JP6074759B2 - Deterioration judgment method and degradation judgment device for lead acid battery - Google Patents

Deterioration judgment method and degradation judgment device for lead acid battery Download PDF

Info

Publication number
JP6074759B2
JP6074759B2 JP2012140567A JP2012140567A JP6074759B2 JP 6074759 B2 JP6074759 B2 JP 6074759B2 JP 2012140567 A JP2012140567 A JP 2012140567A JP 2012140567 A JP2012140567 A JP 2012140567A JP 6074759 B2 JP6074759 B2 JP 6074759B2
Authority
JP
Japan
Prior art keywords
lead
phase difference
impedance
storage battery
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012140567A
Other languages
Japanese (ja)
Other versions
JP2014006099A (en
Inventor
巌 水本
巌 水本
桂一郎 山本
桂一郎 山本
博 小熊
博 小熊
岩井 満
満 岩井
高田 賢治
賢治 高田
昭称 小沢
昭称 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2012140567A priority Critical patent/JP6074759B2/en
Publication of JP2014006099A publication Critical patent/JP2014006099A/en
Application granted granted Critical
Publication of JP6074759B2 publication Critical patent/JP6074759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充電によって繰り返し使用が可能な鉛蓄電池の劣化判断方法及び劣化判断装置に関する。 The present invention relates to a deterioration determination method and a deterioration determination device for a lead storage battery that can be repeatedly used by charging.

充電することにより繰り返し使用が可能な二次電池として鉛蓄電池が一般的に用いられている。鉛蓄電池においては充放電を繰り返すことにより負極板にサルフェーションが析出する。サルフェーションは海綿状硫酸鉛の結晶であり、溶解度が低く、負極板に析出することにより負極板の反応面積が減少して鉛蓄電池を劣化させ、充電に支障となる。このようなことから鉛蓄電池の劣化を判断することが従来より行われている。この劣化判断においては、交流電圧を印加することにより蓄電池内の内部インピーダンスを測定する交流インピーダンス測定法が繁用されている。   A lead storage battery is generally used as a secondary battery that can be repeatedly used by charging. In lead-acid batteries, sulfation is deposited on the negative electrode plate by repeated charge and discharge. The sulfation is a spongy lead sulfate crystal and has low solubility, and when deposited on the negative electrode plate, the reaction area of the negative electrode plate is reduced, leading to deterioration of the lead storage battery and hindering charging. For these reasons, it has been conventionally performed to determine the deterioration of a lead storage battery. In this deterioration judgment, an alternating current impedance measuring method for measuring an internal impedance in the storage battery by applying an alternating voltage is frequently used.

交流インピーダンス測定法は交流を蓄電池に印加することにより交流電圧の周波数に応じて変化する内部インピーダンスを測定するものであり、蓄電池を分解することなく蓄電池内の正極、負極を利用して測定できる点で良好である。特許文献1には、交流インピーダンス測定法によって鉛蓄電池の劣化判断を行う従来の手法が開示されている。   The AC impedance measurement method measures the internal impedance that changes according to the frequency of the AC voltage by applying AC to the storage battery, and can be measured using the positive and negative electrodes in the storage battery without disassembling the storage battery. Good. Patent Document 1 discloses a conventional method for determining deterioration of a lead storage battery by an AC impedance measurement method.

特許文献1に記載される劣化判断は、蓄電池(鉛蓄電池)に供給する交流電流の周波数を変化させ、各周波数のインピーダンスを測定してインピーダンスの周波数特性曲線を求め、周波数特性曲線に基づいてリアクタンス成分がゼロとなるインピーダンスを求め、このインピーダンス値によって蓄電池の劣化を判断している。 The deterioration determination described in Patent Document 1 is performed by changing the frequency of an alternating current supplied to a storage battery (lead storage battery) , measuring the impedance of each frequency to obtain a frequency characteristic curve of the impedance, and reactance based on the frequency characteristic curve. The impedance at which the component becomes zero is obtained, and the deterioration of the storage battery is determined based on this impedance value.

特開2007−333494号公報JP 2007-333494 A

一般に、鉛蓄電池で測定されるインピーダンスは、電極板の抵抗が実抵抗成分としてあらわれ、電極板と電解液との間の電荷移動の抵抗がリアクタンス成分としてあらわれる。鉛蓄電池は充電回数が多くなれば内部抵抗が大きくなり、実抵抗成分及びリアクタンス成分の双方が大きくなる。特許文献1記載の劣化判断では、インピーダンスのリアクタンス成分がゼロとなる周波数で測定するものであるが、充電回数によって大きくなるリアクタンス成分をゼロとした場合においても、実抵抗成分が高い値となっている。従って、リアクタンス成分をゼロとしたインピーダンス値によって劣化を判断しても、高精度での劣化の判断が難しい問題を有している。 In general, in the impedance measured by a lead storage battery , the resistance of the electrode plate appears as an actual resistance component, and the resistance of charge transfer between the electrode plate and the electrolytic solution appears as a reactance component. As the number of times of charging the lead storage battery increases, the internal resistance increases, and both the actual resistance component and the reactance component increase. In the deterioration determination described in Patent Document 1, measurement is performed at a frequency at which the reactance component of the impedance becomes zero. However, even when the reactance component that increases with the number of times of charging is set to zero, the actual resistance component has a high value. Yes. Therefore, even if the deterioration is determined based on the impedance value with the reactance component being zero, it is difficult to determine the deterioration with high accuracy.

本発明は、このような問題点を考慮してなされたものであり、鉛蓄電池の劣化を高精度で判断することが可能な鉛蓄電池の劣化判断方法及び劣化判断装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a deterioration determination method and a deterioration determination device for a lead storage battery that can determine the deterioration of the lead storage battery with high accuracy. To do.

本発明の鉛蓄電池の劣化判断方法は、周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、前記測定値からインピーダンスの位相差を検出し、前記位相差を周波数に対してプロットした位相差曲線を作成し、所定の周波数の範囲内で前記位相差曲線によって決定される位相差面積を算出し、算出した位相差面積に基づいて鉛蓄電池の劣化を判断することを特徴とする。 The deterioration judgment method of the lead storage battery of the present invention measures the impedance of each frequency by supplying and discharging the alternating current with the frequency changed to the lead storage battery , detects the phase difference of the impedance from the measured value, Create a phase difference curve in which the phase difference is plotted against the frequency , calculate the phase difference area determined by the phase difference curve within a predetermined frequency range, and degrade the lead-acid battery based on the calculated phase difference area It is characterized by judging.

この場合、前記インピーダンスの位相差を測定鉛蓄電池及び基準鉛蓄電池に対して検出し、前記位相差曲線を測定鉛蓄電池及び基準鉛蓄電池に対して作成した後、基準鉛蓄電池の位相差曲線と測定鉛蓄電池の位相差曲線との間の差を所定の周波数の範囲内で求め、この位相差曲線の差で決定される差曲線面積を対比して測定鉛蓄電池の劣化を判断することが好ましい。 In this case, the phase difference of the impedance detection with respect to the measurement lead-acid battery and the reference lead-acid battery, after creating the phase difference curve for the measured lead-acid battery and the reference lead-acid battery, the phase difference curve of the reference lead battery measured It is preferable to determine the difference between the lead storage battery and the phase difference curve within a predetermined frequency range, and to determine the deterioration of the measured lead storage battery by comparing the difference curve area determined by the difference between the phase difference curves.

