JP6130332B2 - Manufacturing method of resin product with metal film - Google Patents

Manufacturing method of resin product with metal film Download PDF

Info

Publication number
JP6130332B2
JP6130332B2 JP2014135121A JP2014135121A JP6130332B2 JP 6130332 B2 JP6130332 B2 JP 6130332B2 JP 2014135121 A JP2014135121 A JP 2014135121A JP 2014135121 A JP2014135121 A JP 2014135121A JP 6130332 B2 JP6130332 B2 JP 6130332B2
Authority
JP
Japan
Prior art keywords
resin product
metal film
irradiated
ultraviolet rays
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014135121A
Other languages
Japanese (ja)
Other versions
JP2016014160A (en
Inventor
太輔 岩下
太輔 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Components Inc
Original Assignee
Canon Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Components Inc filed Critical Canon Components Inc
Priority to JP2014135121A priority Critical patent/JP6130332B2/en
Priority to US14/750,200 priority patent/US20150376794A1/en
Publication of JP2016014160A publication Critical patent/JP2016014160A/en
Application granted granted Critical
Publication of JP6130332B2 publication Critical patent/JP6130332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、金属皮膜付樹脂製品及びその製造方法に関する。   The present invention relates to a resin product with a metal film and a method for producing the same.

所定のパターンを有する金属皮膜が設けられた樹脂製品は、例えば配線板又は導電膜等として有用である。このような金属皮膜付樹脂製品の製造方法として、無電解めっきを用いる方法が知られている。   A resin product provided with a metal film having a predetermined pattern is useful as, for example, a wiring board or a conductive film. As a method for producing such a resin product with a metal film, a method using electroless plating is known.

例えば特許文献1には、紫外線による表面改質を用いた配線板の製造方法が開示されている。具体的には、まず、シクロオレフィンポリマー材表面の全体に紫外線ランプからの紫外線を照射することにより、シクロオレフィンポリマー材の表面が改質される。改質された部位には、無電解めっき皮膜が析出しやすくなる。その後、無電解めっきを行うことにより改質されたシクロオレフィンポリマー材表面の全体に金属皮膜が形成される。最後にフォトリソグラフィー及びエッチングを行うことにより、所望のパターンを有するように金属皮膜がパターニングされる。   For example, Patent Document 1 discloses a method for manufacturing a wiring board using surface modification by ultraviolet rays. Specifically, first, the surface of the cycloolefin polymer material is modified by irradiating the entire surface of the cycloolefin polymer material with ultraviolet rays from an ultraviolet lamp. An electroless plating film is likely to be deposited on the modified portion. Thereafter, a metal film is formed on the entire surface of the cycloolefin polymer material modified by performing electroless plating. Finally, photolithography and etching are performed to pattern the metal film so as to have a desired pattern.

特許文献2には、ポリイミド樹脂基材の表面に金属薄膜パターンを形成する方法が開示されている。具体的には、ポリイミド樹脂基材の表面にレジストパターンが形成され、レジストパターンの開口部に露出している部分に対して、アルカリ改質、金属微粒子付加、及び無電解めっきを行うことにより、レジストパターンの開口部に金属薄膜が形成される。   Patent Document 2 discloses a method of forming a metal thin film pattern on the surface of a polyimide resin substrate. Specifically, a resist pattern is formed on the surface of the polyimide resin substrate, and by performing alkali modification, addition of fine metal particles, and electroless plating on the exposed portion of the resist pattern opening, A metal thin film is formed in the opening of the resist pattern.

特開2008−094923号公報JP 2008-094923 A 特開2009−007613号公報JP 2009-007613 A

特許文献1に記載の方法で所望のパターンを有する金属皮膜を形成するためには、フォトリソグラフィー及びエッチングを必要とする。また、特許文献2に記載の方法においても、フォトリソグラフィーによりレジストパターンを形成する必要がある。このため、特許文献1,2に記載の方法には、コストがかかり、また多量の廃液が発生するために環境負荷が高いという問題もあった。   In order to form a metal film having a desired pattern by the method described in Patent Document 1, photolithography and etching are required. Also in the method described in Patent Document 2, it is necessary to form a resist pattern by photolithography. For this reason, the methods described in Patent Documents 1 and 2 are costly and have a problem of high environmental load due to the generation of a large amount of waste liquid.

本発明は、低コストで樹脂製品上に所望のパターンを有する金属皮膜を形成することを目的とする。   An object of the present invention is to form a metal film having a desired pattern on a resin product at low cost.

本発明の目的を達成するために、例えば、本発明の金属皮膜付樹脂製品の製造方法は以下の構成を備える。すなわち、
エステル結合、アミド結合、又はイミド結合を有する樹脂を表面に有する樹脂製品の表面のうち金属皮膜を析出させない部分に選択的に紫外線を照射して改質する照射工程と、
前記紫外線が照射されて改質された前記金属皮膜を析出させない部分と、前記樹脂製品の表面のうち前記紫外線が照射されていない金属皮膜を析出させる部分との双方をアルカリ溶液で処理することにより、前記紫外線が照射されて改質された部分を脱落させつつ、前記金属皮膜を析出させる部分を改質する処理工程と、
前記金属皮膜を析出させる部分と前記金属皮膜を析出させない部分との双方に触媒付与処理を行うことで、前記アルカリ溶液で処理された樹脂製品の表面のうち前記処理工程で改質された前記金属皮膜を析出させる部分に無電解めっき触媒を直接付着させる付与工程と、
前記無電解めっき触媒が付与された前記樹脂製品を無電解めっき液に浸漬することにより、前記樹脂製品の表面のうち選択的に紫外線が照射されていない部分に金属皮膜を析出させるめっき工程と、
を含むことを特徴とする。
In order to achieve the object of the present invention, for example, the method for producing a resin product with a metal film of the present invention comprises the following constitution. That is,
An irradiation step for selectively irradiating a portion of the surface of the resin product having a resin having an ester bond, an amide bond, or an imide bond with which the metal film is not deposited on the surface , and modifying the surface.
By treating both the portion that does not deposit the modified metal film irradiated with the ultraviolet light and the portion that deposits the metal film not irradiated with ultraviolet light on the surface of the resin product with an alkaline solution. , A treatment step of modifying the portion on which the metal film is deposited while dropping off the modified portion irradiated with the ultraviolet rays ,
The metal modified in the treatment step in the surface of the resin product treated with the alkali solution by performing a catalyst application treatment on both the portion where the metal coating is deposited and the portion where the metal coating is not deposited. An application step of directly attaching an electroless plating catalyst to a portion where a film is deposited ;
A plating step of depositing a metal film on a portion of the surface of the resin product that is not selectively irradiated with ultraviolet rays by immersing the resin product provided with the electroless plating catalyst in an electroless plating solution;
It is characterized by including.

低コストで樹脂製品上に所望のパターンを有する金属皮膜を形成することができる。   A metal film having a desired pattern can be formed on a resin product at low cost.

一実施形態に係る金属皮膜付樹脂製品の製造方法を説明する図。The figure explaining the manufacturing method of the resin product with a metal film which concerns on one Embodiment. 一実施形態に係る金属皮膜付樹脂製品の製造方法のフローチャート。The flowchart of the manufacturing method of the resin product with a metal film which concerns on one Embodiment.

本発明者は、特許文献1に記載の技術を応用して、樹脂製品上の金属皮膜を形成しようとする部分に対してのみ紫外線ランプからの紫外線を照射することで、樹脂製品の表面の一部分を選択的に改質する技術を知っていた。この技術によれば、無電解めっきにより、紫外線が照射された部分に選択的に金属皮膜が析出する。よって、フォトリソグラフィーやエッチング等を用いずに低コストで所望のパターンを有する金属皮膜を形成することが可能になる。しかしながら、本発明者は、このような技術を用いた場合、使用する樹脂製品の種類等の条件によっては、紫外線を照射していない部分にも不要な金属皮膜が析出することがあることを見出した。   The present inventor applies a technique described in Patent Document 1 to irradiate ultraviolet rays from an ultraviolet lamp only on a portion on which a metal film is to be formed on a resin product, so that a part of the surface of the resin product is obtained. Knew the technology to selectively reform. According to this technique, a metal film is selectively deposited on the portion irradiated with ultraviolet rays by electroless plating. Therefore, it is possible to form a metal film having a desired pattern at low cost without using photolithography or etching. However, the present inventor has found that when such a technique is used, an unnecessary metal film may be deposited on a portion not irradiated with ultraviolet rays depending on conditions such as the type of resin product to be used. It was.

