionic conductor using an amorphous material such as Li 2 S or P 2 S 5 . The reported glass electrolyte exhibits high ionic conductivity and a usable potential as large as 10 V or more. However, it is difficult to improve the adhesion with the electrode, and Li 2 S and P 2 S 5 employed as a constituent material have a problem of generating hydrogen sulfide when in contact with water.

特開2010−225525号公報JP 2010-225525 A 特開2008−288098号公報JP 2008-288098 A 特開2008−130529号公報JP 2008-130529 A 特開2008−37823号公報JP 2008-37823 A

高いイオン伝導性を示すと共に高い安全性が確保された固体電解質が要望されている。   There is a demand for a solid electrolyte that exhibits high ion conductivity and ensures high safety.

本発明は上記実情に鑑み完成したものであり、従来とは異なる機序によるイオン伝導を発現させることにより、従来の手法では達成できなかった高いイオン伝導性を示すと共に高い安全性が確保された新規な固体電解質を提供する。上記課題を解決する目的で本発明者らは鋭意検討を行った結果、固体電解質として高いイオン伝導性を発現させる為には、小分子を用いることにより、カチオンとアニオンとの相互作用を適度に保ちながらイオン伝導パスを確保する手法が効果的であるとの知見を得、本発明を完成するに至った。この分子性固体イオン伝導体は有機系の電解質材料と無機系の電解質材料との双方の利点を併せ持つものになっている。また、このカチオンとアニオンとの相互作用の大きさは、カチオンならびにアニオンの立体的および/または電子的因子を調整することにより制御が可能であり、その手法としては、窒素、酸素、燐及び硫黄原子の群から選ばれる電子供与性の原子を1〜3個含有する低分子量の電子供与性有機化合物を含有させるか、あるいはアニオンの構造を環状構造にする手法が有効であるとの知見を得、本発明を完成するに至った。
詳細な機構は詳らかではなく、特に限定はされないが、従来の有機系固体電解質では、例えばポリエチレンオキサイド(PEO)を用いたLi電解質の系を例にすると、PEOのマトリックスの中をLiカチオンは4配位等の多座配位を保ちながらイオン伝導するのに対して、本発明の系では、Liカチオンは、アニオンとの相互作用を保ちながら、低分子量の電子供与性有機化合物とは、該化合物が電子供与性の原子を1〜3個しか含有しないために、3座以下の弱い配位相互作用のみでイオン伝導する為に固体結晶中で高いイオン伝導性が発現すると推察される。
The present invention has been completed in view of the above circumstances, and by exhibiting ion conduction by a mechanism different from the conventional one, high ion conductivity that could not be achieved by the conventional method and high safety were ensured. A novel solid electrolyte is provided. In order to solve the above problems, the present inventors have conducted intensive studies. As a result, in order to develop high ionic conductivity as a solid electrolyte, by using a small molecule, the interaction between the cation and the anion is moderately increased. The present inventors have obtained the knowledge that the technique for securing the ion conduction path while maintaining it is effective, and have completed the present invention. This molecular solid ionic conductor has the advantages of both an organic electrolyte material and an inorganic electrolyte material. The magnitude of the interaction between the cation and the anion can be controlled by adjusting the steric and / or electronic factors of the cation and the anion. Acquired knowledge that it is effective to contain a low molecular weight electron donating organic compound containing 1 to 3 electron donating atoms selected from the group of atoms, or to make the anion structure cyclic. The present invention has been completed.
Although the detailed mechanism is not detailed and is not particularly limited, in the case of a conventional organic solid electrolyte, for example, a Li electrolyte system using polyethylene oxide (PEO), the Li cation is 4 in the PEO matrix. While ion conduction is performed while maintaining multidentate coordination such as coordination, in the system of the present invention, Li cations maintain interaction with anions, while low molecular weight electron donating organic compounds Since the compound contains only 1 to 3 electron-donating atoms, it is presumed that high ionic conductivity is manifested in the solid crystal because it conducts ions only with a weak coordination interaction of 3 or less.

即ち、本発明の要旨は以下の通りである。
(a)少なくとも、(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物、または(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオン、のいずれか1種を含有する、イオン伝導性固体電解質。
(b)上記(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物が、アミン、ニトリル、エーテル又はチオエーテル化合物である、(a)に記載のイオン伝導性固体電解質。
(c)窒素、酸素、燐及び硫黄原子の群から選ばれる1〜3個の原子がカチオンと配位することにより単座、二座又は三座の配位性を示す、(a)又は(b)に記載のイオン伝導性固体電解質。
(d)前記(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオンが、窒素、燐及び硫黄原子の群から選ばれる原子を環原子として少なくとも1個含有するアニオンである、(a)に記載のイオン伝導性固体電解質。
(e)上記(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオンが、下記構造式:

Figure 0006150424

で表されるアニオンである、(a)に記載のイオン伝導性固体電解質。
(f)LiBF、LiPF、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(SOF)、Li(SOCF(N(SOCF (ここで、n+m=1である)、LiSCN、
Figure 0006150424

からなる群より選択される1以上のリチウム塩を更に含有する、(a)乃至(e)のいずれか一つに記載のイオン伝導性固体電解質。
(g)リチウムを吸蔵・放出することが可能な負極、及びリチウムを吸蔵・放出することが可能な正極と、(a)乃至(f)のいずれか一つに記載のイオン電解性固体電解質とを備えている、リチウムイオン電池。
(h)NaBF、NaPF、NaCFSO、NaN(SOCF、NaN(SOCFCF、NaN(SOF)、Na(SOCF(N(SOCF (ここで、n+m=1である)、NaSCN、からなる群より選択される1以上のナトリウム塩をさらに含有する、(a)乃至(e)のいずれか一つに記載のイオン伝導性固体電解質。
(i)ナトリウムを吸蔵・放出することが可能な負極、及びナトリウムを吸蔵・放出することが可能な正極と、(a)乃至(e)又は(h)のいずれか一つに記載のイオン電解性固体電解質とを備えている、ナトリウムイオン電池。 That is, the gist of the present invention is as follows.
(A) At least (A) an electron donating organic compound containing 1 to 3 atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms, or (B) selected from the group of nitrogen, phosphorus and sulfur atoms An ion conductive solid electrolyte containing any one of anions having a cyclic structure containing at least one atom.
(B) The electron donating organic compound containing 1 to 3 atoms selected from the group of (A) nitrogen, oxygen, phosphorus and sulfur atoms is an amine, nitrile, ether or thioether compound. The ion-conducting solid electrolyte described.
(C) 1 to 3 atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms are coordinated with a cation to exhibit monodentate, bidentate or tridentate coordination, (a) or (b ) The ion conductive solid electrolyte according to the above.
(D) (B) the anion having a cyclic structure containing at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms is at least 1 with the atom selected from the group of nitrogen, phosphorus and sulfur atoms as a ring atom; The ion-conductive solid electrolyte according to (a), which is an anion containing one ion.
(E) An anion having a cyclic structure containing at least one atom selected from the group of (B) nitrogen, phosphorus and sulfur atoms has the following structural formula:
Figure 0006150424

The ion conductive solid electrolyte according to (a), which is an anion represented by:
(F) LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (SO 2 F) 2 , Li (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), LiSCN,
Figure 0006150424

The ion conductive solid electrolyte according to any one of (a) to (e), further containing one or more lithium salts selected from the group consisting of:
(G) a negative electrode capable of inserting and extracting lithium, a positive electrode capable of inserting and extracting lithium, and the ion-electrolyzed solid electrolyte according to any one of (a) to (f) A lithium ion battery.
(H) NaBF 4 , NaPF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , NaN (SO 2 CF 2 CF 3 ) 2 , NaN (SO 2 F) 2 , Na (SO 3 CF 3 ) n Any one of (a) to (e), further comprising one or more sodium salts selected from the group consisting of (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), NaSCN The ion conductive solid electrolyte according to any one of the above.
(I) a negative electrode capable of inserting and extracting sodium; a positive electrode capable of inserting and extracting sodium; and ion electrolysis according to any one of (a) to (e) or (h) Sodium ion battery comprising a conductive solid electrolyte.

本発明によると、得られたイオン伝導性固体電解質は結晶又はゲル状となっており、電池の電解液に採用した場合に高い安全性が実現できる。また、本発明のイオン伝導性固体電解質は、前述のリチウム等のイオン伝導パスの形成により、室温或いは低温条件下においても高いイオン伝導度が発現される。なお、既報の有機系ポリマー電解質ではイオン伝導の駆動力になるポリマー鎖のセグメント運動が低温条件下では抑制されるため、低温条件下ではその特性が著しく低下することが知られている。   According to the present invention, the obtained ion conductive solid electrolyte is in a crystal or gel form, and high safety can be realized when it is used as an electrolyte for a battery. In addition, the ion conductive solid electrolyte of the present invention exhibits high ion conductivity even at room temperature or low temperature due to the formation of the above-described ion conductive path such as lithium. In addition, it is known that the segmental motion of the polymer chain, which is a driving force for ionic conduction, is suppressed in a previously reported organic polymer electrolyte under low temperature conditions, and thus its characteristics are remarkably deteriorated under low temperature conditions.

更に、本発明のイオン伝導性固体電解質は有機物材料からなるため、固体でありながら柔軟性を有する。そのため、無機系セラミックス電解質に比べて、電池の形状に関して自由度が大きくなり、また電極との密着が取りやすいなど取り扱いに優れるという特徴を持つ。   Furthermore, since the ion conductive solid electrolyte of the present invention is made of an organic material, it is flexible while being solid. Therefore, compared to inorganic ceramic electrolytes, the degree of freedom of the shape of the battery is increased, and it is easy to handle and is excellent in handling.

電解質1及び2のイオン伝導度測定結果を示す。The ion conductivity measurement result of the electrolytes 1 and 2 is shown. 電解質3〜6のイオン伝導度測定結果を示す。The ion conductivity measurement result of electrolytes 3-6 is shown. 電解質7〜10のイオン伝導度測定結果を示す。The ion conductivity measurement result of electrolytes 7-10 is shown. 電解質11のイオン伝導度測定結果を示す。The measurement result of the ionic conductivity of the electrolyte 11 is shown. 電解質14及び19〜21のイオン伝導度測定結果を示す。The ion conductivity measurement result of the electrolytes 14 and 19-21 is shown. 電解質24〜26のイオン伝導度測定結果を示す。The ion conductivity measurement result of electrolytes 24-26 is shown. 電解質27のイオン伝導度測定結果を示す。The measurement result of the ionic conductivity of the electrolyte 27 is shown. 電解質28のイオン伝導度測定結果を示す。The measurement result of the ionic conductivity of the electrolyte 28 is shown. 電解質29及び30のイオン伝導度測定結果を示す。The ion conductivity measurement result of the electrolytes 29 and 30 is shown. 電解質31〜33のイオン伝導度測定結果を示す。The ion conductivity measurement result of electrolyte 31-33 is shown. 電解質34のイオン伝導度測定結果を示す。The measurement result of the ionic conductivity of the electrolyte 34 is shown. 電解質35及び36のイオン伝導度測定結果を示す。The ion conductivity measurement result of the electrolytes 35 and 36 is shown.

<イオン伝導性固体電解質>
本発明のイオン伝導性固体電解質は、カチオンとアニオンとから構成されるイオン性化合物であり、少なくとも、(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物、または(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオン、のいずれか1種を含有する。
<Ion conductive solid electrolyte>
The ion conductive solid electrolyte of the present invention is an ionic compound composed of a cation and an anion and contains at least 1 to 3 atoms selected from the group of (A) nitrogen, oxygen, phosphorus and sulfur atoms. Any one of an electron-donating organic compound or (B) an anion having a cyclic structure containing at least one atom selected from the group consisting of nitrogen, phosphorus and sulfur atoms.

[(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物(以下、単に電子供与性有機化合物と称することがある)]
本発明で用いる電子供与性有機化合物は、窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する化合物の中から選択されるが、これらの原子を複数種含有する化合物も好適に使用される。中でも、窒素、酸素及び硫黄原子の群から選ばれる原子を1〜3個含む化合物が好ましい。本発明で用いる電子供与性有機化合物は、窒素、酸素、燐及び硫黄原子の群から選ばれる1〜3個の原子がカチオンと配位することにより単座、二座又は三座の配位性を示す。
[(A) Electron-donating organic compound containing 1 to 3 atoms selected from the group consisting of nitrogen, oxygen, phosphorus and sulfur atoms (hereinafter sometimes simply referred to as electron-donating organic compound)]
The electron donating organic compound used in the present invention is selected from compounds containing 1 to 3 atoms selected from the group consisting of nitrogen, oxygen, phosphorus and sulfur atoms, and a compound containing a plurality of these atoms. Are also preferably used. Especially, the compound containing 1-3 atoms chosen from the group of nitrogen, oxygen, and a sulfur atom is preferable. The electron donating organic compound used in the present invention has a monodentate, bidentate or tridentate coordination property by coordinating 1 to 3 atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms with a cation. Show.

