JP6079745B2 - Inspection method and manufacturing method of fuel cell - Google Patents

Inspection method and manufacturing method of fuel cell Download PDF

Info

Publication number
JP6079745B2
JP6079745B2 JP2014218182A JP2014218182A JP6079745B2 JP 6079745 B2 JP6079745 B2 JP 6079745B2 JP 2014218182 A JP2014218182 A JP 2014218182A JP 2014218182 A JP2014218182 A JP 2014218182A JP 6079745 B2 JP6079745 B2 JP 6079745B2
Authority
JP
Japan
Prior art keywords
current density
voltage value
fuel cell
cell
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014218182A
Other languages
Japanese (ja)
Other versions
JP2016085869A (en
Inventor
祥 宇佐美
祥 宇佐美
孝郎 藤尾
孝郎 藤尾
前田 正史
正史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014218182A priority Critical patent/JP6079745B2/en
Priority to CA2905020A priority patent/CA2905020C/en
Priority to KR1020150145213A priority patent/KR101818818B1/en
Priority to US14/887,417 priority patent/US10254347B2/en
Priority to DE102015118040.5A priority patent/DE102015118040A1/en
Priority to CN201510700546.2A priority patent/CN105552408B/en
Publication of JP2016085869A publication Critical patent/JP2016085869A/en
Application granted granted Critical
Publication of JP6079745B2 publication Critical patent/JP6079745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

アイオノマを含む燃料電池の検査方法として、次の手法が知られている。まず、定期点検時に燃料電池の最大出力を測定する。測定した値が規定値の60%以下である場合、燃料電池に対して熱処理を施す。熱処理後、最大出力が規定値の60%よりも大きくなっていれば継続使用して問題ないと判断する。このように判断するのは、熱処理前に最大出力値が規定値の60%以下だった理由が、アイオノマの膨潤であると推定されるからである。このように推定できるのは、アイオノマの膨潤は、熱処理によって回復するからである。   The following method is known as a method for inspecting a fuel cell including an ionomer. First, the maximum output of the fuel cell is measured during periodic inspection. When the measured value is 60% or less of the specified value, the fuel cell is subjected to heat treatment. After the heat treatment, if the maximum output is larger than 60% of the specified value, it is determined that there is no problem with continuous use. The reason for this determination is that the reason why the maximum output value was 60% or less of the specified value before the heat treatment is presumed to be swelling of the ionomer. This can be estimated because the swelling of the ionomer is recovered by heat treatment.

特開2013−122815号公報JP2013-122815A

上記先行技術の場合、過渡的な運転条件における出力の検査について考慮されていない。本願発明は、上記先行技術を踏まえ、過渡的な運転条件における出力の検査の実現を解決課題とする。   In the case of the above prior art, the inspection of the output under the transient operating condition is not considered. Based on the above-described prior art, the present invention has an object of realizing an output inspection under a transient operating condition.

本発明は、上記課題を解決するためのものであり、以下の形態として実現できる。   SUMMARY An advantage of some aspects of the invention is to solve the above-described problems, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池を検査する方法が提供される。この方法は、電流密度を所定速度以上の速度で上昇させる上昇工程と;電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程とを含む。この形態によれば、過渡的な運転条件について検査ができる。第1電圧値に基づく判定は、過渡的な運転条件を反映しているからである。過渡的な運転条件が反映されるのは、第1電圧値が、電流密度を所定速度以上の速度で上昇させ、所定電流密度以上に達した時の電圧値だからである。 (1) According to one aspect of the present invention, a method for inspecting a fuel cell is provided. The method includes an ascending step of increasing the current density at a speed equal to or higher than a predetermined speed; a first voltage value that is a voltage value when the current density reaches a predetermined current density or higher; And a determination step of determining whether the fuel cell is normal or abnormal by comparing. According to this embodiment, it is possible to inspect transient operating conditions. This is because the determination based on the first voltage value reflects a transient operating condition. The transient operating condition is reflected because the first voltage value is a voltage value when the current density is increased at a speed equal to or higher than a predetermined speed and reaches a predetermined current density or higher.

(2)上記形態において、前記第2電圧値は、前記上昇工程が完了してから所定時間経過後のセル電圧であり;前記判定工程では、前記第2電圧値と前記第1電圧値との差である電圧差が基準値以上の場合に、異常であると判定してもよい。この形態によれば、燃料電池の個体差によるばらつきを考慮しなくても判定ができる。 (2) In the above aspect, the second voltage value is a cell voltage after a predetermined time has elapsed since the rising step is completed; in the determining step, the second voltage value and the first voltage value are You may determine with it being abnormal when the voltage difference which is a difference is more than a reference value. According to this embodiment, the determination can be made without taking into account variations due to individual differences in fuel cells.

(3)上記形態において、前記判定工程では、前記電圧差が前記基準値以上の場合は、第1の異常であると判定し、前記第2電圧値が所定値未満の場合は、前記第1の異常とは異なる第2の異常であると判定してもよい。この形態によれば、第1の異常と第2の異常とを区別できる。 (3) In the above aspect, in the determination step, when the voltage difference is equal to or greater than the reference value, it is determined that the first abnormality is present, and when the second voltage value is less than a predetermined value, the first It may be determined that the second abnormality is different from the abnormality. According to this aspect, it is possible to distinguish between the first abnormality and the second abnormality.

(4)上記形態において、前記第2電圧値は、予め定められた固定値であり、前記判定工程では、前記第1電圧値が前記第2電圧値未満の場合に、異常であると判定してもよい。この形態によれば、検査時間が短くなる。 (4) In the above embodiment, the second voltage value is a predetermined fixed value, and the determination step determines that the first voltage value is abnormal when the first voltage value is less than the second voltage value. May be. According to this embodiment, the inspection time is shortened.

