JP6047298B2 - Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same - Google Patents

Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same Download PDF

Info

Publication number
JP6047298B2
JP6047298B2 JP2012099016A JP2012099016A JP6047298B2 JP 6047298 B2 JP6047298 B2 JP 6047298B2 JP 2012099016 A JP2012099016 A JP 2012099016A JP 2012099016 A JP2012099016 A JP 2012099016A JP 6047298 B2 JP6047298 B2 JP 6047298B2
Authority
JP
Japan
Prior art keywords
transparent electrode
electrode pattern
layer
mask layer
input device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012099016A
Other languages
Japanese (ja)
Other versions
JP2013228806A (en
Inventor
伊藤 英明
英明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012099016A priority Critical patent/JP6047298B2/en
Publication of JP2013228806A publication Critical patent/JP2013228806A/en
Application granted granted Critical
Publication of JP6047298B2 publication Critical patent/JP6047298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、指の接触位置を静電容量の変化として検出可能な静電容量型入力装置の製造方法、および、当該製造方法によって得られる静電容量型入力装置、並びに、当該静電容量型入力装置を構成要素として備えた画像表示装置に関するものである。   The present invention relates to a method for manufacturing a capacitance-type input device capable of detecting a contact position of a finger as a change in capacitance, a capacitance-type input device obtained by the method, and the capacitance-type device The present invention relates to an image display device including an input device as a component.

携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置され、液晶装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで、指示画像に対応する情報の入力が行えるものがある。   In recent years, electronic devices such as mobile phones, car navigation systems, personal computers, ticket vending machines, and bank terminals have been equipped with a tablet-type input device on the surface of a liquid crystal device, etc., and an instruction image displayed in the image display area of the liquid crystal device In some cases, information corresponding to the instruction image can be input by touching a part where the instruction image is displayed with a finger or a touch pen.

このような入力装置(タッチパネル)には、抵抗膜型、静電容量型などがある。しかし、抵抗膜型の入力装置は、フィルムとガラスとの2枚構造でフィルムを押下してショートさせる構造のため、動作温度範囲の狭さや、経時変化に弱いという欠点を有している。   Such input devices (touch panels) include a resistance film type and a capacitance type. However, the resistance film type input device has a drawback that it has a narrow operating temperature range and is susceptible to changes over time because it has a two-layer structure of film and glass that is shorted by pressing the film.

これに対して、静電容量型の入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。かかる静電容量型の入力装置では、例えば、互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプのものがある(例えば、下記特許文献1参照)。   On the other hand, the capacitance-type input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate. In such a capacitance-type input device, for example, electrode patterns are extended in directions intersecting each other, and when a finger or the like comes into contact, the capacitance between the electrodes is detected to detect the input position. (For example, refer to Patent Document 1 below).

また、静電容量型の入力装置としては、透光性導電膜の両端に同相、同電位の交流を印加し、指が接触あるいは近接してキャパシタが形成される際に流れる微弱電流を検知して入力位置を検出するタイプのものもある。このような静電容量型入力装置として、複数のパッド部分を、接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターンと前記第一の透明電極パターンと層間絶縁層を介して電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターンを備えた静電容量型入力装置が開示されている(例えば、下記特許文献2参照)。   In addition, as an electrostatic capacitance type input device, an alternating current of the same phase and the same potential is applied to both ends of the translucent conductive film to detect a weak current flowing when a capacitor is formed in contact with or close to a finger. Some types detect the input position. As such a capacitive input device, a plurality of first transparent electrode patterns and a plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connecting portions. And a plurality of second transparent electrode patterns comprising a plurality of pad portions formed to extend in a direction crossing the first direction and electrically insulated via an interlayer insulating layer An input device is disclosed (for example, see Patent Document 2 below).

さらに、前面板の非接触側表面に、マスク層、センス回路、層間絶縁層が一体に形成されている静電容量型タッチパネルが開示されている(例えば、下記特許文献3参照)。このようなマスク層は、透明基板の周辺部に形成される電極の引き廻し配線および信号処理用の接続部を視認側に対して覆い隠すため設けられているが、各層の材料や、詳細な製造方法については記載されていない。   Furthermore, a capacitive touch panel is disclosed in which a mask layer, a sense circuit, and an interlayer insulating layer are integrally formed on the non-contact side surface of the front plate (see, for example, Patent Document 3 below). Such a mask layer is provided so as to cover the wiring around the electrodes formed in the peripheral portion of the transparent substrate and the signal processing connection portion from the viewing side. The manufacturing method is not described.

特許文献4には、前面板の非接触側表面に、黒色顔料を含む遮光膜を設け、遮光膜の上にITO透明電極パターンを形成した後で、透明電極パターン上に誘電体膜または保護膜としてSiO2膜を設けた静電容量型タッチパネルが記載されており、積層態様や製造方法が記載されている。 In Patent Document 4, a light shielding film containing a black pigment is provided on the non-contact side surface of a front plate, and after forming an ITO transparent electrode pattern on the light shielding film, a dielectric film or a protective film is formed on the transparent electrode pattern. As an example, a capacitive touch panel provided with a SiO 2 film is described, and a lamination mode and a manufacturing method are described.

特許文献5には、ブラックマスク部として、層自体が絶縁性を有するBM絶縁層を用いて、その上に透明電極パターンを形成した後で、透明電極パターン上に保護膜としてSiO2膜を設けた静電容量型タッチパネルが記載されており、積層態様や製造方法が記載されている。 In Patent Document 5, a BM insulating layer having an insulating property as a black mask portion is used as a black mask portion, and after forming a transparent electrode pattern thereon, an SiO 2 film is provided as a protective film on the transparent electrode pattern. A capacitive touch panel is described, and a lamination mode and a manufacturing method are described.

特開2007−122326号公報JP 2007-122326 A 特許第4506785号公報Japanese Patent No. 4506785 特開2009−193587号公報JP 2009-193587 A 特開2011−186717号公報JP 2011-186717 A 特開2011−90443号公報JP 2011-90443 A

本発明者が特許文献3〜5に記載の黒色のマスク層を加飾材として用いた静電容量型タッチパネルの性能を検討したところ、このような黒色の材料の上に直接ITOなどの透明電極パターンを形成すると、ITOなどの透明電極の抵抗が上がる問題、およびパターン化したITOなどの透明電極間の絶縁性不良の問題が発生することがわかった。
特許文献3および4では、この課題に対処していない上、改善方法についても記載がなかった。
When this inventor examined the performance of the electrostatic capacitance type touch panel using the black mask layer of patent documents 3-5 as a decorating material, transparent electrodes, such as ITO, directly on such a black material It has been found that when a pattern is formed, a problem of increasing the resistance of a transparent electrode such as ITO and a problem of poor insulation between patterned transparent electrodes such as ITO occur.
In Patent Documents 3 and 4, this problem is not addressed, and no improvement method is described.

特許文献5では、黒色の材料自体に絶縁性を付与することが提案されているが、チタンブラックなどの高価な材料を用いる必要があるため、さらなる改善が求められていることがわかった。   In Patent Document 5, it has been proposed to impart insulation to the black material itself. However, since it is necessary to use an expensive material such as titanium black, it has been found that further improvement is required.

本発明の目的は、マスク層上に設けられた透明電極パターンの抵抗を抑制でき、透明電極パターン間の絶縁性が良好であり、安価な静電容量型入力装置の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a capacitive input device that can suppress the resistance of a transparent electrode pattern provided on a mask layer, has good insulation between the transparent electrode patterns, and is inexpensive. is there.

上記課題を解決するために本発明者が鋭意検討した結果、マスク層と透明電極パターンの間に無機絶縁膜を形成することで、マスク層表面の絶縁性向上およびマスク層の上に形成したITO透明電極パターンの抵抗を抑制すること(導電性の向上)が実現でき、タッチパネルとして良好に作動する静電容量型入力装置を製造することが可能となった。   As a result of intensive studies by the present inventor in order to solve the above problems, by forming an inorganic insulating film between the mask layer and the transparent electrode pattern, the insulation on the surface of the mask layer is improved and the ITO formed on the mask layer It was possible to suppress the resistance of the transparent electrode pattern (improvement of conductivity), and it was possible to manufacture a capacitive input device that operates well as a touch panel.

[1] 前面板と、前記前面板の非接触側に少なくとも下記(1)〜(5)の要素を有する静電容量型入力装置の製造方法であって、下記マスク層と、下記第一および第二の透明電極パターンの間に、無機絶縁層を設ける工程を含むことを特徴とする静電容量型入力装置の製造方法。
(1)マスク層
(2)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(3)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン
(4)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層
(5)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素
[2] [1]に記載の静電容量型入力装置の製造方法は、前記無機絶縁層が、SiO2膜であることが好ましい。
[3] [1]または[2]に記載の静電容量型入力装置の製造方法は、前記無機絶縁層の厚さが5〜100nmであることが好ましい。
[4] [1]〜[3]のいずれか一項に記載の静電容量型入力装置の製造方法は、前記(1)〜(5)の要素の少なくとも一つを、仮支持体と光硬化性樹脂層とを有する感光性フィルムを用いて形成することが好ましい。
[5] [4]に記載の静電容量型入力装置の製造方法は、前記感光性フィルムが、前記仮支持体と熱可塑性樹脂層と前記光硬化性樹脂層とをこの順で有することが好ましい。
[6] [1]〜[5]のいずれか一項に記載の静電容量型入力装置の製造方法は、前記第一の透明電極パターンを形成した後に、150〜350℃で熱処理する工程を含むことが好ましい。
[7] [1]〜[6]のいずれか一項に記載の静電容量型入力装置の製造方法は、前記マスク層が、黒色のマスク層であることが好ましい。
[8] [7]に記載の静電容量型入力装置の製造方法は、前記黒色のマスク層が、カーボンブラックまたは黒鉛を含むことが好ましい。
[9] [1]〜[8]のいずれか1項に記載の静電容量型入力装置の製造方法で製造された静電容量型入力装置。
[10] [9]に記載の静電容量型入力装置を構成要素として備えた画像表示装置。
[1] A method of manufacturing a capacitance-type input device having at least the following elements (1) to (5) on the front plate and the non-contact side of the front plate, the following mask layer, the following first and A method for manufacturing a capacitance-type input device comprising a step of providing an inorganic insulating layer between second transparent electrode patterns.
(1) Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (3) The first transparent electrode pattern and the electric A plurality of second transparent electrode patterns comprising a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction (4) The first transparent electrode pattern and the second An insulating layer that electrically insulates the transparent electrode pattern (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern, and the first transparent electrode pattern and the second transparent electrode pattern In the method for manufacturing a capacitive input device according to [2] [1], which is different from the second transparent electrode pattern, the inorganic insulating layer is preferably a SiO 2 film.
[3] In the method for manufacturing a capacitive input device according to [1] or [2], the inorganic insulating layer preferably has a thickness of 5 to 100 nm.
[4] In the method of manufacturing a capacitive input device according to any one of [1] to [3], at least one of the elements (1) to (5) may include a temporary support and light. It is preferable to form using a photosensitive film having a curable resin layer.
[5] In the method for manufacturing a capacitive input device according to [4], the photosensitive film may include the temporary support, the thermoplastic resin layer, and the photocurable resin layer in this order. preferable.
[6] The method for manufacturing a capacitive input device according to any one of [1] to [5] includes a step of heat-treating at 150 to 350 ° C. after forming the first transparent electrode pattern. It is preferable to include.
[7] In the method for manufacturing a capacitive input device according to any one of [1] to [6], the mask layer is preferably a black mask layer.
[8] In the method for manufacturing a capacitive input device according to [7], it is preferable that the black mask layer contains carbon black or graphite.
[9] A capacitance-type input device manufactured by the method for manufacturing a capacitance-type input device according to any one of [1] to [8].
[10] An image display device comprising the capacitive input device according to [9] as a constituent element.

本発明によれば、マスク層上に設けられた透明電極パターンの抵抗を抑制でき、透明電極パターン間の絶縁性が良好であり、安価な静電容量型入力装置を製造することできる静電容量型入力装置の製造方法、および、当該製造方法によって得られる静電容量型入力装置、並びに、当該静電容量型入力装置を用いた画像表示装置を提供することができる。   According to the present invention, the capacitance of the transparent electrode pattern provided on the mask layer can be suppressed, the insulation between the transparent electrode patterns is good, and an inexpensive capacitive input device can be manufactured. It is possible to provide a method for manufacturing a type input device, a capacitance type input device obtained by the method, and an image display device using the capacitance type input device.

本発明の静電容量型入力装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electrostatic capacitance type input device of this invention. 本発明における前面板の一例を示す説明図である。It is explanatory drawing which shows an example of the front plate in this invention. 本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。It is explanatory drawing which shows an example of the 1st transparent electrode pattern in this invention, and a 2nd transparent electrode pattern. 開口部が形成された強化処理ガラスの一例を示す上面図である。It is a top view which shows an example of the tempered glass in which the opening part was formed. マスク層が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front board in which the mask layer was formed. 第一の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st transparent electrode pattern was formed. 第一および第二の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st and 2nd transparent electrode pattern was formed. 第一および第二の透明電極パターンとは別の導電性要素が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the electroconductive element different from the 1st and 2nd transparent electrode pattern was formed. 金属ナノワイヤー断面を示す説明図である。It is explanatory drawing which shows a metal nanowire cross section.

以下、本発明の静電容量型入力装置の製造方法、静電容量型入力装置および画像表示装置について説明する。   Hereinafter, a method for manufacturing a capacitive input device, a capacitive input device, and an image display device of the present invention will be described.