窒素原子を含有する電子供与性有機化合物としては、アミン、アミド、ニトリル等が挙げられる。アミン、アミドとして、具体的には、

Figure 0006150424

等が挙げられる。これら電子供与性有機化合物は、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有していてもよい。
一方、ニトリルとしては、上記のニトリル含有化合物以外に、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、2−ペンテンニトリル、2−ヘキセンニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、i−プロピルマロノニトリル、t−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル、1,2,3−トリス(2−シアノエトキシ)プロパン、トリス(2−シアノエチル)アミン等が挙げられる。これらニトリルは、フッ素、塩素、臭素等のハロゲン原子を有していてもよい。 Examples of the electron-donating organic compound containing a nitrogen atom include amines, amides, and nitriles. Specifically, as amine and amide,
Figure 0006150424

Etc. These electron donating organic compounds may have a halogen atom such as fluorine, chlorine or bromine, or an electron withdrawing substituent such as nitrile.
On the other hand, as the nitrile, in addition to the above nitrile-containing compounds, acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, acrylonitrile , Methacrylonitrile, crotononitrile, 2-pentenenitrile, 2-hexenenitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, methylmalononitrile , Ethylmalononitrile, i-propylmalononitrile, t-butylmalononitrile, methylsuccinonitrile, 2,2-dimethyl Succinonitrile, 2,3-dimethylsuccinonitrile, trimethylsuccinonitrile, tetramethylsuccinonitrile, 3,3 ′-(ethylenedioxy) dipropionitrile, 3,3 ′-(ethylenedithio) dipropionitrile 1,2,3-tris (2-cyanoethoxy) propane, tris (2-cyanoethyl) amine and the like. These nitriles may have a halogen atom such as fluorine, chlorine or bromine.

酸素原子を含有する電子供与性有機化合物としては、エステル、エーテル、ケトン、アルコール、アルデヒド、カーボネート等が挙げられ、具体的には、

Figure 0006150424

等が挙げられる。これら電子供与性有機化合物は、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有していてもよい。 Examples of the electron-donating organic compound containing an oxygen atom include esters, ethers, ketones, alcohols, aldehydes, carbonates, and the like.
Figure 0006150424

Etc. These electron donating organic compounds may have a halogen atom such as fluorine, chlorine or bromine, or an electron withdrawing substituent such as nitrile.

リン原子を含有する電子供与性有機化合物としては、ホスフィン、ホスフィンオキシド、ホスフィンイミン等が挙げられ、具体的には、

Figure 0006150424

等が挙げられる。これら電子供与性有機化合物は、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有していてもよい。 Examples of the electron-donating organic compound containing a phosphorus atom include phosphine, phosphine oxide, phosphinimine, and the like.
Figure 0006150424

Etc. These electron donating organic compounds may have a halogen atom such as fluorine, chlorine or bromine, or an electron withdrawing substituent such as nitrile.

一方、硫黄原子を含有する電子供与性有機化合物としては、スルフィド、チオエーテル、チオール、チオカーボネート、チオエステル、スルホキシド、スルホン、スルファミド等が挙げられ、具体的には、

Figure 0006150424

等が挙げられる。これら電子供与性有機化合物は、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有していてもよい。 On the other hand, examples of the electron donating organic compound containing a sulfur atom include sulfide, thioether, thiol, thiocarbonate, thioester, sulfoxide, sulfone, sulfamide, and the like.
Figure 0006150424

Etc. These electron donating organic compounds may have a halogen atom such as fluorine, chlorine or bromine, or an electron withdrawing substituent such as nitrile.

これらの電子供与性有機化合物の中では、イオン伝導度が優れる理由から、アミン、ニトリル、エーテル又はチオエーテル化合物が好ましく、その中でも、アミン、エーテル又はチオエーテル化合物がより好ましい場合があるが、特に限定されない。
また、上記の電子供与性有機化合物の中では、窒素、酸素、燐及び硫黄原子の群から選ばれる原子が2個以上含まれ、リチウムイオンやナトリウムイオンにキレーション配位するものが好適に使用される場合があるが、特に限定されない。また、本発明においては、電子供与性有機化合物としては電子供与性の低い化合物が好適に使用される場合があり、その場合、例えば、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有する電子供与性有機化合物が好適に使用される。置換基としてはフッ素原子、塩素原子、ニトリル基が好ましく、フッ素原子、ニトリル基がより好ましく、フッ素原子が更に好ましい。
Among these electron-donating organic compounds, amine, nitrile, ether or thioether compounds are preferable because of their excellent ionic conductivity, and among them, amine, ether or thioether compounds may be more preferable, but are not particularly limited. .
Among the above-mentioned electron-donating organic compounds, those containing two or more atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms and having a chelation coordination with lithium ions or sodium ions are preferably used. There is a case where it is not limited. In the present invention, a compound having a low electron donating property may be preferably used as the electron donating organic compound. In that case, for example, a halogen atom such as fluorine, chlorine or bromine, or an electron such as nitrile is used. An electron donating organic compound having an attractive substituent is preferably used. As the substituent, a fluorine atom, a chlorine atom and a nitrile group are preferable, a fluorine atom and a nitrile group are more preferable, and a fluorine atom is still more preferable.

また、本発明においては、電子供与性有機化合物がキレート環を形成するアルキレン基を含むことが好ましい場合があり、その場合、例えば、キレート環を形成するアルキレン基が分岐アルキレン基であることが好ましい。この手法によりイオン伝導性固体電解質の結晶性を制御して、イオン伝導性を向上させることができる。   In the present invention, the electron-donating organic compound may preferably include an alkylene group that forms a chelate ring. In this case, for example, the alkylene group that forms the chelate ring is preferably a branched alkylene group. . By this method, the crystallinity of the ion conductive solid electrolyte can be controlled to improve the ion conductivity.

[(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオン(以下、単に環状構造を有するアニオンと称することがある)]
本発明で用いる環状構造を有するアニオンは、窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有するアニオンであるが、環状骨格中に窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有することが好ましい。環状構造を有するアニオンは、フッ素、塩素、臭素等のハロゲン原子や、ニトリル等の電子吸引性置換基を有していてもよい。好ましくは、環状構造を有するアニオンは、下記構造式:

Figure 0006150424

で表される環状構造を有するアニオンである。 [(B) An anion having a cyclic structure containing at least one atom selected from the group consisting of nitrogen, phosphorus and sulfur atoms (hereinafter sometimes referred to simply as an anion having a cyclic structure)]
The anion having a cyclic structure used in the present invention is an anion containing at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms, and an atom selected from the group of nitrogen, phosphorus and sulfur atoms in the cyclic skeleton. It is preferable to contain at least one. The anion having a cyclic structure may have a halogen atom such as fluorine, chlorine or bromine, or an electron-withdrawing substituent such as nitrile. Preferably, the anion having a cyclic structure has the following structural formula:
Figure 0006150424

It is an anion which has the cyclic structure represented by these.

[リチウム塩、及びナトリウム塩]
本発明のイオン伝導性固体電解質は、リチウム塩やナトリウム塩を含有する。
[Lithium salt and sodium salt]
The ion conductive solid electrolyte of the present invention contains a lithium salt or a sodium salt.

リチウム塩としては公知のものであれば特に限定しないが、例えば、LiBF、LiPF、LiCFSO(適宜「LiOTf」と称する)、LiN(SOCF(適宜「LiTFSI」と称する)、LiN(SOCFCF、LiN(SOF)、Li(SOCF(N(SOCF (ここで、n+m=1である)、LiSCN、LiNCS、LiN(SOCFCF(下記構造式:

Figure 0006150424

を有する)(適宜「LiCPFSA」と称する)、及びLiN(SOCF(下記構造式:
Figure 0006150424

を有する)
からなる群より選択される1以上のリチウム塩が好ましいリチウム塩として例示できる。
また、リチウム塩として、LiAsF、LiC(SOCF、LiN(SOCF)(SO)、LiSbF、LiClO、LiAlCl、LiN(CN)、LiB(C、LiOCN、LiB(C、Li(B(C)、リチウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、リチウム テトラキス(1−イミダゾリル)ボレートなども例示できる。
これらの中では、LiBF、LiPF、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(SOF)、Li(SOCF(N(SOCF (ここで、n+m=1である)、LiSCN、LiNCS、LiN(SOCFCF、LiN(SOCF2、LiC(SOCF、LiN(SOCF)(SO)、LiB(C、LiOCN、LiB(C、Li(B(C)、リチウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、リチウム テトラキス(1−イミダゾリル)ボレートが好ましく、その中でも、LiCFSO、LiN(SOCF、LiN(SOCFCF、Li(SOCF(N(SOCF (ここで、n+m=1である)、LiSCN、LiNCS、LiN(SOCFCF、LiN(SOCF2、LiC(SOCF、LiN(SOCF)(SO)、LiB(C、LiOCN、LiB(C、Li(B(C)、リチウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、リチウム テトラキス(1−イミダゾリル)ボレートがイオン伝導特性の観点から特に好ましいが限定はされない。
ナトリウム塩の具体例としては、公知のものであれば特に限定しないが、例えば、NaBF、NaPF、NaCFSO(適宜「NaOTf」と称する)、NaN(SOCF(適宜「NaTFSI」と称する)、NaN(SOCFCF、NaN(SOF)、Na(SOCF(N(SOCF (ここで、n+m=1である)、NaSCN、NaNCS、NaN(SOCFCF(適宜「NaCPFSA」と称する)、NaN(SOCFからなる群より選択される1以上のナトリウム塩が好ましいナトリウム塩として例示できる。
また、ナトリウム塩として、NaAsF、NaC(SOCF、NaN(SOCF)(SO)、NaSbF、NaClO、NaAlCl、NaN(CN)、NaB(C、NaOCN、NaB(C、Na(B(C)、ナトリウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、ナトリウム テトラキス(1−イミダゾリル)ボレートなども例示できる。
これらの中では、NaBF、NaPF、NaCFSO、NaN(SOCF、NaN(SOCFCF、NaN(SOF)、Na(SOCF(N(SOCF (ここで、n+m=1である)、NaSCN、NaNCS、NaN(SOCFCF、NaN(SOCF2、NaC(SOCF、NaN(SOCF)(SO)、NaB(C、NaOCN、NaB(C、Na(B(C)、ナトリウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、ナトリウム テトラキス(1−イミダゾリル)ボレートが好ましく、その中でも、NaCFSO、NaN(SOCF、NaN(SOCFCF、Na(SOCF(N(SOCF (ここで、n+m=1である)、NaSCN、NaNCS、NaN(SOCFCF、NaN(SOCF2、NaC(SOCF、NaN(SOCF)(SO)、NaB(C、NaOCN、NaB(C、Na(B(C)、ナトリウム テトラキス[3,5−ビス(トリフルオロメチル)フェニル]ボレート、ナトリウム テトラキス(1−イミダゾリル)ボレートがイオン伝導特性の観点から特に好ましいが限定はされない。 The lithium salt is not particularly limited as long as it is a known one. For example, LiBF 4 , LiPF 6 , LiCF 3 SO 3 (referred to as “LiOTf” as appropriate), LiN (SO 2 CF 3 ) 2 (referred to as “LiTFSI” as appropriate). LiN (SO 2 CF 2 CF 3 ) 2 , LiN (SO 2 F) 2 , Li (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1) ), LiSCN, LiNCS, LiN (SO 2 CF 2 ) 2 CF 2 (the following structural formula:
Figure 0006150424

(Referred to as “LiCPFSA” where appropriate), and LiN (SO 2 CF 2 ) 2 (the following structural formula:
Figure 0006150424