(5)上記形態において、前記所定速度は、0.5A/(cm2・sec)でもよい。 (5) In the above embodiment, the predetermined speed may be 0.5 A / (cm 2 · sec).

(6)上記形態において、前記上昇が完了した時の電流密度は、当該燃料電池の使用範囲における最大出力時での電流密度でもよい。この形態によれば、最大出力になる場合について検査ができる。 (6) In the above embodiment, the current density when the increase is completed may be the current density at the maximum output in the usage range of the fuel cell. According to this form, it can test | inspect about the case where it becomes the maximum output.

(7)上記形態において、前記上昇が始まる前の電流密度は、0.2A/cm2以下でもよい。この形態によれば、0.2A/cm2以下から電流密度が上昇する場合について検査ができる。 (7) In the above embodiment, the current density before the rise starts may be 0.2 A / cm 2 or less. According to this form, it can test | inspect about the case where a current density rises from 0.2 A / cm < 2 > or less.

本発明は、上記以外の種々の形態で実現できる。例えば、上記の検査方法を含む燃料電池の製造方法、上記の検査方法を実現するためのコンピュータプログラム、このコンピュータプログラムを記憶した一時的でない記憶媒体等の形態で実現できる。   The present invention can be realized in various forms other than the above. For example, the present invention can be realized in the form of a fuel cell manufacturing method including the above inspection method, a computer program for realizing the above inspection method, a non-temporary storage medium storing this computer program, and the like.

発電検査システムの概略構成図。1 is a schematic configuration diagram of a power generation inspection system. 検査処理の工程図。Process drawing of an inspection process. 検査処理によってセル電圧と電流密度とが変化する様子を示すグラフ。The graph which shows a mode that a cell voltage and a current density change by test | inspection processing. 出力と単位面積当たりのカチオン汚染量との関係を示すグラフ。The graph which shows the relationship between an output and the amount of cationic contamination per unit area. 燃料電池の電圧−電流特性を示すグラフ。The graph which shows the voltage-current characteristic of a fuel cell. 電流密度を上下させる様子を示すグラフ。The graph which shows a mode that electric current density is raised / lowered. セル電圧と電流密度とが変化する様子を示すグラフ(比較例)。The graph which shows a mode that a cell voltage and a current density change (comparative example). セル電圧と電流密度とが変化する様子を示すグラフ(比較例)。The graph which shows a mode that a cell voltage and a current density change (comparative example).

図1は、発電検査システム100の概略構成を示す。発電検査システム100は、自動車用の燃料電池スタックを検査するシステムである。発電検査システム100は、中間プレート10と、セルモニタ20と、データ収集システム30とを備える。燃料電池スタックは、複数のセルFCを積層させたスタック構造を有する。セルFCは、発電体と、この発電体を挟み込むセパレータとを有する。発電体は、MEA(膜電極接合体)を含む。MEAは、カソード電極と、電解質膜と、アノード電極とが接合して構成されている。   FIG. 1 shows a schematic configuration of a power generation inspection system 100. The power generation inspection system 100 is a system for inspecting a fuel cell stack for an automobile. The power generation inspection system 100 includes an intermediate plate 10, a cell monitor 20, and a data collection system 30. The fuel cell stack has a stack structure in which a plurality of cells FC are stacked. The cell FC includes a power generator and a separator that sandwiches the power generator. The power generator includes an MEA (membrane electrode assembly). The MEA is configured by joining a cathode electrode, an electrolyte membrane, and an anode electrode.

中間プレート10は、セルFC同士の間に配置される。複数のセルFCと複数の中間プレート10とによる積層体は、図1に白抜き矢印で示した方向に荷重が加えられて締結される。   The intermediate plate 10 is disposed between the cells FC. The laminated body including the plurality of cells FC and the plurality of intermediate plates 10 is fastened by applying a load in the direction indicated by the white arrow in FIG.

セルモニタ20は、各セルFCのセル電圧を測定する装置である。セルモニタ20は、セルモニタケーブル22を介して、複数の中間プレート10のそれぞれに接続されている。   The cell monitor 20 is a device that measures the cell voltage of each cell FC. The cell monitor 20 is connected to each of the plurality of intermediate plates 10 via a cell monitor cable 22.

データ収集システム30は、パワーケーブル24を介してセルモニタ20と接続されている。データ収集システム30は、セルモニタ20によって測定された各セルFCのセル電圧を取得する。データ収集システム30は、上記の積層体と閉回路40を形成する。データ収集システム30は、内蔵する回路によって、閉回路40を流れる電流値を制御する。   The data collection system 30 is connected to the cell monitor 20 via the power cable 24. The data collection system 30 acquires the cell voltage of each cell FC measured by the cell monitor 20. The data collection system 30 forms the above-described stacked body and the closed circuit 40. The data collection system 30 controls the value of current flowing through the closed circuit 40 using a built-in circuit.

発電検査システム100は、複数のセルFCに水素を供給するための燃料ガス供給系(図示なし)、複数のセルFCに空気を供給するための酸化剤ガス供給系(図示なし)、及び、複数の中間プレート10に冷却水を流すための冷却水供給系(図示なし)を備える。供給される空気の相対湿度は、所定値に制御される。所定値とは、空気を加湿せずにカソードに供給する運転(無加湿運転)を再現するための値である。   The power generation inspection system 100 includes a fuel gas supply system (not shown) for supplying hydrogen to a plurality of cells FC, an oxidant gas supply system (not shown) for supplying air to the plurality of cells FC, and a plurality of A cooling water supply system (not shown) for supplying cooling water to the intermediate plate 10 is provided. The relative humidity of the supplied air is controlled to a predetermined value. The predetermined value is a value for reproducing an operation of supplying air to the cathode without humidification (non-humidification operation).