本発明者は、検討の結果、紫外線を照射した樹脂製品に対してアルカリ処理を行った後に、無電解めっき触媒の付与及び無電解めっきを行うと、驚くべきことに、紫外線が照射されていない部分に選択的に金属皮膜が析出することを見出した。一方で、紫外線を照射した部分には、金属皮膜は析出していなかった。このようにして、フォトリソグラフィー工程及びエッチング工程等を用いずに、低コストで所望のパターンを有する金属皮膜を形成することが可能になった。   As a result of the study, the inventors surprisingly did not irradiate ultraviolet rays when applying an electroless plating catalyst and performing electroless plating after performing an alkali treatment on a resin product irradiated with ultraviolet rays. It has been found that a metal film is selectively deposited on the portion. On the other hand, no metal film was deposited on the portion irradiated with ultraviolet rays. In this way, it has become possible to form a metal film having a desired pattern at a low cost without using a photolithography process, an etching process, and the like.

以下、本発明を適用できる実施形態を図面に基づいて説明する。ただし、本発明の範囲は以下の実施形態に限定されない。本発明の一実施形態に係る金属皮膜付樹脂製品100の製造方法は、照射工程と、処理工程と、付与工程と、めっき工程と、を含む。以下、これらの各工程について、図1,2を参照しながら説明する。   Hereinafter, embodiments to which the present invention can be applied will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The manufacturing method of the resin product 100 with a metal film which concerns on one Embodiment of this invention includes an irradiation process, a process process, an provision process, and a plating process. Hereinafter, each of these steps will be described with reference to FIGS.

(照射工程)
照射工程(S210)においては、樹脂製品110の表面の一部分120に選択的に紫外線が照射される。図1(a)は、樹脂製品110の表面と、紫外線が照射される部分120と、紫外線が照射されない部分140とを示している。紫外線の照射により、紫外線が照射される部分120が改質される。
(Irradiation process)
In the irradiation step (S210), ultraviolet rays are selectively irradiated to a portion 120 of the surface of the resin product 110. FIG. 1A shows a surface of the resin product 110, a portion 120 irradiated with ultraviolet rays, and a portion 140 not irradiated with ultraviolet rays. The portion 120 irradiated with ultraviolet rays is modified by the irradiation with ultraviolet rays.

一実施形態において、紫外線の樹脂製品110への照射は、酸素又はオゾンを含む雰囲気下で行われる。具体的な例としては、紫外線の樹脂製品110への照射は、大気中で行われうる。別の実施形態においては、より改質を促進するために、オゾンを含む雰囲気中で照射が行われる。   In one embodiment, the resin product 110 is irradiated with ultraviolet rays in an atmosphere containing oxygen or ozone. As a specific example, irradiation of the resin product 110 with ultraviolet rays can be performed in the atmosphere. In another embodiment, irradiation is performed in an atmosphere containing ozone in order to further promote the modification.

例えば、酸素を含む雰囲気下で紫外線を照射すると、雰囲気中の酸素は分解されてオゾンが生成する。さらに、オゾンが分解する過程で活性酸素が発生する。また、樹脂表面において、樹脂を構成する分子中の結合も切断される。このとき、樹脂を構成する分子と活性酸素とが反応し、樹脂表面が酸化され、すなわち樹脂表面にC−O結合、C=O結合、C(=O)−O結合(カルボキシル基の骨格部分)等が形成される。また、このような酸化に伴い、紫外線が照射される部分120に微細な粗面が形成される。   For example, when ultraviolet rays are irradiated in an atmosphere containing oxygen, oxygen in the atmosphere is decomposed to generate ozone. Furthermore, active oxygen is generated in the process of decomposing ozone. Further, the bonds in the molecules constituting the resin are also broken on the resin surface. At this time, the molecule constituting the resin reacts with the active oxygen, and the resin surface is oxidized, that is, the C—O bond, the C═O bond, the C (═O) —O bond (the skeleton of the carboxyl group) on the resin surface. ) And the like are formed. In addition, with such oxidation, a fine rough surface is formed in the portion 120 irradiated with ultraviolet rays.

特定波長のフォトンのエネルギーは次の式で表せる。
E=Nhc/λ(KJ・mol−1
N=6.022×1023mol−1(アボガドロ数)
h=6.626×10−37KJ・s(プランク定数)
c=2.988×10m・s−1(光速)
λ=光の波長(nm)
The energy of a photon with a specific wavelength can be expressed by the following equation.
E = Nhc / λ (KJ · mol −1 )
N = 6.022 × 10 23 mol −1 (Avocado number)
h = 6.626 × 10 −37 KJ · s (Planck constant)
c = 2.88 × 10 8 m · s −1 (speed of light)
λ = wavelength of light (nm)

ここで、酸素分子の結合エネルギーは490.4KJ・mol−1である。フォトンのエネルギーの式から、この結合エネルギーを光の波長へと換算すると約243nmとなる。このことは、雰囲気中の酸素分子は、波長243nm以下の紫外線を吸収し分解することを示している。これによりオゾンOが発生する。さらに、オゾンが分解する過程で活性酸素が発生する。このとき、波長310nm以下の紫外線が存在すると、効率よくオゾンが分解されし、活性酸素が発生する。さらには、波長254nmの紫外線がオゾンを最も効率よく分解する。
+hν(243nm以下)→O(3P)+O(3P)
+O(3P)→O(オゾン)
+hν(310nm以下)→O+O(1D)(活性酸素)
O(3P):基底状態酸素原子
O(1D):励起酸素原子(活性酸素)
Here, the binding energy of the oxygen molecule is 490.4 KJ · mol −1 . From the photon energy formula, this binding energy is converted to the wavelength of light, which is about 243 nm. This indicates that oxygen molecules in the atmosphere absorb and decompose ultraviolet rays having a wavelength of 243 nm or less. As a result, ozone O 3 is generated. Furthermore, active oxygen is generated in the process of decomposing ozone. At this time, if ultraviolet rays having a wavelength of 310 nm or less are present, ozone is efficiently decomposed and active oxygen is generated. Furthermore, ultraviolet light having a wavelength of 254 nm decomposes ozone most efficiently.
O 2 + hν (243 nm or less) → O (3P) + O (3P)
O 2 + O (3P) → O 3 (ozone)
O 3 + hν (310 nm or less) → O 2 + O (1D) (active oxygen)
O (3P): Ground state oxygen atom O (1D): Excited oxygen atom (active oxygen)

紫外線の照射方法は特に限定されず、例えば紫外線ランプ、紫外線LED、又は紫外線レーザ等を用いることができる。一実施形態においては、所望のパターンが形成された石英クロムマスク又はメタルマスク等を通して、紫外線ランプ等からの紫外線が樹脂製品110へと照射される。また、別の実施形態においては、紫外線レーザ等からの紫外線を用いて紫外線が照射される部分120が走査される。   The ultraviolet irradiation method is not particularly limited, and for example, an ultraviolet lamp, an ultraviolet LED, or an ultraviolet laser can be used. In one embodiment, the resin product 110 is irradiated with ultraviolet rays from an ultraviolet lamp or the like through a quartz chrome mask or a metal mask on which a desired pattern is formed. In another embodiment, the portion 120 irradiated with ultraviolet rays is scanned using ultraviolet rays from an ultraviolet laser or the like.

紫外線の波長は特に限定されず、樹脂製品110の表面の改質を促進するものが選択される。一実施形態においては、紫外線の波長は243nm以下である。波長が243nm以下であることにより、樹脂製品110の表面の改質がより促進される。また、紫外線の波長が243nm以下のより短い波長であることにより、より微細なパターンに従って樹脂製品110の表面を改質することができる。   The wavelength of the ultraviolet light is not particularly limited, and one that promotes the modification of the surface of the resin product 110 is selected. In one embodiment, the wavelength of the ultraviolet light is 243 nm or less. When the wavelength is 243 nm or less, the modification of the surface of the resin product 110 is further promoted. Moreover, when the wavelength of ultraviolet rays is shorter than 243 nm, the surface of the resin product 110 can be modified according to a finer pattern.