本発明の別の鉛蓄電池の劣化判断方法は、周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、測定した周波数毎のインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を作成し、このインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断することを特徴とする。 Another method of determining deterioration of a lead storage battery according to the present invention is to measure the impedance of each frequency by supplying and discharging an alternating current whose frequency is changed to the lead storage battery , and the actual resistance component of the impedance for each measured frequency and The reactance component is plotted on a Smith chart to create an impedance locus, and deterioration of the lead storage battery is determined based on the impedance locus.

この場合、前記インピーダンス軌跡を測定鉛蓄電池及び基準鉛蓄電池に対して作成し、前記測定鉛蓄電池及び基準鉛蓄電池のインピーダンス軌跡を対比して測定鉛蓄電池の劣化を判断することが好ましい。 In this case, the impedance locus created for measuring lead-acid battery and the reference lead-acid battery, it is preferable to determine the deterioration of the measurement lead-acid battery by comparing an impedance locus of the measured lead-acid battery and the reference lead-acid battery.

以上の鉛蓄電池の劣化判断方法においては、交流電流を0.1〜1kHzの周波数の範囲で変化させることが好ましい。 In the above-described method for judging deterioration of a lead storage battery , it is preferable to change the alternating current within a frequency range of 0.1 to 1 kHz.

本発明の鉛蓄電池の劣化判断装置は、交流電流の周波数を変化させる周波数制御部と、前記周波数制御部によって周波数が変化した交流電流を鉛蓄電池に供給して放電させる電流供給部と、前記放電によって変化する鉛蓄電池のインピーダンスを測定するインピーダンス測定部と、前記周波数制御部からの参照信号と前記インピーダンス測定部からの測定信号とを同期検波してインピーダンスの位相差を検出する位相差検出部と、前記位相差検出部の位相差を指標として鉛蓄電池の劣化を判断する劣化判断部と、を備え、前記劣化判断部は、前記インピーダンスの位相差を前記周波数に対してプロットした位相差曲線を算出する位相差曲線算出部と、所定の周波数の範囲内で前記位相差曲線によって決定される位相差面積を算出し、算出した位相差面積に基づいて劣化を判断する判定部とによって形成されることを特徴とするThe deterioration determination device for a lead storage battery according to the present invention includes a frequency control unit that changes a frequency of an alternating current, a current supply unit that supplies and discharges the alternating current whose frequency is changed by the frequency control unit to the lead storage battery , and the discharge An impedance measurement unit that measures the impedance of the lead-acid battery that varies depending on the phase, a phase difference detection unit that detects the phase difference of the impedance by synchronously detecting the reference signal from the frequency control unit and the measurement signal from the impedance measurement unit, and A deterioration determination unit that determines deterioration of the lead storage battery using the phase difference of the phase difference detection unit as an index, and the deterioration determination unit represents a phase difference curve in which the phase difference of the impedance is plotted against the frequency. A phase difference curve calculation unit to calculate, and a phase difference area determined by the phase difference curve within a predetermined frequency range were calculated and calculated Characterized in that it is formed by a determining section for determining deterioration based on the phase difference area.

また、前記位相差検出部は前記インピーダンスの位相差を測定鉛蓄電池及び基準鉛蓄電池に対して検出し、前記位相差曲線算出部は前記位相差曲線を測定鉛蓄電池及び基準鉛蓄電池に対して作成し、前記判定部は基準鉛蓄電池の位相差曲線と測定鉛蓄電池の位相差曲線との間の差を所定の周波数の範囲内で求め、この位相差曲線の差で決定される差曲線面積に基づいて測定鉛蓄電池の劣化を判断することが好ましい。 The phase difference detection unit detects the phase difference of the impedance with respect to the measurement lead storage battery and the reference lead storage battery, and the phase difference curve calculation unit creates the phase difference curve with respect to the measurement lead storage battery and the reference lead storage battery . The determination unit obtains a difference between the phase difference curve of the reference lead acid battery and the phase difference curve of the measured lead acid battery within a predetermined frequency range, and determines the difference curve area determined by the difference between the phase difference curves. It is preferable to determine the deterioration of the measured lead-acid battery based on it.

本発明の別の鉛蓄電池の劣化判断装置は、交流電流の周波数を変化させる周波数制御部と、前記周波数制御部によって周波数が変化した交流電流を鉛蓄電池に供給して放電させる電流供給部と、前記放電によって変化する鉛蓄電池のインピーダンスを測定するインピーダンス測定部と、このインピーダンス測定部が測定したインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を算出するインピーダンス軌跡算出部と、このインピーダンス軌跡算出部によって決定されたインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断する劣化判断部と、を備えていることを特徴とする。 Another lead storage battery degradation determination device of the present invention includes a frequency control unit that changes the frequency of an alternating current, a current supply unit that supplies and discharges the alternating current whose frequency has been changed by the frequency control unit to the lead storage battery , An impedance measurement unit that measures the impedance of the lead storage battery that changes due to the discharge; and an impedance locus calculation unit that calculates an impedance locus by plotting an actual resistance component and a reactance component of the impedance measured by the impedance measurement unit on a Smith chart; And a deterioration determination unit that determines deterioration of the lead-acid battery based on the impedance locus determined by the impedance locus calculation unit.

この場合、前記インピーダンス軌跡算出部は、測定鉛蓄電池及び基準鉛蓄電池の実抵抗成分とリアクタンス成分とを前記スミスチャートにプロットして前記インピーダンス軌跡を測定鉛蓄電池及び基準鉛蓄電池に対して算出することが好ましい。 In this case, the impedance locus calculating unit plots the actual resistance component and the reactance component of the measurement lead storage battery and the reference lead storage battery on the Smith chart, and calculates the impedance locus for the measurement lead storage battery and the reference lead storage battery . Is preferred.

以上の鉛蓄電池の劣化判断装置においては、前記周波数制御部は、前記交流電流を0.1〜1kHzの周波数の範囲で変化させることが好ましい。 In the above lead acid battery deterioration determination device, the frequency control unit preferably changes the alternating current in a frequency range of 0.1 to 1 kHz.

本発明の鉛蓄電池の劣化判断方法によれば、広い範囲の周波数の範囲内で鉛蓄電池のインピーダンスを測定するため、鉛蓄電池の劣化を容易に判別することができる。また、位相差曲線を積分して鉛蓄電池の劣化を評価する、またはインピーダンス軌跡から軌跡面積を算出して鉛蓄電池の劣化を評価するため、劣化度合いの定量精度が向上する。これにより鉛蓄電池の劣化判断を高精度に行うことができる。 According to the deterioration determination method for a lead storage battery of the present invention, since the impedance of the lead storage battery is measured within a wide frequency range, the deterioration of the lead storage battery can be easily determined. Further, to evaluate the deterioration of the lead storage battery by integrating the phase difference curve, or to evaluate the deterioration of the lead storage battery from the impedance locus to calculate the trajectory area, improved quantitative accuracy of the deterioration degree. Thereby, deterioration judgment of a lead storage battery can be performed with high accuracy.

本発明の鉛蓄電池の劣化判断装置によれば、以上の劣化判断を好適に実施することができる。 According to the deterioration determination device for a lead storage battery of the present invention, the above deterioration determination can be suitably performed.