図2は、検査処理の工程図である。検査処理は、燃料電池の製造工程の一環として実行される。検査処理は、各セルFCを検査するために、データ収集システム30によって実行される。検査処理に際して、必要量の水素、空気、冷却水が供給される。   FIG. 2 is a process diagram of the inspection process. The inspection process is executed as part of the fuel cell manufacturing process. The inspection process is executed by the data collection system 30 in order to inspect each cell FC. In the inspection process, necessary amounts of hydrogen, air, and cooling water are supplied.

図3は、検査処理によって、セルFCのセル電圧と電流密度とが変化する様子を示すグラフである。以下、図3を参照しながら、検査処理を説明する。   FIG. 3 is a graph showing how the cell voltage and current density of the cell FC change due to the inspection process. Hereinafter, the inspection process will be described with reference to FIG.

まず、各セルFCの電流密度を所定値J1に制御する(ステップS110)。所定値J1は、生成水が少ない運転を実現するための電流密度であり、本実施形態では0.05A/cm2以上0.2A/cm2以下の任意の値のことである。電流密度の制御は、閉回路40を流れる電流値を制御することで実現する。電流密度の算出は、閉回路40を流れる電流値を、各セルFCの発電領域の面積値で除算することによって実現される。この面積値は、予めデータ収集システム30に入力されている。 First, the current density of each cell FC is controlled to a predetermined value J1 (step S110). Predetermined value J1 is the current density to achieve the produced water is less operation, in the present embodiment is any value of 0.05 A / cm 2 or more 0.2 A / cm 2 or less. The control of the current density is realized by controlling the current value flowing through the closed circuit 40. The calculation of the current density is realized by dividing the value of the current flowing through the closed circuit 40 by the area value of the power generation region of each cell FC. This area value is input to the data collection system 30 in advance.

次に、電流密度を最大値J2まで上昇させる(ステップS120)。最大値J2は、燃料電池の最大出力時における電流密度であり、本実施形態では2.0A/cm2以上3.0A/cm2以下である。上昇速度は、0.5A/(cm2・sec)に設定する。図3は、時刻t1から電流密度の上昇が始まり、時刻t2で電流密度の上昇が終わる様子を示す。電流密度が上昇すると、セルFCの電圧−電流特性に従って、図3に示すようにセル電圧が降下する。 Next, the current density is increased to the maximum value J2 (step S120). The maximum value J2 is a current density at the maximum output of the fuel cell, and is 2.0 A / cm 2 or more and 3.0 A / cm 2 or less in the present embodiment. The rising speed is set to 0.5 A / (cm 2 · sec). FIG. 3 shows how the current density starts increasing from time t1, and the current density increasing ends at time t2. When the current density increases, the cell voltage decreases according to the voltage-current characteristics of the cell FC as shown in FIG.

続いて、電流密度が最大値J2に達してから所定時間経過後(時刻t3)に、各セルFCのセル電圧V3を取得する(ステップS130)。所定時間は、0秒から10秒の任意の時間であり、本実施形態では5秒が採用されている。   Subsequently, the cell voltage V3 of each cell FC is acquired after a predetermined time has elapsed after the current density reaches the maximum value J2 (time t3) (step S130). The predetermined time is an arbitrary time from 0 seconds to 10 seconds, and 5 seconds is adopted in the present embodiment.

図3は、正常の場合は電圧V3a、カチオン汚染の場合は電圧V3b、他の異常の場合はV3cが取得される様子を示す。   FIG. 3 shows how the voltage V3a is acquired in the normal case, the voltage V3b in the case of cation contamination, and V3c in the case of other abnormalities.

カチオン汚染とは、電解質膜に含まれるスルホン酸基が、カチオンによって被毒する現象のことである。カチオンとは、例えば、鉄、アルミニウム、ニッケル、セリウム、コバルト等の陽イオンのことである。これらのカチオンが電解質膜に混入する原因は様々である。例えば、製造工程で異物として混入したり、発電時に他の部材から溶出して混入したりする。鉄、アルミニウム、ニッケルは、製造工程で混入したり、補機部品やセパレータから溶出して混入したりする場合がある。セリウム、コバルトは、酸化防止剤(ラジカルクエンチャ)から溶出して混入する場合がある。スルホン酸基がカチオンによって被毒すると、プロトン伝導の抵抗が増大し、特に乾燥時に出力が低下する。   Cationic contamination is a phenomenon in which sulfonic acid groups contained in an electrolyte membrane are poisoned by cations. The cation is a cation such as iron, aluminum, nickel, cerium, or cobalt. There are various causes for these cations to be mixed into the electrolyte membrane. For example, it mixes as a foreign substance in a manufacturing process, or elutes and mixes in from other members at the time of electric power generation. Iron, aluminum, and nickel may be mixed in the manufacturing process, or may be eluted from auxiliary parts and separators. Cerium and cobalt may be eluted and mixed from an antioxidant (radical quencher). When sulfonic acid groups are poisoned by cations, the resistance of proton conduction increases, and the output decreases particularly during drying.

ステップS130の後、電流密度を最大値J2に維持して所定時間経過した後に(時刻t4)、各セルFCのセル電圧V4を取得する(ステップS140)。所定時間として、本実施形態では10分が採用されている。図3は、正常の場合およびカチオン汚染の場合は電圧V4a、他の異常の場合はV4cが取得される様子を示す。   After step S130, the current density is maintained at the maximum value J2, and after a predetermined time has elapsed (time t4), the cell voltage V4 of each cell FC is acquired (step S140). In this embodiment, 10 minutes is adopted as the predetermined time. FIG. 3 shows how the voltage V4a is acquired in the case of normality and cation contamination, and V4c is acquired in the case of other abnormalities.