Have)
One or more lithium salts selected from the group consisting of can be exemplified as preferred lithium salts.
Furthermore, as the lithium salt, LiAsF 6, LiC (SO 2 CF 3) 3, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiSbF 6, LiClO 4, LiAlCl 4, LiN (CN) 2, LiB (C 2 O 4 ) 2 , LiOCN, LiB (C 6 H 5 ) 4 , Li (B (C 6 F 5 ) 4 ), lithium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, lithium tetrakis Examples thereof include (1-imidazolyl) borate.
Among these, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (SO 2 F) 2 , Li (SO 3 CF 3 ) N (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), LiSCN, LiNCS, LiN (SO 2 CF 2 ) 2 CF 2 , LiN (SO 2 CF 2 ) 2, LiC ( SO 2 CF 3) 3, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiB (C 2 O 4) 2, LiOCN, LiB (C 6 H 5) 4, Li (B (C 6 F 5) 4), lithium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, lithium tetrakis (1-imidazolyl) borate, more preferably a hydrogen atom, LiCF 3 S 3, LiN (SO 2 CF 3 ) 2, LiN (SO 2 CF 2 CF 3) 2, Li (SO 3 CF 3) n (N (SO 2 CF 3) 2) m ( where is n + m = 1 ), LiSCN, LiNCS, LiN (SO 2 CF 2 ) 2 CF 2 , LiN (SO 2 CF 2 ) 2, LiC (SO 2 CF 3 ) 3 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) LiB (C 2 O 4 ) 2 , LiOCN, LiB (C 6 H 5 ) 4 , Li (B (C 6 F 5 ) 4 ), lithium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, Lithium tetrakis (1-imidazolyl) borate is particularly preferred from the viewpoint of ionic conductivity, but is not limited.
Specific examples of the sodium salt are not particularly limited as long as they are known, but for example, NaBF 4 , NaPF 6 , NaCF 3 SO 3 (referred to as “NaOTf” as appropriate), NaN (SO 2 CF 3 ) 2 (as appropriate) (Referred to as “NaTFSI”), NaN (SO 2 CF 2 CF 3 ) 2 , NaN (SO 2 F) 2 , Na (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), one or more sodium salts selected from the group consisting of NaSCN, NaNCS, NaN (SO 2 CF 2 ) 2 CF 2 (referred to as “NaCPFSA” where appropriate), NaN (SO 2 CF 2 ) 2 It can be illustrated as a preferred sodium salt.
Further, as sodium salts, NaAsF 6 , NaC (SO 2 CF 3 ) 3 , NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), NaSbF 6 , NaClO 4 , NaAlCl 4 , NaN (CN) 2 , NaB (C 2 O 4 ) 2 , NaOCN, NaB (C 6 H 5 ) 4 , Na (B (C 6 F 5 ) 4 ), sodium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, sodium tetrakis Examples thereof include (1-imidazolyl) borate.
Among these, NaBF 4, NaPF 6, NaCF 3 SO 3, NaN (SO 2 CF 3) 2, NaN (SO 2 CF 2 CF 3) 2, NaN (SO 2 F) 2, Na (SO 3 CF 3 ) N (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), NaSCN, NaNCS, NaN (SO 2 CF 2 ) 2 CF 2 , NaN (SO 2 CF 2 ) 2, NaC ( SO 2 CF 3 ) 3 , NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), NaB (C 2 O 4 ) 2 , NaOCN, NaB (C 6 H 5 ) 4 , Na (B (C 6 F) 5 ) 4 ), sodium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate and sodium tetrakis (1-imidazolyl) borate are preferable, and among them, NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , NaN (SO 2 CF 2 CF 3 ) 2 , Na (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1) A), NaSCN, NaNCS, NaN (SO 2 CF 2 ) 2 CF 2 , NaN (SO 2 CF 2 ) 2, NaC (SO 2 CF 3 ) 3 , NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), NaB (C 2 O 4 ) 2 , NaOCN, NaB (C 6 H 5 ) 4 , Na (B (C 6 F 5 ) 4 ), sodium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate Sodium tetrakis (1-imidazolyl) borate is particularly preferred from the viewpoint of ionic conductivity, but is not limited.

(A)電子供与性有機化合物とリチウム塩やナトリウム塩との混合比は特に限定されないが、リチウム塩やナトリウム塩を、(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物のモル量を基準として、その下限は、通常、0.1当量以上、好ましくは0.2当量以上、より好ましくは0.25当量以上、更に好ましくは0.3当量以上、一方、その上限は、通常、1000当量以下、好ましくは100当量以下、より好ましくは10当量以下、更に好ましくは5当量以下、その中でも特に好ましくは2当量以下含むことが望ましい。   (A) The mixing ratio of the electron-donating organic compound and the lithium salt or sodium salt is not particularly limited, but the lithium salt or sodium salt is selected from (A) 1 atom selected from the group of nitrogen, oxygen, phosphorus, and sulfur atoms. The lower limit is usually 0.1 equivalents or more, preferably 0.2 equivalents or more, more preferably 0.25 equivalents or more, more preferably 0, based on the molar amount of ~ 3 electron donating organic compounds. On the other hand, the upper limit is usually 1000 equivalents or less, preferably 100 equivalents or less, more preferably 10 equivalents or less, still more preferably 5 equivalents or less, and particularly preferably 2 equivalents or less.

(B)環状構造を有するアニオンとリチウム塩やナトリウム塩との混合比は特に限定されないが、リチウム塩やナトリウム塩を、(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオンのモル量を基準として、その下限は、通常、0.001当量以上、好ましくは0.01当量以上、より好ましくは0.1当量以上、特に好ましくは0.5当量以上、一方、その上限は、通常、10当量以下、好ましくは5当量以下、より好ましくは1当量以下添加することが望ましい。   (B) The mixing ratio of the anion having a cyclic structure and the lithium salt or sodium salt is not particularly limited, but the lithium salt or sodium salt is selected from (B) at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms. The lower limit is usually 0.001 equivalent or more, preferably 0.01 equivalent or more, more preferably 0.1 equivalent or more, particularly preferably 0.5 equivalent, based on the molar amount of the anion having a cyclic structure to be contained. On the other hand, the upper limit is usually 10 equivalents or less, preferably 5 equivalents or less, more preferably 1 equivalent or less.

リチウム塩やナトリウム塩との混合・分散方法は特に限定されない。例えば、(A)電子供与性有機化合物が液体である場合にはそのままリチウム塩やナトリウム塩を混合したり、(A)電子供与性有機化合物を加熱してリチウム塩やナトリウム塩を混合したり、(A)電子供与性有機化合物及びリチウム塩を分解させずに溶解可能な溶媒に溶解させた状態で混合し、その溶媒を除去する方法がある。
(A)電子供与性有機化合物が固体である場合には、リチウム塩やナトリウム塩と混合した後、ボールミルなどメカノケミカル的に混合する方法などが挙げられる。また、(A)電子供与性有機化合物の合成工程においてリチウム塩やナトリウム塩を共存させる方法も採用しうる。
これらの方法は、(B)環状構造を有するアニオンとリチウム塩やナトリウム塩との混合・分散においても好適に使用される。
The mixing / dispersing method with the lithium salt or sodium salt is not particularly limited. For example, when the (A) electron donating organic compound is liquid, the lithium salt or sodium salt is mixed as it is, or the electron donating organic compound is heated to mix the lithium salt or sodium salt, (A) There is a method in which an electron-donating organic compound and a lithium salt are mixed in a state in which they are dissolved without being decomposed and then the solvent is removed.
(A) When the electron-donating organic compound is a solid, after mixing with a lithium salt or sodium salt, a mechanochemical mixing method such as a ball mill may be used. Moreover, the method of coexisting lithium salt and sodium salt in the synthesis | combining process of (A) electron donating organic compound can also be employ | adopted.
These methods are also preferably used in (B) mixing / dispersing an anion having a cyclic structure and a lithium salt or sodium salt.

ここで、イオン伝導性固体電解質は、(A)電子供与性有機化合物又は(B)環状構造を有するアニオンとリチウム塩やナトリウム塩とを混合させた後に結晶化するものもある。その場合に、結晶化の進行が遅いものもあり、数時間〜数日間の時間を要して結晶化するものもある。その場合にはゲル状態でイオン伝導性固体電解質として用いる部位に配設した後、その部位にて結晶化を進行させることもできる。   Here, some ion conductive solid electrolytes crystallize after mixing (A) an electron-donating organic compound or (B) an anion having a cyclic structure with a lithium salt or sodium salt. In that case, there are those in which the progress of crystallization is slow, and there are those in which crystallization takes several hours to several days. In that case, after disposing in a gel state at a site used as an ion conductive solid electrolyte, crystallization can be advanced at that site.

本発明のイオン伝導性固体電解質は、常温(25℃)で固体であるかゲル状であることが好ましい。特に固体であることが望ましい。   The ion conductive solid electrolyte of the present invention is preferably solid or gelled at normal temperature (25 ° C.). A solid is particularly desirable.

本発明のイオン伝導性固体電解質は、その他の公知の電解質と混合して用いることもできる。例えば他の固体あるいはゲル電解質(有機系の電解質であるゲル電解質、ポリマー電解質、イオンゲル電解質、プラスチッククリスタル(柔軟性結晶)電解質、液晶電解質など;無機系の電解質であるセラミックス電解質、ガラス電解質など)と混合して用いることもできる。また液体状の電解質と共に用いることもできる。   The ion conductive solid electrolyte of the present invention can be used by mixing with other known electrolytes. For example, other solid or gel electrolytes (gel electrolytes that are organic electrolytes, polymer electrolytes, ion gel electrolytes, plastic crystal (flexible crystal) electrolytes, liquid crystal electrolytes, etc .; ceramic electrolytes that are inorganic electrolytes, glass electrolytes, etc.) It can also be used as a mixture. It can also be used with a liquid electrolyte.

<イオン二次電池>
本発明のイオン伝導性固体電解質は、リチウムイオン電池やナトリウムイオン電池等のイオン二次電池の電解質として用いることができる。すなわち、本発明の別の実施態様は、リチウムやナトリウムを吸蔵・放出することが可能な負極、及びリチウムやナトリウムを吸蔵・放出することが可能な正極と、上記に記載のイオン電解性固体電解質とを備えている、リチウムイオン電池やナトリウムイオン電池である。これらのイオン二次電池は正極と負極と電解質と必要に応じて選択されるその他電池部材とを有する。
<Ion secondary battery>
The ion conductive solid electrolyte of the present invention can be used as an electrolyte for an ion secondary battery such as a lithium ion battery or a sodium ion battery. That is, another embodiment of the present invention includes a negative electrode capable of inserting and extracting lithium and sodium, a positive electrode capable of inserting and extracting lithium and sodium, and the ion electrolytic solid electrolyte described above A lithium ion battery or a sodium ion battery. These ion secondary batteries have a positive electrode, a negative electrode, an electrolyte, and other battery members selected as necessary.

以下、イオン二次電池の詳細についてリチウムイオン電池を例にして説明する。
上記のリチウムイオン電池では、コイン型電池、ボタン型電池、円筒型電池、角型電池及びラミ型電池等の公知の電池構造をとることができる。いずれの形状を採る場合であっても、正極および負極を固体状の電解質を介して重畳あるいは捲回等して電極体とし、必要に応じて用いられる正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続した後、電池ケース内に挿設し、これを密閉してリチウムイオン電池を完成することができる。正極及び負極について対向する面の間に電解質を介設するが、その介設方法の一例を挙げると、電解質を何らかの溶媒に溶解させた後に塗布、乾燥することにより電極の表面に電解質の層を形成させる方法がある。正極、負極の双方に電解質からなる層を形成し、貼り合わせることで密着性の高い電解質材料の層が形成できる。また、表面が平らな何らかの部材上にて電解質の溶液を塗布して電解質の層を形成し、その後、電解質の層を剥がして正極及び負極の間に介設することもできる。なお、前述したように、本電解質は調製直後にはゲル状態を経て結晶状態に移行するものもあるため、そのような電解質ではゲル状態で正極及び負極に介設することもできる。
Hereinafter, the details of the ion secondary battery will be described using a lithium ion battery as an example.
In the lithium ion battery, a known battery structure such as a coin-type battery, a button-type battery, a cylindrical battery, a square battery, and a laminated battery can be used. In any case, the positive electrode and the negative electrode are superimposed or wound through a solid electrolyte to form an electrode body, and the positive electrode current collector and the negative electrode current collector used as necessary After connecting between the positive electrode terminal and the negative electrode terminal connected to each other using a current collecting lead or the like, it is inserted into a battery case and sealed to complete a lithium ion battery. An electrolyte is interposed between the opposing surfaces of the positive electrode and the negative electrode. An example of the interposition method is to apply an electrolyte layer on the surface of the electrode by dissolving the electrolyte in some solvent and then drying. There is a method of forming. A layer of an electrolyte material with high adhesion can be formed by forming a layer made of an electrolyte on both the positive electrode and the negative electrode and bonding them together. Alternatively, an electrolyte solution can be applied on a member having a flat surface to form an electrolyte layer, and then the electrolyte layer can be peeled and interposed between the positive electrode and the negative electrode. As described above, since some of the electrolytes transition to a crystalline state through a gel state immediately after preparation, such an electrolyte can be interposed between the positive electrode and the negative electrode in a gel state.

正極は、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成することができる。   For the positive electrode, a conductive material and a binder are mixed with a positive electrode active material capable of inserting and extracting lithium ions, and an appropriate solvent is added as necessary to form a paste-like positive electrode mixture, such as a metal such as aluminum. It can be formed by coating and drying on the surface of the current collector made of foil, and then increasing the active material density by pressing.

正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。   The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.

リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。 V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable as the transition metal of the lithium transition metal composite oxide. Specific examples include lithium-cobalt composite oxides such as LiCoO 2 , LiMnO 2 , LiMn. Examples thereof include lithium / manganese composite oxides such as 2 O 4 and Li 2 MnO 4 , lithium / nickel composite oxides such as LiNiO 2 , and the like. Further, some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. Specific examples include lithium / cobalt / nickel composite oxides, lithium / cobalt / manganese composite oxides, lithium / nickel / manganese composite oxides, lithium / nickel / Cobalt / manganese composite oxides are listed.