鉛蓄電池を固定周波数で放電した場合の位相差を示すグラフである。It is a graph which shows the phase difference at the time of discharging a lead storage battery at a fixed frequency. 周波数の変化に応じたインピーダンスを示すグラフである。It is a graph which shows the impedance according to the change of a frequency. 周波数の変化に応じたインピーダンスの位相を示すグラフである。It is a graph which shows the phase of the impedance according to the change of a frequency. 位相差曲線を示すグラフである。It is a graph which shows a phase difference curve. 鉛蓄電池の劣化判断装置を示すブロック図である。It is a block diagram which shows the deterioration determination apparatus of a lead storage battery . 別の鉛蓄電池の劣化判断装置を示すブロック図である。It is a block diagram which shows the deterioration determination apparatus of another lead acid battery . スミス座標を示す正面図である。It is a front view which shows a Smith coordinate. スミスチャートにプロットしたインピーダンス軌跡を示す正面図である。It is a front view which shows the impedance locus | trajectory plotted on the Smith chart. インピーダンス軌跡から軌跡面積を求めた場合を説明する正面図である。It is a front view explaining the case where a locus area is calculated from an impedance locus.

本発明者らは鉛蓄電池に交流電流を供給して放電させた場合の一定の周波数(1kHz)での実抵抗成分及びリアクタンス成分を測定した。図1は測定結果をしめすグラフであり、特性曲線AがCCA値270の鉛蓄電池、特性曲線Bが充電を行って再生することによりCCA値230となっている鉛蓄電池、特性曲線Cが劣化することによりCCA値170となっている鉛蓄電池である。CCA値はコールドクランキングアンペアであり、CCA値が大きいほどエンジンの始動性能が高いことを示している。   The inventors measured an actual resistance component and a reactance component at a constant frequency (1 kHz) when an alternating current was supplied to a lead storage battery and discharged. FIG. 1 is a graph showing the measurement results. The characteristic curve A is a lead storage battery having a CCA value of 270, the characteristic curve B is charged and regenerated, and the lead storage battery having a CCA value of 230 is deteriorated. This is a lead storage battery having a CCA value of 170. The CCA value is a cold cranking ampere, and the larger the CCA value, the higher the engine start performance.

図1における矢印線A1、B1、C1は特性曲線A、B、Cのそれぞれの放電初期における電圧と電流の位相差(位相角度)を示している。矢印線A1の位相差が最も大きく、矢印線C1の位相差が最も小さくなっており、位相差がCCA値の大きさに対応していることが示されている。すなわち鉛蓄電池の位相差がCCA値に対応しており、位相差が大きいほど(すなわちCCA値が大きいほど)鉛蓄電池の劣化が少ないことを示している。このことから放電時の位相差を鉛蓄電池の劣化の指標として用いることが可能であることを理解することができる。本発明は、このような知見に基づいてなされたものである。 Arrow lines A1, B1, and C1 in FIG. 1 indicate the phase difference (phase angle) between the voltage and current at the initial stage of discharge of the characteristic curves A, B, and C, respectively. The phase difference of the arrow line A1 is the largest, the phase difference of the arrow line C1 is the smallest, and it is shown that the phase difference corresponds to the magnitude of the CCA value. In other words, the phase difference of the lead storage battery corresponds to the CCA value, and the larger the phase difference (that is, the larger the CCA value), the less deterioration of the lead storage battery. From this, it can be understood that the phase difference at the time of discharging can be used as an index of deterioration of the lead storage battery. The present invention has been made based on such knowledge.

本発明における一実施形態の鉛蓄電池の劣化判断方法は、周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、前記測定値からインピーダンスの位相差を検出し、前記位相差を周波数に対してプロットした位相差曲線を作成し、所定の周波数の範囲内で前記位相差曲線によって決定される位相差面積に基づいて鉛蓄電池の劣化を判断するものである。 The method of judging the deterioration lead-acid battery of one embodiment of the present invention measures the impedance of each frequency by discharging an alternating current with varying frequency is supplied to the lead-acid battery, the phase difference of the impedance from the measured value Detecting and creating a phase difference curve in which the phase difference is plotted against frequency, and judging deterioration of the lead-acid battery based on a phase difference area determined by the phase difference curve within a predetermined frequency range. is there.

このような劣化判断方法は、鉛蓄電池に印加する交流電流を固定の周波数とするものではなく、広い範囲の周波数の交流電流を鉛蓄電池に印加して放電するものであり、これにより広い範囲の周波数を得る点に特徴がある。また、交流電流の印加によって発生した広い範囲の周波数に対しては、各周波数のインピーダンスの位相差を検出し、この位相差に基づいて位相差曲線を作成し、作成した位相差曲線に基づいて鉛蓄電池の劣化を判断する点に特徴がある。 Such a deterioration judgment method is not to set the alternating current applied to the lead storage battery to a fixed frequency, but to apply and discharge an alternating current having a wide range of frequencies to the lead storage battery . It is characterized in that the frequency is obtained. In addition, for a wide range of frequencies generated by the application of alternating current, the phase difference of the impedance of each frequency is detected, a phase difference curve is created based on this phase difference, and based on the created phase difference curve It is characterized in that the deterioration of the lead storage battery is judged.

この劣化判断においては、インピーダンスの位相差を測定鉛蓄電池及び基準鉛蓄電池に対して検出し、位相差曲線を測定鉛蓄電池及び基準鉛蓄電池に対して作成した後、基準鉛蓄電池の位相差曲線と測定鉛蓄電池の位相差曲線との間の差を所定の周波数の範囲内で求め、この位相差曲線の差で決定される差曲線面積を対比して鉛蓄電池の劣化を判断することが良好である。 In this deterioration determination, detects the phase difference of the impedance with respect to the measurement lead-acid battery and the reference lead-acid battery, after creating a phase difference curve for the measured lead-acid battery and the reference lead-acid battery, and the phase difference curve of the reference lead-acid battery It is good to determine the difference between the measured lead-acid battery phase difference curve within a predetermined frequency range and compare the difference curve area determined by this phase difference curve difference to judge the deterioration of the lead-acid battery. is there.

図2は、鉛蓄電池に対して広い範囲の周波数の交流電流を供給して鉛蓄電池を放電させることにより得られる各周波数のインピーダンスをプロットしたグラフであり、特性曲線MはCCA値275の鉛蓄電池、特性曲線NはCCA値215の鉛蓄電池にインピーダンスである。図示するように0.1Hz〜1kHzの広い周波数の範囲でインピーダンスが変化する。この実施形態では、この広い範囲の周波数におけるインピーダンス変化に基づいて鉛蓄電池の劣化を判断するものである。図3は図2に基づいて周波数に対する位相をプロットしたグラフであり、特性曲線DはCCA値275の鉛蓄電池D、特性曲線EはCCA値215の鉛蓄電池Eを示す。図3における横軸は周波数軸であり、対数軸で表示されている。 Figure 2 is a graph plotting the impedance of each frequency obtained by discharging a wide range of lead-acid battery by supplying an alternating current having a frequency with respect to lead-acid batteries, lead-acid battery characteristic curve M is CCA value 275 The characteristic curve N is the impedance for a lead-acid battery with a CCA value of 215. As shown in the figure, the impedance changes in a wide frequency range of 0.1 Hz to 1 kHz. In this embodiment, the deterioration of the lead storage battery is determined based on the impedance change in this wide range of frequencies. FIG. 3 is a graph in which the phase with respect to the frequency is plotted based on FIG. 2, the characteristic curve D shows the lead storage battery D with the CCA value 275, and the characteristic curve E shows the lead storage battery E with the CCA value 215. The horizontal axis in FIG. 3 is the frequency axis and is displayed on the logarithmic axis.