次に、各セルFCについて、セル電圧V4とセル電圧V3との差(以下「電圧差ΔV」という)が、閾値Vt1未満であるかを判定する(ステップS150)。電圧差ΔVが閾値Vt1以上のセルFCがある場合(ステップS150、NO)、そのセルFCはカチオン汚染が発生した不良品であると判定する(ステップS160)。   Next, for each cell FC, it is determined whether the difference between the cell voltage V4 and the cell voltage V3 (hereinafter referred to as “voltage difference ΔV”) is less than the threshold value Vt1 (step S150). When there is a cell FC having a voltage difference ΔV equal to or greater than the threshold value Vt1 (step S150, NO), it is determined that the cell FC is a defective product in which cation contamination has occurred (step S160).

先述したカチオン汚染の場合、電圧差ΔVは、(電圧V4a−電圧V3b)であり、閾値Vt1以上である。これに対し、正常の場合、電圧差ΔVは(電圧V4a−電圧V3a)、他の異常の場合、電圧差ΔVは(電圧V4c−電圧V3c)であり、何れも閾値Vt1未満である。   In the case of the cation contamination described above, the voltage difference ΔV is (voltage V4a−voltage V3b), which is equal to or greater than the threshold value Vt1. On the other hand, in the normal case, the voltage difference ΔV is (voltage V4a−voltage V3a), and in other abnormal cases, the voltage difference ΔV is (voltage V4c−voltage V3c), both of which are less than the threshold value Vt1.

図4は、燃料電池の出力(W)と、MEAの単位面積あたりのカチオン汚染量(μg/cm2)との関係を示すグラフである。図5は、燃料電池の電圧−電流特性を示すグラフである。以下、これら2つのグラフを用いて、カチオン汚染の影響について説明する。 FIG. 4 is a graph showing the relationship between the output (W) of the fuel cell and the amount of cation contamination (μg / cm 2 ) per unit area of MEA. FIG. 5 is a graph showing the voltage-current characteristics of the fuel cell. Hereinafter, the influence of cation contamination will be described using these two graphs.

図4に示されたグラフは、定常時の場合の特性と、過渡時の場合の特性とを示す。定常時とは、電流密度が一定に制御された期間のことである。過渡時とは、検査処理のステップS120として説明したように電流密度が上昇した直後のことである。これらの特性は、電流密度が高い場合(1.2A/cm2以上の所定値)におけるものである。 The graph shown in FIG. 4 shows characteristics in a steady state and characteristics in a transient state. The constant time is a period in which the current density is controlled to be constant. The transient time is immediately after the current density is increased as described in step S120 of the inspection process. These characteristics are obtained when the current density is high (predetermined value of 1.2 A / cm 2 or more).

図4に示すように、定常時の場合、カチオン汚染量が増大しても、出力はあまり低下しない。これに対し、過渡時の場合、カチオン汚染量が増大すると、出力が大幅に低下する。   As shown in FIG. 4, in the steady state, the output does not decrease much even if the amount of cation contamination increases. On the other hand, when the amount of cation contamination increases in the transient state, the output is greatly reduced.

一方、図5に示されたグラフは、カチオン汚染量が基準値未満である合格品の場合の特性と、カチオン汚染量が基準値以上である不合格品の場合の特性とを示す。不合格品の場合は、湿潤状態および乾燥状態のときが示されている。湿潤状態とは、MEAを構成する電解質膜に含まれる水分量が、良好なプロトン伝導のための量に達している状態のことである。逆に乾燥状態とは、その水分量が、良好なプロトン伝導のための量よりも少ない状態のことである。   On the other hand, the graph shown in FIG. 5 shows the characteristics in the case of an acceptable product in which the cation contamination amount is less than the reference value, and the characteristics in the case of an unacceptable product in which the cation contamination amount is greater than or equal to the reference value. In the case of a rejected product, the wet state and the dry state are shown. The wet state is a state where the amount of water contained in the electrolyte membrane constituting the MEA reaches the amount for good proton conduction. Conversely, the dry state is a state where the amount of water is less than the amount for good proton conduction.

図5に示すように、電流密度が低い場合は、何れの場合でも殆ど差が無い。一方、電流密度が大きくなると、1.2A/cm2を超えた辺りから徐々に、差がつき始める。つまり、同じ電流密度でも、合格品に比べて不合格品の方が、セル電圧が低くなる。そして、その差は、電流密度が大きければ大きいほど拡大する。但し、湿潤状態の場合は、乾燥状態の場合に比べ、出力の低下が緩和される。 As shown in FIG. 5, when the current density is low, there is almost no difference in any case. On the other hand, when the current density is increased, a difference gradually starts from around 1.2 A / cm 2 . That is, even at the same current density, the cell voltage of the rejected product is lower than that of the acceptable product. The difference increases as the current density increases. However, the decrease in output is reduced in the wet state compared to the dry state.

このように、湿潤状態か乾燥状態かでカチオン汚染の影響が変化するのは、乾燥とカチオン汚染との両方が、プロトン伝導の抵抗を増大させるからである。つまり、湿潤状態の場合、カチオン汚染が発生していても、プロトン伝導性は大幅には悪化しないのに対し、乾燥状態の場合、カチオン汚染と電解質膜の乾燥との両方の影響を受けてプロトン伝導性が大幅に悪化する。   Thus, the influence of cation contamination changes depending on whether it is wet or dry because both drying and cation contamination increase the resistance of proton conduction. In other words, in the wet state, even if cation contamination occurs, the proton conductivity is not significantly deteriorated, whereas in the dry state, the proton is affected by both the cation contamination and the drying of the electrolyte membrane. The conductivity is greatly deteriorated.