置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Co0.45Mn0.1、Li1+aMn1.8Al0.2、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属)等が挙げられる(a=0<a≦3.0)。 Specific examples of the substituted ones include, for example, Li 1 + a Ni 0.5 Mn 0.5 O 2 , Li 1 + a Ni 0.8 Co 0.2 O 2 , Li 1 + a Ni 0.85 Co 0.10 Al 0. 05 O 2 , Li 1 + a Ni 0.33 Co 0.33 Mn 0.33 O 2 , Li 1 + a Ni 0.45 Co 0.45 Mn 0.1 O 2 , Li 1 + a Mn 1.8 Al 0.2 O 4 , Li 1 + a Mn 1.5 Ni 0.5 O 4 , xLi 2 MnO 3. (1-x) Li 1 + a MO 2 (M = transition metal) and the like (a = 0 <a ≦ 3.0).

リチウム含有遷移金属リン酸化合物は、LixMPO(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V、Ti、Cr、Mg、Zn、Ca、Cd、Sr、Ba、Co、Ni、Fe、MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co、Ni、Fe、Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい。例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。これらの中でも、特にLiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物や、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。 The lithium-containing transition metal phosphate compound is LixMPO 4 (M = a kind of element selected from the group consisting of Group 4 to Group 11 transition metals in the periodic table, x is 0 <x <1.2). The transition metal (M) is at least one selected from the group consisting of V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni, Fe, Mn, and Cu. It is preferable that it is at least one element selected from the group consisting of Co, Ni, Fe, and Mn. For example, LiFePO 4, Li 3 Fe 2 (PO 4) 3, LiFeP 2 O 7 , etc. of phosphorus Santetsurui, cobalt phosphate such as LiCoPO 4, manganese phosphate such as LiMnPO 4, phosphoric acids such as LiNiPO 4 Nickel, a part of transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Examples include those substituted with other metals such as Nb and Si. Among these, lithium-manganese complex oxides such as LiMnO 2 , LiMn 2 O 4 and Li 2 MnO 4 , and iron phosphates such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 and LiFeP 2 O 7 However, it is preferably used because metal elution is not likely to occur at high temperature and in a charged state and is inexpensive.

上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。   The said positive electrode active material may be used independently and may use 2 or more types together.

導電材は、正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種または2種以上を混合したものを用いることができる。
結着剤は、活物質粒子および導電材粒子を繋ぎ止める役割を果たすものであれば特に限定されないが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオンのイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
これら活物質、導電材、結着剤を分散させる溶剤としては、特に制限はされず、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
The conductive material is for ensuring the electrical conductivity of the positive electrode, and a mixture of one or two or more carbon material powders such as carbon black, acetylene black, and graphite can be used.
The binder is not particularly limited as long as it plays a role of securing the active material particles and the conductive material particles. Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, and cellulose. Resin polymers such as nitrocellulose; rubbery polymers such as SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene-butadiene- Styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof Thermoplastic elastomeric polymers such as: Syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymers, propylene / α-olefin copolymers, etc .; polyvinylidene fluoride Fluorine polymers such as (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer; polymer compositions having alkali metal ion ionic conductivity, and the like. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
The solvent for dispersing the active material, the conductive material, and the binder is not particularly limited, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.

負極については、負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。その中でも特に炭素材料を用いることが好ましい。比表面積が比較的大きくでき、リチウムの吸蔵、放出速度が速いため大電流での充放電特性、出力・回生密度に対して良好となる。特に、出力・回生密度のバランスを考慮すると、充放電に伴い電圧変化の比較的大きい炭素材料を使用することが好ましい。中でも結晶性の高い天然黒鉛や人造黒鉛などからなるものを用いることが好ましい。このような結晶性の高い炭素材を用いることにより、負極のリチウムイオンの受渡し効率を向上させることができる。   Regarding the negative electrode, the negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily. Among these, it is particularly preferable to use a carbon material. Since the specific surface area can be made relatively large and the lithium occlusion and release speed is fast, the charge / discharge characteristics at a large current and the output / regeneration density are good. In particular, considering the balance between output and regenerative density, it is preferable to use a carbon material having a relatively large voltage change with charge / discharge. Among them, it is preferable to use those made of natural graphite or artificial graphite having high crystallinity. By using such a highly crystalline carbon material, the lithium ion delivery efficiency of the negative electrode can be improved.

このように負極活物質として炭素材料を用いた場合には、これに必要に応じて正極で説明したような導電材および結着材を混合して得られた負極合材が集電体に塗布されてなるものを用いることが好ましい。   Thus, when a carbon material is used as the negative electrode active material, a negative electrode mixture obtained by mixing a conductive material and a binder as described for the positive electrode is applied to the current collector as necessary. It is preferable to use what is formed.

必要に応じてセパレータを採用することができる。セパレータは、正極および負極を電気的に絶縁し、且つ電解質を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。なおセパレータは、正極と負極との絶縁を担保するため、正極および負極よりも更に大きいものとするのが好ましい。   A separator can be employed as necessary. The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolyte. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used. The separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.

ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。   The case is not particularly limited and can be made of a known material and form.

ガスケットは、ケースと正負の両端子部の間の電気的な絶縁と、ケース内の密閉性とを担保するものである。たとえば、電解液にたいして、化学的、電気的に安定であるポリプロピレンのような高分子等から構成できる。   The gasket secures electrical insulation between the case and both the positive and negative terminal portions and airtightness in the case. For example, it can be composed of a polymer such as polypropylene that is chemically and electrically stable to the electrolyte.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1、2)
[電解質の調製]
電解質1:1,2−ジメトキシベンゼン
窒素置換したシュレンク反応管にLiN(SOCF (以下、LiTFSIと表記する。)(1.02g,3.54mmol)を量り取り、1,2−ジメトキシベンゼン(0.977g,7.07mmol)を加え、室温で30分間攪拌した。これをオーブンで100℃に加熱し融解させた後、室温下で静置することによりLi{N(SOCF}{C(OCHを無色透明の結晶性固体として得た。
(Examples 1 and 2)
[Preparation of electrolyte]
Electrolyte 1: 1,2-dimethoxybenzene LiN (SO 2 CF 3 ) 2 (hereinafter referred to as LiTFSI) (1.02 g, 3.54 mmol) was weighed into a Schlenk reaction tube substituted with nitrogen, and 1,2- Dimethoxybenzene (0.977 g, 7.07 mmol) was added and stirred at room temperature for 30 minutes. This was heated to 100 ° C. in an oven and melted, and then allowed to stand at room temperature, whereby Li {N (SO 2 CF 3 ) 2 } {C 6 H 4 (OCH 3 ) 2 } 2 was obtained as colorless and transparent crystals. Obtained as a crystalline solid.

電解質2:1,2−ジフルオロ−4,5−ジメトキシベンゼン
窒素置換したシュレンク反応管にLiTFSI(0.299g,1.05mmol)を量りとり、1,2−ジフルオロ−4,5−ジメトキシベンゼン(0.365g,2.10mmol)を加えた。これを120℃の乾燥器で加熱し、透明な粘性溶液を得た。これを室温で静置することで、Li{N(SOCF}{C(OCHの結晶を得た。
Electrolyte 2: 1,2-difluoro-4,5-dimethoxybenzene LiTFSI (0.299 g, 1.05 mmol) was weighed into a nitrogen-substituted Schlenk reaction tube and 1,2-difluoro-4,5-dimethoxybenzene (0 365 g, 2.10 mmol) was added. This was heated with a 120 ° C. dryer to obtain a clear viscous solution. By allowing this to stand at room temperature, a crystal of Li {N (SO 2 CF 3 ) 2 } {C 6 H 2 F 2 (OCH 3 ) 2 } 2 was obtained.

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図1に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例3〜6)
[電解質の調製]
電解質3:(HC)NCHCHN(CH
既報の手法に従い、窒素置換したシュレンク反応管にLiTFSI(1.85g,6.44mmol)をとり、脱水トルエン5mlを加え、N,N,N’,N’−テトラメチルエチレンジアミン(0.96ml,6.44mmol)を添加し80℃に加熱し溶解させた。溶液を室温で一晩静置し結晶を析出させた後、溶媒をデカンテーションにより取り除いた。得られた無色透明の結晶をヘキサンで3回洗浄し、減圧下で一晩乾燥させることにより、目的とする生成物(2.50g,96%)を得た。
(Examples 3 to 6)
[Preparation of electrolyte]
Electrolyte 3: (H 3 C) 2 NCH 2 CH 2 N (CH 3 ) 2
In accordance with a previously reported method, LiTFSI (1.85 g, 6.44 mmol) was taken into a Schlenk reaction tube purged with nitrogen, 5 ml of dehydrated toluene was added, and N, N, N ′, N′-tetramethylethylenediamine (0.96 ml, 6 .44 mmol) was added and heated to 80 ° C. to dissolve. The solution was allowed to stand at room temperature overnight to precipitate crystals, and then the solvent was removed by decantation. The resulting colorless and transparent crystals were washed with hexane three times and dried overnight under reduced pressure to obtain the desired product (2.50 g, 96%).

電解質4:(HC)N(CHNCH(CHN(CH
既報の手法に従い、窒素置換したシュレンク反応管にLiTFSI(1.5712g,5.473mmol)をとり、脱水トルエン5mlを加え、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン(1.14ml,5.473mmol)を添加し、80℃に加熱し溶解させた。溶液を室温で一晩静置し結晶を析出させた後、溶媒をデカンテーションにより取り除いた。得られた無色透明の結晶をヘキサンで3回洗浄し、減圧下で一晩乾燥させることにより、目的とする生成物(2.197g,87%)を得た。
Electrolyte 4: (H 3 C) 2 N (CH 2 ) 2 NCH 3 (CH 2 ) 2 N (CH 3 ) 2
According to a previously reported method, LiTFSI (1.5712 g, 5.473 mmol) was taken into a Schlenk reaction tube purged with nitrogen, 5 ml of dehydrated toluene was added, and N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine (1. 14 ml, 5.473 mmol) was added and heated to 80 ° C. to dissolve. The solution was allowed to stand at room temperature overnight to precipitate crystals, and then the solvent was removed by decantation. The resulting colorless and transparent crystals were washed with hexane three times and dried overnight under reduced pressure to obtain the desired product (2.197 g, 87%).

電解質5:(HC)NCH(CH)CHN(CH
窒素置換したシュレンク反応管にLiTFSI(0.938g,3.27mmol)とり、脱水トルエン3mlを加えた後、N,N,N’,N’−テトラメチル−1,2−ジアミノプロパン(0.532ml)を添加し80℃に加熱し溶解させた。溶液を室温で一晩静置し、結晶を析出させた後、溶媒をデカンテーションにより取り除いた。得られた無色透明の結晶をヘキサンで3回洗浄し、減圧下で一晩乾燥させることにより、目的とする生成物(1.153g,78.1%)を得た。
Electrolyte 5: (H 3 C) 2 NCH (CH 3 ) CH 2 N (CH 3 ) 2
LiTFSI (0.938 g, 3.27 mmol) was taken into a Schlenk reaction tube purged with nitrogen, 3 ml of dehydrated toluene was added, and then N, N, N ′, N′-tetramethyl-1,2-diaminopropane (0.532 ml) was added. ) Was added and heated to 80 ° C. to dissolve. The solution was allowed to stand at room temperature overnight to precipitate crystals, and then the solvent was removed by decantation. The resulting colorless and transparent crystals were washed with hexane three times and dried under reduced pressure overnight to obtain the desired product (1.153 g, 78.1%).