図3において、CCA値が大きい鉛蓄電池Dを劣化判断の際の基準鉛蓄電池CCA値が小さい鉛蓄電池Eを劣化判断が必要な測定鉛蓄電池とすることができる。これらの特性曲線D、Eから各周波数における電圧と電流の位相差を算出する。特性曲線Fは算出した鉛蓄電池Dの位相差から鉛蓄電池Eの位相差を差し引いた演算を行うことにより得られた値をプロットしたものである。従って、特性曲線Fは基準鉛蓄電池Dの位相差に対する測定鉛蓄電池Eの位相差の差を周波数に対してプロットした位相差曲線となる。この位相差曲線Fの差の値は図3の右軸であり、単位はradである。 In FIG. 3, a lead storage battery D having a large CCA value can be used as a reference lead storage battery when determining deterioration, and a lead storage battery E having a small CCA value can be used as a measurement lead storage battery requiring deterioration determination. From these characteristic curves D and E, the phase difference between voltage and current at each frequency is calculated. The characteristic curve F is a plot of values obtained by performing a calculation by subtracting the phase difference of the lead storage battery E from the calculated phase difference of the lead storage battery D. Therefore, the characteristic curve F is a phase difference curve in which the phase difference of the measured lead storage battery E with respect to the phase difference of the reference lead storage battery D is plotted against the frequency. The difference value of the phase difference curve F is the right axis of FIG. 3, and the unit is rad.

位相差曲線Fの作成の後、測定した周波数の範囲内(図3においては約0.1〜1kHzの範囲内)で位相差曲線Fによって決定される位相差面積を算出する。算出した位相差面積は測定鉛蓄電池Eが基準鉛蓄電池Dに対して劣化した度合いを表すものであり、このため算出した位相差面積に基づいて測定鉛蓄電池Eの劣化を判断することができる。 After creating the phase difference curve F, the phase difference area determined by the phase difference curve F is calculated within the measured frequency range (in the range of about 0.1 to 1 kHz in FIG. 3). The calculated phase difference area represents the degree to which the measured lead storage battery E has deteriorated with respect to the reference lead storage battery D. For this reason, the deterioration of the measured lead storage battery E can be determined based on the calculated phase difference area.

位相差面積の算出は周波数軸(横軸)に対する位相差曲線Fの面積を約0.1〜1kHzの周波数の範囲内で積分することによりなされる。この算出においては、上記周波数の範囲で行う必要はなく、適宜の周波数の範囲で行うことができる。すなわち算出が容易であり、しかも差が明確な数値となることが可能な周波数の範囲を選択して行うことができる。この実施形態においては、後述するように100〜2000Hzの周波数の範囲内で算出することが良好である。   The calculation of the phase difference area is performed by integrating the area of the phase difference curve F with respect to the frequency axis (horizontal axis) within a frequency range of about 0.1 to 1 kHz. This calculation need not be performed within the above frequency range, but can be performed within an appropriate frequency range. That is, it is possible to select and perform a frequency range that is easy to calculate and in which the difference can be a clear numerical value. In this embodiment, it is preferable to calculate within a frequency range of 100 to 2000 Hz as will be described later.

図4は図3のグラフにおける横軸を対数軸から通常の実数軸に変換して図3の特性曲線Fをプロットしたグラフであり、図3の特性曲線Fは図4においては特性曲線Gとなる。この特性曲線Gは特性曲線Fと同質であり、図3における鉛蓄電池Dの位相差から鉛蓄電池Eの位相差を差し引いた位相差曲線Gとなる。 4 is a graph in which the horizontal axis in the graph of FIG. 3 is converted from a logarithmic axis to a normal real axis and the characteristic curve F of FIG. 3 is plotted. The characteristic curve F of FIG. Become. The characteristic curve G is the same as the characteristic curve F, and is a phase difference curve G obtained by subtracting the phase difference of the lead storage battery E from the phase difference of the lead storage battery D in FIG.

この位相差曲線Gを作成した後、図4のグラフから位相差を明確に算出できる周波数の範囲内で位相差面積を算出する。図4においては、約100〜2000Hzの周波数の範囲が明確であり、この範囲内における位相差面積を積分により算出する。そして算出した位相差面積に基づいて鉛蓄電池の劣化を判断する。すなわち位相差面積は鉛蓄電池Dの位相差から鉛蓄電池位相差を差し引いた値を積分することにより算出するものであるから、算出された位相差面積は測定鉛蓄電池Eが基準鉛蓄電池Dに対して劣化した度合いを表しており、位相差面積の大小により測定鉛蓄電池Eの劣化状態を把握することができる。 After creating the phase difference curve G, the phase difference area is calculated within the frequency range where the phase difference can be clearly calculated from the graph of FIG. In FIG. 4, the frequency range of about 100 to 2000 Hz is clear, and the phase difference area within this range is calculated by integration. Then, the deterioration of the lead storage battery is determined based on the calculated phase difference area. That is, the phase difference area is calculated by integrating a value obtained by subtracting the phase difference of the lead storage battery E from the phase difference of the lead storage battery D. Therefore, the calculated phase difference area is calculated by the measurement lead storage battery E using the reference lead storage battery D. The degree of deterioration of the measured lead storage battery E can be grasped by the size of the phase difference area.

このような鉛蓄電池の劣化判断によれば、特定の固定値の周波数だけで鉛蓄電池のインピーダンスを測定するものではなく、広い範囲の周波数の範囲内で鉛蓄電池のインピーダンスを測定するため、位相差(位相角度、図1)よりも位相差面積の積分値が大きな値となる。このため鉛蓄電池の劣化を容易に判別することができる。また、位相差曲線を積分して鉛蓄電池の劣化を評価するため、劣化度合いの定量精度が向上する。これにより鉛蓄電池の劣化判断を高精度に行うことができる。 According to the deterioration determination of such lead storage battery, not to measure the impedance of the lead-acid battery in only the frequency of a particular fixed value, for measuring the impedance of the lead-acid battery in a range of a wide range of frequencies, the phase difference The integrated value of the phase difference area is larger than (phase angle, FIG. 1). For this reason, it is possible to easily determine the deterioration of the lead storage battery . Further, since the deterioration of the lead storage battery is evaluated by integrating the phase difference curve, the quantitative accuracy of the degree of deterioration is improved. Thereby, deterioration judgment of a lead storage battery can be performed with high accuracy.

なお、この実施形態では、基準鉛蓄電池Dの位相差と測定鉛蓄電池Eの位相差の差によって鉛蓄電池の劣化を判断しているが、これに限られるものではなく、劣化の判断基準となる閾値を予め設定し、この閾値との比較によって劣化を判断しても良い。この場合の判断は、図2の特性曲線Eから位相差曲線を作成し、位相差曲線に基づく位相差面積を所定の周波数の範囲内で算出し、算出した位相差面積を閾値と対比させることにより行うことができる。 In this embodiment, the deterioration of the lead storage battery is determined based on the difference between the phase difference of the reference lead storage battery D and the phase difference of the measured lead storage battery E. However, the present invention is not limited to this, and becomes a determination criterion for deterioration. A threshold value may be set in advance, and deterioration may be determined by comparison with this threshold value. The determination in this case is to create a phase difference curve from the characteristic curve E in FIG. 2, calculate the phase difference area based on the phase difference curve within a predetermined frequency range, and compare the calculated phase difference area with a threshold value. Can be performed.