図4及び図5と共に説明した上記内容から導かれるのは、電流密度が高く且つ乾燥状態においてセル電圧を測定すると、カチオン汚染を検出しやすいということである。しかし、電流密度が高いと、生成水の量が多くなって湿潤状態になる。よって、単に電流密度を高くするだけでは、上記の測定条件は実現できない。そこで本実施形態では、ステップS120のように電流密度を急激に上昇させることによって、上記の測定条件を実現した。つまり、低い電流密度の場合は生成水の量が少ないので、その状態から急激に電流密度を上昇させることによって、高電流密度と乾燥状態とを同時に実現した。   Derived from the above description described in conjunction with FIG. 4 and FIG. 5 is that the current density is high and it is easy to detect cation contamination when the cell voltage is measured in the dry state. However, if the current density is high, the amount of generated water increases and the product becomes wet. Therefore, the above measurement conditions cannot be realized simply by increasing the current density. Therefore, in the present embodiment, the above measurement conditions are realized by increasing the current density rapidly as in step S120. That is, since the amount of generated water is small in the case of a low current density, a high current density and a dry state were realized simultaneously by rapidly increasing the current density from that state.

検査処理において、電圧差ΔVが閾値Vt1未満の場合(ステップS150、YES)、各セルFCについて、セル電圧V4が閾値Vt4以上であるかを判定する(ステップS170)。セル電圧V4が閾値Vt4未満のセルFCがある場合(ステップS170、NO)、そのセルFCはカチオン汚染以外の異常による不良品であると判定する(ステップS180)。閾値Vt4は、最大出力時に満たすべき電圧値として実験的に定められた閾値である。   In the inspection process, when the voltage difference ΔV is less than the threshold value Vt1 (step S150, YES), for each cell FC, it is determined whether the cell voltage V4 is greater than or equal to the threshold value Vt4 (step S170). When there is a cell FC whose cell voltage V4 is less than the threshold value Vt4 (step S170, NO), it is determined that the cell FC is a defective product due to an abnormality other than cation contamination (step S180). The threshold value Vt4 is a threshold value experimentally determined as a voltage value to be satisfied at the maximum output.

このように、高電流密度を維持する定常運転を続けた後、セル電圧が回復しなければ、カチオン汚染以外による不良品であると判定できるのは、先述したように、カチオン汚染の影響は、電解質膜が湿潤状態の場合に潜在化するからである。   Thus, after continuing the steady operation that maintains the high current density, if the cell voltage does not recover, it can be determined that the product is defective due to other than cation contamination. This is because it becomes latent when the electrolyte membrane is wet.

セル電圧V4が閾値Vt4以上のセルFCがある場合(ステップS170、YES)、過渡出力が安定するまで、図6と共に後述するように、電流密度を上下させる(ステップS190)。ステップS190は、正常と判定されたセルFCの出荷の準備のために実行される。ステップS190の後、正常と判定されたセルFCは、燃料電池の構成部品として組み立てられる。   When there is a cell FC whose cell voltage V4 is equal to or higher than the threshold Vt4 (step S170, YES), the current density is increased or decreased as described later with reference to FIG. 6 until the transient output is stabilized (step S190). Step S190 is executed to prepare for shipment of the cell FC determined to be normal. After step S190, the cell FC determined to be normal is assembled as a fuel cell component.

一方、ステップS160,S180で異常と判定されたセルFCは、廃棄またはリサイクルに回される。   On the other hand, the cell FC determined to be abnormal in steps S160 and S180 is sent to disposal or recycling.

図6は、ステップS190における電流密度の変化の様子を示すグラフである。図6に示すように、所定値J1に維持、0.5A/(cm2・sec)で上昇、最大値J2に維持、−0.5A/(cm2・sec)で降下を繰り返す。過渡出力とは、電流密度が最大値J2になった直後のセル電圧のことである。 FIG. 6 is a graph showing how the current density changes in step S190. As shown in FIG. 6, the predetermined value J1 is maintained, the increase is 0.5 A / (cm 2 · sec), the maximum value J2 is maintained, and the decrease is repeated at −0.5 A / (cm 2 · sec). The transient output is a cell voltage immediately after the current density reaches the maximum value J2.

図7、図8は、比較例について説明するためのグラフである。図7,図8は、検査処理におけるステップS120を変更した場合におけるセル電圧の挙動を示す。   7 and 8 are graphs for explaining a comparative example. 7 and 8 show the behavior of the cell voltage when step S120 in the inspection process is changed.

図7は、ステップS120において、電流密度を線形に上昇させ、上昇速度を0.03A/(cm2・sec)に設定した場合を示す。図8は、ステップS120において、電流密度を階段状に上昇させ、平均上昇速度を0.03A/(cm2・sec)に設定した場合を示す。つまり、何れの場合も、実施形態に比べて、緩やかに電流密度を上昇させる。 FIG. 7 shows a case where the current density is increased linearly and the increasing speed is set to 0.03 A / (cm 2 · sec) in step S120. FIG. 8 shows a case where the current density is increased stepwise in step S120 and the average rate of increase is set to 0.03 A / (cm 2 · sec). That is, in any case, the current density is gradually increased as compared with the embodiment.

図7に示すように、時刻t3’における正常の場合のセル電圧V3a’と、カチオン汚染の場合のセル電圧V3b’との差は、実施形態の場合と比べて小さい。よって、正常の場合とカチオン汚染の場合とで、電圧差ΔVの差も小さくなる。図8の場合も同様に、正常の場合のセル電圧V3a’’と、カチオン汚染の場合のセル電圧V3b’’との差は、実施形態の場合と比べて小さい。よって、これらの手法では、カチオン汚染の検出が実施形態に比べて難しい。   As shown in FIG. 7, the difference between the normal cell voltage V3a ′ at time t3 ′ and the cation-contaminated cell voltage V3b ′ is smaller than in the embodiment. Therefore, the difference in voltage difference ΔV is small between the normal case and the cation contamination case. Similarly in the case of FIG. 8, the difference between the cell voltage V3a ″ in the normal case and the cell voltage V3b ″ in the case of cation contamination is smaller than that in the embodiment. Therefore, in these methods, detection of cation contamination is difficult as compared with the embodiment.