電解質6:(HC)N(CHN(CH
窒素置換したシュレンク反応管にLiTFSI(1.5019g,5.232mmol)をとり、脱水トルエン8mlを加え、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン(0.532mL,3.308mmol)を添加し80℃に加熱することにより溶解させた。溶液を室温で一晩静置させ結晶を析出させた後、溶媒をデカンテーションにより取り除いた。ヘキサンで3回洗浄を行った後、減圧下で一晩乾燥させることにより、目的とする生成物(1.815g,83%)を得た。
Electrolyte 6: (H 3 C) 2 N (CH 2 ) 3 N (CH 3 ) 2
LiTFSI (1.5019 g, 5.232 mmol) is added to a nitrogen-substituted Schlenk reaction tube, 8 ml of dehydrated toluene is added, and N, N, N ′, N′-tetramethyl-1,3-diaminopropane (0.532 mL, 3.308 mmol) was added and dissolved by heating to 80 ° C. The solution was allowed to stand overnight at room temperature to precipitate crystals, and then the solvent was removed by decantation. After washing with hexane three times, the product was dried overnight under reduced pressure to obtain the desired product (1.815 g, 83%).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図2に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例7〜11)
[電解質の調製]
電解質7〜11:トリチアン
アルゴン雰囲気のグローブボックス内でジルコニア製ボールミル容器に所望の量の1,3,5−トリチアン、LiTFSI、アセトニトリル、ジルコニア製ボールの順に入れ密封した。容器の回転速度は毎分700回転で、5分間作動、5分間停止の操作を5回行い、試料を合成した。混合比で試薬を混合した。トリチアンとLiTFSIの比は2:1(電解質7)、1:1(電解質8)、1:2(電解質9)、1:3(電解質10)を検討した。アセトニトリルはLiTFSIと等モル量加えた。試料は、ボールミル処理後に減圧下、室温で二晩乾燥させた。トリチアンに二倍モル量のLiBETI(LiN(SOCFCFを作用させた試料も同様の手法により得た(電解質11)。
(Examples 7 to 11)
[Preparation of electrolyte]
Electrolytes 7 to 11: Trithian In a glove box under an argon atmosphere, a desired amount of 1,3,5-trithiane, LiTFSI, acetonitrile, and zirconia balls were placed in order in a zirconia ball mill container and sealed. The rotation speed of the container was 700 revolutions per minute, and the operation was performed for 5 minutes and stopped for 5 minutes, and the sample was synthesized. Reagents were mixed at a mixing ratio. The ratio of Trithian and LiTFSI was 2: 1 (electrolyte 7), 1: 1 (electrolyte 8), 1: 2 (electrolyte 9), and 1: 3 (electrolyte 10). Acetonitrile was added in an equimolar amount with LiTFSI. The sample was dried overnight at room temperature under reduced pressure after ball milling. A sample in which a double molar amount of LiBETI (LiN (SO 2 CF 2 CF 3 ) 2 was allowed to act on trithiane was also obtained in the same manner (electrolyte 11).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図3及び図4に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIGS.

(実施例12〜23)
[電解質の調製]
電解質12:[N(CH][N(SOCFCF](N1111CPFSI)
テトラメチルアンモニウムブロミド(0.491g,3.19mmol)を2mlのイオン交換水に溶解させ、そこに、6mlのイオン交換水に溶解させたLiCPFSI(Li[N(SOCFCF])(0.951g,3.18mmol)を滴下した。混合した溶液を3時間室温で撹拌した後、メンブレンフィルター(0.45μm)を用いてろ過を行い、フィルター上に残った固体をシュレンク管に集め、真空中約100℃で48時間乾燥させ、試料を合成した(収率:72%)。
N1111CPFSI: 1H NMR(400 MHz, rt, DMSO-d6): 3.08 (s, 12H, N(CH3)4).13C NMR (68 MHz, rt, DMSO-d6): 54.5 (t, JCN = 3.9 Hz, N(CH3)4), 109.3 (tt, 1JCF=272.9 Hz, 2JCF = 25.4 Hz, -CF2-CF2-CF2-), 112.4 (tt, 1JCF=296.6 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F NMR (376 MHz, rt, DMSO-d6): -120.4 (br), -105.4 (br). Anal. Calcd for C7H12F6N2O4S2: C, 22.95; H, 3.30; N,7.65. Found: C, 23.12; H, 3.20; N, 7.46.
(Examples 12 to 23)
[Preparation of electrolyte]
Electrolyte 12: [N (CH 3 ) 4 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1111 CPFSI)
Tetramethylammonium bromide (0.491 g, 3.19 mmol) was dissolved in 2 ml of ion exchange water, and then LiCPFSI (Li [N (SO 2 CF 2 ) 2 CF 2 ] dissolved in 6 ml of ion exchange water. ) (0.951 g, 3.18 mmol) was added dropwise. The mixed solution is stirred for 3 hours at room temperature, and then filtered using a membrane filter (0.45 μm). The solid remaining on the filter is collected in a Schlenk tube and dried in a vacuum at about 100 ° C. for 48 hours. Was synthesized (yield: 72%).
N 1111 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 3.08 (s, 12H, N (CH 3 ) 4 ). 13 C NMR (68 MHz, rt, DMSO-d 6 ): 54.5 ( t, J CN = 3.9 Hz, N (CH 3 ) 4 ), 109.3 (tt, 1 J CF = 272.9 Hz, 2 J CF = 25.4 Hz, -CF 2 -CF 2 -CF 2- ), 112.4 (tt, 1 J CF = 296.6 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ). 19 F NMR (376 MHz, rt, DMSO-d 6 ): -120.4 (br), -105.4 ( br). Anal. Calcd for C 7 H 12 F 6 N 2 O 4 S 2 : C, 22.95; H, 3.30; N, 7.65. Found: C, 23.12; H, 3.20; N, 7.46.

電解質13:[N(CH(CHCH)][N(SOCFCF](N1112CPFSI)
エチルトリメチルアンモニウムヨージドを原料として用いた以外は、電解質12と同様の手順で合成を行った(収率:72%)。
N1112CPFSI: 1H NMR (400 MHz, r.t., DMSO-d6): 1.23 (t, 3H, JHH= 7.3 Hz, N(CH3)3(CH2CH3)), 3.00 (s, 9H, N(CH3)3(CH2CH3)), 3.31 (q, 2H, JHH = 7.3 Hz, N(CH3)3(CH2CH3)). 13C NMR (67.8 MHz, rt, DMSO-d6): 7.9 (s, N(CH3)3(CH2CH3)), 51.7 (t, JCN = 4.2 Hz, N(CH3)3(CH2CH3)), 61.0 (t, JCN = 2.8 Hz, N(CH3)3(CH2CH3)), 109.4 (tt, 1JCF =272.9 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-), 112.5 (tt, 1JCF=297.7 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F NMR (376 MHz, rt, DMSO-d6): -120.4 (br), -105.4 (br). Anal. Calcd for C8H14F6N2O4S2: C, 25.26; H, 3.71; N,7.37. Found: C, 25.27; H, 3.87; N, 7.56.
Electrolyte 13: [N (CH 3 ) 3 (CH 2 CH 3 )] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1112 CPFSI)
The synthesis was performed in the same procedure as the electrolyte 12 except that ethyltrimethylammonium iodide was used as a raw material (yield: 72%).
N 1112 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 1.23 (t, 3H, J HH = 7.3 Hz, N (CH 3 ) 3 (CH 2 CH 3 )), 3.00 (s, 9H , N (CH 3 ) 3 (CH 2 CH 3 )), 3.31 (q, 2H, J HH = 7.3 Hz, N (CH 3 ) 3 (CH 2 CH 3 )). 13 C NMR (67.8 MHz, rt, DMSO-d 6 ): 7.9 (s, N (CH 3 ) 3 (CH 2 CH 3 )), 51.7 (t, J CN = 4.2 Hz, N (CH 3 ) 3 (CH 2 CH 3 )), 61.0 ( t, J CN = 2.8 Hz, N (CH 3 ) 3 (CH 2 CH 3 )), 109.4 (tt, 1 J CF = 272.9 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ), 112.5 (tt, 1 J CF = 297.7 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ). 19 F NMR (376 MHz, rt, DMSO-d 6 ): -120.4 ( br), -105.4 (br). Anal. Calcd for C 8 H 14 F 6 N 2 O 4 S 2 : C, 25.26; H, 3.71; N, 7.37. Found: C, 25.27; H, 3.87; N, 7.56.

電解質14:[N(CH)(CHCH][N(SOCFCF](N1222CPFSI)
トリエチルメチルアンモニウムクロリドを原料として用いた以外は、電解質12と同様の手順で合成を行った(収率:79%)。
N1222CPFSI:1H NMR (400 MHz, rt, DMSO-d6): 1.19 (t, 9H, JHH = 7.3 Hz, N(CH3)(CH2CH3)3), 2.86 (s, 3H, N(CH3)(CH2CH3)3), 3.24 (q, 6H, JHH =7.3 Hz, N(CH3)(CH2CH3)3).13C NMR(67.8 MHz, rt, DMSO-d6): 7.2 (s, N(CH3)(CH2CH3)3), 45.9 (t, JCN = 4.2 Hz, N(CH3)(CH2CH3)3), 55.1 (t, JCN = 2.8 Hz, N(CH3)(CH2CH3)3), 109.5 (tt, 1JCF =272.7 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-), 112.5 (tt, 1JCF=298.0 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-) 19F NMR (376 MHz, rt, DMSO-d6): -120.4 (br), -105.4 (br). Anal. Calcd for C10H18F6N2O4S2: C,29.41 ; H, 4.44; N,6.86. Found: C, 29.40; H, 4.36; N, 6.74.
Electrolyte 14: [N (CH 3 ) (CH 2 CH 3 ) 3 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1222 CPFSI)
The synthesis was performed in the same procedure as the electrolyte 12 except that triethylmethylammonium chloride was used as a raw material (yield: 79%).
N 1222 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 1.19 (t, 9H, J HH = 7.3 Hz, N (CH 3 ) (CH 2 CH 3 ) 3 ), 2.86 (s, 3H , N (CH 3) (CH 2 CH 3) 3), 3.24 (q, 6H, J HH = 7.3 Hz, N (CH 3) (CH 2 CH 3) 3). 13 C NMR (67.8 MHz, rt, DMSO-d 6 ): 7.2 (s, N (CH 3 ) (CH 2 CH 3 ) 3 ), 45.9 (t, J CN = 4.2 Hz, N (CH 3 ) (CH 2 CH 3 ) 3 ), 55.1 ( t, J CN = 2.8 Hz, N (CH 3 ) (CH 2 CH 3 ) 3 ), 109.5 (tt, 1 J CF = 272.7 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ), 112.5 (tt, 1 J CF = 298.0 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ) 19 F NMR (376 MHz, rt, DMSO-d 6 ): -120.4 (br ), -105.4 (br). Anal. Calcd for C 10 H 18 F 6 N 2 O 4 S 2 : C, 29.41; H, 4.44; N, 6.86. Found: C, 29.40; H, 4.36; N, 6.74 .

電解質15:[N(CHCH][N(SOCFCF](N2222CPFSI)
テトラエチルアンモニウムブロミドを原料として用いた以外は電解質12と同様の手順で合成を行った(quant.)。
N2222TFSI: 1H NMR (400 MHz, rt, DMSO-d6): 1.17 (t, 12H, JHH= 6.8 Hz, N(CH2CH3)4), 3.21 (q, 8H, JHH= 6.8 Hz, N(CH2CH3)4). 13C NMR (68 MHz, rt, DMSO-d6): 6.9 (s, N(CH2CH3)4), 51.5 (t, JCN = 3.1 Hz, N(CH2CH3)4), 109.3 (tt, 1JCF =272.9 Hz, 2JCF = 25.4 Hz, -CF2-CF2-CF2-), 112.4 (tt, 1JCF=296.6 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F NMR (376MHz, rt, DMSO-d6): -120.4 (br), -105.5 (br). Anal. Calcd for C11H20F6N2O4S2: C, 31.28; H, 4.77; N,6.63. Found: C, 31.30; H, 4.74; N, 6.70.
Electrolyte 15: [N (CH 2 CH 3 ) 4 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 2222 CPFSI)
The synthesis was performed in the same procedure as the electrolyte 12 except that tetraethylammonium bromide was used as a raw material (quant.).
N 2222 TFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 1.17 (t, 12H, J HH = 6.8 Hz, N (CH 2 CH 3 ) 4 ), 3.21 (q, 8H, J HH = . 6.8 Hz, N (CH 2 CH 3) 4) 13 C NMR (68 MHz, rt, DMSO-d 6): 6.9 (s, N (CH 2 CH 3) 4), 51.5 (t, J CN = 3.1 Hz, N (CH 2 CH 3 ) 4 ), 109.3 (tt, 1 J CF = 272.9 Hz, 2 J CF = 25.4 Hz, -CF 2 -CF 2 -CF 2- ), 112.4 (tt, 1 J CF = 296.6 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ). 19 F NMR (376MHz, rt, DMSO-d 6 ): -120.4 (br), -105.5 (br). Anal. Calcd for C 11 H 20 F 6 N 2 O 4 S 2 : C, 31.28; H, 4.77; N, 6.63. Found: C, 31.30; H, 4.74; N, 6.70.