図5はこの実施形態の劣化判断に用いる劣化判断装置1を示す。符号2は測定対象の鉛蓄電池である。鉛蓄電池2は内部に電圧を保持しているため、劣化判断装置1は交流4端子法でインピーダンスを測定する構造となっている。劣化判断装置1は鉛蓄電池2のそれぞれの端子3,3に対して入出力の端子を2本ずつ接続して劣化判断を行うものであり、周波数制御部5と、電流供給部6と、インピーダンス測定部7と、位相差検出部8と、劣化判断部9とを有している。 FIG. 5 shows a deterioration determination apparatus 1 used for deterioration determination of this embodiment. Reference numeral 2 denotes a lead storage battery to be measured. Since the lead storage battery 2 holds a voltage therein, the deterioration determination device 1 has a structure in which impedance is measured by an AC four-terminal method. The deterioration determination device 1 is for determining deterioration by connecting two input / output terminals to each of the terminals 3 and 3 of the lead storage battery 2, and includes a frequency control unit 5, a current supply unit 6, an impedance It has a measurement unit 7, a phase difference detection unit 8, and a deterioration determination unit 9.

周波数制御部5は鉛蓄電池2に供給される交流電流の周波数を変化させるものであり、スイープ発振回路11が用いられる。スイープ発振回路11は低周波から高周波に周波数を連続的に変化させる回路である。スイープ発振回路11で変化した周波数は電流供給部6に供給される。 The frequency control unit 5 changes the frequency of the alternating current supplied to the lead storage battery 2, and a sweep oscillation circuit 11 is used. The sweep oscillation circuit 11 is a circuit that continuously changes the frequency from a low frequency to a high frequency. The frequency changed by the sweep oscillation circuit 11 is supplied to the current supply unit 6.

電流供給部6は周波数が変化した交流電流を鉛蓄電池2に供給するものであり、交流電流の供給によって鉛蓄電池2が放電する。電流供給部6はスイープ発振回路11に接続されたスイープ波形振幅制御回路12及びこの回路12に接続された出力アンプ13からなり、出力アンプ13が鉛蓄電池2の一方の端子3に接続される。なお、スイープ波形振幅制御回路12には、電流電圧変換回路14に接続された整流平滑・積分回路15が接続されている。 The current supply unit 6 supplies an alternating current having a changed frequency to the lead storage battery 2, and the lead storage battery 2 is discharged by the supply of the alternating current. The current supply unit 6 includes a sweep waveform amplitude control circuit 12 connected to the sweep oscillation circuit 11 and an output amplifier 13 connected to the circuit 12, and the output amplifier 13 is connected to one terminal 3 of the lead storage battery 2. The sweep waveform amplitude control circuit 12 is connected to a rectifying / smoothing / integrating circuit 15 connected to the current-voltage conversion circuit 14.

インピーダンス測定部7は放電によって変化する鉛蓄電池2のインピーダンスを各周波数で測定する。インピーダンス測定部7としては、鉛蓄電池2の他方の端子3に接続された電圧差動アンプ17が用いられる。 The impedance measuring unit 7 measures the impedance of the lead storage battery 2 that changes due to discharge at each frequency. As the impedance measuring unit 7, a voltage differential amplifier 17 connected to the other terminal 3 of the lead storage battery 2 is used.

位相差検出部8は、電圧差動アンプ17からの測定信号及びスイープ発振回路11からの参照信号が入力されることにより、これらの信号を同期検波する同期検波器18及び同期検波された検波信号に基づいて位相差を検出する位相差検出回路19とによって形成されている。同期検波器18での同期検波により、位相差φは例えば、cosφの値となって位相差検出回路19に出力され、位相差検出回路19では、これに基づいて位相差を検出する。これにより位相差検出部8は各周波数のインピーダンスから各周波数の位相差を検出する。   The phase difference detection unit 8 receives the measurement signal from the voltage differential amplifier 17 and the reference signal from the sweep oscillation circuit 11, thereby synchronously detecting these signals and the synchronously detected detection signal. And a phase difference detection circuit 19 for detecting a phase difference based on the above. By the synchronous detection by the synchronous detector 18, the phase difference φ is output to the phase difference detection circuit 19 as a value of cos φ, for example, and the phase difference detection circuit 19 detects the phase difference based on this. Thereby, the phase difference detector 8 detects the phase difference of each frequency from the impedance of each frequency.

劣化判断部9は位相差検出部8が検出した各周波数の位相差を指標として鉛蓄電池2の劣化を判断するものである。劣化判断部9は位相差曲線算出部21と、判定部22とによって形成されている。位相差曲線算出部21はインピーダンスの位相差を周波数に対してプロットした位相差曲線(特性曲線FまたはG)を算出する演算部である。判定部22は位相差曲線算出部21が算出した位相差曲線によって決定される位相差面積を所定の周波数の範囲内で算出し、算出した位相差面積に基づいて鉛蓄電池2の劣化を判断する。この判断は、上述したように基準鉛蓄電池Dの位相差面積との対比によって行うか、あらかじめ設定した所定の閾値との対比によって行われる。 The deterioration determination unit 9 determines deterioration of the lead storage battery 2 using the phase difference of each frequency detected by the phase difference detection unit 8 as an index. The deterioration determination unit 9 is formed by a phase difference curve calculation unit 21 and a determination unit 22. The phase difference curve calculation unit 21 is a calculation unit that calculates a phase difference curve (characteristic curve F or G) in which the phase difference of the impedance is plotted against the frequency. The determination unit 22 calculates a phase difference area determined by the phase difference curve calculated by the phase difference curve calculation unit 21 within a predetermined frequency range, and determines deterioration of the lead storage battery 2 based on the calculated phase difference area. . This determination is made by comparison with the phase difference area of the reference lead-acid battery D as described above, or by comparison with a predetermined threshold value set in advance.

次に、本発明の別の実施形態を説明する。この実施形態の劣化判断方法は、周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、測定した周波数毎のインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を作成し、このインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断する。 Next, another embodiment of the present invention will be described. The deterioration judgment method of this embodiment measures the impedance of each frequency by supplying an alternating current whose frequency is changed to a lead storage battery and discharging it, and calculates the actual resistance component and reactance component of the impedance for each measured frequency. An impedance locus is created by plotting on the Smith chart, and the deterioration of the lead storage battery is determined based on the impedance locus.

この実施形態の劣化判断方法は、上記実施形態と同様に鉛蓄電池に印加する交流電流を固定の周波数とするものではなく、広い範囲の周波数の交流電流を鉛蓄電池に印加して放電し、周波数の広い範囲でインピーダンスを測定するものである。また、この実施形態においては、放電によって得られるインピーダンスをスミスチャートにプロットしてインピーダンス軌跡を作成して劣化を判断する点に特徴がある。 The deterioration judgment method of this embodiment does not set the alternating current applied to the lead storage battery to a fixed frequency as in the above embodiment, but applies and discharges an alternating current of a wide range of frequencies to the lead storage battery , The impedance is measured in a wide range. In addition, this embodiment is characterized in that the impedance obtained by the discharge is plotted on a Smith chart and an impedance locus is created to determine deterioration.

鉛蓄電池の劣化判断においては、インピーダンス軌跡を測定鉛蓄電池及び基準鉛蓄電池に対して作成し、測定鉛蓄電池及び基準鉛蓄電池のインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断することが良好である。 In determining the deterioration of the lead storage battery , it is preferable to create an impedance locus for the measurement lead storage battery and the reference lead storage battery, and to determine the deterioration of the lead storage battery based on the impedance locus of the measurement lead storage battery and the reference lead storage battery .