紫外線の照射量は特に限定されず、紫外線が照射されない部分140に選択的にめっきが析出するように、適宜選択することができる。一実施形態においては、主波長についての紫外線の積算照射量は400mJ/cm以上であり、好ましくは600mJ/cm以上である。また、一実施形態においては、主波長についての積算照射量は2000mJ/cm以下である。本明細書においては、特に断りがない限り、紫外線の照射量及び照射強度は、主波長における値を指す。本明細書において、主波長とは、243nm以下の領域においてもっとも強度が高い波長のことを指す。具体的には、低圧水銀ランプであれば主波長は185nmである。 The irradiation amount of ultraviolet rays is not particularly limited, and can be appropriately selected so that plating is selectively deposited on the portion 140 where ultraviolet rays are not irradiated. In one embodiment, integrated irradiation dose of ultraviolet rays of the main wavelength is at 400 mJ / cm 2 or more, preferably 600 mJ / cm 2 or more. Moreover, in one Embodiment, the integrated irradiation amount about a dominant wavelength is 2000 mJ / cm < 2 > or less. In this specification, unless otherwise specified, the irradiation amount and irradiation intensity of ultraviolet rays refer to values at the dominant wavelength. In this specification, the dominant wavelength refers to a wavelength having the highest intensity in a region of 243 nm or less. Specifically, in the case of a low-pressure mercury lamp, the dominant wavelength is 185 nm.

もっとも、めっきの析出条件は、めっき液の種類、樹脂製品110の種類、樹脂製品110表面の汚染度、めっき液の濃度、温度、pH、及び経時劣化、並びに紫外線ランプ等の出力の変動等により変化しうる。この場合には、上述の数値を参考に、紫外線の照射量を適宜決定すればよい。   However, the plating deposition conditions depend on the type of plating solution, the type of resin product 110, the degree of contamination of the surface of the resin product 110, the concentration of the plating solution, temperature, pH, aging, and fluctuations in the output of an ultraviolet lamp, etc. It can change. In this case, the irradiation amount of ultraviolet rays may be appropriately determined with reference to the above-described numerical values.

本実施形態において、樹脂製品110の表面には、紫外線が照射される部分120と、紫外線が照射されない部分140と、が含まれるものとする。しかしながら、一実施形態においては、樹脂製品110の表面には、一定量以上の紫外線が照射される部分と、一定量未満の紫外線が照射されるか又は紫外線が照射されない部分と、が含まれる。この実施形態において、一定量以上の紫外線が照射される部分は、選択的に紫外線が照射された部分に相当し、一定量未満の紫外線が照射されるか又は紫外線が照射されない部分は、選択的に紫外線が照射されていない部分に相当する。一定量以上の紫外線が照射される部分には、後述するめっき工程(S240)において金属皮膜130が析出しないように、より多くの紫外線が照射される。一方で、一定量未満の紫外線が照射される部分には、後述するめっき工程(S240)において金属皮膜130が析出するように、より少ない紫外線しか照射されない。金属皮膜130を析出させる部分にも紫外線を照射することは、樹脂製品110の表面に微細な凹凸を生じさせ、樹脂製品110と金属皮膜130との接着力を向上させうる点で有利である。   In the present embodiment, the surface of the resin product 110 includes a portion 120 that is irradiated with ultraviolet rays and a portion 140 that is not irradiated with ultraviolet rays. However, in one embodiment, the surface of the resin product 110 includes a portion irradiated with a certain amount or more of ultraviolet rays and a portion irradiated with less than a certain amount of ultraviolet rays or not irradiated with ultraviolet rays. In this embodiment, the portion irradiated with a certain amount or more of ultraviolet rays corresponds to the portion selectively irradiated with ultraviolet rays, and the portion irradiated with less than a certain amount of ultraviolet rays or not irradiated with ultraviolet rays is selectively selected. This corresponds to a portion not irradiated with ultraviolet rays. More ultraviolet rays are irradiated to the portion irradiated with a certain amount or more of ultraviolet rays so that the metal film 130 is not deposited in the plating step (S240) described later. On the other hand, only a smaller amount of ultraviolet rays is irradiated on the portion irradiated with less than a certain amount of ultraviolet rays so that the metal film 130 is deposited in the plating step (S240) described later. It is advantageous to irradiate the portion on which the metal film 130 is deposited with ultraviolet rays in that fine unevenness is generated on the surface of the resin product 110 and the adhesive force between the resin product 110 and the metal film 130 can be improved.

樹脂製品110は、照射工程(S210)と処理工程(S220)との組み合わせにより選択的な改質が可能である樹脂材料を表面に有するものであれば特に限定されない。一実施形態において、樹脂製品110は、耐アルカリ性の低い樹脂材料を有している。耐アルカリ性の低い樹脂材料とは、アルカリ処理によって表面が改質される、すなわちアルカリ処理によって表面において原子間の結合が切断される樹脂材料のことを指す。アルカリ処理によって改質されやすい樹脂材料の例としては、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、アクリル樹脂、又はポリエステル樹脂等が挙げられる。一実施形態においては、エステル結合、アミド結合、又はイミド結合のような、加水分解によってカルボキシル基を生じる樹脂材料が用いられる。例えば、樹脂材料としてポリイミド樹脂が用いられる場合、樹脂製品110に対してアルカリ処理を行うと、イミド開環が起こり、樹脂製品110の表面にカルボキシル基又はカルボキシルイオンが生成しうる。   The resin product 110 is not particularly limited as long as it has a resin material on the surface that can be selectively modified by a combination of the irradiation step (S210) and the treatment step (S220). In one embodiment, the resin product 110 has a resin material with low alkali resistance. The resin material having low alkali resistance refers to a resin material whose surface is modified by alkali treatment, that is, a bond between atoms is broken on the surface by alkali treatment. Examples of the resin material that is easily modified by alkali treatment include polyimide resin, polyamide resin, polycarbonate resin, acrylic resin, and polyester resin. In one embodiment, a resin material that generates a carboxyl group by hydrolysis, such as an ester bond, an amide bond, or an imide bond, is used. For example, when a polyimide resin is used as the resin material, when an alkali treatment is performed on the resin product 110, imide ring opening occurs, and a carboxyl group or a carboxyl ion may be generated on the surface of the resin product 110.

本実施形態の製造方法は、特に、ポリイミド樹脂又はポリアミド樹脂を表面に有する樹脂製品110に対して好ましく用いられる。なかでもポリイミド樹脂は、耐熱性及び強度に優れているため、ポリイミド樹脂基板上に金属皮膜パターンを形成して得られた配線板に対しては、はんだ付け(リフローを含む)を行うことが可能となる。   The manufacturing method of this embodiment is particularly preferably used for the resin product 110 having a polyimide resin or a polyamide resin on the surface. Above all, polyimide resin is excellent in heat resistance and strength, so it can be soldered (including reflow) to the wiring board obtained by forming a metal film pattern on the polyimide resin substrate. It becomes.

樹脂製品110の形状は特に限定されず、例えば基板状又はフィルム状等でありうる。また、樹脂製品110は、複数の樹脂材料で構成されていてもよいし、複数の樹脂材料の積層構造を有していてもよいし、他の材料の表面に樹脂材料を被覆して得られる被覆構造を有する複合材料であってもよい。   The shape of the resin product 110 is not particularly limited, and may be, for example, a substrate shape or a film shape. The resin product 110 may be composed of a plurality of resin materials, may have a laminated structure of a plurality of resin materials, or is obtained by coating the surface of another material with a resin material. It may be a composite material having a covering structure.

(処理工程)
処理工程(S220)においては、紫外線が照射された樹脂製品110がアルカリ溶液で処理される。処理方法については特に限定されず、樹脂製品110をアルカリ処理液に浸漬する方法、アルカリ処理液を樹脂製品110に塗布する方法、等が挙げられる。
(Processing process)
In the treatment step (S220), the resin product 110 irradiated with ultraviolet rays is treated with an alkaline solution. The treatment method is not particularly limited, and examples thereof include a method of immersing the resin product 110 in an alkali treatment liquid, a method of applying the alkali treatment liquid to the resin product 110, and the like.