電解質16:[N(CH(CHCH][N(SOCFCF](N1122CPFSI)
4.7mlのアセトニトリル中でN,N−ジエチルメチルアミン(1.59ml,13.4mol)とヨードメタン(1.0ml,16.1mmol)を混合し、室温で24時間撹拌した。その後、溶媒を減圧留去し、生成物をヘキサン(5ml×6)で洗浄し、真空中約100℃で48時間乾燥させ、N−メチル−N,N−ジメチルエチルアンモニウムヨージド(N1122I)を合成した(白色固体、収率:62%)。合成したN−エチル−N,N−ジメチルエチルアンモニウムヨージド(0.8614g,3.76mmol)を2mlのイオン交換水に溶解させ、そこに、3mlのイオン交換水に溶解させたLiCPFSI(1.1264g,3.76mmol)を滴下した。混合した溶液を氷浴中で30分冷却した後、析出した固体をメンブレンフィルター(0.45μm)でろ過を行って集めた。フィルター上に残った固体をイオン交換水で洗浄(10ml×6)した後、シュレンク管に移し、真空中約100℃で48時間乾燥させ、試料を合成した(白色固体、収率:65%)。
N1122CPFSI: 1H NMR (400 MHz, r.t., DMSO-d6): 1.22 (t, 6H, JHH= 6.8 Hz), 2.94 (s, 6H), 3.29 (q, 4H, JHH = 6.8 Hz). 13C NMR(67.8 MHz, r.t., DMSO-d6): 7.6(s, CH3-CH2-N), 48.9(t, JCN = 4.2 Hz, CH3-N ), 58.0(t, JCN = 3.1 Hz, CH3-CH2-N), 109.4 (tt, 1JCF=272.9 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-), 112.5 (tt, 1JCF =297.7 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F(376 MHz, r.t., DMSO-d6): -120.5 (br), -105.5 (br).Anal. Calcd for C9H16F6N2O4S2: C,27.41; H, 4.09; N,7.10. Found: C, 27.34; H, 4.02; N, 7.16.
Electrolyte 16: [N (CH 3 ) 2 (CH 2 CH 3 ) 2 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1122 CPFSI)
N, N-diethylmethylamine (1.59 ml, 13.4 mol) and iodomethane (1.0 ml, 16.1 mmol) were mixed in 4.7 ml of acetonitrile and stirred at room temperature for 24 hours. Thereafter, the solvent was distilled off under reduced pressure, the product was washed with hexane (5 ml × 6), dried in vacuo at about 100 ° C. for 48 hours, and N-methyl-N, N-dimethylethylammonium iodide (N 1122 I ) Was synthesized (white solid, yield: 62%). The synthesized N-ethyl-N, N-dimethylethylammonium iodide (0.8614 g, 3.76 mmol) was dissolved in 2 ml of ion-exchanged water, and LiCPFSI (1. 1264 g, 3.76 mmol) was added dropwise. The mixed solution was cooled in an ice bath for 30 minutes, and the precipitated solid was collected by filtration through a membrane filter (0.45 μm). The solid remaining on the filter was washed with ion-exchanged water (10 ml × 6), then transferred to a Schlenk tube and dried in vacuum at about 100 ° C. for 48 hours to synthesize a sample (white solid, yield: 65%). .
N 1122 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 1.22 (t, 6H, J HH = 6.8 Hz), 2.94 (s, 6H), 3.29 (q, 4H, J HH = 6.8 Hz 13 C NMR (67.8 MHz, rt, DMSO-d 6 ): 7.6 (s, CH 3 -CH 2 -N), 48.9 (t, J CN = 4.2 Hz, CH 3 -N), 58.0 (t, J CN = 3.1 Hz, CH 3 -CH 2 -N), 109.4 (tt, 1 J CF = 272.9 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ), 112.5 (tt, 1 J CF = 297.7 Hz, 2 J CF = 25.1 Hz, -CF2-CF2-CF2-). 19 F (376 MHz, rt, DMSO-d 6 ): -120.5 (br), -105.5 (br) .Anal. Calcd for C 9 H 16 F 6 N 2 O 4 S 2 : C, 27.41; H, 4.09; N, 7.10. Found: C, 27.34; H, 4.02; N, 7.16.

電解質17:[N(CH(CHCHCHCH)][N(SOCFCF](P11CPSFI)
5mlのアセトニトリル中で1−メチルピロリジニウム(1.91ml,18mmol)とヨードメタン(1.34ml,22mmol)を混合し、室温で24時間撹拌した。その後、溶媒を減圧留去し、生成物をヘキサン(10ml×4)で洗浄し、真空中約100℃で48時間乾燥させ、N,N−ジメチルピロリジニウムヨージドを合成した(収率:89%)。合成したN,N−ジメチルピロリジニウムヨージドを原料として用いた以外は電解質12と同様の手順で合成を行った(収率:65%)。
P11CPFSI:1H NMR (400 MHz, rt, DMSO-d6): 2.10 (m, 4H, N(-CH2CH2CH2CH2-)(CH3)2), 3.08 (s, 6H, N(-CH2CH2CH2CH2-)(CH3)2), 3.44 (m, 4H, N(-CH2CH2CH2CH2-)(CH3)2). 13C NMR (68 MHz, r.t., DMSO-d6): 21.4 (s, N(-CH2CH2CH2CH2-)(CH3)2), 51.1 (t, JCN = 3.9 Hz, N(-CH2CH2CH2CH2-)(CH3)2), 64.9 (t, JCN = 3.1 Hz, N(-CH2CH2CH2CH2-)(CH3)2), 109.3 (tt, 1JCF =272.6 Hz, 2JCF = 25.7 Hz, -CF2-CF2-CF2-), 112.5 (tt, 1JCF=298.0 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F NMR (376MHz, rt, DMSO-d6): -120.4 (br), -105.3 (br). Anal. Calcd for C9H14F6N2O4S2: C, 27.55; H, 3.60; N,7.14. Found: C, 27.56; H, 3.46; N, 7.11.
Electrolyte 17: [N (CH 3 ) 2 (CH 2 CH 2 CH 2 CH 2 )] [N (SO 2 CF 2 ) 2 CF 2 ] (P 11 CPSFI)
1-methylpyrrolidinium (1.91 ml, 18 mmol) and iodomethane (1.34 ml, 22 mmol) were mixed in 5 ml of acetonitrile and stirred at room temperature for 24 hours. Thereafter, the solvent was distilled off under reduced pressure, and the product was washed with hexane (10 ml × 4) and dried in vacuum at about 100 ° C. for 48 hours to synthesize N, N-dimethylpyrrolidinium iodide (yield: 89%). The synthesis was performed in the same procedure as the electrolyte 12 except that the synthesized N, N-dimethylpyrrolidinium iodide was used as a raw material (yield: 65%).
P 11 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 2.10 (m, 4H, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 3 ) 2 ), 3.08 (s, 6H , N (-CH 2 CH 2 CH 2 CH 2 -) (CH 3) 2), 3.44 (m, 4H, N (-CH 2 CH 2 CH 2 CH 2 -). (CH 3) 2) 13 C NMR (68 MHz, rt, DMSO-d 6 ): 21.4 (s, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 3 ) 2 ), 51.1 (t, J CN = 3.9 Hz, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 3 ) 2 ), 64.9 (t, J CN = 3.1 Hz, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 3 ) 2 ), 109.3 (tt, 1 J CF = 272.6 Hz, 2 J CF = 25.7 Hz, -CF 2 -CF 2 -CF 2- ), 112.5 (tt, 1 J CF = 298.0 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ). 19 F NMR (376MHz, rt, DMSO-d 6 ): -120.4 (br), -105.3 (br). Anal. Calcd for C 9 H 14 F 6 N 2 O 4 S 2 : C , 27.55; H, 3.60; N, 7.14. Found: C, 27.56; H, 3.46; N, 7.11.

電解質18:[N(CH)(CHCH)(CHCHCHCH)][N(SOCFCF](P12CPFSI)
ヨードエタンを原料として用い、N,N−ジメチルピロリジニウムヨージドと同じ手順でN−エチル−N−メチルピロリジニウムヨージドを合成した。以下、合成したN−エチル−N−メチルピロリジニウムヨージドを原料として用いた以外は電解質12と同様の手順で合成を行った(収率:72%)。
P12CPFSI:1H NMR(400 MHz, rt, DMSO-d6): 1.24-1.27 (m, 3H, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 2.05 (m, 4H, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 2.94 (s, 3H, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 3.32-3.42 (m, 6H, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)). 13C NMR (68 MHz, rt, DMSO-d6): 8.7 (s, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 21.1 (s, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 47.0 (t, JCN = 3.9 Hz, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 58.5 (t, JCN = 3.1 Hz, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 62.0 (t, JCN = 3.3 Hz, N(-CH2CH2CH2CH2-)(CH2CH3)(CH3)), 109.3 (tt, 1JCF =272.6 Hz, 2JCF = 25.7 Hz, -CF2-CF2-CF2-), 112.4 (tt, 1JCF=297.6 Hz, 2JCF = 25.7 Hz, -CF2-CF2-CF2-). 19F NMR (376MHz, rt, DMSO-d6): -120.5 (br), -105.5 (br). Anal. Calcd for C10H16F6N2O4S2: C, 29.56; H, 3.97; N,6.89. Found: C, 29.52; H, 3.82; N, 6.81.
Electrolyte 18: [N (CH 3 ) (CH 2 CH 3 ) (CH 2 CH 2 CH 2 CH 2 )] [N (SO 2 CF 2 ) 2 CF 2 ] (P 12 CPFSI)
N-ethyl-N-methylpyrrolidinium iodide was synthesized in the same procedure as N, N-dimethylpyrrolidinium iodide using iodoethane as a raw material. Thereafter, synthesis was performed in the same procedure as the electrolyte 12 except that the synthesized N-ethyl-N-methylpyrrolidinium iodide was used as a raw material (yield: 72%).
P 12 CPFSI: 1 H NMR (400 MHz, rt, DMSO-d 6 ): 1.24-1.27 (m, 3H, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 ) ), 2.05 (m, 4H, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )), 2.94 (s, 3H, N (-CH 2 CH 2 CH 2 CH 2 -) (CH 2 CH 3 ) (CH 3 )), 3.32-3.42 (m, 6H, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )). 13 C NMR (68 MHz, rt, DMSO-d 6 ): 8.7 (s, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )), 21.1 (s, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )), 47.0 (t, J CN = 3.9 Hz, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) ( CH 3 )), 58.5 (t, J CN = 3.1 Hz, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )), 62.0 (t, J CN = 3.3 Hz, N (-CH 2 CH 2 CH 2 CH 2- ) (CH 2 CH 3 ) (CH 3 )), 109.3 (tt, 1 J CF = 272.6 Hz, 2 J CF = 25.7 Hz, -CF 2 -CF 2- CF 2- ), 112.4 (tt, 1 J CF = 297.6 Hz, 2 J CF = 25.7 Hz, -CF 2 -CF 2 -CF 2- ). 19 F NMR (376MHz, rt, DMSO-d 6 ):- 120.5 (br), -105.5 (br). Anal. Calcd for C 10 H 16 F 6 N 2 O 4 S 2 : C, 29.56; H, 3.97; N, 6.89. Found: C, 29.52; H, 3.82; N, 6.81.

電解質19〜21:[N(CH)(CHCH][N(SOCFCF]+nLiTFSI (n=0.01、0.5、0.1)(N1222CPFSI) [N(CH)(CHCH][N(SOCFCF](N1222CPFSI)は[N(CH)(CHCH]Cl(N1222Cl)とLiCPFSIからイオン交換法によって合成した。また、N1222CPFSI(0.7972g,1.98mmol)に対して0.01倍モルのLiTFSI(0.0056g,0.0195mmol)を、アセトニトリル(5ml)を溶媒とすることで混合した後、溶媒を減圧留去し、真空中約100℃で72時間以上乾燥させることにより試料を得た(電解質19)。調製後の試料にアセトニトリルが含まれないことはH NMR、DSCによって確認した。また、同様の方法で、N1222CPFSI(0.8848g,2.17mmol)に対して0.05、0.1倍モルのLiTFSIをドープした試料を調製した(各々、電解質20及び21)。 Electrolytes 19 to 21: [N (CH 3 ) (CH 2 CH 3 ) 3 ] [N (SO 2 CF 2 ) 2 CF 2 ] + nLiTFSI (n = 0.01, 0.5, 0.1) (N 1222 CPFSI) [N (CH 3 ) (CH 2 CH 3 ) 3 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1222 CPFSI) is [N (CH 3 ) (CH 2 CH 3 ) 3 ] Cl ( N 1222 Cl) and LiCPFSI were synthesized by an ion exchange method. In addition, 0.01 times mole of LiTFSI (0.0056 g, 0.0195 mmol) with respect to N 1222 CPFSI (0.7972 g, 1.98 mmol) was mixed using acetonitrile (5 ml) as a solvent, and then the solvent. Was distilled off under reduced pressure and dried in vacuum at about 100 ° C. for 72 hours or longer to obtain a sample (electrolyte 19). It was confirmed by 1 H NMR and DSC that acetonitrile was not contained in the prepared sample. Further, in a similar manner, N 1222 CPFSI (0.8848g, 2.17mmol ) doped samples the 0.05, 0.1 fold molar LiTFSI prepared against (each, an electrolyte 20 and 21).