[静電容量型入力装置の製造方法]
本発明の静電容量型入力装置の製造方法(以下、単に「本発明の製造方法」と称する場合がある。)は、前面板と、前記前面板の非接触側に少なくとも下記(1)〜(5)の要素を有する静電容量型入力装置の製造方法であって、下記マスク層と、下記第一および第二の透明電極パターンのうち少なくとも該マスク層の面上に設置された部分の透明電極パターンとの間に、無機絶縁層を設ける工程を含むことを特徴とする。
(1)マスク層
(2)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(3)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン
(4)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層
(5)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素
[Method for Manufacturing Capacitive Input Device]
The method for manufacturing a capacitive input device of the present invention (hereinafter sometimes simply referred to as “the manufacturing method of the present invention”) includes at least the following (1) to (1) to the front plate and the non-contact side of the front plate. A method for manufacturing a capacitance-type input device having the element (5), comprising: the following mask layer; and at least a portion of the following first and second transparent electrode patterns disposed on the surface of the mask layer It includes a step of providing an inorganic insulating layer between the transparent electrode pattern.
(1) Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (3) The first transparent electrode pattern and the electric A plurality of second transparent electrode patterns comprising a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction (4) The first transparent electrode pattern and the second An insulating layer that electrically insulates the transparent electrode pattern (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern, and the first transparent electrode pattern and the second transparent electrode pattern Conductive element separate from the second transparent electrode pattern

まず、本発明の製造方法によって形成される静電容量型入力装置の構成について説明する。図1は、本発明の静電容量型入力装置の構成を示す断面図である。図1において静電容量型入力装置10は、前面板1と、マスク層2と、前記マスク層と前記第二の透明電極パターン4の間に設けられた無機絶縁層13と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、透明保護層7と、から構成されている。   First, the configuration of a capacitive input device formed by the manufacturing method of the present invention will be described. FIG. 1 is a cross-sectional view showing a configuration of a capacitive input device of the present invention. In FIG. 1, a capacitive input device 10 includes a front plate 1, a mask layer 2, an inorganic insulating layer 13 provided between the mask layer and the second transparent electrode pattern 4, and a first transparent The electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 are configured.

前面板1は、ガラス基板等の透光性基板で構成されており、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、図1において、前面層1の各要素が設けられている側を非接触面と称する。本発明の静電容量型入力装置10においては、前面板1の接触面(非接触面の反対の面)に指などを接触などさせて入力が行われる。以下、前面板を、「基材」と称する場合がある。   The front plate 1 is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by Corning gorilla glass can be used. Moreover, in FIG. 1, the side in which each element of the front layer 1 is provided is called a non-contact surface. In the capacitive input device 10 of the present invention, input is performed by bringing a finger or the like into contact with the contact surface (the surface opposite to the non-contact surface) of the front plate 1. Hereinafter, the front plate may be referred to as a “base material”.

また、前面板1の非接触面上にはマスク層2が設けられている。マスク層2は、タッチパネル前面板の非接触側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
本発明の静電容量型入力装置10には、図2に示すように、前面板1の一部の領域(図2においては入力面以外の領域)を覆うようにマスク層2が設けられている。更に、前面板1には、図2に示すように一部に開口部8を設けることができる。開口部8には、押圧によるメカニカルなスイッチを設置することができる。
A mask layer 2 is provided on the non-contact surface of the front plate 1. The mask layer 2 is a frame-shaped pattern around the display area formed on the non-contact side of the front panel of the touch panel, and is formed so that the lead wiring and the like cannot be seen.
As shown in FIG. 2, the capacitive input device 10 of the present invention is provided with a mask layer 2 so as to cover a part of the front plate 1 (a region other than the input surface in FIG. 2). Yes. Further, the front plate 1 can be provided with an opening 8 in part as shown in FIG. A mechanical switch by pressing can be installed in the opening 8.

前面板1の接触面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成されている。前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO2等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10〜200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできるが、その場合の好ましい態様についての詳細は後述する。また、前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、前記導電性繊維を用いた光硬化性樹脂層を有する感光性フィルムを用いて製造することもできる。その他、ITO等によって第一および第二の透明電極パターン等を形成する場合には、特許第4506785号公報の段落[0014]〜[0016]等を参考にすることができる。 On the contact surface of the front plate 1, a plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions; A plurality of second transparent electrode patterns 4 made of a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 that electrically insulates the transparent electrode pattern 4 is formed. The first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later are, for example, translucent conductive materials such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide). It can be made of a conductive metal oxide film. Examples of such metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 . At this time, the film thickness of each element can be 10 to 200 nm. In addition, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced. Details of a preferable mode in that case will be described later. Moreover, said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later use the photosensitive film which has the photocurable resin layer using the said conductive fiber. It can also be manufactured. In addition, when forming the 1st and 2nd transparent electrode pattern etc. by ITO etc., paragraphs [0014]-[0016] etc. of patent 4506785 gazette can be referred.

本発明の静電容量型入力装置の製造方法では、第二の透明電極パターン4は、前面板1の非接触面および黒色のマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置することが好ましい(但し、黒色のマスク層の前記前面板とは逆側の面とは、無機絶縁層を介して接する)。図1においては、第二の透明電極パターン4が、マスク層2との間に設置された無機絶縁層13を介して、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置されている図が示されている。   In the method for manufacturing a capacitance-type input device of the present invention, the second transparent electrode pattern 4 is a region on both the non-contact surface of the front plate 1 and the surface opposite to the front plate 1 of the black mask layer 2. (It is preferable that the black mask layer is in contact with the surface opposite to the front plate through an inorganic insulating layer). In FIG. 1, the second transparent electrode pattern 4 is opposite to the non-contact surface of the front plate 1 and the front plate 1 of the mask layer 2 through the inorganic insulating layer 13 disposed between the mask layer 2 and the second transparent electrode pattern 4. The figure is shown installed across both areas of the side surface.

前記無機絶縁層13は、図1に記載されているように、マスク層と、下記第一および第二の透明電極パターンのうち少なくとも該マスク層の面上に設置された部分の透明電極パターンに積層されており、マスク層2のうち、透明電極パターンと接するすべての面に積層されていることが好ましい。また、無機絶縁層13は、図1に記載されているように、前面板1の非接触面のうちマスク層2が形成されていない部分の上にも形成されていてもよい。   As shown in FIG. 1, the inorganic insulating layer 13 has a mask layer and at least a portion of the transparent electrode pattern of the following first and second transparent electrode patterns disposed on the surface of the mask layer. The mask layers 2 are preferably laminated on all surfaces in contact with the transparent electrode pattern. Further, as shown in FIG. 1, the inorganic insulating layer 13 may also be formed on a portion of the non-contact surface of the front plate 1 where the mask layer 2 is not formed.

前記無機絶縁層13の厚みは特に制限はないが、5〜100nmであることが好ましく、10〜80nmであることがより好ましく、5〜60nmであることが特に好ましい。上記の下限値以上であると前記黒色のマスク層の絶縁性改良効果が十分に得られ、また、前記第一の透明電極パターンの導電性の改良効果が十分に得られる。上記の上限値以下であると、無機絶縁層を形成する時間を短くすることができ、静電容量型入力装置の生産性が良好となる。   The thickness of the inorganic insulating layer 13 is not particularly limited, but is preferably 5 to 100 nm, more preferably 10 to 80 nm, and particularly preferably 5 to 60 nm. When it is at least the above lower limit value, the effect of improving the insulation of the black mask layer is sufficiently obtained, and the effect of improving the conductivity of the first transparent electrode pattern is sufficiently obtained. When the amount is not more than the above upper limit value, the time for forming the inorganic insulating layer can be shortened, and the productivity of the capacitive input device is improved.

また、第一の透明電極パターン3を、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置してもよい。
これらのように、一定の厚みが必要なマスク層と前面板裏面とにまたがって感光性フィルムをラミネートする場合でも、後述する感光性フィルムを用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程でマスク部分境界に泡の発生がないラミネートが可能になる。
Further, the first transparent electrode pattern 3 may be installed across both the non-contact surface of the front plate 1 and the surface of the mask layer 2 opposite to the front plate 1.
As described above, even when a photosensitive film is laminated across the mask layer that requires a certain thickness and the back surface of the front plate, expensive equipment such as a vacuum laminator can be used by using the photosensitive film described later. However, it is possible to perform lamination without generating bubbles at the boundary of the mask portion with a simple process.

図3を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図3は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図3に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(図3における第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、前記パッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)する場合、図3に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。   The first transparent electrode pattern 3 and the second transparent electrode pattern 4 will be described with reference to FIG. FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention. As shown in FIG. 3, the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b. The second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 3). It is constituted by a plurality of pad portions that are formed. Here, when the first transparent electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be manufactured as one body, or only the connection portion 3b is manufactured and the pad portion 3a and the second portion 3b are formed. The transparent electrode pattern 4 may be integrally formed (patterned). When the pad portion 3a and the second transparent electrode pattern 4 are manufactured (patterned) as a single body (patterning), as shown in FIG. Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.

図1において、マスク層2の前面板1とは逆側の面側には導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の要素である。図1においては、導電性要素6が第二の透明電極パターン4に接続されている図が示されている。   In FIG. 1, a conductive element 6 is provided on the surface of the mask layer 2 opposite to the front plate 1. The conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Is another element. In FIG. 1, a view in which the conductive element 6 is connected to the second transparent electrode pattern 4 is shown.

また、図1においては、各構成要素の全てを覆うように透明保護層7が設置されている。透明保護層7は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層5と透明保護層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と透明保護層7とを構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられる。   Moreover, in FIG. 1, the transparent protective layer 7 is installed so that all of each component may be covered. The transparent protective layer 7 may be configured to cover only a part of each component. The insulating layer 5 and the transparent protective layer 7 may be made of the same material or different materials. The material constituting the insulating layer 5 and the transparent protective layer 7 is preferably a material having high surface hardness and high heat resistance, and a known photosensitive siloxane resin material, acrylic resin material, or the like is used.

本発明の製造方法においては、前記(1)〜(5)の要素の少なくとも一つを、仮支持体と光硬化性樹脂層とを有する感光性フィルムを用いて形成することが好ましい。その中でも、黒色のマスク層2と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、必要に応じて透明保護層7との少なくとも一要素が、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する前記感光性フィルムを用いて形成されることがより好ましい。
前記マスク層2、絶縁層5および透明保護層7は、前記感光性フィルムを用いて光硬化性樹脂層を前面板1に転写することで形成することができる。例えば、黒色のマスク層2を形成する場合には、前記光硬化性樹脂層として黒色光硬化性樹脂層を有する前記感光性フィルムを用いて、前記前面板1の表面に前記黒色光硬化性樹脂層を転写することで形成することができる。絶縁層5を形成する場合には、前記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する前記感光性フィルムを用いて、第一または第二の透明電極パターンが形成された前記前面板1の表面に前記光硬化性樹脂層を転写することで形成することができる。透明保護層7を形成する場合には、前記光硬化性樹脂層として透明の光硬化性樹脂層を有する前記感光性フィルムを用いて、各要素が形成された前記前面板1の表面に前記光硬化性樹脂層を転写することで形成することができる。
In the production method of the present invention, it is preferable that at least one of the elements (1) to (5) is formed using a photosensitive film having a temporary support and a photocurable resin layer. Among them, at least the black mask layer 2, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 as necessary. More preferably, the one element is formed using the photosensitive film having a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order.
The mask layer 2, the insulating layer 5 and the transparent protective layer 7 can be formed by transferring a photocurable resin layer to the front plate 1 using the photosensitive film. For example, when the black mask layer 2 is formed, the black photocurable resin is formed on the surface of the front plate 1 using the photosensitive film having a black photocurable resin layer as the photocurable resin layer. It can be formed by transferring the layer. When the insulating layer 5 is formed, the photosensitive film having an insulating photo-curable resin layer as the photo-curable resin layer is used to form the front of the first or second transparent electrode pattern. It can be formed by transferring the photocurable resin layer to the surface of the face plate 1. When the transparent protective layer 7 is formed, the light is applied to the surface of the front plate 1 on which each element is formed using the photosensitive film having a transparent photocurable resin layer as the photocurable resin layer. It can be formed by transferring a curable resin layer.

前記マスク層2等を、前記感光性フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、特に前面板の境界ギリギリまで遮光パターンを形成する必要のあるマスク層でのガラス端からのレジスト成分のはみ出しがないため基板裏側を汚染することなく、簡略な工程で、薄層/軽量化のメリットがあるタッチパネルの製造を可能となる。
さらに、遮光性が必要なマスク層2の形成に、光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前記感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、光モレのない高品位なマスク層2等を形成することができる。
When the mask layer 2 or the like is formed by using the photosensitive film, there is no resist component leakage from the opening even on the substrate (front plate) having an opening, and it is necessary to form a light-shielding pattern from the opening to the boundary of the front plate. Since there is no protrusion of the resist component from the glass edge in the mask layer, it is possible to manufacture a touch panel having a merit of thin layer / light weight by a simple process without contaminating the back side of the substrate.
Furthermore, in the formation of the mask layer 2 that needs light shielding properties, the photosensitive film having the specific layer structure including the thermoplastic resin layer between the photocurable resin layer and the temporary support is used. Generation of bubbles during lamination can be prevented, and a high-quality mask layer 2 and the like having no light leakage can be formed.

前記第一の透明電極パターン3、第二の透明電極パターン4および導電性要素6は、エッチング処理または導電性光硬化性樹脂層を有する前記感光性フィルムを用いて形成することができる。
エッチング処理によって、前記第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、まず黒色のマスク層2等が形成された前面板1の非接触面上に、黒色のマスク層2が設けられた部分について少なくとも無機絶縁層を設け、前面板1の非接触面上または無機絶縁層上にITO等の透明電極層をスパッタリングによって形成する。次いで、前記透明電極層上に前記光硬化性樹脂層としてエッチング用光硬化性樹脂層を有する前記感光性フィルムを用いて露光・現像によってエッチングパターンを形成する。その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
Said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 can be formed using the said photosensitive film which has an etching process or a conductive photocurable resin layer.
When the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 are formed by etching treatment, first, the non-contact surface of the front plate 1 on which the black mask layer 2 and the like are formed An inorganic insulating layer is provided at least on the portion where the black mask layer 2 is provided, and a transparent electrode layer such as ITO is formed on the non-contact surface of the front plate 1 or on the inorganic insulating layer by sputtering. Next, an etching pattern is formed by exposure and development using the photosensitive film having an etching photocurable resin layer as the photocurable resin layer on the transparent electrode layer. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.