一実施形態において、アルカリ処理は、樹脂製品110をアルカリ処理液に浸漬することにより行われる。アルカリ処理液としては、例えばアルカリ金属水酸化物又はアルカリ土類金属水酸化物等の水溶液を用いることができる。アルカリ処理液の具体的な例としては、水酸化ナトリウム水溶液又は水酸化カリウム水溶液等が挙げられる。アルカリ処理の後には、樹脂製品110を水洗等により洗浄してもよい。   In one embodiment, the alkali treatment is performed by immersing the resin product 110 in an alkali treatment liquid. As the alkali treatment liquid, for example, an aqueous solution of alkali metal hydroxide or alkaline earth metal hydroxide can be used. Specific examples of the alkali treatment liquid include an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution. After the alkali treatment, the resin product 110 may be washed with water or the like.

アルカリ処理の結果として、樹脂製品110の紫外線が照射された部分120は、めっき工程(S240)において金属皮膜が析出しないように改質される。その理由は明確ではないが、アルカリ処理により紫外線が照射された部分120が変質することが理由の1つではないかと考えられる。例えば、紫外線が照射された部分120は紫外線照射のために表面がもろくなっているため、アルカリ処理を行うことにより改質された部分が脱落する可能性がある。このために、紫外線が照射された部分120には、後述する付与工程(S230)において触媒イオンが付着しにくくなることが考えられる。このことが、紫外線が照射された部分120に金属皮膜が析出しない理由であるものと考えられる。   As a result of the alkali treatment, the portion 120 of the resin product 110 that has been irradiated with ultraviolet rays is modified so that the metal film is not deposited in the plating step (S240). The reason is not clear, but it is considered that one of the reasons is that the portion 120 irradiated with ultraviolet rays is altered by alkali treatment. For example, since the surface of the portion 120 irradiated with ultraviolet rays is fragile due to the irradiation of ultraviolet rays, there is a possibility that the portion modified by the alkali treatment falls off. For this reason, it is considered that catalyst ions are less likely to adhere to the portion 120 irradiated with ultraviolet rays in the applying step (S230) described later. This is considered to be the reason why the metal film does not deposit on the portion 120 irradiated with ultraviolet rays.

また、樹脂製品110の紫外線が照射されない部分140は、めっき工程(S240)において金属皮膜が析出するように改質される。これは、アルカリ処理により、紫外線が照射されない部分140に親水性基が形成されるため、後述する付与工程(S230)において、紫外線が照射されない部分140に触媒イオンが付着しやすくなるためと考えられる。   Further, the portion 140 of the resin product 110 that is not irradiated with ultraviolet rays is modified so that a metal film is deposited in the plating step (S240). This is thought to be because, due to the alkali treatment, a hydrophilic group is formed in the portion 140 that is not irradiated with ultraviolet rays, so that catalyst ions are likely to adhere to the portion 140 that is not irradiated with ultraviolet rays in the applying step (S230) described later. .

樹脂製品110に対するアルカリ処理の強さは、紫外線が照射される部分120には金属皮膜が析出せず、紫外線が照射されない部分140には金属皮膜が析出するように、適宜選択することができる。一般的に、紫外線が照射される部分120については、アルカリ処理が強力であるほど、例えばアルカリ処理液の濃度が高く、浸漬時間が長いほど、金属皮膜が析出しにくい傾向にある。また、紫外線が照射されない部分140についても、アルカリ処理が強力であるほど、金属皮膜が析出しにくい傾向にある。もっとも、金属皮膜を析出させないためには、紫外線が照射される部分120よりも、紫外線が照射されない部分140の方が、より強力なアルカリ処理を必要とする傾向にある。   The strength of the alkali treatment for the resin product 110 can be selected as appropriate so that the metal film does not deposit on the portion 120 irradiated with ultraviolet rays and the metal film precipitates on the portion 140 not irradiated with ultraviolet rays. Generally, in the portion 120 irradiated with ultraviolet rays, the stronger the alkali treatment, for example, the higher the concentration of the alkali treatment liquid and the longer the immersion time, the more difficult the metal film is to be deposited. In addition, the portion 140 that is not irradiated with ultraviolet rays also tends to be less liable to deposit a metal film as the alkali treatment becomes stronger. However, in order not to deposit the metal film, the portion 140 not irradiated with ultraviolet rays tends to require stronger alkali treatment than the portion 120 irradiated with ultraviolet rays.

例えば、ポリイミドに対してアルカリ処理を行う場合、加水分解によりカルボキシル基又はカルボキシルイオンが生成する一方で、イミド環が完全に加水分解されると、その部分においてポリマー鎖は断裂し、分子は脱落しすなわち溶解する。すなわち、アルカリ処理の際には、カルボキシル基又はカルボキシルイオンの生成と、脱落によるカルボキシル基又はカルボキシルイオンの消失との双方が生じていると考えられる。アルカリ処理が強力であると、特に脱落のスピードが速くなると考えられる。   For example, when alkali treatment is performed on polyimide, a carboxyl group or a carboxyl ion is generated by hydrolysis. On the other hand, when the imide ring is completely hydrolyzed, the polymer chain is broken at that portion and the molecule is dropped. That is, it dissolves. That is, it is considered that both the generation of carboxyl groups or carboxyl ions and the disappearance of the carboxyl groups or carboxyl ions due to dropping occur during the alkali treatment. If the alkali treatment is strong, the drop-off speed is considered to be particularly fast.

一実施形態においては、樹脂製品110のアルカリ処理液への浸漬時間は、1秒間以上であり、好ましくは5秒間以上であり、より好ましくは20秒間以上である。また、一実施形態において、浸漬時間は300秒間以下であり、好ましくは100秒間以下であり、より好ましくは60秒間以下である。   In one embodiment, the immersion time of the resin product 110 in the alkaline treatment liquid is 1 second or longer, preferably 5 seconds or longer, more preferably 20 seconds or longer. Moreover, in one Embodiment, immersion time is 300 second or less, Preferably it is 100 second or less, More preferably, it is 60 second or less.

また、一実施形態において、アルカリ処理液が含むアルカリ金属水酸化物の濃度は、0.010mol/L以上であり、好ましくは0.10mol/L以上であり、より好ましくは0.30mol/L以上である。また、一実施形態において、アルカリ処理液が含むアルカリ金属水酸化物の濃度は、10mol/L以下であり、より好ましくは3.0mol/L以下である。さらに、別の実施形態において、アルカリ処理液のpHは12.0以上であり、好ましくは13.0以上であり、さらに好ましくは13.5以上である。   In one embodiment, the concentration of the alkali metal hydroxide contained in the alkali treatment liquid is 0.010 mol / L or more, preferably 0.10 mol / L or more, more preferably 0.30 mol / L or more. It is. Moreover, in one Embodiment, the density | concentration of the alkali metal hydroxide which an alkali treatment liquid contains is 10 mol / L or less, More preferably, it is 3.0 mol / L or less. Furthermore, in another embodiment, the pH of the alkaline treatment liquid is 12.0 or more, preferably 13.0 or more, and more preferably 13.5 or more.

(付与工程)
付与工程(S230)においては、アルカリ溶液で処理された樹脂製品110の表面に、無電解めっき触媒が付与される。無電解めっき触媒の付与は、従来から知られている方法に従って行うことができる。
(Granting process)
In the application step (S230), an electroless plating catalyst is applied to the surface of the resin product 110 treated with the alkaline solution. The application of the electroless plating catalyst can be performed according to a conventionally known method.

例えば、以下の2工程を用いることで、無電解めっき触媒を付与することができる。
(工程1)樹脂製品110を触媒イオン入りの溶液に浸漬する。一実施形態において、触媒イオンとしては、正電荷を有する無電解めっき触媒イオンが用いられる。正電荷を有する無電解めっき触媒イオンは、例えば、アルカリ処理により樹脂製品110の表面にカルボキシル基等が形成されている場合に、樹脂製品110の表面に吸着されやすいと考えられる。上述したように、樹脂製品110を触媒イオン入りの溶液に浸漬した際に、樹脂製品110の紫外線が照射された部分120には触媒イオンが付着しにくく、紫外線が照射されない部分140には触媒イオンが付着しやすいものと考えられる。
For example, an electroless plating catalyst can be provided by using the following two steps.
(Step 1) The resin product 110 is immersed in a solution containing catalyst ions. In one embodiment, electroless plating catalyst ions having a positive charge are used as the catalyst ions. The electroless plating catalyst ions having a positive charge are considered to be easily adsorbed on the surface of the resin product 110 when, for example, a carboxyl group or the like is formed on the surface of the resin product 110 by alkali treatment. As described above, when the resin product 110 is immersed in a solution containing catalyst ions, the catalyst ions are less likely to adhere to the portion 120 of the resin product 110 that has been irradiated with ultraviolet rays, and the portion 140 that is not irradiated with ultraviolet rays has catalytic ions. It is thought that is likely to adhere.