電解質22及び23:スルフィド基を持つジカチオンアンモニウム塩とリチウム塩の添加

Figure 0006150424

アセトニトリル(9ml)中でテトラメチルエチレンジアミン(TMEDA,2.4ml,16mmol)とクロロメチルメチルスルフィド(3.2ml,32mmol)を混合し、24時間還流した。溶媒を減圧留去した後ヘキサン(20ml×3)とアセトン(20ml×3)で洗浄し、減圧下60℃で48時間以上乾燥した(収率:87%)。生成物(0.5012g,1.62mmol)とLiCPFSI(0.9747g,3.24mmol)をイオン交換水中で混合し、析出した白色固体をメンブレンフィルターで濾別後シュレンク反応管に移した。減圧下75℃で48時間以上乾燥を行い、上図にあるジカチオン性アンモニウムCPFSI塩を生成物として得た(収率:97%)(電解質22)。 Electrolytes 22 and 23: Addition of a dication ammonium salt having a sulfide group and a lithium salt
Figure 0006150424

Tetramethylethylenediamine (TMEDA, 2.4 ml, 16 mmol) and chloromethyl methyl sulfide (3.2 ml, 32 mmol) were mixed in acetonitrile (9 ml) and refluxed for 24 hours. The solvent was distilled off under reduced pressure, washed with hexane (20 ml × 3) and acetone (20 ml × 3), and dried at 60 ° C. under reduced pressure for 48 hours or more (yield: 87%). The product (0.5012 g, 1.62 mmol) and LiCPFSI (0.9747 g, 3.24 mmol) were mixed in ion-exchanged water, and the precipitated white solid was filtered off with a membrane filter and transferred to a Schlenk reaction tube. Drying was performed at 75 ° C. for 48 hours or more under reduced pressure to obtain the dicationic ammonium CPFSI salt in the above figure as a product (yield: 97%) (electrolyte 22).

また、上述のジカチオン性アンモニウムCPFSI塩(0.8794g,1.07mmol)とLiTFSI(0.0305g,0.106mmol)をシュレンク反応管にとり、アセトニトリル(10ml)を加えて混ぜ合わせて均一な溶液にした後溶媒を減圧留去し、90℃で48時間以上乾燥させ、試料とした(電解質23)。   Further, the above-mentioned dicationic ammonium CPFSI salt (0.8794 g, 1.07 mmol) and LiTFSI (0.0305 g, 0.106 mmol) were taken in a Schlenk reaction tube, and acetonitrile (10 ml) was added and mixed to obtain a uniform solution. Thereafter, the solvent was distilled off under reduced pressure and dried at 90 ° C. for 48 hours or longer to prepare a sample (electrolyte 23).

試料の合成はNMRによって確認した。以下にNMRデータを示す。
1H NMR (400 MHz, r.t., DMSO-d6): 2.48 (s, 6H), 3.27 (s, 12H), 4.02 (s, 4H), 4.77(s, 4H). 13C NMR(67.8 MHz, r.t., DMSO-d6): 18.1(s), 49.2(s), 54.2(s), 71.1(s), 109.4 (tt, 1JCF=272.9 Hz, 2JCF= 25.1 Hz, -CF2-CF2-CF2-), 112.5 (tt, 1JCF=297.7 Hz, 2JCF = 25.1 Hz, -CF2-CF2-CF2-). 19F(376 MHz, r.t., DMSO-d6): -120.4 (br), -105.4 (br).
The synthesis of the sample was confirmed by NMR. The NMR data is shown below.
1 H NMR (400 MHz, rt, DMSO-d 6 ): 2.48 (s, 6H), 3.27 (s, 12H), 4.02 (s, 4H), 4.77 (s, 4H). 13 C NMR (67.8 MHz, rt, DMSO-d 6 ): 18.1 (s), 49.2 (s), 54.2 (s), 71.1 (s), 109.4 (tt, 1 J CF = 272.9 Hz, 2 J CF = 25.1 Hz, -CF 2- CF 2 -CF 2- ), 112.5 (tt, 1 J CF = 297.7 Hz, 2 J CF = 25.1 Hz, -CF 2 -CF 2 -CF 2- ). 19 F (376 MHz, rt, DMSO-d 6 ): -120.4 (br), -105.4 (br).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図5に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例24〜26)
[電解質の調製]
電解質24〜26:LiN(SOCF +nCHCN (n=0.33、0.5、0.67)
窒素雰囲気下でLiN(SOCF(以下、LiTFSIと表記する。)に対して所望量のアセトニトリルを添加し、室温で1時間攪拌することにより目的とする試料を白色粉末として得た。LiTFSIとアセトニトリルの比は、1:0.33(電解質24)、1:0.5(電解質25)、1:0.67(電解質26)であった。
(Examples 24-26)
[Preparation of electrolyte]
Electrolytes 24 to 26: LiN (SO 2 CF 3 ) 2 + nCH 3 CN (n = 0.33, 0.5, 0.67)
A desired amount of acetonitrile was added to LiN (SO 2 CF 3 ) 2 (hereinafter referred to as LiTFSI) under a nitrogen atmosphere, and the mixture was stirred at room temperature for 1 hour to obtain a target sample as a white powder. . The ratio of LiTFSI to acetonitrile was 1: 0.33 (electrolyte 24), 1: 0.5 (electrolyte 25), and 1: 0.67 (electrolyte 26).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図6に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例27)
[電解質の調製]
電解質27:Li[N(SOCF](CHCN)
Acta Cryst. 2011, E67, m534に記されている手法を参考に試料を合成した。不活性ガス雰囲気下でシュレンク反応管にLiTFSIを約1.5gとった後、5倍モル量のアセトニトリルを添加し室温で1時間ほど攪拌することにより無色透明の溶液を得た。この溶液が二相に分離するまでトルエンを加え室温下で静置することにより、Li[N(SOCF](CHCN) (Li(TFSI)(CHCN))を無色透明の単結晶として得た。
(Example 27)
[Preparation of electrolyte]
Electrolyte 27: Li [N (SO 2 CF 3 ) 2 ] (CH 3 CN)
Samples were synthesized with reference to the method described in Acta Cryst. 2011, E67, m534. After making LiTFSI about 1.5 g in a Schlenk reaction tube under an inert gas atmosphere, a 5-fold molar amount of acetonitrile was added and stirred at room temperature for about 1 hour to obtain a colorless and transparent solution. Toluene was added until this solution separated into two phases, and the mixture was allowed to stand at room temperature, whereby Li [N (SO 2 CF 3 ) 2 ] (CH 3 CN) (Li (TFSI) (CH 3 CN)) was colorless. Obtained as a transparent single crystal.

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図7に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例28)
[電解質の調製]
電解質28:Li(CFSO)(CHCN)
Li(CFSO) (以下、LiOTfと表記する。)に過剰量のアセトニトリルを加え溶解させた後、トルエンを添加し室温で静置することにより無色の板状結晶を生じさせた。母液を除き、結晶をペンタンで洗浄した。窒素気流下で結晶を乾燥させることでLi(CFSO)(CHCN)を得た。
(Example 28)
[Preparation of electrolyte]
Electrolyte 28: Li (CF 3 SO 3 ) (CH 3 CN)
An excess amount of acetonitrile was added to Li (CF 3 SO 3 ) (hereinafter referred to as LiOTf) and dissolved, and then toluene was added and left at room temperature to give colorless plate crystals. The mother liquor was removed and the crystals were washed with pentane. Li (CF 3 SO 3 ) (CH 3 CN) was obtained by drying the crystals under a nitrogen stream.

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図8に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例29及び30)
[電解質の調製]
電解質29〜30:Li(X){(HC)NCHCHN(CH} (X=N(SOCFCF (CPFSA)及びCFSO(OTf))
Li[N(SOCFCF](以下、LiCPFSAと表記する。)にトルエンを加え懸濁液を得た後、等モル量の(HC)NCHCHN(CH(テトラメチルエチレンジアミン、以下、TMEDAと表記する。)を加えた。40度で加熱し、LiCPFSAを完全に溶解させたのち、反応液を室温に冷却し静置することにより無色の結晶を得た。母液を取り除き、ペンタンで洗浄したのち、減圧下で乾燥させることにより目的生成物Li(CPFSA)(TMEDA)を得た(電解質29)。
同様の手法でLiCPFSAの替わりにLi(CFSO)(以下、LiOTfと表記する。)を用いることによりLi(OTf)(TMEDA)を得た(電解質30)。
(Examples 29 and 30)
[Preparation of electrolyte]
Electrolyte 29~30: Li (X) {( H 3 C) 2 NCH 2 CH 2 N (CH 3) 2} (X = N (SO 2 CF 2) 2 CF 2 (CPFSA) and CF 3 SO 3 (OTf ))
Toluene was added to Li [N (SO 2 CF 2 ) 2 CF 2 ] (hereinafter referred to as LiCPFSA) to obtain a suspension, and then an equimolar amount of (H 3 C) 2 NCH 2 CH 2 N ( CH 3 ) 2 (tetramethylethylenediamine, hereinafter referred to as TMEDA) was added. After heating at 40 ° C. to completely dissolve LiCPFSA, the reaction solution was cooled to room temperature and allowed to stand to obtain colorless crystals. The mother liquor was removed, washed with pentane, and then dried under reduced pressure to obtain the target product Li (CPFSA) (TMEDA) (electrolyte 29).
Li (OTf) (TMEDA) was obtained by using Li (CF 3 SO 3 ) (hereinafter referred to as LiOTf) instead of LiCPFSA in the same manner (electrolyte 30).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図9に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例31〜33)
[電解質の調製]
電解質31〜33:[N(CH)(CHCH][N(SOCFCF] (N1222CPFSA)+0.1LiX (X=N(SOCFCF (CPFSA)、N(SOCF(TFSI)及びCFSO(OTf))
柔粘性結晶イオン対[N(CH)(CHCH][N(SOCFCF](N1222CPFSA)に対し0.1倍モルのLiX(ここで、Xは、N(SOCFCF(CPFSA)(電解質31)、N(SOCF(TFSI)(電解質32)、及びCFSO(OTf)(電解質33)である)を加え、アセトニトリルを用いて溶解させた後、加熱条件下で溶媒を留去した。得られた白色粉末を加熱し、融解させることにより柔粘性結晶イオン対へのリチウム塩のドープを行った。
(Examples 31-33)
[Preparation of electrolyte]
Electrolytes 31-33: [N (CH 3 ) (CH 2 CH 3 ) 3 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1222 CPFSA) + 0.1LiX (X═N (SO 2 CF 2 ) 2 CF 2 (CPFSA), N (SO 2 CF 3 ) 2 (TFSI) and CF 3 SO 3 (OTf))
The plastic crystal ion pair [N (CH 3 ) (CH 2 CH 3 ) 3 ] [N (SO 2 CF 2 ) 2 CF 2 ] (N 1222 CPFSA) has a molar ratio of LiX (where X Are N (SO 2 CF 2 ) 2 CF 2 (CPFSA) (electrolyte 31), N (SO 2 CF 3 ) 2 (TFSI) (electrolyte 32), and CF 3 SO 3 (OTf) (electrolyte 33). ) Was added and dissolved using acetonitrile, and then the solvent was distilled off under heating conditions. The resulting white powder was heated and melted to dope lithium salt into the plastic crystal ion pair.

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図10に示す。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例34)
[電解質の調製]
電解質34:Li[N(SOCF0.67[CFSO0.33 (Li(TFSI)0.67(OTf)0.33) + 0.33CHCN
LiN(SOCF(以下、LiTFSIと表記する。)とLi(CFSO) (以下、LiOTfと表記する。)をフラスコにとり、アセトニトリルを加え溶解させた。加熱条件下でアセトニトリルを留去し白色粉末を得た。得られた粉末を加熱し、融解させることで二種類の塩を混合したのち、室温まで冷却した。その後、LiTFSIに対し再度0.5倍モル量のアセトニトリルを添加し、攪拌することによりことにより目的とする試料を得た。
(Example 34)
[Preparation of electrolyte]
Electrolyte 34: Li [N (SO 2 CF 3 ) 2 ] 0.67 [CF 3 SO 3 ] 0.33 (Li (TFSI) 0.67 (OTf) 0.33 ) + 0.33CH 3 CN
LiN (SO 2 CF 3 ) 2 (hereinafter referred to as LiTFSI) and Li (CF 3 SO 3 ) (hereinafter referred to as LiOTf) were placed in a flask, and acetonitrile was added and dissolved. Acetonitrile was distilled off under heating conditions to obtain a white powder. The obtained powder was heated and melted to mix two kinds of salts, and then cooled to room temperature. Thereafter, 0.5 times molar amount of acetonitrile was again added to LiTFSI, and the mixture was stirred to obtain a target sample.

[イオン伝導度測定] ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス
法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図11に示す。
[Ionic conductivity measurement] The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.

(実施例35及び36)
[電解質の調製]
電解質35及び36:NaX + 0.5CHCN (X=N(SOCF及びSCN)
NaXをフラスコにとり、0.5倍モル量のアセトニトリルを加え室温化で一時間攪拌することにより、目的とする試料を得た。ここで、XはN(SOCF(電解質35)、又はSCN(電解質36)である。
(Examples 35 and 36)
[Preparation of electrolyte]
Electrolyte 35 and 36: NaX + 0.5CH 3 CN ( X = N (SO 2 CF 3) 2 and SCN)
NaX was placed in a flask, 0.5 times the molar amount of acetonitrile was added, and the mixture was stirred at room temperature for 1 hour to obtain the intended sample. Here, X is N (SO 2 CF 3 ) 2 (electrolyte 35) or SCN (electrolyte 36).