以上に説明した実施形態によれば、カチオン汚染による過渡時の出力低下を精度良く検出できる。過渡時の出力が低いと、運転者がアクセルペダルを踏み込んでも、あまり加速しなくなるので、運転者に不具合として認識されやすい。よって、過渡時の出力低下を製造工程において精度良く検出できることは有用である。   According to the embodiment described above, it is possible to accurately detect a decrease in output during a transient due to cation contamination. If the output at the time of transition is low, even if the driver depresses the accelerator pedal, the driver does not accelerate so much, so it is easy for the driver to recognize it as a malfunction. Therefore, it is useful to be able to accurately detect a decrease in output during a transition in the manufacturing process.

なお、過渡時の出力低下の原因は、本実施形態で例示したカチオン汚染に限られない。つまり、他の原因によって過渡時の出力が低下しても、本実施形態の検査処理によれば、その出力低下を精度良く検出できる。   In addition, the cause of the output fall at the time of a transition is not restricted to the cation contamination illustrated in this embodiment. That is, even if the output at the time of transition is reduced due to other causes, the output reduction can be accurately detected according to the inspection processing of this embodiment.

本発明は、本明細書の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、先述の課題の一部又は全部を解決するために、あるいは、先述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことができる。その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除できる。例えば、以下のものが例示される。   The present invention is not limited to the embodiments, examples, and modifications of the present specification, and can be implemented with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in the embodiments described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the effects described above, replacement or combination can be performed as appropriate. If the technical feature is not described as essential in this specification, it can be deleted as appropriate. For example, the following are exemplified.

電流密度を上昇させる速度は、0.5A/(cm2・sec)でなくてもよく、つまり0.5A(cm2・sec)以下(例えば0.4A/(cm2・sec))でもよいし、0.5A(cm2・sec)以上(例えば0.6A/(cm2・sec))でもよい。電流密度を上昇させる速度は、低電流密度での運転状態から、高電流密度、且つ電解質膜が乾燥状態になる運転状態への変化をもたらす速度であればよい。
電流密度の上昇は、線形でなくても、非線形でも階段状でもよい。この場合は、上昇速度は、平均で計算してもよい。
The rate of increasing the current density may not be 0.5 A / (cm 2 · sec), that is, 0.5 A (cm 2 · sec) or less (for example, 0.4 A / (cm 2 · sec)). However, it may be 0.5 A (cm 2 · sec) or more (for example, 0.6 A / (cm 2 · sec)). The speed at which the current density is increased may be any speed that causes a change from an operation state at a low current density to an operation state at which the electrolyte membrane is in a dry state with a high current density.
The increase in current density may be non-linear, non-linear or stepped. In this case, the rising speed may be calculated on an average.

電流密度の上昇による過渡的な状態を測定する時刻は、電流密度の上昇が完了する前でもよい。例えば、上昇完了の1秒前であっても、合格品とカチオン汚染による不合格品との差は、検出できると考えられる。   The time for measuring the transient state due to the increase in current density may be before the increase in current density is completed. For example, it is considered that the difference between the acceptable product and the unacceptable product due to cation contamination can be detected even 1 second before the completion of the ascent.

電流密度を上昇させた直後としての時刻t3は、定常運転状態になる前の時刻であれば、いつでもよい。例えば、電流密度が最大になった時点から任意の時間(例えば20秒)の経過後でもよい。   The time t3 immediately after increasing the current density may be any time as long as it is the time before the steady operation state is reached. For example, it may be after an arbitrary time (for example, 20 seconds) has elapsed since the current density reached the maximum.

電流密度を上昇させてから所定時間経過後としての時刻t4は、セル電圧が安定した後の時刻であれば、いつでもよい。例えば、電流密度が最大になった時点から任意の時間(例えば5〜20分)の経過後でもよい。   The time t4 after the elapse of a predetermined time after increasing the current density may be any time as long as the time is after the cell voltage is stabilized. For example, it may be after an arbitrary time (for example, 5 to 20 minutes) from the time when the current density is maximized.

電流密度の上昇直後のセル電圧V3が、固定値として予め定められた基準値未満の場合に、異常と判定してもよい。このように判定すれば、検査時間が短くなる。なお、ここでいう固定値とは、検査においてセル電圧が変動しても、その影響を受けないように固定されている値という意味である。もちろん、検査の調整としてデータ収集システムに値の変更を指示できるようになっていてもよいし、変更できない値でもよい。
上記の判定手法の場合、カチオン汚染と、それ以外の異常とを区別しなくてもよい。
If the cell voltage V3 immediately after the increase in the current density is less than a reference value that is predetermined as a fixed value, it may be determined as abnormal. This determination shortens the inspection time. Here, the fixed value means a value fixed so as not to be affected even if the cell voltage fluctuates in the inspection. Of course, it may be possible to instruct the data collection system to change the value as adjustment of the inspection, or a value that cannot be changed.
In the case of the above determination method, it is not necessary to distinguish between cation contamination and other abnormalities.

電圧差ΔVの代わりに、セル電圧V4(定常時のセル電圧)をセル電圧V3で除算した値を基準値と比較し、その値が基準値以上の場合に異常と判定してもよい。
電流密度の所定値J1,最大値J2は、任意の値でよい。
Instead of the voltage difference ΔV, a value obtained by dividing the cell voltage V4 (cell voltage during steady state) by the cell voltage V3 may be compared with a reference value, and if the value is equal to or greater than the reference value, it may be determined that there is an abnormality.
The predetermined value J1 and the maximum value J2 of the current density may be arbitrary values.

検査対象となる燃料電池は、自動車用でなくても、使用時において急激に電流密度が上昇する場合があるものでもよい。例えば、他の輸送用機器(電車、船舶など)に搭載されるものでもよい。
本願の検査は、出荷した後の検査として実行してもよい。例えば、定期検査として実行してもよい。
The fuel cell to be inspected may not be for automobiles but may have a current density that suddenly increases during use. For example, it may be mounted on other transportation equipment (train, ship, etc.).
You may perform the test | inspection of this application as a test | inspection after shipping. For example, it may be executed as a periodic inspection.