図6はこの実施形態に用いる劣化判断装置1Aを示す。図5の劣化判断装置1と異なる点は、インピーダンス測定部7を構成する電圧差動アンプ17に対してインピーダンス軌跡算出部31が接続され、このインピーダンス軌跡算出部31に劣化判断部32が接続されている点であり、周波数制御部5,電流供給部6は図5の劣化判断装置1と同様である。従って、劣化判断装置1Aにおいても、周波数が広い範囲で変化した交流電流を鉛蓄電池2に供給して放電し、放電によって変化するインピーダンスを各周波数に対応して測定することは図5の劣化判断装置1と同様である。供給する交流電流の周波数の範囲としては、0.1〜1kHzの範囲で適宜選択することができる。 FIG. 6 shows a deterioration determination device 1A used in this embodiment. 5 is different from the deterioration determination device 1 in FIG. 5 in that an impedance locus calculation unit 31 is connected to the voltage differential amplifier 17 constituting the impedance measurement unit 7, and a deterioration determination unit 32 is connected to the impedance locus calculation unit 31. The frequency control unit 5 and the current supply unit 6 are the same as those of the deterioration determination device 1 in FIG. Therefore, in the deterioration determination device 1A, the alternating current whose frequency has changed in a wide range is supplied to the lead storage battery 2 and discharged, and the impedance that changes due to the discharge is measured corresponding to each frequency. It is the same as the device 1. The frequency range of the alternating current to be supplied can be appropriately selected within the range of 0.1 to 1 kHz.

インピーダンス軌跡算出部31はインピーダンス測定部7が測定したインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を算出する。劣化判断部32はこのインピーダンス軌跡に基づいて鉛蓄電池2の劣化を判断する。 The impedance locus calculation unit 31 plots the actual resistance component and reactance component of the impedance measured by the impedance measurement unit 7 on a Smith chart to calculate the impedance locus. The deterioration determination unit 32 determines the deterioration of the lead storage battery 2 based on the impedance locus.

図7はスミス座標を示し、インピーダンスをRs+jRxと表記した場合、インピーダンスの実抵抗成分はRs座標にプロットされる。Rs座標は左端がゼロ、右端が無限大となっている。図7における円Rxは実抵抗成分が一定な定抵抗円であり、リアクタンス成分の数値Rxがプロットされる。これらのプロットによってインピーダンス軌跡がスミスチャート上に作成される。   FIG. 7 shows Smith coordinates. When the impedance is expressed as Rs + jRx, the actual resistance component of the impedance is plotted on the Rs coordinate. The Rs coordinate is zero at the left end and infinite at the right end. A circle Rx in FIG. 7 is a constant resistance circle having a constant actual resistance component, and a numerical value Rx of the reactance component is plotted. These plots create an impedance locus on the Smith chart.

図8はスミスチャートに作成されたインピーダンス軌跡を示し、軌跡HがCCA値270の鉛蓄電池の放電によるインピーダンス軌跡、軌跡KがCCA値175の鉛蓄電池の放電によるインピーダンス軌跡である。この実施形態では、CCA値が大きい鉛蓄電池(CCA値270)を劣化判断の際の基準鉛蓄電池とし、CCA値が小さい鉛蓄電池(CCA値175)を劣化判断が必要な測定鉛蓄電池とすることができる。 Figure 8 shows the impedance locus created Smith chart, the locus H impedance locus by the discharge of the lead-acid battery CCA value 270, the locus K is the impedance locus by the discharge of the lead-acid battery CCA value 175. In this embodiment, a lead storage battery having a large CCA value (CCA value 270) is used as a reference lead storage battery in the determination of deterioration, and a lead storage battery having a small CCA value (CCA value 175) is used as a measurement lead storage battery that requires deterioration determination. Can do.

本発明者らがスミスチャートのインピーダンス軌跡と鉛蓄電池のCCA値とを対比させて検討した結果、CCA値が小さくなるほど、すなわち劣化が進行するのにつれてインピーダンス軌跡が内側に収束する傾向を確認している。図8において、基準鉛蓄電池のインピーダンス軌跡Hに対してインピーダンス軌跡K(測定鉛蓄電池)が内側に収束しており、この内側への収束度合いに基づいて測定鉛蓄電池の劣化を判断することができる。 As a result of examining the impedance locus of the Smith chart and the CCA value of the lead storage battery , the present inventors confirmed that the impedance locus tends to converge toward the inside as the CCA value decreases, that is, as the deterioration progresses. Yes. In FIG. 8, the impedance locus K ( measured lead-acid battery ) converges inward with respect to the impedance locus H of the reference lead-acid battery , and deterioration of the measured lead-acid battery can be determined based on the degree of convergence to the inside. .

このような実施形態の劣化判断によれば、広い範囲の周波数の範囲内で鉛蓄電池のインピーダンスを測定し、このインピーダンスをスミスチャートにプロットしてインピーダンス軌跡を作成するため、インピーダンス軌跡に基づいて鉛蓄電池の劣化を容易に判別することができる。また、インピーダンス軌跡の収束度合いから鉛蓄電池の劣化を評価するため、劣化度合いの定量精度が向上する。従って鉛蓄電池の劣化判断を高精度に行うことができる。 According to the deterioration determination of such embodiments, measuring the impedance of the lead-acid battery in a range of a wide range of frequencies, to create an impedance locus plot of the impedance Smith chart, lead based on the impedance locus It is possible to easily determine the deterioration of the storage battery . In addition, since the deterioration of the lead storage battery is evaluated from the degree of convergence of the impedance locus, the quantitative accuracy of the degree of deterioration is improved. Therefore, the deterioration judgment of the lead storage battery can be performed with high accuracy.

この実施形態においては、スミスチャート上のインピーダンス軌跡に加え、インピーダンス軌跡によって決定される軌跡面積に基づいて鉛蓄電池の劣化を判断することも可能である。図9はインピーダンス軌跡H、Kによって軌跡面積を決定した場合を示す。軌跡面積は、測定に使用する周波数の範囲を決めておき、スミスチャートにプロットする始点と終点とを結んだ線で囲まれた領域の面積を積分により算出することができる。 In this embodiment, it is also possible to determine the deterioration of the lead-acid battery based on the locus area determined by the impedance locus in addition to the impedance locus on the Smith chart. FIG. 9 shows a case where the locus area is determined by the impedance locus H, K. The trajectory area can be calculated by integrating the area surrounded by a line connecting the start point and the end point plotted on the Smith chart by determining the frequency range used for measurement.