(工程2)還元剤を含有する溶液に樹脂製品を浸漬することにより触媒イオンを還元する。こうして、触媒が析出する。樹脂製品110の紫外線が照射されない部分140には触媒イオンが付着しやすいために、還元の結果、紫外線が照射されない部分140には紫外線が照射された部分120と比べてより多くの触媒が付与されているものと考えられる。還元剤としては従来用いられているものを採用することができ、例えば国際公開第2007/066460号に挙げられているように、水素ガス、ジメチルアミンボラン及び水素化ホウ素ナトリウム等を用いることができる。 (Step 2) The catalyst ions are reduced by immersing the resin product in a solution containing a reducing agent. Thus, the catalyst is precipitated. Since catalyst ions easily adhere to the portion 140 of the resin product 110 that is not irradiated with ultraviolet rays, as a result of the reduction, the portion 140 that is not irradiated with ultraviolet rays is given more catalyst than the portion 120 that is irradiated with ultraviolet rays. It is thought that. As the reducing agent, those conventionally used can be employed, and for example, hydrogen gas, dimethylamine borane, sodium borohydride, and the like can be used as listed in International Publication No. 2007/066460. .

正電荷を有する無電解めっき触媒イオンの例としては、アミン系の配位子を有する金属錯体、特に塩基性アミノ酸を配位子として有する金属錯体を用いることができる。一例としては、パラジウムの塩基性アミノ酸錯体が挙げられる。パラジウムの塩基性アミノ酸錯体とは、パラジウムイオンと塩基性アミノ酸との錯体である。パラジウムイオンとしては、限定されるわけではないが、2価のパラジウムイオンがよく用いられる。塩基性アミノ酸は、天然アミノ酸であっても人工アミノ酸であってもよい。一実施形態において、アミノ酸はα−アミノ酸である。塩基性アミノ酸としては、側鎖にアミノ基又はグアニジル基等の塩基性置換基を有するアミノ酸が挙げられる。塩基性アミノ酸の例としては、リシン、アルギニン又はオルニチン等が挙げられる。   As an example of the electroless plating catalyst ion having a positive charge, a metal complex having an amine-based ligand, particularly a metal complex having a basic amino acid as a ligand can be used. An example is a basic amino acid complex of palladium. The basic amino acid complex of palladium is a complex of palladium ion and basic amino acid. The palladium ion is not limited, but divalent palladium ions are often used. The basic amino acid may be a natural amino acid or an artificial amino acid. In one embodiment, the amino acid is an α-amino acid. Examples of basic amino acids include amino acids having a basic substituent such as an amino group or a guanidyl group in the side chain. Examples of basic amino acids include lysine, arginine, ornithine and the like.

パラジウムの塩基性アミノ酸錯体の例としては、国際公開第2007/066460号に挙げられているものを用いることができる。パラジウムの塩基性アミノ酸錯体の具体例としては、下式(I)に表されるものが挙げられる。

Figure 0006130332
As examples of the basic amino acid complex of palladium, those listed in International Publication No. 2007/066460 can be used. Specific examples of the basic amino acid complex of palladium include those represented by the following formula (I).
Figure 0006130332

上式(I)において、L及びLはそれぞれ独立に炭素数1以上10以下のアルキレン基を表し、R及びRはそれぞれ独立にアミノ基又はグアニジル基を表す。炭素数1以上10以下のアルキレン基としては、メチレン基、1,2−エタンジイル基、1,3−プロパンジイル基又はn−ブタン−1,4−ジイル基等の直鎖アルキレン基等が挙げられる。上式(II)において、2つのアミノ基はトランス位に配位しているが、2つのアミノ基がシス位に配位していてもよい。また、パラジウムの塩基性アミノ酸錯体は、シス体とトランス体との混合物であってもよい。また、パラジウムの代わりに無電解めっき触媒として働く他の金属原子が用いられていてもよい。 In the above formula (I), L 1 and L 2 each independently represent an alkylene group having 1 to 10 carbon atoms, and R 3 and R 4 each independently represent an amino group or a guanidyl group. Examples of the alkylene group having 1 to 10 carbon atoms include linear alkylene groups such as a methylene group, 1,2-ethanediyl group, 1,3-propanediyl group, and n-butane-1,4-diyl group. . In the above formula (II), the two amino groups are coordinated at the trans position, but the two amino groups may be coordinated at the cis position. The basic amino acid complex of palladium may be a mixture of a cis isomer and a trans isomer. Also, other metal atoms that act as an electroless plating catalyst may be used instead of palladium.

(めっき工程)
めっき工程(S240)においては、無電解めっき触媒が付与された樹脂製品110が、無電解めっき液に浸漬される。この結果、図1(b)に示すように、樹脂製品110の表面のうち紫外線が照射されていない部分140に金属皮膜130が析出する。上述したように、紫外線が照射されない部分140には紫外線が照射された部分120と比べてより多くの触媒が付与されているものと考えられる。このために、紫外線が照射されていない部分140に選択的に金属皮膜130が析出するものと考えられる。また、上述のように、適切に照射工程(S210)、処理工程(S220)、及び付与工程(S230)を行うことにより、紫外線が照射される部分120に金属皮膜130を析出させないことができる。
(Plating process)
In the plating step (S240), the resin product 110 provided with the electroless plating catalyst is immersed in the electroless plating solution. As a result, as shown in FIG. 1B, the metal film 130 is deposited on the portion 140 of the surface of the resin product 110 that is not irradiated with ultraviolet rays. As described above, it is considered that more catalyst is applied to the portion 140 that is not irradiated with ultraviolet light compared to the portion 120 that is irradiated with ultraviolet light. For this reason, it is considered that the metal film 130 is selectively deposited on the portion 140 not irradiated with ultraviolet rays. Further, as described above, the metal film 130 can be prevented from being deposited on the portion 120 irradiated with ultraviolet rays by appropriately performing the irradiation step (S210), the processing step (S220), and the applying step (S230).

具体的な無電解めっきの方法については、特に限定されない。採用可能な無電解めっきの例としては、ホルマリン系無電解めっき浴を用いた無電解めっき、及びホルマリンを必要とせず析出速度の遅い次亜リン酸を還元剤として用いた無電解めっき等が挙げられる。また、より厚いめっき膜を形成するために、高速無電解めっき法により金属皮膜130を形成してもよい。無電解めっきのさらなる具体例としては、無電解ニッケルめっき、無電解銅めっき、無電解銅ニッケルめっき等があげられる。   The specific method of electroless plating is not particularly limited. Examples of electroless plating that can be used include electroless plating using a formalin-based electroless plating bath, and electroless plating using hypophosphorous acid, which does not require formalin and has a slow deposition rate, as a reducing agent. It is done. Further, in order to form a thicker plating film, the metal film 130 may be formed by a high-speed electroless plating method. Further specific examples of electroless plating include electroless nickel plating, electroless copper plating, and electroless copper nickel plating.

このような方法に従う無電解めっきは、例えばJCU社製Cu−Niめっき液セット「AISL」等の無電解めっき液セットを用いて行うことができる。   Electroless plating according to such a method can be performed using an electroless plating solution set such as a Cu-Ni plating solution set “AISL” manufactured by JCU.

こうして無電解めっきにより形成された金属皮膜は薄いことが多いため、さらに電解めっきを行うことにより金属皮膜の厚さを増加させてもよい。電解めっきにより設けられる金属層の材料としては、限定されるわけではないが、例としては、銅、ニッケル、銅−ニッケル合金、酸化亜鉛、亜鉛、銀、カドミウム、鉄、コバルト、クロム、ニッケル−クロム合金、スズ、スズ−鉛合金、スズ−銀合金、スズ−ビスマス合金、スズ−銅合金、金、白金、ロジウム、パラジウム、又はパラジウム−ニッケル合金等が挙げられる。また、金属皮膜130には、置換めっきにより銀等が析出していてもよい。   Since the metal film formed by electroless plating in this way is often thin, the thickness of the metal film may be increased by further performing electroplating. The material of the metal layer provided by electrolytic plating is not limited, but examples include copper, nickel, copper-nickel alloy, zinc oxide, zinc, silver, cadmium, iron, cobalt, chromium, nickel- Examples thereof include a chromium alloy, tin, tin-lead alloy, tin-silver alloy, tin-bismuth alloy, tin-copper alloy, gold, platinum, rhodium, palladium, or palladium-nickel alloy. Further, silver or the like may be deposited on the metal film 130 by displacement plating.