10…中間プレート
20…セルモニタ
22…セルモニタケーブル
24…パワーケーブル
30…データ収集システム
40…閉回路
100…発電検査システム
DESCRIPTION OF SYMBOLS 10 ... Intermediate plate 20 ... Cell monitor 22 ... Cell monitor cable 24 ... Power cable 30 ... Data collection system 40 ... Closed circuit 100 ... Power generation inspection system

Claims (7)

燃料電池を検査する方法であって、
電流密度を所定速度以上の速度で上昇させる上昇工程と、
前記上昇工程によって電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程と
を含み、
前記第2電圧値は、前記上昇工程が完了してから所定時間経過後のセル電圧であり、
前記判定工程では、前記第2電圧値と前記第1電圧値との差である電圧差が基準値以上の場合第1の異常であると判定し、前記第2電圧値が所定値未満の場合は前記第1の異常とは異なる第2の異常であると判定する
検査方法。
A method for inspecting a fuel cell,
An ascending process for increasing the current density at a speed equal to or higher than a predetermined speed;
It is determined whether the fuel cell is normal or abnormal by comparing a first voltage value, which is a voltage value when the current density reaches a predetermined current density or more, by the ascending step with a second voltage value that is a criterion. look including a determination step of,
The second voltage value is a cell voltage after a predetermined time has elapsed since the rising step is completed,
In the determination step, when a voltage difference that is a difference between the second voltage value and the first voltage value is greater than or equal to a reference value, it is determined as a first abnormality, and the second voltage value is less than a predetermined value. In this case, it is determined that the second abnormality is different from the first abnormality.
燃料電池を検査する方法であって、
電流密度を所定速度以上の速度で上昇させる上昇工程と、
前記上昇工程によって電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程と
を含み、
前記上昇工程が完了した時の電流密度は、当該燃料電池の使用範囲における最大出力時での電流密度である
検査方法。
A method for inspecting a fuel cell,
An ascending process for increasing the current density at a speed equal to or higher than a predetermined speed;
It is determined whether the fuel cell is normal or abnormal by comparing a first voltage value, which is a voltage value when the current density reaches a predetermined current density or more, by the ascending step with a second voltage value that is a criterion. look including a determination step of,
The current density at the time when the rising step is completed is a current density at the maximum output in the usage range of the fuel cell.
燃料電池を検査する方法であって、
電流密度を所定速度以上の速度で上昇させる上昇工程と、
前記上昇工程によって電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程と
を含み、
前記上昇工程が始まる前の電流密度は、0.2A/cm2以下である
検査方法。
A method for inspecting a fuel cell,
An ascending process for increasing the current density at a speed equal to or higher than a predetermined speed;
It is determined whether the fuel cell is normal or abnormal by comparing a first voltage value, which is a voltage value when the current density reaches a predetermined current density or more, by the ascending step with a second voltage value that is a criterion. look including a determination step of,
The current density before the rising step is started is 0.2 A / cm 2 or less.
燃料電池を検査する方法であって、
電流密度を所定速度以上の速度で上昇させる上昇工程と、
前記上昇工程によって電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程と
を含み、
前記第2電圧値は、予め定められた固定値であり、
前記判定工程では、前記第1電圧値が前記第2電圧値未満の場合に、異常であると判定する
検査方法。
A method for inspecting a fuel cell,
An ascending process for increasing the current density at a speed equal to or higher than a predetermined speed;
It is determined whether the fuel cell is normal or abnormal by comparing a first voltage value, which is a voltage value when the current density reaches a predetermined current density or more, by the ascending step with a second voltage value that is a criterion. look including a determination step of,
The second voltage value is a predetermined fixed value,
In the determining step, when the first voltage value is less than the second voltage value, it is determined as abnormal.
前記所定速度は、0.5A/(cm2・sec)である
請求項1から請求項4までの何れか一項に記載の検査方法。
The inspection method according to any one of claims 1 to 4, wherein the predetermined speed is 0.5 A / (cm 2 · sec).
燃料電池の製造方法であって、
製造したセルを請求項1から請求項までの何れか一項に記載の検査方法で検査し、
前記検査に合格したセルを用いて燃料電池を製造する
製造方法。
A fuel cell manufacturing method comprising:
The manufactured cell is inspected by the inspection method according to any one of claims 1 to 5 ,
A manufacturing method for manufacturing a fuel cell using a cell that has passed the inspection.
燃料電池の製造方法であって、
電流密度を所定速度以上の速度で上昇させる上昇工程と、
前記上昇工程によって電流密度が所定電流密度以上に達した時の電圧値である第1電圧値を、判定基準となる第2電圧値と比較することによって、前記燃料電池が正常か異常かを判定する判定工程と
前記正常と判定されたセルを用いて、燃料電池を製造する工程と、
を含む製造方法。
A fuel cell manufacturing method comprising:
An ascending process for increasing the current density at a speed equal to or higher than a predetermined speed;
It is determined whether the fuel cell is normal or abnormal by comparing a first voltage value, which is a voltage value when the current density reaches a predetermined current density or more, by the ascending step with a second voltage value that is a criterion. Judgment process to
A step of manufacturing a fuel cell using the cells determined to be normal ;
Manufacturing method, comprising.
JP2014218182A 2014-10-27 2014-10-27 Inspection method and manufacturing method of fuel cell Active JP6079745B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014218182A JP6079745B2 (en) 2014-10-27 2014-10-27 Inspection method and manufacturing method of fuel cell
CA2905020A CA2905020C (en) 2014-10-27 2015-09-18 Fuel cell inspection method and manufacturing method
KR1020150145213A KR101818818B1 (en) 2014-10-27 2015-10-19 Fuel cell inspection method and manufacturing method
US14/887,417 US10254347B2 (en) 2014-10-27 2015-10-20 Fuel cell inspection method and manufacturing method
DE102015118040.5A DE102015118040A1 (en) 2014-10-27 2015-10-22 Fuel cell inspection method and manufacturing method
CN201510700546.2A CN105552408B (en) 2014-10-27 2015-10-26 The inspection Check methods and manufacture method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218182A JP6079745B2 (en) 2014-10-27 2014-10-27 Inspection method and manufacturing method of fuel cell

Publications (2)

Publication Number Publication Date
JP2016085869A JP2016085869A (en) 2016-05-19
JP6079745B2 true JP6079745B2 (en) 2017-02-15

Family

ID=55698688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218182A Active JP6079745B2 (en) 2014-10-27 2014-10-27 Inspection method and manufacturing method of fuel cell

Country Status (6)

Country Link
US (1) US10254347B2 (en)
JP (1) JP6079745B2 (en)
KR (1) KR101818818B1 (en)
CN (1) CN105552408B (en)
CA (1) CA2905020C (en)
DE (1) DE102015118040A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018221456A1 (en) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Device for the electrochemical determination of the amount of in particular liquid components in components for battery cells, method for operating the same and their use
WO2020199201A1 (en) * 2019-04-04 2020-10-08 武汉雄韬氢雄燃料电池科技有限公司 Fuel cell stack based on modular design and manufacturing method therefor
JP7156251B2 (en) 2019-11-13 2022-10-19 トヨタ自動車株式会社 Fuel cell drying method and fuel cell drying apparatus
DE102020201920A1 (en) * 2020-02-17 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining a system status, computer program product and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264876A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Fuel cell power generating system
US6112238A (en) 1997-02-14 2000-08-29 Webtrends Corporation System and method for analyzing remote traffic data in a distributed computing environment
US6456988B1 (en) * 1997-03-12 2002-09-24 U.S. Nanocorp Inc. Method for determining state-of-health using an intelligent system
JP3696171B2 (en) * 2002-04-16 2005-09-14 株式会社東芝 Direct liquid fuel cell power generator inspection method, inspection apparatus, and direct liquid fuel cell power generator
JP4476689B2 (en) * 2004-05-11 2010-06-09 東邦瓦斯株式会社 Low temperature operation type solid oxide fuel cell single cell
US20060051628A1 (en) * 2004-09-07 2006-03-09 Chuey-Yeng Lim Diagnostic method for an electrochemical fuel cell and fuel cell components
JP5098493B2 (en) * 2006-08-28 2012-12-12 トヨタ自動車株式会社 Assembly inspection system for fuel cells
JP2009117066A (en) * 2007-11-02 2009-05-28 Nissan Motor Co Ltd Fuel cell system and control method of fuel cell system
JP5491787B2 (en) 2009-07-24 2014-05-14 東芝燃料電池システム株式会社 Inspection method of fuel cell stack
JP4998609B2 (en) * 2010-05-25 2012-08-15 トヨタ自動車株式会社 Fuel cell system and control method thereof
KR101776314B1 (en) 2011-07-18 2017-09-08 현대자동차주식회사 Apparatus and method for activating fuel cell
JP2013122815A (en) 2011-12-09 2013-06-20 Toyota Motor Corp Maintenance method for fuel cell
CN103199283B (en) * 2013-03-19 2016-03-23 中国东方电气集团有限公司 The detection method of fuel cell system and device
JP6066315B2 (en) 2013-05-09 2017-01-25 スズキ株式会社 Vehicle front structure

Also Published As

Publication number Publication date
CA2905020C (en) 2018-11-20
JP2016085869A (en) 2016-05-19
CA2905020A1 (en) 2016-04-27
US10254347B2 (en) 2019-04-09
CN105552408A (en) 2016-05-04
KR101818818B1 (en) 2018-01-15
CN105552408B (en) 2018-02-16
US20160116541A1 (en) 2016-04-28
DE102015118040A1 (en) 2016-04-28
KR20160049467A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
US10534040B2 (en) Inspection apparatus and inspection method for membrane electrode assembly
US11050070B2 (en) Method and apparatus for controlling water flooding failure in fuel cell dual-stack system
JP6079745B2 (en) Inspection method and manufacturing method of fuel cell
JP6215808B2 (en) Inspection method of electrolyte membrane for fuel cell
US20140239962A1 (en) Fuel cell inspection method and inspection device
US10276883B2 (en) Fuel cell system and dryness degree acquisition method
JP7156920B2 (en) FUEL CELL MONITOR AND METHOD FOR DETERMINING FUEL CELL STATE
CN106299417B (en) Apparatus and method for controlling operation of fuel cell system
KR20230051582A (en) Real-time monitoring early warning method and system for power decay of fuel cell
CA2909842C (en) Fuel cell system and control method of fuel cell system
KR101841328B1 (en) Inspection method of fuel cell
US9929419B2 (en) Device and method for monitoring dryness of fuel cell stack
JP7379832B2 (en) fuel cell system
KR20210071362A (en) Fuel cell system operation control method
JP4762569B2 (en) Fuel cell system and control method thereof
JP5541188B2 (en) Fuel cell system and fuel cell operating method
JP2012059586A (en) Fuel cell system and method of measuring content of radical scavenging promoter in fuel cell
JP2007048506A (en) Fuel cell system
CA2881079C (en) Fuel cell control based on rh and membrane cracking
JP2020077481A (en) Inspection method of membrane electrode assembly for fuel cell
Gomez et al. Investigation of the purging effect on the performance of dead-end anode PEM fuel cell vehicle: A driving cycle test
JP6471889B2 (en) Fuel cell state determination method
JP2020113371A (en) Inspection method for fuel battery
JP2010267516A (en) Fuel cell system
JP2021028886A (en) Fuel cell system control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151