図9における面積Pがインピーダンス軌跡Hの軌跡面積、面積Qがインピーダンス軌跡Kの軌跡面積である。上述したように、劣化が進行するのにつれてインピーダンス軌跡が内側に収束することから、軌跡面積P、Qの大小がCCA値の大小、すなわち劣化の進行度合いに対応している。従って劣化判断部32が2つの軌跡面積P、Qを対比することにより、基準鉛蓄電池(CCA値270の鉛蓄電池)に対する測定鉛蓄電池(CCA値175の鉛蓄電池)の劣化度合いを判断することができる。このようにインピーダンス軌跡の軌跡面積による劣化判断によっても、鉛蓄電池の劣化を容易に判別することができる。この場合、軌跡面積の数値によって鉛蓄電池の劣化を評価するため、劣化度合いの定量精度が向上する。 The area P in FIG. 9 is the locus area of the impedance locus H, and the area Q is the locus area of the impedance locus K. As described above, since the impedance trajectory converges as the deterioration progresses, the magnitudes of the trajectory areas P and Q correspond to the magnitude of the CCA value, that is, the degree of progress of the degradation. Therefore degradation determination unit 32 are two loci area P, by comparing the Q, is possible to determine the degree of deterioration of the measurement lead-acid battery (a lead-acid battery of CCA values 175) with respect to the reference lead-acid battery (a lead-acid battery CCA value 270) it can. As described above, the deterioration of the lead storage battery can be easily determined also by the deterioration determination based on the locus area of the impedance locus. In this case, since the deterioration of the lead storage battery is evaluated by the numerical value of the locus area, the quantitative accuracy of the deterioration degree is improved.

なお、この実施形態では、基準鉛蓄電池のインピーダンス軌跡と測定鉛蓄電池のインピーダンス軌跡との差によって鉛蓄電池の劣化を判断しているが、これに限られるものではなく、劣化の判断基準となる閾値を予め設定し、この閾値との比較によって劣化を判断しても良い。この場合の判断は、測定鉛蓄電池のインピーダンス軌跡を所定の周波数の範囲内で算出し、このインピーダンス軌跡を閾値と対比させることにより行うことができる。
る。
In this embodiment, the deterioration of the lead storage battery is determined based on the difference between the impedance locus of the reference lead storage battery and the impedance locus of the measured lead storage battery . However, the present invention is not limited to this, and a threshold value that is a criterion for determining deterioration. May be set in advance, and deterioration may be determined by comparison with this threshold value. The determination in this case can be made by calculating the impedance locus of the measured lead-acid battery within a predetermined frequency range and comparing this impedance locus with a threshold value.
The

1、 1A 劣化判断装置
鉛蓄電池
5 周波数制御部
6 電流供給部
7 インピーダンス測定部
8 位相差検出部
9、32 劣化判断部
21 位相差曲線算出部
22 判定部
31 インピーダンス軌跡算出部
F、G 位相差曲線
H、K インピーダンス軌跡
P、Q 軌跡面積
DESCRIPTION OF SYMBOLS 1, 1A Degradation judgment apparatus 2 Lead acid battery 5 Frequency control part 6 Current supply part 7 Impedance measurement part 8 Phase difference detection part 9, 32 Degradation judgment part 21 Phase difference curve calculation part 22 Determination part 31 Impedance locus calculation part F, G rank Phase difference curve H, K Impedance locus P, Q locus area

Claims (10)

周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、前記測定値からインピーダンスの位相差を検出し、前記位相差を周波数に対してプロットした位相差曲線を作成し、所定の周波数の範囲内で前記位相差曲線によって決定される位相差面積を算出し、算出した位相差面積に基づいて鉛蓄電池の劣化を判断することを特徴とする鉛蓄電池の劣化判断方法。 The impedance of each frequency is measured by supplying an alternating current with a changed frequency to the lead storage battery and discharged, the phase difference of the impedance is detected from the measured value, and the phase difference is plotted against the frequency. A lead-acid battery characterized by creating a curve, calculating a phase difference area determined by the phase difference curve within a predetermined frequency range, and judging deterioration of the lead-acid battery based on the calculated phase difference area Degradation judgment method. 請求項1記載の鉛蓄電池の劣化判断方法であって、
前記インピーダンスの位相差を測定鉛蓄電池及び基準鉛蓄電池に対して検出し、前記位相差曲線を測定鉛蓄電池及び基準鉛蓄電池に対して作成した後、基準鉛蓄電池の位相差曲線と測定鉛蓄電池の位相差曲線との間の差を所定の周波数の範囲内で求め、この位相差曲線の差で決定される差曲線面積を対比して測定鉛蓄電池の劣化を判断することを特徴とする鉛蓄電池の劣化判断方法。
A method for judging deterioration of a lead storage battery according to claim 1,
The phase difference between the impedances detected for the measurement of lead-acid battery and the reference lead-acid battery, after creating the phase difference curve for the measured lead-acid battery and the reference lead-acid battery, the reference lead-acid battery and retardation curves of the measured lead-acid battery A lead storage battery characterized in that a difference between a phase difference curve and a difference curve area determined by the difference between the phase difference curves is determined within a predetermined frequency range, and the deterioration of the measured lead storage battery is judged. Degradation judgment method.
周波数を変化させた交流電流を鉛蓄電池に供給して放電させることにより各周波数のインピーダンスを測定し、測定した周波数毎のインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を作成し、このインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断することを特徴とする鉛蓄電池の劣化判断方法。 The impedance of each frequency is measured by supplying an alternating current of varying frequency to the lead storage battery and discharging it, and the impedance resistance locus is plotted by plotting the actual resistance component and reactance component of the measured impedance for each frequency on a Smith chart. A method for determining deterioration of a lead storage battery , characterized in that the deterioration of the lead storage battery is determined based on the impedance locus. 請求項3記載の鉛蓄電池の劣化判断方法であって、
前記インピーダンス軌跡を測定鉛蓄電池及び基準鉛蓄電池に対して作成し、前記測定鉛蓄電池及び基準鉛蓄電池のインピーダンス軌跡を対比して測定鉛蓄電池の劣化を判断することを特徴とする鉛蓄電池の劣化判断方法。
A method for judging deterioration of a lead storage battery according to claim 3,
Wherein the impedance locus was created for the measurement lead-acid battery and the reference lead-acid battery, the measuring lead acid battery and lead-acid battery deterioration determination, characterized in that by comparing the impedance locus of the reference lead-acid battery to determine the deterioration of the measurement lead storage battery Method.
前記交流電流を0.1〜1kHzの周波数の範囲で変化させることを特徴とする請求項1〜4のいずれか1項記載の鉛蓄電池の劣化判断方法。   The deterioration determination method for a lead storage battery according to any one of claims 1 to 4, wherein the alternating current is changed in a frequency range of 0.1 to 1 kHz. 交流電流の周波数を変化させる周波数制御部と、
前記周波数制御部によって周波数が変化した交流電流を鉛蓄電池に供給して放電させる電流供給部と、
前記放電によって変化する鉛蓄電池のインピーダンスを測定するインピーダンス測定部と、
前記周波数制御部からの参照信号と前記インピーダンス測定部からの測定信号とを同期検波してインピーダンスの位相差を検出する位相差検出部と、
前記位相差検出部の位相差を指標として鉛蓄電池の劣化を判断する劣化判断部と、を備え、
前記劣化判断部は、前記インピーダンスの位相差を前記周波数に対してプロットした位相差曲線を算出する位相差曲線算出部と、所定の周波数の範囲内で前記位相差曲線によって決定される位相差面積を算出し、算出した位相差面積に基づいて劣化を判断する判定部とによって形成されることを特徴とする鉛蓄電池の劣化判断装置。
A frequency controller that changes the frequency of the alternating current;
A current supply unit for supplying and discharging an alternating current whose frequency has been changed by the frequency control unit to the lead-acid battery ;
An impedance measuring unit for measuring the impedance of the lead storage battery that changes due to the discharge;
A phase difference detection unit for detecting a phase difference of impedance by synchronously detecting a reference signal from the frequency control unit and a measurement signal from the impedance measurement unit;
A deterioration determination unit that determines deterioration of the lead-acid battery using the phase difference of the phase difference detection unit as an index, and
The deterioration determining unit includes a phase difference curve calculating unit that calculates a phase difference curve in which the phase difference of the impedance is plotted with respect to the frequency, and a phase difference area determined by the phase difference curve within a predetermined frequency range. And a determination unit that determines deterioration based on the calculated phase difference area . A deterioration determination device for a lead storage battery , characterized in that:
請求項6記載の鉛蓄電池の劣化判断装置であって、
前記位相差検出部は前記インピーダンスの位相差を測定鉛蓄電池及び基準鉛蓄電池に対して検出し、前記位相差曲線算出部は前記位相差曲線を測定鉛蓄電池及び基準鉛蓄電池に対して作成し、前記判定部は基準鉛蓄電池の位相差曲線と測定鉛蓄電池の位相差曲線との間の差を所定の周波数の範囲内で求め、この位相差曲線の差で決定される差曲線面積に基づいて測定鉛蓄電池の劣化を判断することを特徴とする鉛蓄電池の劣化判断装置。
It is a deterioration judgment apparatus of the lead storage battery according to claim 6 ,
The phase difference detection unit detects the phase difference between the impedance to measure lead-acid battery and the reference lead-acid battery, the phase difference curve calculation unit creates the phase difference curve for the measured lead electric storage batteries and reference lead-acid battery The determination unit obtains a difference between the phase difference curve of the reference lead acid battery and the phase difference curve of the measured lead acid battery within a predetermined frequency range, and is based on the difference curve area determined by the difference of the phase difference curve. And determining the deterioration of the lead acid storage battery .
交流電流の周波数を変化させる周波数制御部と、
前記周波数制御部によって周波数が変化した交流電流を鉛蓄電池に供給して放電させる電流供給部と、
前記放電によって変化する鉛蓄電池のインピーダンスを測定するインピーダンス測定部と、
このインピーダンス測定部が測定したインピーダンスの実抵抗成分とリアクタンス成分とをスミスチャートにプロットしてインピーダンス軌跡を算出するインピーダンス軌跡算出部と、
このインピーダンス軌跡算出部によって決定されたインピーダンス軌跡に基づいて鉛蓄電池の劣化を判断する劣化判断部と、を備えていることを特徴とする鉛蓄電池の劣化判断装置。
A frequency controller that changes the frequency of the alternating current;
A current supply unit for supplying and discharging an alternating current whose frequency has been changed by the frequency control unit to the lead-acid battery ;
An impedance measuring unit for measuring the impedance of the lead storage battery that changes due to the discharge;
An impedance trajectory calculating unit that calculates an impedance trajectory by plotting the actual resistance component and reactance component of the impedance measured by the impedance measuring unit on a Smith chart;
A deterioration determination device for a lead storage battery , comprising: a deterioration determination unit that determines deterioration of the lead storage battery based on the impedance locus determined by the impedance locus calculation unit.
請求項8記載の鉛蓄電池の劣化判断装置であって、
前記インピーダンス軌跡算出部は、測定鉛蓄電池及び基準鉛蓄電池の実抵抗成分とリアクタンス成分とを前記スミスチャートにプロットして前記インピーダンス軌跡を測定鉛蓄電池及び基準鉛蓄電池に対して算出することを特徴とする鉛蓄電池の劣化判断装置。
It is a deterioration judgment apparatus of the lead storage battery according to claim 8 ,
The impedance locus calculation unit plots the actual resistance component and reactance component of the measurement lead storage battery and the reference lead storage battery on the Smith chart and calculates the impedance locus for the measurement lead storage battery and the reference lead storage battery . Deterioration judgment device for lead storage battery .
前記周波数制御部は、前記交流電流を0.1〜1kHzの周波数の範囲で変化させることを特徴とする請求項6又は8記載の鉛蓄電池の劣化判断装置。 The lead-acid battery deterioration determination device according to claim 6 or 8 , wherein the frequency control unit changes the alternating current in a frequency range of 0.1 to 1 kHz.
JP2012140567A 2012-06-22 2012-06-22 Deterioration judgment method and degradation judgment device for lead acid battery Expired - Fee Related JP6074759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140567A JP6074759B2 (en) 2012-06-22 2012-06-22 Deterioration judgment method and degradation judgment device for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140567A JP6074759B2 (en) 2012-06-22 2012-06-22 Deterioration judgment method and degradation judgment device for lead acid battery