本実施形態の方法によれば、樹脂製品110のうち金属皮膜を形成しない部分に対して選択的に紫外線を照射することにより、選択的に金属皮膜が形成された金属皮膜付樹脂製品100を得ることができる。本実施形態によれば、フォトリソグラフィー及びエッチングを用いることなく、所望のパターンの金属皮膜を形成することができるため、金属皮膜付樹脂製品100を作製するのに必要な工程数を削減することができ、すなわちコストを低下させることができる。   According to the method of the present embodiment, by selectively irradiating the portion of the resin product 110 where the metal film is not formed with ultraviolet rays, the resin product with a metal film 100 on which the metal film is selectively formed is obtained. be able to. According to this embodiment, since a metal film having a desired pattern can be formed without using photolithography and etching, the number of steps necessary for producing the resin product 100 with a metal film can be reduced. That is, the cost can be reduced.

[実施例1−1]
樹脂製品110としては、ポリイミド板(東レ・デュポン社製,カプトンEN200,厚さ50μm)を用いた。
[Example 1-1]
As the resin product 110, a polyimide plate (manufactured by Toray DuPont, Kapton EN200, thickness 50 μm) was used.

まず、樹脂製品110上の金属皮膜を形成しない部分120に対して、大気中で、フォトマスクを介して紫外線を照射した。紫外線の照射条件は以下の通りであった。
低圧水銀ランプ:サムコ社製UV−300(主波長185nm,254nm)
照射距離:3.5cm
照射距離3.5cmにおける照度:5.40mW/cm(254nm)
1.35mW/cm(185nm)
照射時間:10分間
First, the portion 120 on the resin product 110 where the metal film was not formed was irradiated with ultraviolet rays through a photomask in the atmosphere. The ultraviolet irradiation conditions were as follows.
Low-pressure mercury lamp: Samco UV-300 (main wavelength: 185 nm, 254 nm)
Irradiation distance: 3.5cm
Illuminance at an irradiation distance of 3.5 cm: 5.40 mW / cm 2 (254 nm)
1.35 mW / cm 2 (185 nm)
Irradiation time: 10 minutes

次に、紫外線を照射した樹脂製品110に対してアルカリ処理を行った。具体的には、JCU社製Cu−Niめっき液セット「AISL」で使用されるアルカリ処理液(pH13.58:実測値)を用い、50℃に加熱して樹脂製品110を5秒間浸漬した。その後、樹脂製品110を50℃の純水中で1分間攪拌洗浄した。   Next, the alkali treatment was performed on the resin product 110 irradiated with ultraviolet rays. Specifically, the resin product 110 was immersed for 5 seconds by heating to 50 ° C. using an alkali treatment solution (pH 13.58: measured value) used in a Cu—Ni plating solution set “AISL” manufactured by JCU. Then, the resin product 110 was stirred and washed in pure water at 50 ° C. for 1 minute.

次に、アルカリ処理後の樹脂製品110に対して触媒イオン付与処理を行った。具体的には、パラジウム(II)塩基性アミノ酸錯体を含有するアクチベーター液(株式会社JCU社製,製品名ELFSEED ES−300)を用い、50℃で樹脂製品110を2分間浸漬した。その後、樹脂製品110を25℃の純水中で3往復させることにより洗浄した。   Next, a catalyst ion application treatment was performed on the resin product 110 after the alkali treatment. Specifically, the resin product 110 was immersed for 2 minutes at 50 ° C. using an activator solution containing a palladium (II) basic amino acid complex (manufactured by JCU Corporation, product name ELFSEED ES-300). Thereafter, the resin product 110 was washed by reciprocating three times in 25 ° C. pure water.

次に、アルカリ洗浄後の樹脂製品110に対して還元処理を行った。具体的には、アクセレレーター液(株式会社JCU社製,製品名ELFSEED ES−400)を用い、35℃で樹脂製品110を2分間浸漬した。その後、樹脂製品110を25℃の純水中で3往復させることにより洗浄し、さらにドライヤーを用いて樹脂製品110を乾燥させた。   Next, the reduction treatment was performed on the resin product 110 after the alkali cleaning. Specifically, the resin product 110 was immersed for 2 minutes at 35 ° C. using an accelerator liquid (manufactured by JCU Corporation, product name ELFSEED ES-400). Thereafter, the resin product 110 was washed by reciprocating three times in pure water at 25 ° C., and the resin product 110 was dried using a dryer.

次に、還元処理後の樹脂製品110に対して、無電解銅ニッケルめっきを行った。具体的には、JCU社製Cu−Niめっき液セット「AISL」で使用される無電解Cu−Niめっき液を用い、60℃に加熱して樹脂製品110を5分間浸漬した。その後、樹脂製品110を25℃の純水中で3往復させることにより洗浄した。こうして、金属皮膜付樹脂製品100が作製された。   Next, electroless copper nickel plating was performed on the resin product 110 after the reduction treatment. Specifically, the electroless Cu—Ni plating solution used in the Cu—Ni plating solution set “AISL” manufactured by JCU was used, and the resin product 110 was immersed for 5 minutes by heating to 60 ° C. Thereafter, the resin product 110 was washed by reciprocating three times in 25 ° C. pure water. Thus, the resin product 100 with a metal film was produced.

得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった一方、紫外線が照射されていない部分140には金属皮膜が析出していた。   In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays, while the metal coating was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例1−2]
アルカリ処理において、樹脂製品110をアルカリ処理液に10秒間浸漬したことを除いては、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった一方、紫外線が照射されていない部分140には金属皮膜が析出していた。
[Example 1-2]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 1-1 except that the resin product 110 was immersed in an alkali treatment solution for 10 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays, while the metal coating was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例1−3]
アルカリ処理において、樹脂製品110をアルカリ処理液に20秒間浸漬したことを除いては、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった一方、紫外線が照射されていない部分140には金属皮膜が析出していた。
[Example 1-3]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 1-1 except that the resin product 110 was immersed in an alkali treatment solution for 20 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays, while the metal coating was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例1−4]
アルカリ処理において、樹脂製品110をアルカリ処理液に60秒間浸漬したことを除いては、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった。紫外線が照射されていない部分140については、大部分に金属皮膜が析出していたが、一部に金属皮膜が析出していない部分が見られた。
[Example 1-4]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 1-1 except that the resin product 110 was immersed in an alkali treatment solution for 60 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays. About the part 140 which was not irradiated with an ultraviolet-ray, although the metal membrane | film | coat precipitated mostly, the part which the metal membrane | film | coat did not precipitate was seen in part.

[実施例1−5]
アルカリ処理において、樹脂製品110をアルカリ処理液に120秒間浸漬したことを除いては、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった。紫外線が照射されていない部分140については、大部分に金属皮膜が析出していたが、一部に金属皮膜が析出していない部分が見られた。金属皮膜が析出していない部分は、実施例1−4よりも大きかった。
[Example 1-5]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 1-1 except that the resin product 110 was immersed in an alkali treatment solution for 120 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays. About the part 140 which was not irradiated with an ultraviolet-ray, although the metal membrane | film | coat precipitated mostly, the part which the metal membrane | film | coat did not precipitate was seen in part. The part where the metal film was not deposited was larger than Example 1-4.

[実施例1−6]
アルカリ処理を行わなかったことを除いては、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120にまばらに金属皮膜が析出していたものの、ほとんどの部分において樹脂製品110の表面が露出していた。
[Example 1-6]
A resin product 100 with a metal film was produced in the same manner as in Example 1-1 except that the alkali treatment was not performed. In the obtained resin product 100 with a metal film, although the metal film was sparsely deposited on the portion 120 irradiated with ultraviolet rays, the surface of the resin product 110 was exposed in most parts.