導電性光硬化性樹脂層を有する前記感光性フィルムを用いて、前記第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、前記前面板1の表面上に、黒色のマスク層2が設けられた部分について少なくとも無機絶縁層を設け、前面板1の非接触面上または無機絶縁層上に前記導電性光硬化性樹脂層を転写することで形成することができる。
前記第一の透明電極パターン3等を、前記導電性光硬化性樹脂層を有する感光性フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、基板裏側を汚染することなく、簡略な工程で、薄層/軽量化のメリットがあるタッチパネルの製造を可能となる。
さらに、第一の透明電極パターン3等の形成に、導電性光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前記感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、導電性に優れ抵抗の少ない第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成することができる。
When forming the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 using the photosensitive film having a conductive photocurable resin layer, the front plate 1 Formed by providing at least an inorganic insulating layer on the surface where the black mask layer 2 is provided, and transferring the conductive photocurable resin layer onto the non-contact surface of the front plate 1 or onto the inorganic insulating layer. can do.
When the first transparent electrode pattern 3 or the like is formed using a photosensitive film having the conductive photocurable resin layer, there is no leakage of resist components from the opening portion even on a substrate (front plate) having an opening portion. Without contaminating the back side of the substrate, it is possible to manufacture a touch panel having a merit of thin layer / light weight by a simple process.
Further, the first transparent electrode pattern 3 and the like are formed by using the photosensitive film having a specific layer structure including a thermoplastic resin layer between the conductive photocurable resin layer and the temporary support. The generation of bubbles during laminating of the conductive film can be prevented, and the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 having excellent conductivity and low resistance can be formed.

本発明の製造方法の過程で形成される態様例として、図4〜8の態様を挙げることができる。図4は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図5は、マスク層2が形成された前面板の一例を示す上面図である。図6は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン3と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図8は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、上記説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。   Examples of embodiments formed in the course of the production method of the present invention include the embodiments of FIGS. FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed. FIG. 5 is a top view showing an example of the front plate on which the mask layer 2 is formed. FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed. FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed. FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed. These show examples embodying the above description, and the scope of the present invention is not limitedly interpreted by these drawings.

《無機絶縁層を設ける工程》
本発明の製造方法における、前記黒色のマスク層と前記第一の透明電極パターンの間に、無機絶縁層を設ける工程について説明する。
本発明の製造方法では、前記黒色のマスク層上に、複数のパッド部分が接続部分を介して第一の方向に延在して形成され、前記前面板の非接触面および前記マスク層の前記前面板とは逆側の面の両方の領域にまたがって設置された複数の第一の透明電極パターンを直接設けずに、前記黒色のマスク層と前記第一の透明電極パターンの間に、無機絶縁層を設ける。このような構成により、黒色のマスク層上に設けられた透明電極パターンの抵抗を抑制でき、透明電極パターン間の絶縁性が良好であり、安価な静電容量型入力装置の製造方法を提供することができる。
<< Step of providing an inorganic insulating layer >>
The process of providing an inorganic insulating layer between the black mask layer and the first transparent electrode pattern in the production method of the present invention will be described.
In the manufacturing method of the present invention, a plurality of pad portions are formed on the black mask layer so as to extend in the first direction via connection portions, and the non-contact surface of the front plate and the mask layer Without directly providing a plurality of first transparent electrode patterns installed across both regions on the surface opposite to the front plate, an inorganic material is provided between the black mask layer and the first transparent electrode pattern. An insulating layer is provided. With such a configuration, the resistance of the transparent electrode pattern provided on the black mask layer can be suppressed, the insulation between the transparent electrode patterns is good, and an inexpensive capacitive input device manufacturing method is provided. be able to.

前記無機絶縁層の製造方法としては特に制限はないが、スパッタリング法または蒸着法により成膜することができる。具体的には、例えばシリコンをターゲットにして用いて、直流マグネトロンスパッタリング法により形成することができ、真空度は0.15〜0.27Paとすることが好ましく、Arガスの流速は250〜1000sccmとすることが好ましく、O2ガスの流速は40〜160sccmとすることが好ましい。 Although there is no restriction | limiting in particular as a manufacturing method of the said inorganic insulating layer, It can form into a film by sputtering method or a vapor deposition method. Specifically, for example, it can be formed by a direct current magnetron sputtering method using silicon as a target, the degree of vacuum is preferably 0.15 to 0.27 Pa, and the flow rate of Ar gas is 250 to 1000 sccm. The flow rate of O 2 gas is preferably 40 to 160 sccm.

前記無機絶縁層の組成としては特に制限はないが、SiO2であることが好ましい。 There is no particular restriction on the composition of the inorganic insulating layer is preferably SiO 2.

前記無機絶縁層を形成した後のマスク層表面抵抗(すなわち、前記黒色のマスク層の無機絶縁層が形成された部分における、無機絶縁膜の表面抵抗)は、1.0×1011Ω/□以上であることが好ましく、1.0×1012Ω/□以上であることがより好ましく、1.0×1013Ω/□以上であることが特に好ましい。 The mask layer surface resistance after forming the inorganic insulating layer (that is, the surface resistance of the inorganic insulating film in the portion where the inorganic insulating layer of the black mask layer is formed) is 1.0 × 10 11 Ω / □. Preferably, it is 1.0 × 10 12 Ω / □ or more, and more preferably 1.0 × 10 13 Ω / □ or more.

《(1)〜(5)の要素の製造工程》
次に、前記前面板の非接触側に少なくとも前記(1)〜(5)の要素を製造する工程について説明する。
<< Process for Manufacturing Elements (1) to (5) >>
Next, a process of manufacturing at least the elements (1) to (5) on the non-contact side of the front plate will be described.

本発明の静電容量型入力装置の製造方法は、前記第一の透明電極パターンを形成した後に、150〜350℃で熱処理する工程を含むことが好ましく、熱処理工程の温度は200〜300℃であることがより好ましく、220〜280℃であることが特に好ましい。このような温度で熱処理することにより、透明電極パターンの結晶性を高めることができる。
前記第一の透明電極パターンはITO透明電極パターンであることが好ましく、この場合には特にITOの結晶化を促進させ、アモルファスのITO膜を多結晶のITO膜とすることで電気的抵抗を低減する観点から、このような高温度での熱処理を行うことが好ましい。なお、このような熱処理を、焼成またはアニーリングとも言う。
The method for manufacturing a capacitance-type input device of the present invention preferably includes a step of heat-treating at 150 to 350 ° C. after forming the first transparent electrode pattern, and the temperature of the heat-treatment step is 200 to 300 ° C. More preferably, it is 220-280 degreeC. By performing heat treatment at such a temperature, the crystallinity of the transparent electrode pattern can be enhanced.
The first transparent electrode pattern is preferably an ITO transparent electrode pattern. In this case, in particular, the crystallization of ITO is promoted, and the electrical resistance is reduced by using an amorphous ITO film as a polycrystalline ITO film. Therefore, it is preferable to perform the heat treatment at such a high temperature. Such heat treatment is also referred to as firing or annealing.

このような透明電極パターンに用いるITO膜などの導電層は、スパッタリング法や後述の感光性フィルムを用いて成膜することができる。透明電極パターンは成膜されたITO膜を写真製版などの現像とエッチングによりパターン化することにより形成することが好ましい。   A conductive layer such as an ITO film used for such a transparent electrode pattern can be formed using a sputtering method or a photosensitive film described later. The transparent electrode pattern is preferably formed by patterning the formed ITO film by development such as photolithography and etching.

このように前記無機絶縁層を形成した後において、無機絶縁層上に形成された第一の透明電極パターンの表面抵抗(すなわち、前記黒色のマスク層の無機絶縁層が形成された部分における第一の透明電極パターンの表面抵抗)は、300Ω以下であることが好ましく、200Ω/□以下であることがより好ましく、150Ω以下であることが特に好ましい。   After forming the inorganic insulating layer in this way, the surface resistance of the first transparent electrode pattern formed on the inorganic insulating layer (that is, the first in the portion of the black mask layer where the inorganic insulating layer is formed). The surface resistance of the transparent electrode pattern is preferably 300Ω or less, more preferably 200Ω / □ or less, and particularly preferably 150Ω or less.

また、前記第二の透明電極パターンを形成した後にも同様に上記の範囲の熱処理を行うことも好ましい。また、前記第二の透明電極パターンの製造方法や組成や物性の好ましい態様については、前記第一の透明電極パターンと同様である。
なお、前記熱処理は、前記前記第一の透明電極パターンおよび前記第二の透明電極パターンをともに形成した後に、一度に行ってもよい。
In addition, it is also preferable to perform the heat treatment in the above range after the second transparent electrode pattern is formed. Moreover, about the manufacturing method of said 2nd transparent electrode pattern, a preferable aspect of a composition and a physical property, it is the same as that of said 1st transparent electrode pattern.
In addition, you may perform the said heat processing at once, after forming both said 1st transparent electrode pattern and said 2nd transparent electrode pattern.

本発明の製造方法では、前記(1)〜(5)の要素を製造する工程が、前記感光性フィルムを用いて製造する工程であることが好ましい。
以下、前記感光性フィルムを用いて前記(1)〜(5)の要素を製造する方法について説明する。
In the manufacturing method of this invention, it is preferable that the process of manufacturing the said element of (1)-(5) is a process of manufacturing using the said photosensitive film.
Hereinafter, a method for producing the elements (1) to (5) using the photosensitive film will be described.

<感光性フィルムの構成>
本発明の製造方法に用いられる前記感光性フィルムについて説明する。前記感光性フィルムは、仮支持体と光硬化性樹脂層とを有し、仮支持体と光硬化性樹脂層との間に熱可塑性樹脂層を有することが好ましい。前記熱可塑性樹脂層を有する感光性フィルムを用いて、マスク層等を形成すると、前記熱可塑性樹脂層を有さない感光性フィルムを用いた場合に比べて、光硬化性樹脂層を転写して形成した要素に気泡が発生し難く、画像表示装置に画像ムラなどが発生し難く、優れた表示特性を得ることができる。
本発明の製造方法に用いる感光性フィルムは、ネガ型材料であってもポジ型材料であってもよい。
<Configuration of photosensitive film>
The said photosensitive film used for the manufacturing method of this invention is demonstrated. The photosensitive film preferably has a temporary support and a photocurable resin layer, and preferably has a thermoplastic resin layer between the temporary support and the photocurable resin layer. When a mask layer or the like is formed using the photosensitive film having the thermoplastic resin layer, the photocurable resin layer is transferred compared to the case where the photosensitive film not having the thermoplastic resin layer is used. Bubbles are hardly generated in the formed element, image unevenness and the like are hardly generated in the image display device, and excellent display characteristics can be obtained.
The photosensitive film used in the production method of the present invention may be a negative type material or a positive type material.

(仮支持体)
仮支持体としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような支持体の例として、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。
(Temporary support)
As the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used. Examples of such a support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.

仮支持体の厚みには、特に制限はなく、5〜200μmの範囲が一般的であり、取扱い易さ、汎用性などの点で、特に10〜150μmの範囲が好ましい。
また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
また、前記仮支持体には、特開2005−221726号公報に記載の方法などにより、導電性を付与することができる。
There is no restriction | limiting in particular in the thickness of a temporary support body, The range of 5-200 micrometers is common, and the range of 10-150 micrometers is especially preferable at points, such as handleability and versatility.
Further, the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like.
The temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.

(熱可塑性樹脂層)
前記感光性フィルムは、仮支持体と着色感光性樹脂層との間に熱可塑性樹脂層が設けられることが好ましい。前記熱可塑性樹脂層はアルカリ可溶性であることが好ましい。熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。) を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましい。
(Thermoplastic resin layer)
The photosensitive film is preferably provided with a thermoplastic resin layer between the temporary support and the colored photosensitive resin layer. The thermoplastic resin layer is preferably alkali-soluble. The thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb irregularities on the underlying surface (including irregularities due to images already formed, etc.). It is preferable to have a property that can be deformed.

熱可塑性樹脂層は、特開平5−72724号公報に記載の有機高分子物質を成分として含む態様が好ましく、ヴィカー(Vicat)法〔具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法〕による軟化点が約80℃以下の有機高分子物質より選ばれる少なくとも1種を含む態様が特に好ましい。   The thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component. The Vicat method [specifically, a polymer by American Material Testing Method ASTM D1235] An embodiment containing at least one selected from organic polymer substances having a softening point of about 80 ° C. or less according to the softening point measurement method] is particularly preferable.

具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニルまたはそのケン化物等とのエチレン共重合体、エチレンとアクリル酸エステルまたはそのケン化物との共重合体、ポリ塩化ビニルや塩化ビニルと酢酸ビニルまたはそのケン化物等との塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステルまたはそのケン化物等とのスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステルまたはそのケン化物等とのビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等との(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシメチル化ナイロン、N−ジメチルアミノ化ナイロン等のポリアミド樹脂などの有機高分子が挙げられる。   Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc. Coalescence, vinyl acetate copolymer nylon, copolymer nylon, - alkoxymethyl nylon, and organic polymers such as polyamide resins such as N- dimethylamino nylon.

熱可塑性樹脂層の層厚は、3〜30μmが好ましい。熱可塑性樹脂層の層厚が3μm未満の場合には、ラミネート時の追随性が不十分で、下地表面の凹凸を完全に吸収できないことがある。また、層厚が30μmを超える場合には、仮支持体への熱可塑性樹脂層の形成時の乾燥(溶剤除去)に負荷がかかったり、熱可塑性樹脂層の現像に時間を要したりし、プロセス適性を悪化させることがある。前記熱可塑性樹脂層の層厚としては、4〜25μmが更に好ましく、5〜20μmが特に好ましい。   The layer thickness of the thermoplastic resin layer is preferably 3 to 30 μm. When the thickness of the thermoplastic resin layer is less than 3 μm, followability at the time of lamination may be insufficient, and unevenness on the base surface may not be completely absorbed. In addition, when the layer thickness exceeds 30 μm, a load is applied to drying (solvent removal) at the time of forming the thermoplastic resin layer on the temporary support, or it takes time to develop the thermoplastic resin layer, May deteriorate process suitability. The layer thickness of the thermoplastic resin layer is more preferably 4 to 25 μm, and particularly preferably 5 to 20 μm.

熱可塑性樹脂層は、熱可塑性の有機高分子を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。溶媒には、該層を構成する高分子成分を溶解し得るものであれば特に制限なく、例えば、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、n−プロパノール、2−プロパノール等が挙げられる。   The thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent. The solvent is not particularly limited as long as it can dissolve the polymer component constituting the layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, and 2-propanol.

(光硬化性樹脂層)
前記感光性フィルムは、その用途に応じて光硬化性樹脂層に添加物を加える。即ち、マスク層の形成に前記感光性フィルムを用いる場合には、光硬化性樹脂層に着色剤を含有させる。また、前記感光性フィルムが導電性光硬化性樹脂層を有する場合は、前記光硬化性樹脂層に導電性繊維等が含有される。
(Photocurable resin layer)
The said photosensitive film adds an additive to a photocurable resin layer according to the use. That is, when using the said photosensitive film for formation of a mask layer, a coloring agent is contained in a photocurable resin layer. Moreover, when the said photosensitive film has an electroconductive photocurable resin layer, an electroconductive fiber etc. contain in the said photocurable resin layer.

前記感光性フィルムがネガ型材料である場合、光硬化性樹脂層には、アルカリ可溶性樹脂、重合性化合物、重合開始剤または重合開始系、を含むことが好ましい。さらに、着色剤、添加剤、などが用いられるがこれに限られたものではない。   When the photosensitive film is a negative type material, the photocurable resin layer preferably contains an alkali-soluble resin, a polymerizable compound, a polymerization initiator, or a polymerization initiation system. In addition, colorants, additives, and the like are used, but are not limited thereto.

前記感光性フィルムに含まれるアルカリ可溶性樹脂としては、特開2011−95716号公報の段落[0025]、特開2010−237589号公報の段落[0033]〜[0052]に記載のポリマーを用いることができる。
前記重合性化合物としては、特許第4098550号の段落[0023]〜[0024]に記載の重合性化合物を用いることができる。
前記重合開始剤または重合開始系としては、特開2011−95716号公報に記載の[0031]〜[0042]に記載の重合性化合物を用いることができる。
As the alkali-soluble resin contained in the photosensitive film, polymers described in paragraph [0025] of JP2011-95716A and paragraphs [0033] to [0052] of JP2010-237589A are used. it can.
As the polymerizable compound, the polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550 can be used.
As the polymerization initiator or polymerization initiation system, the polymerizable compounds described in [0031] to [0042] described in JP2011-95716A can be used.

さらに、前記光硬化性樹脂層は、添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落[0017]、特開2009−237362号公報の段落[0060]〜[0071]に記載の界面活性剤や、特許第4502784号公報の段落[0018]に記載の熱重合防止剤、さらに、特開2000−310706号公報の段落[0058]〜[0071]に記載のその他の添加剤が挙げられる。
また、前記感光性フィルムを塗布により製造する際の溶剤としては、特開2011−95716号公報の段落[0043]〜[0044]に記載の溶剤を用いることができる。
Furthermore, an additive may be used for the photocurable resin layer. Examples of the additive include surfactants described in paragraph [0017] of Japanese Patent No. 4502784, paragraphs [0060] to [0071] of JP-A-2009-237362, and paragraph [ And the other additives described in paragraphs [0058] to [0071] of JP-A No. 2000-310706.
Moreover, as a solvent at the time of manufacturing the said photosensitive film by application | coating, the solvent as described in Paragraph [0043]-[0044] of Unexamined-Japanese-Patent No. 2011-95716 can be used.

(A)マスク層(着色剤)
本発明の静電容量型入力装置の製造方法において、前記感光性フィルムをマスク層として用いる場合には、光硬化性樹脂層に着色剤を用いることができる。本発明に用いる着色剤としては、公知の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。尚、本発明においては、黒色着色剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。
(A) Mask layer (colorant)
In the method for manufacturing a capacitive input device of the present invention, when the photosensitive film is used as a mask layer, a colorant can be used for the photocurable resin layer. As the colorant used in the present invention, known colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used. In the present invention, in addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.

前記光硬化性樹脂層をマスク層として用いる場合には、光学濃度の観点から、黒色着色剤を含む黒色のマスク層であることが好ましい。黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられる。本発明の静電容量型入力装置の製造方法は、前記黒色のマスク層が、カーボンブラックまたは黒鉛を含むことが好ましく、カーボンブラックが好ましい。
前記光硬化性樹脂層を白色のマスク層として用いる場合には、特開2005−7765公報の段落[0015]や[0114]に記載のホワイト顔料を用いることができる。その他の色のマスク層として用いるためには、特許第4546276号公報の段落[0183]〜[0185]などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005−17716号公報の段落番号[0038]〜[0054]に記載の顔料および染料、特開2004−361447号公報の段落番号[0068]〜[0072]に記載の顔料、特開2005−17521号公報の段落番号[0080]〜[0088]に記載の着色剤等を好適に用いることができる。
When using the said photocurable resin layer as a mask layer, it is preferable from a viewpoint of optical density that it is a black mask layer containing a black coloring agent. Examples of the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. In the method for manufacturing a capacitive input device of the present invention, the black mask layer preferably contains carbon black or graphite, and carbon black is preferred.
When the photo-curable resin layer is used as a white mask layer, the white pigment described in paragraphs [0015] and [0114] of JP-A-2005-7765 can be used. For use as a mask layer of other colors, pigments or dyes described in paragraphs [0183] to [0185] of Japanese Patent No. 4546276 may be mixed and used. Specifically, the pigments and dyes described in paragraphs [0038] to [0054] of JP-A-2005-17716, and the pigments described in paragraphs [0068] to [0072] of JP-A-2004-361447. The coloring agents described in paragraph numbers [0080] to [0088] of JP-A-2005-17521 can be suitably used.

前記着色剤(好ましくは顔料、より好ましくはカーボンブラック)は、分散液として使用することが望ましい。この分散液は、前記着色剤と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前記顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。
前記顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438項に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。更に該文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。
The colorant (preferably a pigment, more preferably carbon black) is desirably used as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the colorant and the pigment dispersant in an organic solvent (or vehicle) described later. The vehicle is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it. Component (organic solvent).
The disperser used for dispersing the pigment is not particularly limited. For example, the kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, first edition, Asakura Shoten, 2000, 438, Known dispersing machines such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, and a sand mill can be used. Further, fine grinding may be performed using frictional force by mechanical grinding described on page 310 of the document.

本発明で用いる着色剤は、分散安定性の観点から、数平均粒径0.001μm〜0.1μmのものが好ましく、更に0.01μm〜0.08μmのものが好ましい。尚、ここで言う「粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前記の粒径を求め、この100個平均値をいう。   From the viewpoint of dispersion stability, the colorant used in the present invention preferably has a number average particle diameter of 0.001 μm to 0.1 μm, and more preferably 0.01 μm to 0.08 μm. The “particle diameter” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle diameter” is the above-mentioned particle diameter for a large number of particles, This 100 average value is said.

着色剤を含む光硬化性樹脂層の層厚は、他層との厚み差の観点から、0.5〜10μmが好ましく、0.8〜5μmが更に好ましく、1〜3μmが特に好ましい。前記着色感光性樹脂組成物の固形分中の着色剤の含有率としては、特に制限はないが、十分に現像時間を短縮する観点から、15〜70質量%であることが好ましく、20〜60質量%であることがより好ましく、25〜50質量%であることが更に好ましい。
本明細書でいう全固形分とは着色感光性樹脂組成物から溶剤等を除いた不揮発成分の総質量を意味する。
The layer thickness of the photocurable resin layer containing the colorant is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, and particularly preferably 1 to 3 μm from the viewpoint of a difference in thickness from the other layers. The content of the colorant in the solid content of the colored photosensitive resin composition is not particularly limited, but is preferably 15 to 70% by mass from the viewpoint of sufficiently shortening the development time. More preferably, it is mass%, and it is still more preferable that it is 25-50 mass%.
The total solid content as used in this specification means the total mass of the non-volatile component remove | excluding the solvent etc. from the coloring photosensitive resin composition.

(B)導電性光硬化性樹脂層(導電性繊維)
本発明の静電容量型入力装置の製造方法において、前記導電性光硬化性樹脂層を積層した前記感光性フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを光硬化性樹脂層に用いることができる。なお、前述のとおり、本発明の静電容量型入力装置の製造方法では、以下の導電性繊維を用いた透明電極パターン以外に、公知の構成のITO透明電極パターンを公知の方法で設けてもよい。
(B) Conductive photocurable resin layer (conductive fiber)
In the method of manufacturing a capacitive input device of the present invention, when the photosensitive film on which the conductive photocurable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, Conductive fibers or the like can be used for the photocurable resin layer. In addition, as mentioned above, in the manufacturing method of the capacitance-type input device of the present invention, in addition to the transparent electrode pattern using the following conductive fiber, an ITO transparent electrode pattern having a known configuration may be provided by a known method. Good.

導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが5nm〜1,000nmであって、平均長軸長さが1μm〜100μmの導電性繊維を「ナノワイヤー」と称することがある。
また、平均短軸長さが1nm〜1,000nm、平均長軸長さが0.1μm〜1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。
There is no restriction | limiting in particular as a structure of an electroconductive fiber, Although it can select suitably according to the objective, A solid structure or a hollow structure is preferable.
Here, the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”. In addition, a conductive fiber having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
In addition, conductive fibers having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 μm to 1,000 μm, and having a hollow structure may be referred to as “nanotubes”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.

−金属−
前記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族〜第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
-Metal-
The material of the metal nanowire is not particularly limited. For example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.

前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
前記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
前記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable.
The phrase “mainly containing silver” means that 50% by mass or more, preferably 90% by mass or more of silver is contained in the metal nanowire.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.

−形状−
前記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
前記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前記「断面の各辺」の合計長さに対する前記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前記鋭利度は60%以下が好ましく、50%以下がより好ましい。前記鋭利度が75%を超えると、該角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。前記鋭利度の下限は、30%が好ましく、40%がより好ましい。
-Shape-
The shape of the metal nanowire is not particularly limited and can be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 9, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise. The lower limit of the sharpness is preferably 30%, more preferably 40%.

−平均短軸長さ径および平均長軸長さ−
前記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm〜40nmがより好ましく、10nm〜40nmが更に好ましく、15nm〜35nmが特に好ましい。
前記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM−2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
−Average minor axis length diameter and average major axis length−
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, still more preferably 10 nm to 40 nm, 15 nm to 35 nm is particularly preferable.
When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
The average minor axis length of the metal nanowires was observed from 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.

前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm〜40μmが好ましく、3μm〜35μmがより好ましく、5μm〜30μmが更に好ましい。
前記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM−2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。
The average major axis length of the metal nanowire (sometimes referred to as “average length”) is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowire is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.

導電性光硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1〜20μmが好ましく、0.5〜18μmが更に好ましく、1〜15μmが特に好ましい。前記導電性光硬化性樹脂層の全固形分に対する前記導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01〜50質量%が好ましく、0.05〜30質量%が更に好ましく、0.1〜20質量%が特に好ましい。   The thickness of the conductive photocurable resin layer is preferably from 0.1 to 20 μm, and preferably from 0.5 to 18 μm, from the viewpoint of process suitability such as the stability of the coating liquid and drying during coating and development time during patterning. More preferably, 1-15 micrometers is especially preferable. The content of the conductive fiber relative to the total solid content of the conductive photocurable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoint of conductivity and stability of the coating liquid. % Is more preferable, and 0.1 to 20% by mass is particularly preferable.

(C)絶縁層
尚、本発明の静電容量型入力装置の製造方法において、前記感光性フィルムを用いて絶縁層を形成する場合、光硬化性樹脂層の層厚は、絶縁性の維持の観点から、0.1〜5μmが好ましく、0.3〜3μmが更に好ましく、0.5〜2μmが特に好ましい。
(C) Insulating layer In addition, in the manufacturing method of the capacitance-type input device of the present invention, when the insulating layer is formed using the photosensitive film, the layer thickness of the photocurable resin layer is to maintain the insulating property. From the viewpoint, 0.1 to 5 μm is preferable, 0.3 to 3 μm is more preferable, and 0.5 to 2 μm is particularly preferable.

(D)透明保護層
本発明の静電容量型入力装置の製造方法において、前記感光性フィルムを用いて透明保護層を形成する場合、光硬化性樹脂層の層厚は、十分な表面保護能を発揮させる観点から、0.5〜10μmが好ましく、0.8〜5μmが更に好ましく、1〜3μmが特に好ましい。
(D) Transparent Protective Layer In the method for manufacturing a capacitive input device of the present invention, when the transparent protective layer is formed using the photosensitive film, the layer thickness of the photocurable resin layer is sufficient to protect the surface. From the viewpoint of exhibiting the above, 0.5 to 10 μm is preferable, 0.8 to 5 μm is more preferable, and 1 to 3 μm is particularly preferable.

以上、前記感光性フィルムがネガ型材料である場合を中心に説明したが、前記感光性フィルムは、ポジ型材料であってもよい。前記感光性フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005−221726記載の材料などが用いられるが、これに限られたものではない。   Although the above description has focused on the case where the photosensitive film is a negative type material, the photosensitive film may be a positive type material. When the photosensitive film is a positive material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but the material is not limited thereto.

前記熱可塑性樹脂層の100℃で測定した粘度が1000〜10000Pa・secの領域にあり、光硬化性樹脂層の100℃で測定した粘度が2000〜50000Pa・secの領域にあり、さらに次式(A)を満たすことが好ましい。
式(A):熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度
The viscosity of the thermoplastic resin layer measured at 100 ° C. is in the region of 1000 to 10,000 Pa · sec, the viscosity of the photocurable resin layer measured at 100 ° C. is in the region of 2000 to 50000 Pa · sec, and the following formula ( It is preferable to satisfy A).
Formula (A): Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer

ここで、各層の粘度は、次のようにして測定できる。大気圧および減圧乾燥により、熱可塑性樹脂層あるいは光硬化性樹脂層用塗布液から溶剤を除去して測定サンプルとし、例えば、測定器として、バイブロン(DD−III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いることができる。   Here, the viscosity of each layer can be measured as follows. The solvent is removed from the coating solution for the thermoplastic resin layer or the photocurable resin layer by drying under atmospheric pressure and reduced pressure to obtain a measurement sample. For example, as a measuring instrument, Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) Can be used under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measurement value of 100 ° C. can be used.

(他の層)
本発明で用いる感光性フィルムには、光硬化性樹脂層と熱可塑性樹脂層との間に中間層を設けたり、あるいは光硬化性樹脂層の表面に保護フィルムなどを更に設けたりして好適に構成することができる。
(Other layers)
For the photosensitive film used in the present invention, an intermediate layer is provided between the photocurable resin layer and the thermoplastic resin layer, or a protective film is further provided on the surface of the photocurable resin layer. Can be configured.

本発明で用いる感光性フィルムには、複数層を塗布する際および塗布後の保存の際における成分の混合を防止する目的で、中間層を設けることが好ましい。中間層としては、特開平5−72724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断膜が好ましく、露光時の感度がアップし、露光機の時間負荷を低減し得、生産性が向上する。   In the photosensitive film used in the present invention, it is preferable to provide an intermediate layer for the purpose of preventing mixing of components during the application of a plurality of layers and during storage after the application. As the intermediate layer, an oxygen barrier film having an oxygen barrier function, which is described as “separation layer” in JP-A-5-72724, is preferable, which increases the sensitivity during exposure and reduces the time load of the exposure machine. And productivity is improved.

前記中間層および保護フィルムとしては、特開2006−259138号公報の段落[0083]〜[0087]および[0093]に記載のものを適宜使用することができる。   As the intermediate layer and the protective film, those described in paragraphs [0083] to [0087] and [0093] of JP-A-2006-259138 can be appropriately used.

<感光性フィルムの作製方法>
前記感光性フィルムは、特開2006−259138号公報の段落[0094]〜[0098]に記載の感光性転写材料の作製方法に準じて作製することができる。
具体的に中間層を有する前記感光性フィルムを形成する場合には、仮支持体上に、熱可塑性の有機高分子と共に添加剤を溶解した溶解液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えて調製した調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製した着色感光性樹脂層用塗布液を塗布し、乾燥させて着色感光性樹脂層を積層することによって、好適に作製することができる。
<Method for producing photosensitive film>
The photosensitive film can be produced according to the method for producing a photosensitive transfer material described in paragraphs [0094] to [0098] of JP-A-2006-259138.
Specifically, when the photosensitive film having an intermediate layer is formed, a solution (addition liquid for thermoplastic resin layer) in which an additive is dissolved together with a thermoplastic organic polymer is applied on a temporary support. After drying and providing a thermoplastic resin layer, a preparation solution (intermediate layer coating solution) prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer. Then, the intermediate layer is dried, and a colored photosensitive resin layer coating solution prepared by using a solvent that does not dissolve the intermediate layer is further applied on the intermediate layer, and dried to laminate the colored photosensitive resin layer. By doing so, it can be suitably manufactured.

<感光性フィルムを用いた(1)〜(5)の要素の製造>
本発明の静電容量型入力装置の製造方法において、前記マスク層、絶縁層および透明保護層や、導電性光硬化性樹脂層を用いた場合の第一の透明電極パターン、第二の透明電極パターンおよび導電性要素などの永久材を前記感光性フィルムを用いて形成する場合、感光性フィルムは、基材にラミネートされた後、必要なパターン様に露光され、ネガ型材料の場合は非露光部分、ポジ型材料の場合は露光部分を現像処理して除去することでパターンを得ることができる。この際、現像は熱可塑性樹脂層と、光硬化性層を別々の液で現像除去してもよいし、同一の液で除去してもよい。必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよい。
<Manufacture of elements (1) to (5) using a photosensitive film>
In the manufacturing method of the capacitive input device of the present invention, the first transparent electrode pattern and the second transparent electrode when the mask layer, the insulating layer, the transparent protective layer, and the conductive photocurable resin layer are used. When a permanent material such as a pattern and a conductive element is formed using the photosensitive film, the photosensitive film is laminated on a base material and then exposed to a required pattern, and in the case of a negative type material, it is not exposed. In the case of a partial or positive type material, a pattern can be obtained by developing and removing the exposed portion. At this time, the development may be performed by removing the thermoplastic resin layer and the photocurable layer with separate liquids or with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.

また、後の転写工程におけるラミネートによる感光性樹脂層の密着性を高めるために、予め基材(前面板)の非接触面に表面処理を施すことができる。前記表面処理としては、シラン化合物を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基板予備加熱でも反応を促進できる。   Moreover, in order to improve the adhesiveness of the photosensitive resin layer by lamination in a subsequent transfer step, a surface treatment can be performed on the non-contact surface of the base material (front plate) in advance. As the surface treatment, it is preferable to perform a surface treatment (silane coupling treatment) using a silane compound. As the silane coupling agent, those having a functional group that interacts with the photosensitive resin are preferable. For example, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3 mass% aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed for 20 seconds by a shower, and pure water shower washing is performed. To do. Thereafter, the reaction is carried out by heating. A heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.

また、前記感光性フィルムをリフトオフ材として用いて、第一の透明電極層、第二の透明電極層およびその他の導電性部材を形成することもできる。この場合、前記感光性フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと前記光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。   Moreover, a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed using the said photosensitive film as a lift-off material. In this case, after patterning using the photosensitive film, a transparent conductive layer is formed on the entire surface of the base material, and then the desired transparent conductive layer is formed by dissolving and removing the photocurable resin layer together with the deposited transparent conductive layer. A pattern can be obtained (lift-off method).

(永久材を感光性フィルムを用いて形成する場合)
永久材を前記感光性フィルムを用いて形成する場合について、黒色のマスク層を形成する方法を例にして、前記感光性フィルムを用いたパターニング方法を説明する。
(When forming a permanent material using a photosensitive film)
In the case of forming a permanent material using the photosensitive film, a patterning method using the photosensitive film will be described by taking as an example a method of forming a black mask layer.

前記マスク層を形成する方法は、前記感光性フィルムから前記カバーフィルムを除去するカバーフィルム除去工程と、前記カバーフィルムが除去された前記感光性転写材料の前記感光性樹脂層を基材上に転写する転写工程と、基材上に転写された前記感光性樹脂層を露光する露光工程と、露光された感光性樹脂層を現像してパターン画像を得る現像工程と、を有する方法が挙げられる。   The method of forming the mask layer includes a cover film removing step of removing the cover film from the photosensitive film, and transferring the photosensitive resin layer of the photosensitive transfer material from which the cover film has been removed onto a substrate. And a developing step of developing the exposed photosensitive resin layer to obtain a pattern image, and a developing step of exposing the photosensitive resin layer transferred onto the substrate.

−転写工程−
前記転写工程は、前記カバーフィルムが除去された前記感光性フィルムの前記光硬化性樹脂層を基材上に転写する工程である。
この際、前記感光性フィルムの光硬化性樹脂層を基材にラミネート後、仮支持体を除去することによって行う方法が好ましい。
光硬化性樹脂層の基材表面への転写(貼り合わせ)は、光硬化性樹脂層を基材表面に重ね、加圧、加熱することに行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
-Transcription process-
The transfer step is a step of transferring the photocurable resin layer of the photosensitive film from which the cover film has been removed onto a substrate.
At this time, a method of removing the temporary support after laminating the photocurable resin layer of the photosensitive film on the substrate is preferable.
Transfer (bonding) of the photocurable resin layer to the surface of the substrate is performed by stacking the photocurable resin layer on the surface of the substrate, pressurizing and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.

−露光工程、現像工程、およびその他の工程−
前記露光工程、現像工程、およびその他の工程の例としては、特開2006−23696号公報の段落番号[0035]〜[0051]に記載の方法を本発明においても好適に用いることができる。
-Exposure process, development process, and other processes-
As examples of the exposure step, the development step, and other steps, the method described in paragraphs [0035] to [0051] of JP-A-2006-23696 can be suitably used in the present invention.

前記露光工程は、基材上に転写された前記光硬化性樹脂層を露光する工程である。
具体的には、前記基材上に形成された光硬化性樹脂層の上方に所定のマスクを配置し、その後前記マスク層、熱可塑性樹脂層、および中間層を介してマスク上方から露光する方法が挙げられる。
ここで、前記露光の光源としては、光硬化性樹脂層を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5〜200mJ/cm2程度であり、好ましくは10〜100mJ/cm2程度である。
The exposure step is a step of exposing the photocurable resin layer transferred onto the substrate.
Specifically, a method of disposing a predetermined mask above the photocurable resin layer formed on the substrate and then exposing from above the mask through the mask layer, the thermoplastic resin layer, and the intermediate layer Is mentioned.
Here, the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.). Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. As an exposure amount, it is about 5-200 mJ / cm < 2 > normally, Preferably it is about 10-100 mJ / cm < 2 >.

前記現像工程は、露光された光硬化性樹脂層を現像する工程である。
前記現像は、現像液を用いて行うことができる。前記現像液としては、特に制約はなく、特開平5−72724号公報に記載のものなど、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をするものが好ましく、例えば、pKa=7〜13の化合物を0.05〜5mol/Lの濃度で含むものが好ましいが、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2−プロパノール、1−プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε−カプロラクトン、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε−カプロラクタム、N−メチルピロリドン等を挙げることができる。該有機溶剤の濃度は0.1質量%〜30質量%が好ましい。 また、前記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%〜10質量%が好ましい。
The developing step is a step of developing the exposed photocurable resin layer.
The development can be performed using a developer. The developer is not particularly limited, and known developers such as those described in JP-A-5-72724 can be used. In addition, the developer preferably has a photo-curing resin layer having a dissolution type development behavior. For example, a developer containing a compound of pKa = 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable. A small amount of an organic solvent that is miscible with may be added. Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, and benzyl alcohol. , Acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass. Further, a known surfactant can be added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.

前記現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディプ現像等のいずれでもよい。ここで、前記シャワー現像について説明すると、露光後の光硬化性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、熱可塑性樹脂層や中間層を設けた場合には、現像の前に光硬化性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃〜40℃が好ましく、また、現像液のpHは8〜13が好ましい。   The development method may be any of paddle development, shower development, shower & spin development, dip development, and the like. Here, the shower development will be described. The uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure. When a thermoplastic resin layer or an intermediate layer is provided, an alkaline solution having a low solubility of the photocurable resin layer is sprayed by a shower or the like before development to remove the thermoplastic resin layer or the intermediate layer. It is preferable to keep it. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like. The liquid temperature of the developer is preferably 20 ° C. to 40 ° C., and the pH of the developer is preferably 8 to 13.

本発明の静電容量型入力装置の製造方法は、ポスト露光工程、ポストベーク工程等、その他の工程を有していてもよい。   The manufacturing method of the capacitance-type input device of the present invention may have other processes such as a post-exposure process and a post-bake process.

尚、パターニング露光は、仮支持体を剥離してから行ってもよいし、仮支持体を剥離する前に露光し、その後、仮支持体を剥離してもよい。マスクを介した露光でも良いし、レーザー等を用いたデジタル露光でも良い。   The patterning exposure may be performed after the temporary support is peeled off, or may be exposed before the temporary support is peeled off, and then the temporary support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used.

(エッチングレジストとして感光性フィルムを用いた場合)
前記感光性フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、前記方法と同様にして、レジストパターンを得ることができる。前記エッチングは、特開2010−152155公報の段落[0048]〜[0054]等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。
(When a photosensitive film is used as an etching resist)
Also when using the said photosensitive film as an etching resist (etching pattern), a resist pattern can be obtained like the said method. For the etching, etching and resist stripping can be applied by a known method described in paragraphs [0048] to [0054] of JP 2010-152155 A.

例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのものを適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。   For example, as an etching method, a commonly performed wet etching method in which the substrate is immersed in an etching solution can be used. As an etching solution used for wet etching, an acid type or an alkaline type may be appropriately selected according to an object to be etched. Examples of acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done. As the acidic component, a combination of a plurality of acidic components may be used. In addition, alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate. A mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.

エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、上述した光硬化性樹脂層を使用して形成されることにより、このような温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
前記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10〜300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1〜5kg/cm2程度)を適宜調整し行えばよい。
The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resin pattern used as an etching mask (etching pattern) in the present invention is formed by using the above-described photocurable resin layer, so that it is particularly suitable for acidic and alkaline etching solutions in such a temperature range. Excellent resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a cleaning process and a drying process may be performed as necessary to prevent line contamination. For the cleaning process, the substrate is cleaned with pure water for 10 to 300 seconds at room temperature, for example, and for the drying process, air blow pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using air blow. Just do it.

次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30〜80℃、好ましくは50〜80℃にて攪拌中の剥離液に基材を5〜30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50〜80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、前記エッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。   Next, the peeling method of the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes. The resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling step is performed using a peeling solution of 50 to 80 ° C., there is an advantage that the process time is shortened and the peeling residue of the resin pattern is reduced. That is, by providing a difference in chemical temperature between the etching process and the peeling process, the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.

剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N−メチルピロリドン、またはこれらの混合溶液に溶解させたものが挙げられる。前記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。   Examples of the stripping solution include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. What was melt | dissolved in this mixed solution is mentioned. You may peel by the spray method, the shower method, the paddle method etc. using the said peeling liquid.

[静電容量型入力装置、および静電容量型入力装置を構成要素として備えた画像表示装置]
本発明の製造方法によって得られる静電容量型入力装置、および当該静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T−11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
[Capacitive Input Device and Image Display Device Comprising Capacitive Input Device as Components]
An electrostatic capacitance type input device obtained by the manufacturing method of the present invention and an image display device including the electrostatic capacitance type input device as a constituent element are “latest touch panel technology” (issued July 6, 2009, Inc.) Techno Times), supervised by Yuji Mitani, "Touch Panel Technology and Development", CMC Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. Can be applied.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “%” and “parts” are based on mass.

[実施例1]
《マスク層の形成》
<マスク層形成用感光性フィルムK1の調製>
厚さ75μmのポリエチレンテレフタレートフィルム仮支持体の上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布、乾燥させた。次に、下記処方P1からなる中間層用塗布液を塗布、乾燥させた。更に、下記処方K1からなる黒色光硬化性樹脂層用塗布液を塗布、乾燥させた。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、光学濃度が4.0となるように乾燥膜厚が2.2μmの黒色光硬化性樹脂層を設け、最後に保護フイルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と黒色光硬化性樹脂層とが一体となった転写材料を作製し、サンプル名をマスク層形成用感光性フィルムK1とした。
[Example 1]
<Formation of mask layer>
<Preparation of photosensitive film K1 for forming mask layer>
On a 75 μm thick polyethylene terephthalate film temporary support, a coating solution for a thermoplastic resin layer having the following formulation H1 was applied and dried using a slit nozzle. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Furthermore, the coating liquid for black photocurable resin layers which consists of the following prescription K1 was apply | coated and dried. In this way, the thermoplastic film layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the dry film thickness so that the optical density is 4.0 are formed on the temporary support. A 2.2 μm black photocurable resin layer was provided, and finally a protective film (12 μm thick polypropylene film) was pressure-bonded. In this way, a transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black photocurable resin layer were integrated was prepared, and the sample name was designated as a mask layer forming photosensitive film K1.

(熱可塑性樹脂層用塗布液:処方H1)
・メタノール :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート :6.36質量部
・メチルエチルケトン :52.4質量部
・メチルメタクリレート/2−エチルヘキシルアクリレート/ベンジル
メタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=
55/11.7/4.5/28.8、分子量=10万、Tg≒70℃)
:5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、
重量平均分子量=1万、Tg≒100℃) :13.6質量部
・モノマー1(商品名:BPE−500、新中村化学工業(株)製)
:9.1質量部
・フッ素系ポリマー :0.54質量部
上記のフッ素系ポリマーは、C613CH2CH2OCOCH=CH2 40部とH(OCH(CH3)CH27OCOCH=CH2 55部とH(OCHCH27OCOCH=CH2 5部との共重合体で、重量平均分子量3万、メチルエチルケトン30質量%溶液である(商品名:メガファックF780F、大日本インキ化学工業(株)製)
なお、熱可塑性樹脂層用塗布液H1の溶剤除去後の120℃の粘度は1500Pa・secであった。
(Coating solution for thermoplastic resin layer: Formulation H1)
Methanol: 11.1 parts by mass Propylene glycol monomethyl ether acetate: 6.36 parts by mass Methyl ethyl ketone: 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio) (Molar ratio) =
55 / 11.7 / 4.5 / 28.8, molecular weight = 100,000, Tg≈70 ° C.)
: 5.83 parts by mass-Styrene / acrylic acid copolymer (copolymerization composition ratio (molar ratio) = 63/37,
Weight average molecular weight = 10,000, Tg≈100 ° C.): 13.6 parts by mass / monomer 1 (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.)
: 9.1 parts by mass Fluorine-based polymer: 0.54 parts by mass The above fluorine-containing polymer, C 6 F 13 CH 2 CH 2 OCOCH = CH 2 40 parts of H (OCH (CH 3) CH 2) 7 OCOCH = a copolymer of CH 2 55 parts of H (OCHCH 2) 7 OCOCH = CH 2 5 parts, weight average molecular weight 30,000, methyl ethyl ketone 30 wt% solution (trade name: Megafac F780F, Dainippon ink and chemicals (Manufactured by Kogyo Co., Ltd.)
The viscosity at 120 ° C. after removing the solvent from the coating liquid H1 for the thermoplastic resin layer was 1500 Pa · sec.

(中間層用塗布液:処方P1)
・ポリビニルアルコール :32.2質量部
(商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン :14.9質量部
(商品名:K−30、アイエスピー・ジャパン(株)製)
・蒸留水 :524質量部
・メタノール :429質量部
(Coating liquid for intermediate layer: prescription P1)
Polyvinyl alcohol: 32.2 parts by mass (trade name: PVA205, manufactured by Kuraray Co., Ltd., saponification degree = 88%, polymerization degree 550)
・ Polyvinylpyrrolidone: 14.9 parts by mass (trade name: K-30, manufactured by ISP Japan Co., Ltd.)
-Distilled water: 524 parts by mass-Methanol: 429 parts by mass

(黒色光硬化性樹脂層用塗布液:処方K1)
・K顔料分散物1 :31.2質量部
・R顔料分散物1(下記の組成) :3.3質量部
・MMPGAc(ダイセル化学(株)製) :6.2質量部
・メチルエチルケトン(東燃化学(株)製) :34.0質量部
・シクロヘキサノン(関東電化工業(株)製) :8.5質量部
・バインダー2(ベンジルメタクリレート/メタクリル酸=78/22モル比の
ランダム共重合物、重量平均分子量3.8万) :10.8質量部
・フェノチアジン(東京化成(株)製) :0.01質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、 日本化薬(株)製)
のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
:5.5質量部
・2,4−ビス(トリクロロメチル)−6−[4’−(N,N−ビス(エトキシ
カルボニルメチル)アミノ−3’−ブロモフェニル]−s−トリアジン
:0.4質量部
・界面活性剤(商品名:メガファックF−780F、大日本インキ(株)製)
:0.1質量部
なお、黒色光硬化性樹脂層用塗布液K1の溶剤除去後の100℃の粘度は10000Pa・secであった。
(Coating liquid for black light curable resin layer: Formula K1)
-K pigment dispersion 1: 31.2 parts by mass-R pigment dispersion 1 (the following composition): 3.3 parts by mass-MMPGAc (manufactured by Daicel Chemical Industries): 6.2 parts by mass-Methyl ethyl ketone (Tonen Chemical) (Manufactured by Co., Ltd.): 34.0 parts by mass / cyclohexanone (manufactured by Kanto Denka Kogyo Co., Ltd.): 8.5 parts by mass / binder 2 (benzyl methacrylate / methacrylic acid = 78/22 molar ratio)
Random copolymer, weight average molecular weight 38,000): 10.8 parts by mass Phenothiazine (manufactured by Tokyo Chemical Industry Co., Ltd.): 0.01 parts by mass DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku Co., Ltd.) Made)
Propylene glycol monomethyl ether acetate solution (76% by mass)
: 5.5 parts by mass · 2,4-bis (trichloromethyl) -6- [4 ′-(N, N-bis (ethoxycarbonylmethyl) amino-3′-bromophenyl] -s-triazine
: 0.4 parts by mass / surfactant (trade name: MegaFuck F-780F, manufactured by Dainippon Ink, Inc.)
: 0.1 mass part In addition, the viscosity of 100 degreeC after the solvent removal of the coating liquid K1 for black photocurable resin layers was 10000 Pa.sec.

(K顔料分散物1の組成)
・カーボンブラック(商品名:Nipex35、デグッサ社製) :13.1質量%
・下記分散剤1 :0.65質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比の
ランダム共重合物、重量平均分子量3.7万) :6.72質量%
・プロピレングリコールモノメチルエーテルアセテート :79.53質量%

Figure 0006047298
(Composition of K pigment dispersion 1)
Carbon black (trade name: Nipex 35, manufactured by Degussa): 13.1% by mass
・ The following dispersant 1: 0.65 mass%
Binder 1 (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000): 6.72% by mass
Propylene glycol monomethyl ether acetate: 79.53% by mass
Figure 0006047298

−R顔料分散物1の組成−
・顔料(C.I.ピグメントレッド177) :18質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比の
ランダム共重合物、重量平均分子量3.7万) :12質量%
・プロピレングリコールモノメチルエーテルアセテート :70質量%
-Composition of R pigment dispersion 1-
Pigment (CI Pigment Red 177): 18% by mass
Binder 1 (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000): 12% by mass
Propylene glycol monomethyl ether acetate: 70% by mass

<マスク層の形成>
次いで、開口部(15mmΦ)が形成された強化処理ガラス(300mm×400mm×0.7mm)に、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基材を基材予備加熱装置で140℃2分間加熱した。得られたシランカップリング処理ガラス基材に、上述から得られたマスク層形成用感光性フィルムK1からカバーフィルムを除去し、除去後に露出した黒色光硬化性樹脂層の表面と前記シランカップリング処理ガラス基材の表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、前記140℃で加熱した基材に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。仮支持体を剥離後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)で、基材と露光マスク(額縁パターンを有す石英露光マスク)とを垂直に立てた状態で、露光マスク面と該黒色光硬化性樹脂層の間の距離を200μmに設定し、露光量70mJ/cm2(i線)でパターン露光した。
<Formation of mask layer>
Next, the glass cleaner liquid adjusted to 25 ° C. was sprayed on a tempered glass (300 mm × 400 mm × 0.7 mm) in which an opening (15 mmΦ) was formed, and was washed with a rotating brush having nylon hair while spraying it for 20 seconds with a shower. After washing with pure water, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was showered 20 Sprayed for 2 seconds and washed with pure water shower. This substrate was heated at 140 ° C. for 2 minutes with a substrate preheating device. The surface of the black photocurable resin layer exposed after removing the cover film from the photosensitive film K1 for mask layer formation obtained from the above to the obtained silane coupling treated glass substrate and the silane coupling treatment Laminator (manufactured by Hitachi Industries, Ltd. (Lamic II type)) using a laminator (Lamic II type), the substrate heated at 140 ° C., rubber roller temperature 130 ° C., linear pressure Lamination was performed at 100 N / cm and a conveyance speed of 2.2 m / min. Subsequently, the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support. After peeling off the temporary support, the substrate and the exposure mask (quartz exposure mask with a frame pattern) were set up vertically with a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp. In this state, the distance between the exposure mask surface and the black light curable resin layer was set to 200 μm, and pattern exposure was performed at an exposure amount of 70 mJ / cm 2 (i-line).

次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T−PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を33℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、熱可塑性樹脂層と中間層とを除去した。引き続き、このガラス基材の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけて基材上の液だまりを減らした。   Next, a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds, Shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer and the intermediate layer. Subsequently, air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce the liquid pool on the base material.

その後、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T−CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて32℃でシャワー圧を0.1MPaに設定して、45秒現像し、純水で洗浄した。   Thereafter, the shower pressure was reduced to 0.1 MPa at 32 ° C. using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by Fuji Film Co., Ltd.) diluted 5 times with pure water). It was set, developed for 45 seconds, and washed with pure water.

引き続き、界面活性剤含有洗浄液(商品名:T−SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間、コーン型ノズル圧力0.1MPaにてシャワーで吹きかけ、更にやわらかいナイロン毛を有する回転ブラシにより、形成されたパターン像を擦って残渣除去を行った。さらに、超高圧洗浄ノズルにて9.8MPaの圧力で超純水を噴射して残渣除去を行い、   Subsequently, using a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10-fold with pure water) at 33 ° C. for 20 seconds, cone-type nozzle pressure of 0.1 MPa The residue was removed by rubbing the formed pattern image with a rotating brush having soft nylon hairs. Furthermore, ultrapure water is sprayed at a pressure of 9.8 MPa with an ultrahigh pressure washing nozzle to remove residues,

次いで大気下にて露光量1300mJ/cm2にてポスト露光を行い、さらに240℃80分間のポストベーク処理を行って、光学濃度4.0、膜厚2.0μmのマスク層が形成された前面板を得た。 Next, post-exposure is performed in the atmosphere at an exposure amount of 1300 mJ / cm 2 , and further post-baking treatment is performed at 240 ° C. for 80 minutes to form a mask layer having an optical density of 4.0 and a film thickness of 2.0 μm. A face plate was obtained.

《無機絶縁膜の形成》
マスク層が形成された前面板を、真空チャンバー内に導入し、シリコンをターゲットに用いて、直流マグネトロンスパッタリング法により、下記表1に記載の膜厚のSiO2薄膜を形成した。(条件:真空度0.27Pa、ガスの流速 Arガス500sccm、O2ガス80sccm)
このようにして、マスク層上にSiO2薄膜を形成した基板を作製し、マスク層上の表面抵抗を測定した。結果は下記表1に記載。SiO2薄膜を形成することで、表面抵抗が増加した。
<Formation of inorganic insulating film>
The front plate on which the mask layer was formed was introduced into a vacuum chamber, and a SiO 2 thin film having a film thickness shown in Table 1 below was formed by direct current magnetron sputtering using silicon as a target. (Conditions: degree of vacuum 0.27 Pa, gas flow rate Ar gas 500 sccm, O 2 gas 80 sccm)
Thus, to prepare a substrate formed with the SiO 2 thin film on the mask layer, and measure the surface resistivity on the mask layer. The results are shown in Table 1 below. The surface resistance was increased by forming the SiO 2 thin film.

《第一の透明電極パターンの形成》
<透明電極層の形成>
マスク層上にSiO2薄膜を形成した基板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、直流マグネトロンスパッタリング(条件:基材の温度300℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、第一の透明電極層を形成した前面板を得た。マスク層が形成されていない部分のITO薄膜(ガラス、SiO2薄膜、ITO膜の順に積層された部分のITO膜)の表面抵抗は80Ω/□であった。
<Formation of first transparent electrode pattern>
<Formation of transparent electrode layer>
A substrate having a SiO 2 thin film formed on a mask layer was introduced into a vacuum chamber, and a direct current magnetron was used using an ITO target (indium: tin = 95: 5 (molar ratio)) with a SnO 2 content of 10% by mass. A 40 nm thick ITO thin film was formed by sputtering (conditions: substrate temperature 300 ° C., argon pressure 0.13 Pa, oxygen pressure 0.01 Pa) to obtain a front plate on which the first transparent electrode layer was formed. The surface resistance of the portion of the ITO thin film where the mask layer was not formed (ITO film of the portion in which the glass, SiO 2 thin film, and ITO film were laminated in this order) was 80Ω / □.

[エッチング用感光性フィルムE1の調製]
前記マスク層形成用感光性フィルムK1の調製において、黒色光硬化性樹脂層用塗布液を、下記処方E1からなるエッチング用光硬化性樹脂層用塗布液に代えた以外はマスク層形成用感光性フィルムK1の調製と同様にして、エッチング用感光性フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。
[Preparation of Photosensitive Film E1 for Etching]
In the preparation of the mask layer forming photosensitive film K1, the photosensitivity for forming the mask layer was changed except that the coating solution for the black photocurable resin layer was replaced with the coating solution for the photocurable resin layer for etching having the following formulation E1. In the same manner as the preparation of the film K1, a photosensitive film E1 for etching was obtained (the film thickness of the photocurable resin layer for etching was 2.0 μm).

(エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体
(共重合体組成(質量%):31/40/29、質量平均分子量60000、
酸価163mgKOH/g) :16質量部
・モノマー1(商品名:BPE−500、新中村化学工業(株)製)
:5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノ
メタクリレート0.5モル付加物 :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジ
メタノールモノアクリレート :2.8質量部
・2−クロロ−N−ブチルアクリドン :0.42質量部
・2,2−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニル
ビイミダゾール :2.17質量部
・マラカイトグリーンシュウ酸塩 :0.02質量部
・ロイコクリスタルバイオレット :0.26質量部
・フェノチアジン :0.013質量部
・界面活性剤(商品名:メガファックF−780F、大日本インキ(株)製)
:0.03質量部
・メチルエチルケトン :40質量部
・1−メトキシ−2−プロパノール :20質量部
なお、エッチング用光硬化性樹脂層用塗布液E1の溶剤除去後の100℃の粘度は2500Pa・secであった。
(Coating liquid for photocurable resin layer for etching: prescription E1)
Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, mass average molecular weight 60000,
Acid value 163 mg KOH / g): 16 parts by mass Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.)
: 5.6 parts by mass-tetramethylene oxide monomethacrylate 0.5 mol adduct of hexamethylene diisocyanate: 7 parts by mass-cyclohexane dimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass 2-chloro-N-butylacridone: 0.42 parts by mass 2,2-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole: 2.17 parts by mass Malachite Green oxalate: 0.02 parts by mass, leuco crystal violet: 0.26 parts by mass, phenothiazine: 0.013 parts by mass, surfactant (trade name: Megafac F-780F, manufactured by Dainippon Ink Co., Ltd.)
: 0.03 parts by mass · Methyl ethyl ketone: 40 parts by mass · 1-methoxy-2-propanol: 20 parts by mass The viscosity at 100 ° C after removing the solvent of the coating liquid E1 for photocurable resin layer for etching is 2500 Pa · sec. Met.

<第一の透明電極パターンの形成>
マスク層の形成と同様にして、透明電極層を形成した前面板を洗浄し、カバーフィルムを除去したエッチング用感光性フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面と該エッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm2(i線)でパターン露光した。
次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T−PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を25℃で100秒間、界面活性剤含有洗浄液(商品名:T−SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間処理し、回転ブラシ、超高圧洗浄ノズルで残渣除去を行い、さらに130℃30分間のポストベーク処理を行って、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。
<Formation of first transparent electrode pattern>
Similar to the formation of the mask layer, the front plate on which the transparent electrode layer was formed was washed and the photosensitive film E1 for etching from which the cover film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., wire Pressure 100 N / cm, conveyance speed 2.2 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 μm, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
Next, a triethanolamine developer (containing 30% by mass of triethanolamine, a trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) at 25 ° C. for 100 seconds, A surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) diluted 10-fold with pure water) was treated at 33 ° C. for 20 seconds, using a rotating brush and an ultra-high pressure cleaning nozzle. Residue removal was performed, and a post-bake treatment at 130 ° C. for 30 minutes was further performed to obtain a front plate on which a transparent electrode layer and a photocurable resin layer pattern for etching were formed.

透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒処理し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を得た。   The front plate on which the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and used for etching. The exposed transparent electrode layer not covered with the photocurable resin layer was dissolved and removed to obtain a front plate with a transparent electrode layer pattern having a photocurable resin layer pattern for etching.

次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N−メチル−2−ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)液温45℃)を入れたレジスト剥離槽に浸漬し、200秒処理し、エッチング用光硬化性樹脂層を除去し、マスク層と第一の透明電極パターンとを形成した前面板を得た。   Next, a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching was applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, surfactant (trade name: Surfynol 465). Before being formed in a resist stripping tank containing a liquid temperature of 45 ° C.), treated for 200 seconds, removing the photocurable resin layer for etching, and forming the mask layer and the first transparent electrode pattern. A face plate was obtained.

《絶縁層の形成》
<絶縁層形成用感光性フィルムW1の調製>
マスク層形成用感光性フィルムK1の調製において、黒色光硬化性樹脂層用塗布液を、下記処方W1からなる絶縁層用光硬化性樹脂層用塗布液に代えた以外はマスク層形成用感光性フィルムK1の調製と同様にして、絶縁層形成用感光性フィルムW1を得た(絶縁層用光硬化性樹脂層の膜厚は1.4μm)。
<Formation of insulating layer>
<Preparation of photosensitive film W1 for insulating layer formation>
Photosensitive film for mask layer formation except that the coating liquid for black photocurable resin layer was changed to the coating liquid for photocurable resin layer for insulating layer having the following formulation W1 in the preparation of photosensitive film K1 for mask layer formation. In the same manner as the preparation of the film K1, an insulating layer forming photosensitive film W1 was obtained (the film thickness of the insulating layer photocurable resin layer was 1.4 μm).

(絶縁層形成用塗布液:処方W1)
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、質量平均分子量:36000、酸価66mgKOH/g)の1−メトキシ−2−プロパノール、メチルエチルケトン溶液(固形分:45%))
:12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)
のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
:1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA−32P、新中村化学(株)製
:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:
25%) :0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、
大阪有機化学工業(株)製) :1.8質量部
・ジエチルチオキサントン :0.17質量部
・2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−
[4−(4−モルホリニル)フェニル]−1−ブタノン
(商品名:Irgacure379、BASF製) :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製) :0.19質量部
・界面活性剤(商品名:メガファックF−780F、大日本インキ製)
:0.05質量部
・メチルエチルケトン :23.3質量部
・MMPGAc(ダイセル化学(株)製) :59.8質量部
なお、絶縁層形成用塗布液W1の溶剤除去後の100℃の粘度は4000Pa・secであった。
(Insulating layer forming coating solution: Formula W1)
Binder 3 (cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) glycidyl methacrylate adduct (d) (composition (% by mass): a / b / c / d = 46/1) / 10/43, mass average molecular weight: 36000, acid value 66 mgKOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%))
: 12.5 parts by mass · DPHA (dipentaerythritol hexaacrylate, manufactured by Nippon Kayaku Co., Ltd.)
Propylene glycol monomethyl ether acetate solution (76% by mass)
: 1.4 parts by mass / urethane monomer (trade name: NK Oligo UA-32P, manufactured by Shin-Nakamura Chemical Co., Ltd .: non-volatile content 75%, propylene glycol monomethyl ether acetate:
25%): 0.68 parts by mass. Tripentaerythritol octaacrylate (trade name: V # 802,
Osaka Organic Chemical Industry Co., Ltd.): 1.8 parts by mass. Diethylthioxanthone: 0.17 parts by mass. 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1-
[4- (4-morpholinyl) phenyl] -1-butanone (Brand name: Irgacure 379, manufactured by BASF): 0.17 parts by mass Dispersant (Brand name: Solsperse 20000, manufactured by Avicia): 0.19 parts by mass, interface Activator (Brand name: Megafuck F-780F, manufactured by Dainippon Ink)
: 0.05 parts by mass-Methyl ethyl ketone: 23.3 parts by mass-MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the solvent of the coating liquid W1 for forming the insulating layer is 4000 Pa.・ It was sec.

マスク層の形成と同様にして、前記第一の透明電極パターン付の前面板を洗浄、シランカップリング処理し、カバーフィルムを除去した絶縁層形成用感光性フィルムW1をラミネートした(基材温度:100℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.3m/分)。仮支持体を剥離後、露光マスク(絶縁層用パターンを有す石英露光マスク)面と該エッチング用光硬化性樹脂層との間の距離を100μmに設定し、露光量30mJ/cm2(i線)でパターン露光した。 In the same manner as the formation of the mask layer, the front plate with the first transparent electrode pattern was washed, subjected to silane coupling treatment, and laminated with the insulating film forming photosensitive film W1 from which the cover film was removed (base material temperature: 100 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveyance speed 2.3 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the photocurable resin layer for etching is set to 100 μm, and the exposure dose is 30 mJ / cm 2 (i Line).

次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T−PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を33℃で60秒間、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T−CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を25℃で50秒間、界面活性剤含有洗浄液(商品名:T−SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間処理し、回転ブラシ、超高圧洗浄ノズルで残渣除去を行い、さらに230℃60分間のポストベーク処理を行って、マスク層、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。   Next, a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds, Sodium carbonate / sodium bicarbonate developer (trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water) at 25 ° C. for 50 seconds, surfactant-containing cleaning solution (trade name) : T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) was treated at 33 ° C. for 20 seconds, and the residue was removed with a rotating brush and an ultra-high pressure washing nozzle. A front baking process was performed for 60 minutes to obtain a front plate on which a mask layer, a first transparent electrode pattern, and an insulating layer pattern were formed.

《第二の透明電極パターンの形成》
<透明電極層の形成>
前記第一の透明電極パターンの形成と同様にして、第一の透明電極パターン、絶縁層パターンを形成した前面板をDCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。
<< Formation of second transparent electrode pattern >>
<Formation of transparent electrode layer>
In the same manner as the formation of the first transparent electrode pattern, the front plate on which the first transparent electrode pattern and the insulating layer pattern were formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa). An oxygen thin film having an oxygen pressure of 0.01 Pa and a thickness of 80 nm was formed to obtain a front plate on which a transparent electrode layer was formed.

第一の透明電極パターンの形成の形成と同様にして、エッチング用感光性フィルムE1を用いて、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
さらに、第一の透明電極パターンの形成の形成と同様にして、エッチング(30℃50秒間)、エッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板を得た。
得られた前面板を240℃60分加熱することで、パターニングしたITO(第二の透明電極パターン)のアニーリングを実施した。マスク層が形成されていない部分のITO膜(ガラス、SiO2薄膜、ITO膜の順に積層された部分のITO膜)の表面抵抗値は110Ω/□であった。マスク層上のITO膜(ガラス、マスク層、SiO2薄膜、ITO膜の順に積層された部分のITO膜)の表面抵抗値は202Ω/□であった。
In the same manner as the formation of the first transparent electrode pattern, the first transparent electrode pattern, the insulating layer pattern, the transparent electrode layer, and the photocurable resin layer pattern for etching are formed using the etching photosensitive film E1. The obtained front plate was obtained (post-baking treatment; 130 ° C. for 30 minutes).
Further, in the same manner as in the formation of the first transparent electrode pattern, the mask layer is formed by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds). A front plate on which a transparent electrode pattern, an insulating layer pattern, and a second transparent electrode pattern were formed was obtained.
The obtained front plate was heated at 240 ° C. for 60 minutes, thereby annealing patterned ITO (second transparent electrode pattern). The surface resistance of the portion of the ITO film where the mask layer was not formed (the portion of the ITO film laminated in the order of glass, SiO 2 thin film, and ITO film) was 110Ω / □. The surface resistance value of the ITO film on the mask layer (the ITO film in the portion in which the glass, the mask layer, the SiO 2 thin film, and the ITO film were laminated in this order) was 202Ω / □.

《第一および第二の透明電極パターンとは別の導電性要素の形成》
前記第一、および第二の透明電極パターンの形成と同様にして、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
<< Formation of Conductive Element Separate from First and Second Transparent Electrode Pattern >>
Similar to the formation of the first and second transparent electrode patterns, the front plate on which the first transparent electrode pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was subjected to DC magnetron sputtering treatment to a thickness of 200 nm. A front plate on which an aluminum (Al) thin film was formed was obtained.

前記第一、および第二の透明電極パターンの形成と同様にして、エッチング用感光性フィルムE1を用いて、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、エッチング用光硬化性樹脂層パターンを形成した前面板を得た。(ポストベーク処理;130℃30分間)。
さらに、第一の透明電極パターンの形成の形成と同様にして、エッチング(30℃50秒間)、エッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
Similar to the formation of the first and second transparent electrode patterns, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the photocuring for etching are performed using the etching photosensitive film E1. A front plate on which a conductive resin layer pattern was formed was obtained. (Post-bake treatment; 130 ° C. for 30 minutes).
Further, in the same manner as in the formation of the first transparent electrode pattern, the mask layer is formed by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds). A front plate on which conductive elements different from the transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns were formed was obtained.

《透明保護層の形成》
絶縁層の形成と同様にして、前記第一および第二の透明電極パターンとは別の導電性要素まで形成した前面板に、カバーフィルムを除去した絶縁層形成用感光性フィルムW1をラミネートし、仮支持体を剥離後、露光マスクを介さずに露光量50mJ/cm2(i線)で前面露光し、現像、ポスト露光(1000mJ/cm2)、ポストベーク処理を行って、マスク層、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素の全てを覆うように絶縁層(透明保護層)を積層した前面板1を得た。
<Formation of transparent protective layer>
In the same manner as the formation of the insulating layer, the insulating film forming photosensitive film W1 from which the cover film has been removed is laminated on the front plate formed up to the conductive element different from the first and second transparent electrode patterns, After peeling off the temporary support, front exposure is performed with an exposure amount of 50 mJ / cm 2 (i-line) without going through an exposure mask, development, post-exposure (1000 mJ / cm 2 ), and post-baking treatment are performed, Before laminating the insulating layer (transparent protective layer) so as to cover all the conductive elements different from the one transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns A face plate 1 was obtained.

《画像表示装置(タッチパネル)の作製》
特開2009−47936公報に記載の方法で製造した液晶表示素子に、先に製造した前面板を貼り合せ、公知の方法で静電容量型入力装置を構成要素として備えた実施例1の画像表示装置を作製した。
<< Production of image display device (touch panel) >>
An image display according to the first embodiment in which a liquid crystal display element manufactured by the method described in Japanese Patent Application Laid-Open No. 2009-47936 is bonded to the previously manufactured front plate and a capacitance type input device is provided as a constituent element by a known method. A device was made.

[実施例2〜6および比較例1]
実施例1の画像表示装置の作製において、無機絶縁膜の形成時に下記表1に記載のようにSiO2膜の厚みを変更した以外は実施例1と同様にして、実施例2〜6の画像表示装置を作製した。
また、実施例1の画像表示装置の作製において、無機絶縁膜を形成しなかった以外は実施例1と同様にして、比較例1の画像表示装置を作製した。
[Examples 2 to 6 and Comparative Example 1]
In the production of the image display device of Example 1, images of Examples 2 to 6 were obtained in the same manner as Example 1 except that the thickness of the SiO 2 film was changed as shown in Table 1 below when the inorganic insulating film was formed. A display device was produced.
Further, in the production of the image display device of Example 1, the image display device of Comparative Example 1 was produced in the same manner as in Example 1 except that the inorganic insulating film was not formed.

《画像表示装置の評価》
<透明電極パターンの表面抵抗>
各実施例および比較例の画像表示装置の製造時における、第二の透明電極パターンの表面抵抗と、マスク層の表面抵抗を測定した結果を下記表1に示した。
<Evaluation of image display device>
<Surface resistance of transparent electrode pattern>
Table 1 below shows the results of measuring the surface resistance of the second transparent electrode pattern and the surface resistance of the mask layer during the manufacture of the image display devices of the examples and the comparative examples.

Figure 0006047298
上記表1中、E8は、×108を示す。E11は、×1011を示す。
Figure 0006047298
In Table 1 above, E8 represents × 10 8 . E11 indicates x10 11 .

表1より、SiO2膜を形成することで、マスク層表面抵抗を増加させ絶縁性を向上でき、かつマスク層上の第二の透明電極パターンの表面抵抗を低下させることができたことがわかった。すなわち、黒色のマスク層上に設けられた透明電極パターンの抵抗を抑制でき、透明電極パターン間の絶縁性が良好であり、安価な静電容量型入力装置の製造方法であることがわかった。 From Table 1, it can be seen that by forming the SiO 2 film, the surface resistance of the mask layer can be increased and the insulation can be improved, and the surface resistance of the second transparent electrode pattern on the mask layer can be decreased. It was. That is, it was found that the resistance of the transparent electrode pattern provided on the black mask layer can be suppressed, the insulation between the transparent electrode patterns is good, and the manufacturing method of an inexpensive capacitive input device.

作製した各実施例の画像表示装置は、タッチパネルが正常に作動し、表示特性も問題なかった。比較例1の表示装置は、マスク層上に形成したITOパターン(第二の透明電極パターン)間の絶縁不良、およびITO(第二の透明電極パターン)自体の抵抗が高いため、タッチパネルが正常に作動せず、接触位置の認識ができなかった。   In the produced image display devices of the respective examples, the touch panel operated normally and the display characteristics were satisfactory. In the display device of Comparative Example 1, since the insulation failure between the ITO patterns (second transparent electrode patterns) formed on the mask layer and the resistance of the ITO (second transparent electrode patterns) itself are high, the touch panel is normal. It did not work and the contact position could not be recognized.

以上のように、本発明の製造方法で製造した静電容量型入力装置、およびそれを用いた画像表示装置は高品位であることがわかる。   As described above, it can be seen that the capacitance-type input device manufactured by the manufacturing method of the present invention and the image display device using the same are of high quality.

1 前面板
2 マスク層
3 第一の透明電極パターン
3a パッド部分
3b 接続部分
4 第二の透明電極パターン
5 絶縁層
6 導電性要素
7 透明保護層
8 開口部
10 静電容量型入力装置
11 強化処理ガラス
13 無機絶縁膜
DESCRIPTION OF SYMBOLS 1 Front plate 2 Mask layer 3 1st transparent electrode pattern 3a Pad part 3b Connection part 4 2nd transparent electrode pattern 5 Insulating layer 6 Conductive element 7 Transparent protective layer 8 Opening part 10 Capacitive type input device 11 Strengthening process Glass 13 Inorganic insulating film

Claims (9)

前面板と、前記前面板の非接触側に少なくとも下記(1)〜(5)の要素を有する静電容量型入力装置の製造方法であって、
下記マスク層を形成する工程と、
下記マスク層と、下記第一および第二の透明電極パターンのうち少なくとも該マスク層の面上に設置される部分の透明電極パターンとの間に、無機絶縁層を前記マスク層に直接設ける工程と、
下記第一の透明電極パターンを、前記無機絶縁層に前記第一の透明電極パターンのうち少なくとも該マスク層の面上に設置される部分の透明電極パターンを直接設けて形成する工程と、
下記第二の透明電極パターンを、前記無機絶縁層に前記第二の透明電極パターンのうち少なくとも該マスク層の面上に設置される部分の透明電極パターンを直接設けて形成する工程を含み、
前記無機絶縁層の厚さが5〜100nmであることを特徴とする静電容量型入力装置の製造方法。
(1)マスク層
(2)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(3)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン
(4)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層
(5)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素
A method for manufacturing a capacitive input device having a front plate and at least the following elements (1) to (5) on a non-contact side of the front plate:
Forming the following mask layer;
And below the mask layer, between the transparent electrode pattern of a portion that is disposed on a surface of at least the mask layer of the first and second transparent electrode patterns following the steps of providing an inorganic insulating layer directly on the mask layer ,
The following first transparent electrode pattern is formed by directly providing at least a portion of the transparent electrode pattern on the surface of the mask layer of the first transparent electrode pattern on the inorganic insulating layer; and
The following second transparent electrode pattern includes a step of directly forming a transparent electrode pattern of a portion of the second transparent electrode pattern on the surface of the mask layer in the inorganic insulating layer,
A method for manufacturing a capacitance-type input device, wherein the inorganic insulating layer has a thickness of 5 to 100 nm.
(1) Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (3) The first transparent electrode pattern and the electric A plurality of second transparent electrode patterns comprising a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction (4) The first transparent electrode pattern and the second An insulating layer that electrically insulates the transparent electrode pattern (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern, and the first transparent electrode pattern and the second transparent electrode pattern Conductive element separate from the second transparent electrode pattern
前記無機絶縁層が、SiO2膜であることを特徴とする請求項1に記載の静電容量型入力装置の製造方法。 2. The method of manufacturing a capacitive input device according to claim 1, wherein the inorganic insulating layer is a SiO2 film. 前記(1)〜(5)の要素の少なくとも一つを、仮支持体と光硬化性樹脂層とを有する感光性フィルムを用いて形成することを特徴とする請求項1または2に記載の静電容量型入力装置の製造方法。   The static electricity according to claim 1 or 2, wherein at least one of the elements (1) to (5) is formed using a photosensitive film having a temporary support and a photocurable resin layer. A method for manufacturing a capacitive input device. 前記感光性フィルムが、前記仮支持体と熱可塑性樹脂層と前記光硬化性樹脂層とをこの順で有することを特徴とする請求項3に記載の静電容量型入力装置の製造方法。   The said photosensitive film has the said temporary support body, a thermoplastic resin layer, and the said photocurable resin layer in this order, The manufacturing method of the electrostatic capacitance type input device of Claim 3 characterized by the above-mentioned. 前記第一の透明電極パターンを形成した後に、150〜350℃で熱処理する工程を含むことを特徴とする請求項1〜4のいずれか一項に記載の静電容量型入力装置の製造方法。   5. The method of manufacturing a capacitive input device according to claim 1, further comprising a step of performing a heat treatment at 150 to 350 ° C. after forming the first transparent electrode pattern. 前記マスク層が、黒色のマスク層であることを特徴とする請求項1〜5のいずれか一項に記載の静電容量型入力装置の製造方法。   The said mask layer is a black mask layer, The manufacturing method of the electrostatic capacitance type input device as described in any one of Claims 1-5 characterized by the above-mentioned. 前記黒色のマスク層が、カーボンブラックまたは黒鉛を含むことを特徴とする請求項6に記載の静電容量型入力装置の製造方法。   The method of manufacturing a capacitive input device according to claim 6, wherein the black mask layer contains carbon black or graphite. 前面板と、前記前面板の非接触側に少なくとも下記(1)〜(5)の要素を有する静電容量型入力装置であって、
下記マスク層と、下記第一および第二の透明電極パターンのうち少なくとも該マスク層の面上に設置された部分の透明電極パターンとの間に、無機絶縁層を前記マスク層に直接接して有し、
下記第一の透明電極パターンを、前記無機絶縁層に前記第一の透明電極パターンのうち少なくとも該マスク層の面上に設置された部分の透明電極パターンに直接接して有し、
下記第二の透明電極パターンを、前記無機絶縁層に前記第二の透明電極パターンのうち少なくとも該マスク層の面上に設置された部分の透明電極パターンに直接接して有し、
前記無機絶縁層の厚さが5〜100nmであることを特徴とする静電容量型入力装置。
(1)マスク層
(2)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(3)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン
(4)前記第一の透明電極パターンと前記第二の透明電極パターンとを電気的に絶縁する絶縁層
(5)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素
A capacitive input device having at least the following elements (1) to (5) on a non-contact side of the front plate and the front plate:
An inorganic insulating layer is in direct contact with the mask layer between the following mask layer and the transparent electrode pattern of at least a portion of the following first and second transparent electrode patterns disposed on the surface of the mask layer. And
The following first transparent electrode pattern , in direct contact with the transparent electrode pattern of the portion of the first transparent electrode pattern placed on the surface of at least the mask layer in the inorganic insulating layer,
The following second transparent electrode pattern has the inorganic insulating layer in direct contact with the transparent electrode pattern of at least a portion of the second transparent electrode pattern placed on the surface of the mask layer,
The capacitance type input device, wherein the inorganic insulating layer has a thickness of 5 to 100 nm.
(1) Mask layer (2) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (3) The first transparent electrode pattern and the electric A plurality of second transparent electrode patterns comprising a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction (4) The first transparent electrode pattern and the second An insulating layer that electrically insulates the transparent electrode pattern (5) electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern, and the first transparent electrode pattern and the second transparent electrode pattern Conductive element separate from the second transparent electrode pattern
請求項8に記載の静電容量型入力装置を構成要素として備えた画像表示装置。   An image display device comprising the capacitive input device according to claim 8 as a constituent element.
JP2012099016A 2012-04-24 2012-04-24 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same Active JP6047298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099016A JP6047298B2 (en) 2012-04-24 2012-04-24 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099016A JP6047298B2 (en) 2012-04-24 2012-04-24 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same

Publications (2)

Publication Number Publication Date
JP2013228806A JP2013228806A (en) 2013-11-07
JP6047298B2 true JP6047298B2 (en) 2016-12-21

Family

ID=49676398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099016A Active JP6047298B2 (en) 2012-04-24 2012-04-24 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same

Country Status (1)

Country Link
JP (1) JP6047298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437034B1 (en) * 2014-01-21 2014-11-04 에스맥 (주) Method for manufacturing GF2 touch screen panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210528A (en) * 2005-06-16 2008-09-11 Nissha Printing Co Ltd Casing with illuminated switch and its manufacturing method
TWI528249B (en) * 2009-04-15 2016-04-01 財團法人工業技術研究院 Structure of touch sensing device
JP2011186717A (en) * 2010-03-08 2011-09-22 Daiwa Sangyo:Kk Capacitive touch panel and method of manufacturing the same
JP5486969B2 (en) * 2010-03-17 2014-05-07 株式会社ジャパンディスプレイ Manufacturing method of touch panel
JP5531707B2 (en) * 2010-03-26 2014-06-25 大日本印刷株式会社 Manufacturing method of touch panel sensor integrated color filter
JP2012033466A (en) * 2010-07-02 2012-02-16 Fujifilm Corp Conductive layer transfer material, and touch panel
JP2013015989A (en) * 2011-07-04 2013-01-24 Daiwa Sangyo:Kk Capacitive touch panel and manufacturing method therefor

Also Published As

Publication number Publication date
JP2013228806A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5763492B2 (en) Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same
JP5901451B2 (en) Transparent laminate, capacitance input device, and image display device
JP5914392B2 (en) Photosensitive film, method for manufacturing capacitance-type input device, capacitance-type input device, and image display device including the same
JP5922008B2 (en) TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
JP5914396B2 (en) Black resin film, capacitance-type input device, manufacturing method thereof, and image display device including the same
JP6170288B2 (en) Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device including the same
JP6336032B2 (en) Transfer film, transfer film manufacturing method, transparent laminate, transparent laminate manufacturing method, capacitive input device, and image display device
JP6030966B2 (en) Transparent laminate and method for producing the same
JP6599040B1 (en) Transfer film, laminate manufacturing method, laminate, capacitive input device, and image display device
JP5986934B2 (en) Protective film forming composition, transfer material, conductive film laminate, touch panel and image display device
JP5837832B2 (en) Substrate on which a photocurable resin layer is formed, method for forming the same, capacitance-type input device, and image display device
JP6047298B2 (en) Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same
JP6093891B2 (en) Transparent laminate, capacitance input device, and image display device
JP6404255B2 (en) TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
JP6646107B2 (en) Transfer film and transparent laminate, method for producing them, capacitance input device, and image display device
JP6325019B2 (en) Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device including the same
JP6865867B2 (en) Transfer films and transparent laminates, their manufacturing methods, capacitive input devices and image display devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6047298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250