[イオン伝導度測定]
ここで得られた試料を円盤状に加圧成型し、密閉式セル中において交流インピーダンス法によりイオン伝導度を測定し、固体状態でイオン伝導性を示すことを確認した。結果を図12に示す。
(実施例37)
[リチウムイオン電池]
R2032コイン型セルを用いて、LiCoOの正極シート上(宝泉株式会社製)に薄板状に加圧成形した電解質31(上記のN1222CPFSA)に0.1倍モル量のLiCPFSAを添加したもの(厚さ:約300μm))を載せ、さらにその上にリチウム箔を置くことでリチウム電池を作成した。60℃にて0.02Cでの充放電試験を行ったところ、初期の電池容量は、30m Ah g−1であった。
[Ion conductivity measurement]
The sample obtained here was press-molded into a disk shape, and the ionic conductivity was measured by an alternating current impedance method in a sealed cell, and it was confirmed that the ionic conductivity was exhibited in a solid state. The results are shown in FIG.
(Example 37)
[Lithium ion battery]
Using an R2032 coin-type cell, 0.1 times molar amount of LiCPFSA was added to electrolyte 31 (N 1222 CPFSA described above) press-molded into a thin plate shape on a LiCoO 2 positive electrode sheet (made by Hosen Co., Ltd.). (Thickness: about 300 μm) was placed, and a lithium foil was placed thereon to form a lithium battery. When a charge / discharge test at 0.02 C was performed at 60 ° C., the initial battery capacity was 30 mAh g −1 .

本発明のイオン伝導性固体電解質によれば、高いイオン伝導性を示すと共に高い安全性が確保された固体電解質を提供できるので、電池の電解質に採用した場合に高い安全性が実現できる。
具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。
According to the ion conductive solid electrolyte of the present invention, it is possible to provide a solid electrolyte exhibiting high ion conductivity and ensuring high safety. Therefore, when used as a battery electrolyte, high safety can be realized.
Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, etc. , Walkie Talkie, Electronic Notebook, Calculator, Memory Card, Portable Tape Recorder, Radio, Backup Power Supply, Motor, Automobile, Motorcycle, Motorbike, Bicycle, Lighting Equipment, Toy, Game Equipment, Clock, Electric Tool, Strobe, Camera, Load Examples include leveling power sources and natural energy storage power sources.

Claims (8)

少なくとも、(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物、または(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオン、のいずれか1種と、
LiPF 、LiCF SO 、LiN(SO CF 、LiN(SO CF CF 、LiN(SO F) 、Li(SO CF (N(SO CF (ここで、n+m=1である)、LiSCN、
Figure 0006150424

からなる群より選択される1以上のリチウム塩、並びにNaBF 、NaPF 、NaCF SO 、NaN(SO CF 、NaN(SO CF CF 、NaN(SO F) 、Na(SO CF (N(SO CF (ここで、n+m=1である)及びNaSCNからなる群より選択される1以上のナトリウム塩のうちの少なくとも一方とを含む結晶を含む、イオン伝導性固体電解質。
At least (A) an electron-donating organic compound containing 1 to 3 atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms, or (B) at least an atom selected from the group of nitrogen, phosphorus and sulfur atoms Any one of anions having a cyclic structure containing one ,
LiPF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (SO 2 F) 2 , Li (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1), LiSCN,
Figure 0006150424

At least one lithium salt selected from the group consisting of NaBF 4 , NaPF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , NaN (SO 2 CF 2 CF 3 ) 2 , NaN (SO 2 F ) 2 , Na (SO 3 CF 3 ) n (N (SO 2 CF 3 ) 2 ) m (where n + m = 1) and at least one sodium salt selected from the group consisting of NaSCN An ion-conducting solid electrolyte comprising a crystal comprising one of the two .
(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物、または(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオン、のいずれか1種と、(A) an electron-donating organic compound containing 1 to 3 atoms selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms, or (B) at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms Any one of an anion having a cyclic structure to contain,
LiPFLiPF 6 、LiCF, LiCF 3 SOSO 3 、LiN(SO, LiN (SO 2 CFCF 3 ) 2 、LiN(SO, LiN (SO 2 CFCF 2 CFCF 3 ) 2 、LiN(SO, LiN (SO 2 F)F) 2 、Li(SO, Li (SO 3 CFCF 3 ) n (N(SO(N (SO 2 CFCF 3 ) 2 ) m (ここで、n+m=1である)、LiSCN、(Where n + m = 1), LiSCN,
Figure 0006150424
Figure 0006150424

からなる群より選択される1以上のリチウム塩、並びにNaBFOne or more lithium salts selected from the group consisting of: NaBF 4 、NaPF, NaPF 6 、NaCF, NaCF 3 SOSO 3 、NaN(SONaN (SO 2 CFCF 3 ) 2 、NaN(SONaN (SO 2 CFCF 2 CFCF 3 ) 2 、NaN(SONaN (SO 2 F)F) 2 、Na(SO, Na (SO 3 CFCF 3 ) n (N(SO(N (SO 2 CFCF 3 ) 2 ) m (ここで、n+m=1である)及びNaSCNからなる群より選択される1以上のナトリウム塩のうちの少なくとも一方とから形成される結晶からなる、請求項1に記載のイオン伝導性固体電解質。The ion-conductive solid electrolyte according to claim 1, comprising a crystal formed from at least one of one or more sodium salts selected from the group consisting of (where n + m = 1) and NaSCN.
前記(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物が、アミン、ニトリル、エーテル又はチオエーテル化合物である、請求項1または2に記載のイオン伝導性固体電解質。 (A) the nitrogen, oxygen, an electron-donating organic compound containing one to three are atoms selected from the group consisting of phosphorus and sulfur atoms, an amine, a nitrile, an ether or thioether compound, according to claim 1 or 2 Ion conductive solid electrolyte. 前記(A)窒素、酸素、燐及び硫黄原子の群から選ばれる原子を1〜3個含有する電子供与性有機化合物は、窒素、酸素、燐及び硫黄原子の群から選ばれる1〜3個の原子がカチオンと配位することにより単座、二座又は三座の配位性を示す、請求項1乃至3のいずれか一つに記載のイオン伝導性固体電解質。 The electron donating organic compound containing 1 to 3 atoms selected from the group of (A) nitrogen, oxygen, phosphorus and sulfur atoms is 1 to 3 selected from the group of nitrogen, oxygen, phosphorus and sulfur atoms. The ion conductive solid electrolyte according to any one of claims 1 to 3 , which exhibits monodentate, bidentate, or tridentate coordination by coordination of atoms with a cation. 前記(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオンが、窒素、燐及び硫黄原子の群から選ばれる原子を環原子として少なくとも1個含有するアニオンである、請求項1または2に記載のイオン伝導性固体電解質。 (B) The anion having a cyclic structure containing at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms contains at least one atom selected from the group of nitrogen, phosphorus and sulfur atoms as a ring atom. it is an anion, ion conductive solid electrolyte according to claim 1 or 2. 前記(B)窒素、燐及び硫黄原子の群から選ばれる原子を少なくとも1個含有する環状構造を有するアニオンが、下記構造式:
Figure 0006150424

で表されるアニオンである、請求項1、2またはに記載のイオン伝導性固体電解質。
The (B) anion having a cyclic structure containing at least one atom selected from the group consisting of nitrogen, phosphorus and sulfur atoms has the following structural formula:
Figure 0006150424

In an anion represented claim 1, 2 or 5 ion conductive solid electrolyte according to.
リチウムを吸蔵・放出することが可能な負極、及びリチウムを吸蔵・放出することが可能な正極と、前記リチウム塩を含有する請求項1乃至のいずれか一つに記載のイオン電解性固体電解質とを備えている、リチウムイオン電池。 The ion-electrolytic solid electrolyte according to any one of claims 1 to 6 , comprising a negative electrode capable of inserting and extracting lithium , a positive electrode capable of inserting and extracting lithium , and the lithium salt. And a lithium ion battery. ナトリウムを吸蔵・放出することが可能な負極、及びナトリウムを吸蔵・放出することが可能な正極と、前記ナトリウム塩を含有する請求項1乃至6のいずれか一つに記載のイオン電解性固体電解質とを備えている、ナトリウムイオン電池。
The ion electrolytic solid electrolyte according to any one of claims 1 to 6 , comprising a negative electrode capable of inserting and extracting sodium , a positive electrode capable of inserting and extracting sodium , and the sodium salt. A sodium ion battery.
JP2013046722A 2012-03-08 2013-03-08 Ion conductive solid electrolyte and ion secondary battery using the same Active JP6150424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046722A JP6150424B2 (en) 2012-03-08 2013-03-08 Ion conductive solid electrolyte and ion secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012052185 2012-03-08
JP2012052185 2012-03-08
JP2013046722A JP6150424B2 (en) 2012-03-08 2013-03-08 Ion conductive solid electrolyte and ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2013214510A JP2013214510A (en) 2013-10-17
JP6150424B2 true JP6150424B2 (en) 2017-06-21

Family

ID=49587692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046722A Active JP6150424B2 (en) 2012-03-08 2013-03-08 Ion conductive solid electrolyte and ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6150424B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559358B2 (en) 2012-03-28 2017-01-31 Sharp Laboratories Of America, Inc. Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
JP5998013B2 (en) * 2012-11-02 2016-09-28 株式会社日本触媒 Electric storage device and electrolyte
JP6952975B2 (en) * 2017-02-28 2021-10-27 国立大学法人静岡大学 Proton conductive electrolyte and fuel cell
JP6879811B2 (en) * 2017-03-31 2021-06-02 三井化学株式会社 Lithium salt complex compounds, battery additives, non-aqueous electrolytes for batteries, and lithium secondary batteries
WO2018194159A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
JP6973477B2 (en) 2017-04-21 2021-12-01 昭和電工マテリアルズ株式会社 Polymer electrolyte composition and polymer secondary battery
WO2018193630A1 (en) 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and electrochemical device
CN113454021B (en) * 2019-02-06 2023-12-15 乔治洛德方法研究和开发液化空气有限公司 Method for producing compound and lithium-containing film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124967A (en) * 1987-11-10 1989-05-17 Hitachi Maxell Ltd Lithium ion conductive solid electrolyte
JPH03238768A (en) * 1990-02-16 1991-10-24 Showa Denko Kk Solid electrolyte secondary battery
US5219679A (en) * 1991-01-17 1993-06-15 Eic Laboratories, Inc. Solid electrolytes
JPH05121098A (en) * 1991-10-30 1993-05-18 Yuasa Corp Secondary battery
JP2005332699A (en) * 2004-05-20 2005-12-02 Hitachi Ltd Electrolyte and lithium secondary battery
JP2006077107A (en) * 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The Gel state electrolyte and method for producing the same
JP5253785B2 (en) * 2007-10-23 2013-07-31 パナソニック株式会社 Dry polymer electrolyte and all solid polymer battery

Also Published As

Publication number Publication date
JP2013214510A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP6150424B2 (en) Ion conductive solid electrolyte and ion secondary battery using the same
CN107851847B (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR102416651B1 (en) Nonaqueous electrolyte solution and nonaqueous-electrolyte-solution secondary battery using same
JP5304782B2 (en) Plastic crystal electrolyte with wide potential window
KR102156861B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
CN111129592A (en) Electrochemical device and electronic device comprising same
JP6372823B2 (en) Lithium secondary battery, electrolyte solution for lithium secondary battery, and additive for electrolyte solution of lithium secondary battery
WO2019180945A1 (en) Electrolyte for power storage devices and nonaqueous electrolyte solution
JP5720325B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
WO2016117279A1 (en) Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell
JP7187126B2 (en) NON-AQUEOUS ELECTROLYTE AND ELECTRICITY STORAGE DEVICE USING THE SAME
JPWO2018168505A1 (en) SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR PRODUCING SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
TW201640733A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution cell using same
CN113906604B (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
CN115986213A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
CN111801833A (en) Nonaqueous electrolyte solution and energy device using same
JP2023130374A (en) Non-aqueous electrolytic solution and energy device using the same
JP5387333B2 (en) Non-aqueous electrolyte, battery using the same, and phosphate ester compound
JP2012014973A (en) Electrolyte composition for secondary battery and secondary battery
JP2012160316A (en) Nonaqueous electrolyte and battery including the same
CN112687954B (en) Electrolyte solution, electrochemical device, and electronic device
JP2020527284A (en) Heterocyclic Sulfonyl Fluid Additives for Electrolyte Compositions for Lithium Batteries
CN116918123A (en) Nonaqueous electrolyte, nonaqueous electrolyte battery, and compound
CN110313097B (en) Electrolyte for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
WO2020122158A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6150424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250