[実施例2−1]
以下の点を除いて、実施例1−1と同様に金属皮膜付樹脂製品100を作製した。すなわち、触媒イオン付与処理においては実施例1−1と比較して3倍の濃度のアクチベーター液を用いた。また、触媒イオン付与処理においてはアクチベーター液に樹脂製品110を5分間浸漬した。また、還元処理においてはアクセレレーター液に樹脂製品110を4分間浸漬した。このように、無電解めっき触媒が実施例1−1よりも樹脂製品110上に付与されやすい条件で実験を行った。
[Example 2-1]
Except for the following points, a resin product 100 with a metal film was produced in the same manner as in Example 1-1. That is, in the catalyst ion application treatment, an activator solution having a concentration three times that of Example 1-1 was used. Further, in the catalyst ion application treatment, the resin product 110 was immersed in an activator solution for 5 minutes. In the reduction treatment, the resin product 110 was immersed in the accelerator liquid for 4 minutes. Thus, it experimented on the conditions with which an electroless-plating catalyst is easy to be provided on the resin product 110 rather than Example 1-1.

得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120の大部分に金属皮膜が析出していた。また、紫外線が照射されていない部分140にも金属皮膜が析出していた。   In the obtained resin product 100 with a metal coating, the metal coating was deposited on most of the portion 120 irradiated with ultraviolet rays. Moreover, the metal film was deposited also in the part 140 where the ultraviolet rays were not irradiated.

[実施例2−2]
アルカリ処理において、樹脂製品110をアルカリ処理液に10秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120の大部分に金属皮膜が析出していた。また、紫外線が照射されていない部分140には金属皮膜が析出していた。
[Example 2-2]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 10 seconds. In the obtained resin product 100 with a metal coating, the metal coating was deposited on most of the portion 120 irradiated with ultraviolet rays. Further, a metal film was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例2−3]
アルカリ処理において、樹脂製品110をアルカリ処理液に20秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120にはほとんど金属皮膜は析出していなかった一方、紫外線が照射されていない部分140には金属皮膜が析出していた。
[Example 2-3]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 20 seconds. In the obtained resin product 100 with a metal film, almost no metal film was deposited on the portion 120 irradiated with ultraviolet rays, while a metal film was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例2−4]
アルカリ処理において、樹脂製品110をアルカリ処理液に60秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった一方、紫外線が照射されていない部分140には金属皮膜が析出していた。
[Example 2-4]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 60 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays, while the metal coating was deposited on the portion 140 not irradiated with ultraviolet rays.

[実施例2−5]
アルカリ処理において、樹脂製品110をアルカリ処理液に120秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった。一方で、紫外線が照射されていない部分140については、大部分に金属皮膜が析出していたが、一部に金属皮膜が析出していない部分が見られた。
[Example 2-5]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 120 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays. On the other hand, about the part 140 which was not irradiated with the ultraviolet ray, the metal film was mostly deposited, but the part where the metal film was not partially deposited was seen.

[実施例2−6]
アルカリ処理において、樹脂製品110をアルカリ処理液に180秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった。一方で、紫外線が照射されていない部分140については、大部分に金属皮膜が析出していたが、一部に金属皮膜が析出していない部分が見られた。金属皮膜が析出しない部分は、実施例2−5よりも大きかった。
[Example 2-6]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 180 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays. On the other hand, about the part 140 which was not irradiated with the ultraviolet ray, the metal film was mostly deposited, but the part where the metal film was not partially deposited was seen. The portion where the metal film was not deposited was larger than Example 2-5.

[実施例2−7]
アルカリ処理において、樹脂製品110をアルカリ処理液に240秒間浸漬したことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120に金属皮膜は析出していなかった。一方で、紫外線が照射されていない部分140については、金属皮膜が析出している部分と金属皮膜が析出していない部分とが見られた。金属皮膜が析出しない部分は、実施例2−6よりも大きかった。
[Example 2-7]
In the alkali treatment, a resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the resin product 110 was immersed in an alkali treatment solution for 240 seconds. In the obtained resin product 100 with a metal coating, the metal coating was not deposited on the portion 120 irradiated with ultraviolet rays. On the other hand, as for the portion 140 not irradiated with ultraviolet rays, a portion where a metal film was deposited and a portion where no metal film was deposited were observed. The portion where the metal film was not deposited was larger than Example 2-6.

[実施例2−8]
アルカリ処理を行わなかったことを除いては、実施例2−1と同様に金属皮膜付樹脂製品100を作製した。得られた金属皮膜付樹脂製品100においては、紫外線が照射された部分120にまばらに金属皮膜が析出していたものの、ほとんどの部分において樹脂製品110の表面が露出していた。
[Example 2-8]
A resin product 100 with a metal film was produced in the same manner as in Example 2-1, except that the alkali treatment was not performed. In the obtained resin product 100 with a metal film, although the metal film was sparsely deposited on the portion 120 irradiated with ultraviolet rays, the surface of the resin product 110 was exposed in most parts.

以上のように、紫外線照射の後にアルカリ処理を行うことで、紫外線が照射されていない部分140に金属皮膜が析出するように無電解めっきを行うことができることが分かった。一方で、適切な条件でアルカリ処理を行うことにより、紫外線が照射された部分120には金属皮膜が析出しないように、無電解めっきを行うことができることがわかった。   As described above, it was found that by performing alkali treatment after ultraviolet irradiation, electroless plating can be performed so that the metal film is deposited on the portion 140 not irradiated with ultraviolet light. On the other hand, it was found that electroless plating can be performed so that a metal film does not deposit on the portion 120 irradiated with ultraviolet rays by performing an alkali treatment under appropriate conditions.

また、アルカリ処理時間が短いと紫外線が照射された部分120に金属皮膜が析出しやすくなり、アルカリ処理時間が長いと紫外線が照射されていない部分140に金属皮膜が析出しにくくなる傾向にあることが分かった。さらに、金属皮膜の析出のしやすさは触媒イオン付与処理及び還元処理の条件等にも依存することがわかった。しかしながら、上記の結果を参考にして、アルカリ処理の強さ(例えば処理時間又はアルカリ溶液の濃度等)を適宜調整することにより、任意の条件下において紫外線が照射されていない部分140に選択的に金属皮膜を析出させることが可能であると考えられる。   In addition, if the alkali treatment time is short, the metal film tends to be deposited on the portion 120 irradiated with ultraviolet rays, and if the alkali treatment time is long, the metal film tends to be difficult to deposit on the portion 140 not irradiated with ultraviolet rays. I understood. Furthermore, it was found that the ease of deposition of the metal film also depends on the conditions of the catalyst ion application treatment and the reduction treatment. However, referring to the above results, by appropriately adjusting the strength of the alkali treatment (for example, the treatment time or the concentration of the alkali solution), the portion 140 that has not been irradiated with ultraviolet rays under any conditions is selectively used. It is considered possible to deposit a metal film.

100 金属皮膜付樹脂製品
110 樹脂製品
120 紫外線が照射される部分
130 金属皮膜
140 紫外線が照射されない部分
S210 照射工程
S220 処理工程
S230 付与工程
S240 めっき工程
DESCRIPTION OF SYMBOLS 100 Resin product with metal coating 110 Resin product 120 Part 130 irradiated with ultraviolet rays Metal coating 140 Part not irradiated with ultraviolet rays S210 Irradiation step S220 Processing step S230 Application step S240 Plating step

Claims (8)

エステル結合、アミド結合、又はイミド結合を有する樹脂を表面に有する樹脂製品の表面のうち金属皮膜を析出させない部分に選択的に紫外線を照射して改質する照射工程と、
前記紫外線が照射されて改質された前記金属皮膜を析出させない部分と、前記樹脂製品の表面のうち前記紫外線が照射されていない金属皮膜を析出させる部分との双方をアルカリ溶液で処理することにより、前記紫外線が照射されて改質された部分を脱落させつつ、前記金属皮膜を析出させる部分を改質する処理工程と、
前記金属皮膜を析出させる部分と前記金属皮膜を析出させない部分との双方に触媒付与処理を行うことで、前記アルカリ溶液で処理された樹脂製品の表面のうち前記処理工程で改質された前記金属皮膜を析出させる部分に無電解めっき触媒を直接付着させる付与工程と、
前記無電解めっき触媒が付与された前記樹脂製品を無電解めっき液に浸漬することにより、前記樹脂製品の表面のうち選択的に紫外線が照射されていない部分に金属皮膜を析出させるめっき工程と、
を含むことを特徴とする、金属皮膜付樹脂製品の製造方法。
An irradiation step for selectively irradiating a portion of the surface of the resin product having a resin having an ester bond, an amide bond, or an imide bond with which the metal film is not deposited on the surface , and modifying the surface.
By treating both the portion that does not deposit the modified metal film irradiated with the ultraviolet light and the portion that deposits the metal film not irradiated with ultraviolet light on the surface of the resin product with an alkaline solution. , A treatment step of modifying the portion on which the metal film is deposited while dropping off the modified portion irradiated with the ultraviolet rays ,
The metal modified in the treatment step in the surface of the resin product treated with the alkali solution by performing a catalyst application treatment on both the portion where the metal coating is deposited and the portion where the metal coating is not deposited. An application step of directly attaching an electroless plating catalyst to a portion where a film is deposited ;
A plating step of depositing a metal film on a portion of the surface of the resin product that is not selectively irradiated with ultraviolet rays by immersing the resin product provided with the electroless plating catalyst in an electroless plating solution;
A method for producing a resin product with a metal film, comprising:
前記照射工程において、大気中で前記紫外線を照射することを特徴とする、請求項に記載の金属皮膜付樹脂製品の製造方法。 The method for producing a resin product with a metal film according to claim 1 , wherein in the irradiation step, the ultraviolet ray is irradiated in the atmosphere. 前記照射工程において、前記表面の一部分を酸素により酸化することを特徴とする、請求項1又は2に記載の金属皮膜付樹脂製品の製造方法。 Wherein in the irradiation process, characterized by oxidizing a portion of the surface by oxygen, producing method of metallic coating with a resin product according to claim 1 or 2. 前記付与工程においては、正電荷を有する無電解めっき触媒イオンの溶液で前記樹脂製品を処理することを特徴とする、請求項1乃至の何れか1項に記載の金属皮膜付樹脂製品の製造方法。 In the said provision process, the said resin product is processed with the solution of the electroless-plating catalyst ion which has a positive charge, The manufacture of the resin product with a metal film of any one of the Claims 1 thru | or 3 characterized by the above-mentioned. Method. 前記アルカリ溶液のpHが12.0以上であることを特徴とする、請求項1乃至の何れか1項に記載の金属皮膜付樹脂製品の製造方法。 The method for producing a resin product with a metal film according to any one of claims 1 to 4 , wherein the pH of the alkaline solution is 12.0 or more. 前記アルカリ溶液が、アルカリ金属水酸化物の溶液であることを特徴とする、請求項1乃至の何れか1項に記載の金属皮膜付樹脂製品の製造方法。 The method for producing a resin product with a metal film according to any one of claims 1 to 5 , wherein the alkali solution is an alkali metal hydroxide solution. 前記処理工程において、1秒間以上、100秒間以下、前記樹脂製品を前記アルカリ溶液に浸漬することを特徴とする、請求項1乃至の何れか1項に記載の金属皮膜付樹脂製品の製造方法。 The method for producing a resin product with a metal film according to any one of claims 1 to 6 , wherein in the treatment step, the resin product is immersed in the alkaline solution for 1 second or more and 100 seconds or less. . 前記樹脂製品の前記表面がポリイミド樹脂又はポリアミド樹脂を含むことを特徴とする、請求項1乃至の何れか1項に記載の金属皮膜付樹脂製品の製造方法。 The method for producing a resin product with a metal film according to any one of claims 1 to 7 , wherein the surface of the resin product contains a polyimide resin or a polyamide resin.
JP2014135121A 2014-06-30 2014-06-30 Manufacturing method of resin product with metal film Active JP6130332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014135121A JP6130332B2 (en) 2014-06-30 2014-06-30 Manufacturing method of resin product with metal film
US14/750,200 US20150376794A1 (en) 2014-06-30 2015-06-25 Resin article having plating layer and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135121A JP6130332B2 (en) 2014-06-30 2014-06-30 Manufacturing method of resin product with metal film

Publications (2)

Publication Number Publication Date
JP2016014160A JP2016014160A (en) 2016-01-28
JP6130332B2 true JP6130332B2 (en) 2017-05-17

Family

ID=54929894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135121A Active JP6130332B2 (en) 2014-06-30 2014-06-30 Manufacturing method of resin product with metal film

Country Status (2)

Country Link
US (1) US20150376794A1 (en)
JP (1) JP6130332B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654154B1 (en) * 2013-08-09 2015-01-14 キヤノン・コンポーネンツ株式会社 RESIN PRODUCT AND METHOD FOR PRODUCING RESIN PRODUCT WITH METAL COATING, RESIN PRODUCT WITH METAL COATING, AND WIRING BOARD
JP6130331B2 (en) * 2014-06-17 2017-05-17 キヤノン・コンポーネンツ株式会社 Manufacturing method of resin product with metal film
JP7460047B2 (en) 2019-11-20 2024-04-02 株式会社電気印刷研究所 Method for producing metal pattern using electrophotographic toner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783005A (en) * 1972-02-04 1974-01-01 Western Electric Co Method of depositing a metal on a surface of a nonconductive substrate
US3949121A (en) * 1973-12-12 1976-04-06 Western Electric Company, Inc. Method of forming a hydrophobic surface
JP4135459B2 (en) * 2002-10-10 2008-08-20 トヨタ自動車株式会社 Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JP2005036292A (en) * 2003-07-16 2005-02-10 Toyota Motor Corp Electroless plating method and plated component
MY148655A (en) * 2003-11-27 2013-05-15 Fuji Photo Film Co Ltd Metal pattern forming method, metal pattern obtained by the same, printed wiring board, conductive film forming method, and conductive film obtained by the same
JP2005223063A (en) * 2004-02-04 2005-08-18 Seiko Epson Corp Process for producing wiring board and process for fabricating electronic device
JP3894327B2 (en) * 2004-02-04 2007-03-22 セイコーエプソン株式会社 Wiring board manufacturing method and electronic device manufacturing method
US8980409B2 (en) * 2011-04-15 2015-03-17 Toyobo Co., Ltd. Laminate, method for producing same, and method for producing device structure using same
US9604391B2 (en) * 2011-04-15 2017-03-28 Toyobo Co., Ltd. Laminate, production method for same, and method of creating device structure using laminate
JP5770917B1 (en) * 2014-04-04 2015-08-26 キヤノン・コンポーネンツ株式会社 Method for producing article with plating film
JP5956553B2 (en) * 2014-12-24 2016-07-27 キヤノン・コンポーネンツ株式会社 Resin product with plating film and manufacturing method thereof

Also Published As

Publication number Publication date
US20150376794A1 (en) 2015-12-31
JP2016014160A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP3392873B2 (en) Pretreatment solution for electroless plating, electroless plating bath and electroless plating method
TWI415680B (en) Palladium complex and the use of the catalyst to impart treatment liquid
JP6130332B2 (en) Manufacturing method of resin product with metal film
TW201136664A (en) Process for the surface-modification of flyash and industrial applications thereof
KR100906317B1 (en) Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin having reformed surface for forming inorganic thin film
JP6059198B2 (en) Resin product with plating film, method for producing the same, and encoder
JP2010138452A (en) Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5856278B1 (en) MODIFICATION METHOD, RESIN PRODUCT WITH PLATING FILM, AND METHOD FOR PRODUCING SAME
JP5956553B2 (en) Resin product with plating film and manufacturing method thereof
JP5856354B1 (en) Resin product with plating film, resin product, and method for producing resin product with plating film
WO2016126212A1 (en) A process for plating a metal on a textile fiber
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2006188757A (en) Method for depositing inorganic thin film of polyimide resin and method for producing polyimide resin for depositing surface-reformed inorganic thin film
JP5371465B2 (en) Non-cyan electroless gold plating solution and conductor pattern plating method
JP2005045236A (en) Inorganic thin film pattern forming method of polyimide resin
KR102320245B1 (en) Method for forming nickel plating film
JP2008060491A (en) Substrate for forming circuit, and method of manufacturing the same
JP2010047828A (en) Pretreatment method for electroless plating and electroless plating method of substrate
JP2016121387A (en) Production method of resin product with plating film
US20160186324A1 (en) Resin article and method of manufacturing resin article
US20170159182A1 (en) Resin article with plating film and method for manufacturing resin article
JP4521345B2 (en) Catalyst treatment method, electroless plating method, and circuit forming method using electroless plating method
JP5617322B2 (en) Method for producing conductive particles
JP2015057515A (en) Plating method, resin product with metal coating, and wiring board
JP2008091456A (en) Method for forming inorganic thin film on surface of polyimide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6130332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250