Publications (2)

Publication Number Publication Date
JP2014006099A JP2014006099A (en) 2014-01-16
JP6074759B2 true JP6074759B2 (en) 2017-02-08

Family

ID=50103957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140567A Expired - Fee Related JP6074759B2 (en) 2012-06-22 2012-06-22 Deterioration judgment method and degradation judgment device for lead acid battery

Country Status (1)

Country Link
JP (1) JP6074759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196281B2 (en) 2015-12-02 2017-09-13 株式会社東芝 Battery control device, battery system, and moving body
CN113224781B (en) * 2021-05-20 2023-02-28 中国南方电网有限责任公司超高压输电公司检修试验中心 Alternating current-direct current complementary resonance determination method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141965A (en) * 1990-09-29 1992-05-15 Shin Kobe Electric Mach Co Ltd Deterioration state detecting method of anode absorption type lead battery
JP2639219B2 (en) * 1990-11-28 1997-08-06 株式会社ユアサコーポレーション Lead-acid battery life judgment method
JP2658619B2 (en) * 1991-05-27 1997-09-30 新神戸電機株式会社 Method for detecting deterioration of sealed lead-acid battery
JP4645382B2 (en) * 2005-09-20 2011-03-09 トヨタ自動車株式会社 Battery state detection device and battery state detection method
JP5544687B2 (en) * 2008-03-31 2014-07-09 株式会社豊田中央研究所 State detection method for lithium ion secondary battery and state detection apparatus for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2014006099A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
TWI727957B (en) Method and system for estimating charging state or discharging depth of battery
JP6626356B2 (en) Secondary battery deterioration detection system, secondary battery deterioration detection method
JP6227309B2 (en) Battery state detection device
JP6155830B2 (en) State estimation device and state estimation method
EP3021127A1 (en) Method for estimating state of electricity storage device
US9500715B2 (en) Secondary battery tester
US10302706B2 (en) Apparatus for calculating state of charge of storage battery
US10444296B2 (en) Control device, control method, and recording medium
WO2013114669A1 (en) State of charge detection device
JP6701938B2 (en) Deterioration determination device, computer program, and deterioration determination method
JP6066163B2 (en) Open circuit voltage estimation device, state estimation device, and open circuit voltage estimation method
US11143710B2 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
JP2010127729A (en) Deterioration estimation method and device of battery
JP2010019595A (en) Residual capacity calculating apparatus of storage device
JP6575308B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JP3551767B2 (en) Battery discharge meter
JP6074759B2 (en) Deterioration judgment method and degradation judgment device for lead acid battery
JP2014052186A (en) Method for estimating capacity maintenance rate of secondary battery
JP5625244B2 (en) Secondary battery capacity estimation device
EP3457151B1 (en) Impedance estimating apparatus
JP2023500449A (en) Fast charging method
JP2005127894A (en) State controller for lead-acid battery, and method of detecting deterioration condition of lead-acid battery
JP2017044568A (en) Battery state measurement method and battery state measurement device
JP2014059251A (en) Internal resistance estimation device and internal resistance estimation method
JP2019015664A (en) Battery deterioration diagnosis device and battery deterioration diagnosis method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6074759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees