JP6040041B2 - Showcase cooling system - Google Patents

Showcase cooling system Download PDF

Info

Publication number
JP6040041B2
JP6040041B2 JP2013024004A JP2013024004A JP6040041B2 JP 6040041 B2 JP6040041 B2 JP 6040041B2 JP 2013024004 A JP2013024004 A JP 2013024004A JP 2013024004 A JP2013024004 A JP 2013024004A JP 6040041 B2 JP6040041 B2 JP 6040041B2
Authority
JP
Japan
Prior art keywords
showcase
temperature
evaporator
compressor
showcases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013024004A
Other languages
Japanese (ja)
Other versions
JP2014153007A (en
Inventor
高山 信幸
信幸 高山
小林 誠
誠 小林
麻知子 廣野
麻知子 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2013024004A priority Critical patent/JP6040041B2/en
Priority to EP14751932.6A priority patent/EP2937650A4/en
Priority to US14/765,484 priority patent/US20150374143A1/en
Priority to CN201480007727.0A priority patent/CN104981669B/en
Priority to PCT/JP2014/052999 priority patent/WO2014126027A1/en
Publication of JP2014153007A publication Critical patent/JP2014153007A/en
Application granted granted Critical
Publication of JP6040041B2 publication Critical patent/JP6040041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • A47F3/0478Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2521On-off valves controlled by pulse signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、圧縮機から吐出された冷媒を複数台のショーケースの蒸発器に分配して供給し、各ショーケースを冷却するショーケース冷却装置に関するものである。   The present invention relates to a showcase cooling apparatus that distributes and supplies refrigerant discharged from a compressor to a plurality of showcase evaporators and cools each showcase.

従来よりコンビニエンスストア等の店舗内には複数台のショーケースが設置されており、各ショーケースの蒸発器には店外等に設置された冷凍機の圧縮機から冷媒を分配して供給している。この場合、圧縮機にて圧縮された冷媒は同じく冷凍機に設置された凝縮器にて放熱し、凝縮した後、冷媒回路を構成する冷媒配管を経て各ショーケースに供給される。ショーケースには膨張弁と蒸発器が設置されており、冷媒は膨張弁にて絞られた後、蒸発器に流入し、そこで蒸発することでショーケースの庫内に循環される冷気を冷却するものであった(例えば、特許文献1参照)。   Conventionally, multiple showcases have been installed in stores such as convenience stores, and refrigerant is distributed and supplied to the evaporators of each showcase from the compressors of refrigerators installed outside the store. Yes. In this case, the refrigerant compressed by the compressor radiates heat in the condenser similarly installed in the refrigerator, condenses, and then is supplied to each showcase via the refrigerant pipe constituting the refrigerant circuit. An expansion valve and an evaporator are installed in the showcase, and after the refrigerant is throttled by the expansion valve, it flows into the evaporator and evaporates there to cool the cold air circulated in the showcase cabinet (For example, refer to Patent Document 1).

また、膨張弁は蒸発器を出る冷媒の過熱度が最適な規定値となるように絞り度合いを調整し、ショーケースの効率的な冷却と圧縮機への液バック防止を実現するものであるが、この膨張弁には機械式のものと電子式のもの(電動膨張弁)とが存在する。機械式膨張弁の場合は、自らに設定された規定の過熱度(規定値)となるように自立して動作し、電子式膨張弁の場合には、制御装置により目標過熱度となるように弁開度が制御されるものであった。また、各膨張弁の前段には液電磁弁が設けられ、ショーケースの庫内が十分冷却された状態ではこの液電磁弁が閉じられるものであった(電子膨張弁の場合には、それ自体が全閉状態とすることができるため、液電磁弁が設けられない場合もある)。   The expansion valve adjusts the degree of throttling so that the degree of superheat of the refrigerant exiting the evaporator becomes the optimum specified value, thereby realizing efficient cooling of the showcase and prevention of liquid back to the compressor. The expansion valve includes a mechanical type and an electronic type (electric expansion valve). In the case of a mechanical expansion valve, it operates independently so as to have a specified superheat degree (specified value) set by itself, and in the case of an electronic expansion valve, the control device sets a target superheat degree. The valve opening was controlled. In addition, a liquid electromagnetic valve is provided in front of each expansion valve, and the liquid electromagnetic valve is closed when the interior of the showcase is sufficiently cooled (in the case of an electronic expansion valve, Can be fully closed, so the liquid solenoid valve may not be provided).

また、圧縮機は一般的に冷媒回路の低圧圧力に基づき、例えばその運転周波数が制御されていた。この場合、目標低圧圧力は例えば店舗内のエンタルピに基づいて各ショーケースを十分冷却することができる値に制御装置により設定され、低圧圧力がこの目標低圧圧力となるように圧縮機の運転周波数が制御されていた。尚、係る圧縮機の能力制御については運転周波数に限らず、複数台設けておいてその運転台数を切り換える場合もある。   Further, the compressor is generally controlled based on the low pressure of the refrigerant circuit, for example, the operation frequency. In this case, the target low pressure is set by the control device to a value that can sufficiently cool each showcase based on the enthalpy in the store, for example, and the operating frequency of the compressor is set so that the low pressure becomes the target low pressure. It was controlled. The compressor capacity control is not limited to the operating frequency, and there may be a case where a plurality of compressors are provided and the number of operating units is switched.

特許第5053527号公報Japanese Patent No. 5053527

ここで、複数台のショーケースにおける負荷(周囲温度や湿度、風の影響、陳列商品を冷却するための庫内温度制御や除霜制御等)はそれぞれ異なるため、液電磁弁の開閉(電子膨張弁の場合は弁開度)はそれらに依存することになる。一方、従来では冷媒回路の低圧圧力に基づいて圧縮機の運転周波数が制御されていたため、複数のショーケースの液電磁弁の開閉が同時若しくは略同時に行われるような状況(即ち、同期して行われる状況)、或いは、電子膨張弁の場合には弁開度の調整方向が複数の電子膨張弁において同一傾向(同一傾向とは、閉が重なる傾向で、最も顕著な場合は全閉、又は、開が重なる傾向で、最も顕著な場合は全開)となり、調整が同時若しくは略同時に行われるような状況では、低圧圧力の変動が大きくなり、その影響で圧縮機の運転周波数も変動する。即ち、ショーケースの液電磁弁の開閉により冷却負荷が変動すると、低圧圧力が変動するため、他のショーケースの冷えやすさが変化するので、動作が連鎖していく。そして、この低圧変動を抑えようと圧縮機の運転周波数が大きく変動することになる。   Here, because the load on multiple showcases (ambient temperature, humidity, wind effects, internal temperature control and defrost control for cooling display products, etc.) are different, the liquid solenoid valve is opened and closed (electronic expansion In the case of a valve, the valve opening) depends on them. On the other hand, since the operation frequency of the compressor is conventionally controlled based on the low pressure of the refrigerant circuit, a situation in which the liquid electromagnetic valves of a plurality of showcases are opened or closed simultaneously (that is, performed synchronously). In the case of an electronic expansion valve, the adjustment direction of the valve opening degree tends to be the same in a plurality of electronic expansion valves (the same tendency is a tendency for closing to overlap, and in the most prominent case, it is fully closed, or When the adjustment is performed simultaneously or substantially simultaneously, the low-pressure pressure fluctuates greatly, and the operating frequency of the compressor fluctuates as a result. That is, when the cooling load varies due to the opening and closing of the liquid solenoid valve of the showcase, the low-pressure pressure varies, so the ease of cooling of other showcases changes, and the operation is chained. Then, the operating frequency of the compressor greatly fluctuates so as to suppress this low pressure fluctuation.

このように従来では低圧圧力に拘る余りに圧縮機の運転周波数が大きく変動するため、消費電力が増大する結果となっていた。また、前述したように負荷は各ショーケースにおいて異なり、一方で目標低圧圧力は全てのショーケースを十分冷却することができる値に設定されるため、冷え易いショーケース(例えば、負荷が軽いショーケース)にとっては圧縮機の能力が過剰な状況となっており、これもエネルギーロスに繋がっていた。   Thus, conventionally, the operating frequency of the compressor greatly fluctuates due to the low pressure, resulting in an increase in power consumption. In addition, as described above, the load is different in each showcase, while the target low pressure is set to a value that can sufficiently cool all the showcases. ) Had excessive compressor capacity, which also led to energy loss.

本発明は、係る従来の技術的課題を解決するために成されたものであり、圧縮機の消費電力を抑制しながら、複数台のショーケースの全てを支障無く冷却することができるショーケース冷却装置を提供することを目的とする。   The present invention has been made to solve the conventional technical problems, and is capable of cooling all of the plurality of showcases without hindrance while suppressing the power consumption of the compressor. An object is to provide an apparatus.

上記課題を解決するために、本発明のショーケース冷却装置は圧縮機から吐出された冷媒を複数台のショーケースに設けられた蒸発器に分配供給するものであって、各ショーケースの庫内温度をそれぞれ検出する庫内温度センサと、圧縮機の運転を制御する制御手段とを備えており、この制御手段は、各ショーケースのうちの最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御することを特徴とする。   In order to solve the above problems, the showcase cooling device of the present invention distributes and supplies the refrigerant discharged from the compressor to the evaporators provided in a plurality of showcases, It is equipped with an internal temperature sensor for detecting the temperature and a control means for controlling the operation of the compressor, and this control means compresses based on the internal temperature of the showcase that is the most difficult to cool out of each showcase. It is characterized by controlling the operation of the machine.

請求項2の発明のショーケース冷却装置は、上記発明において各ショーケースは、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、蒸発器への冷媒の流入を制御する開閉弁とを備え、制御手段は、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、この目標過熱度と前記過熱度の既定値に基づいて開閉弁を開閉することを特徴とする。   The showcase cooling device of the invention of claim 2 is the superheat degree adjusting means according to the invention, wherein each showcase squeezes the refrigerant flowing into the evaporator and adjusts the superheat degree of the refrigerant coming out of the evaporator to a specified value. And an on-off valve that controls the inflow of the refrigerant to the evaporator, and the control means controls the operation of the compressor based on the inside temperature of the showcase that is most difficult to cool and adjusts the inside temperature of the other showcase. On the basis of this, the target superheat degree of the showcase is set, and the on-off valve is opened and closed based on the target superheat degree and a predetermined value of the superheat degree.

請求項3の発明のショーケース冷却装置は、請求項1の発明において各ショーケースは、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、蒸発器への冷媒の流入を制御する開閉弁とを備え、制御手段は、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて開閉弁を開閉し、且つ、当該他のショーケースの開閉弁を開閉する際、各開閉弁の開閉を異なるタイミングで実行することを特徴とする。   According to a third aspect of the present invention, there is provided a showcase cooling apparatus according to the first aspect, wherein each showcase throttles the refrigerant flowing into the evaporator and adjusts the superheat degree of the refrigerant coming out of the evaporator to a specified value. Means and an on-off valve for controlling the inflow of refrigerant to the evaporator, and the control means controls the operation of the compressor based on the inside temperature of the showcase that is most difficult to cool, and stores other showcases. When opening and closing the opening / closing valve based on the internal temperature and opening / closing the opening / closing valve of the other showcase, the opening / closing of each opening / closing valve is executed at different timings.

請求項4の発明のショーケース冷却装置は、請求項1の発明において各ショーケースは、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を目標過熱度に制御する膨張弁を備え、制御手段は、最も冷え難いショーケースの目標過熱度を規定値として当該ショーケースの膨張弁の弁開度を制御し、且つ、当該ショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、当該ショーケースの膨張弁の弁開度を制御することを特徴とする。   The showcase cooling device according to a fourth aspect of the present invention is the expansion valve according to the first aspect, wherein each showcase throttles the refrigerant flowing into the evaporator and controls the superheat degree of the refrigerant coming out of the evaporator to the target superheat degree. The control means controls the opening degree of the expansion valve of the showcase with the target superheat degree of the showcase that is hard to cool as a specified value, and operates the compressor based on the internal temperature of the showcase And a target superheat degree of the showcase is set based on the inside temperature of the other showcase, and the valve opening degree of the expansion valve of the showcase is controlled.

請求項5の発明のショーケース冷却装置は、上記各発明において制御手段は、各ショーケースのうち最も冷え難いショーケースを判別しており、庫内温度に基づいて圧縮機の運転を制御しているショーケースより冷え難い他のショーケースが存在する場合は、当該ショーケースの庫内温度に基づいて圧縮機の運転を制御する状態に切り換えることを特徴とする。   In the showcase cooling apparatus of the invention of claim 5, in each of the above inventions, the control means determines the showcase that is most difficult to cool among each showcase, and controls the operation of the compressor based on the internal temperature. When there is another showcase that is harder to cool than the existing showcase, the operation is switched to a state in which the operation of the compressor is controlled based on the inside temperature of the showcase.

請求項6の発明のショーケース冷却装置は、上記発明において制御手段は、庫内温度が安定している状態において、各ショーケースのうちの最も冷え難いショーケースの判別を行うことを特徴とする。   The showcase cooling device of the invention of claim 6 is characterized in that, in the above invention, the control means discriminates the showcase that is most difficult to cool among the showcases in a state in which the internal temperature is stable. .

請求項7の発明のショーケース冷却装置は、上記各発明において制御手段は、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転周波数を制御することを特徴とする。   According to a seventh aspect of the present invention, there is provided a showcase cooling apparatus according to the above invention, wherein the control means controls the operating frequency of the compressor based on the inside temperature of the showcase that is most difficult to cool.

請求項8の発明のショーケース冷却装置は、上記発明において各ショーケースの冷気吹出部に設けられ、各ショーケースへの冷気の吹出温度をそれぞれ検出する吹出温度センサを備え、制御手段は、ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースへの冷気の目標吹出温度を決定すると共に、吹出温度センサが検出する吹出温度と目標吹出温度との偏差に基づくPID演算により、圧縮機の目標運転周波数、及び/又は、目標過熱度を決定することを特徴とする。   A showcase cooling device according to an eighth aspect of the present invention includes a blowout temperature sensor that is provided in a cold air blowout portion of each showcase in the above invention and detects a blowout temperature of the cold air to each showcase, and the control means includes: The target blow temperature of the cool air to the showcase is determined by PID calculation based on the deviation between the case internal temperature and the set value of the internal temperature, and the blow temperature and target blow temperature detected by the blow temperature sensor are determined. The target operating frequency and / or the target superheat degree of the compressor is determined by PID calculation based on the deviation.

請求項9の発明のショーケース冷却装置は、請求項7の発明において各ショーケースの蒸発器の温度をそれぞれ検出する蒸発器温度センサを備え、制御手段は、ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースの目標蒸発器温度を決定すると共に、蒸発器センサが検出する蒸発器の温度と目標蒸発器温度との偏差に基づくPID演算により、圧縮機の目標運転周波数、及び/又は、目標過熱度を決定することを特徴とする。   A showcase cooling device according to a ninth aspect of the present invention comprises the evaporator temperature sensor for detecting the temperature of the evaporator of each showcase according to the seventh aspect of the invention, and the control means includes the temperature inside the showcase and the temperature of the store. By the PID calculation based on the deviation from the set value of the internal temperature, the target evaporator temperature of the showcase is determined, and by the PID calculation based on the deviation between the evaporator temperature detected by the evaporator sensor and the target evaporator temperature Determining a target operating frequency of the compressor and / or a target superheat degree.

本発明によれば、圧縮機から吐出された冷媒を複数台のショーケースに設けられた蒸発器に分配供給するショーケース冷却装置において、各ショーケースの庫内温度をそれぞれ検出する庫内温度センサと、圧縮機の運転を制御する制御手段とを備えており、この制御手段は、各ショーケースのうちの最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御するようにしたので、低圧圧力で制御する場合に比して各ショーケースの開閉弁や膨張弁等の動作の影響を受け難くなる。   According to the present invention, in a showcase cooling apparatus that supplies and distributes refrigerant discharged from a compressor to evaporators provided in a plurality of showcases, an internal temperature sensor that detects the internal temperature of each showcase. And a control means for controlling the operation of the compressor. The control means controls the operation of the compressor based on the inside temperature of the showcase that is hard to cool among the showcases. Therefore, it is less affected by the operation of the open / close valve and the expansion valve of each showcase as compared with the case where the control is performed with the low pressure.

これにより、圧縮機の運転状態の変動が抑制され、消費電力が低減される。一方で、各ショーケースのうち最も冷え難いショーケースの冷却は確実に行われることになるので、他のショーケースに対する過剰な圧縮機の能力によるエネルギーロスも解消される。これらにより、本発明によれば圧縮機における消費電力を抑制しながら、複数台のショーケースの全てを支障無く冷却することができるようになるものである。   Thereby, the fluctuation | variation of the driving | running state of a compressor is suppressed and power consumption is reduced. On the other hand, the cooling of the showcase that is the hardest to cool among the showcases is surely performed, so that the energy loss due to the excessive compressor capacity with respect to the other showcases is also eliminated. Thus, according to the present invention, it is possible to cool all of the plurality of showcases without hindrance while suppressing power consumption in the compressor.

この場合、請求項2の発明の如く各ショーケースが、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、蒸発器への冷媒の流入を制御する開閉弁とを備えている場合、即ち、過熱度調整手段として所謂機械式膨張弁を採用している場合には、制御手段が、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、この目標過熱度と前記過熱度の既定値に基づいて開閉弁を開閉することにより、最も冷え難いショーケースによる圧縮機の制御と他のショーケースの開閉弁の制御による全てのショーケースの庫内温度制御を円滑に行うことが可能となる。   In this case, as in the invention of claim 2, each showcase restricts the refrigerant flowing into the evaporator and adjusts the superheat degree of the refrigerant coming out of the evaporator to a specified value, and the refrigerant to the evaporator When a so-called mechanical expansion valve is used as the superheat degree adjusting means, the control means is based on the inside temperature of the showcase that is most difficult to cool. To control the operation of the compressor, set the target superheat degree of the showcase based on the inside temperature of the other showcase, and open and close the open / close valve based on the target superheat degree and the predetermined value of the superheat degree By doing so, it becomes possible to smoothly control the internal temperature of all the showcases by controlling the compressor by the showcase that is hard to cool and the on / off valves of other showcases.

また、請求項3の発明の如く各ショーケースが、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、蒸発器への冷媒の流入を制御する開閉弁とを備えている場合、即ち、過熱度調整手段として所謂機械式膨張弁を採用している場合には、制御手段が、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて開閉弁を開閉し、且つ、当該他のショーケースの開閉弁を開閉する際、各開閉弁の開閉を異なるタイミングで実行することにより、最も冷え難いショーケースによる圧縮機の制御と他のショーケースの開閉弁の制御による全てのショーケースの庫内温度制御を円滑に行いながら、複数のショーケースの開閉弁が同期して開閉する不都合が解消され、それによる圧縮機の運転状態の変動も抑制される。   Further, as in the invention of claim 3, each showcase squeezes the refrigerant flowing into the evaporator, superheat degree adjusting means for adjusting the superheat degree of the refrigerant coming out of the evaporator to a specified value, and the refrigerant to the evaporator In the case where a so-called mechanical expansion valve is used as the superheat degree adjusting means, the control means is based on the inside temperature of the showcase that is hard to cool down. Controls the operation of the compressor, opens and closes the open / close valve based on the internal temperature of the other showcase, and opens and closes the open / close valve of the other showcase at different timings. By executing this function, the control of the compressor with the coolest showcase and the control of the temperature inside all the showcases by the control of the other showcase on / off valves can be performed smoothly, and the on / off valves on multiple showcases can be synchronized. Shi Inconvenience of opening and closing is eliminated, variations in the operating condition of the compressor by which is also suppressed.

また、請求項4の発明の如く各ショーケースに、蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を目標過熱度に制御する膨張弁を備えている場合、即ち、膨張弁として所謂電子膨張弁を採用している場合には、制御手段が、最も冷え難いショーケースの目標過熱度を規定値として当該ショーケースの膨張弁の弁開度を制御し、且つ、当該ショーケースの庫内温度に基づいて圧縮機の運転を制御すると共に、他のショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、当該ショーケースの膨張弁の弁開度を制御することにより、最も冷え難いショーケースによる圧縮機の制御と他のショーケースの開閉弁の制御による全てのショーケースの庫内温度制御を円滑に行うことが可能となる。   Further, as in the invention of claim 4, each showcase is provided with an expansion valve for restricting the refrigerant flowing into the evaporator and controlling the superheat degree of the refrigerant coming out of the evaporator to the target superheat degree. When a so-called electronic expansion valve is used as the valve, the control means controls the opening degree of the expansion valve of the showcase with the target superheat degree of the showcase that is hard to cool as a specified value, and Control the operation of the compressor based on the interior temperature of the case, set the target superheat degree of the showcase based on the interior temperature of the other showcase, and set the opening degree of the expansion valve of the showcase By controlling, it becomes possible to smoothly control the internal temperature of all the showcases by controlling the compressor by the showcase that is hard to cool and the opening / closing valves of other showcases.

更に、請求項5の発明の如く制御手段が、各ショーケースのうち最も冷え難いショーケースを判別しており、庫内温度に基づいて圧縮機の運転を制御しているショーケースより冷え難い他のショーケースが存在する場合は、当該ショーケースの庫内温度に基づいて圧縮機の運転を制御する状態に切り換えるようにすれば、各ショーケースの負荷の変化等によって最も冷え難いショーケースに入れ替わりが生じた場合にも、支障無く運転状態を切り換えることが可能となる。   Further, as in the invention of claim 5, the control means discriminates the showcase that is most difficult to cool out of each showcase, and it is harder to cool than the showcase that controls the operation of the compressor based on the internal temperature. If there is a showcase, the switch to a state where the compressor operation is controlled based on the inside temperature of the showcase will change to the showcase that is most difficult to cool due to changes in the load of each showcase. Even in the case of occurrence of a failure, it is possible to switch the operation state without any trouble.

この場合、請求項6の発明の如く制御手段が、庫内温度が安定している状態において、各ショーケースのうちの最も冷え難いショーケースの判別を行うようにすれば、除霜中やプルダウン中に判別することによる誤判定の発生を効果的に防止することが可能となる。   In this case, if the control means discriminates the showcase that is most difficult to cool among the showcases in a state in which the inside temperature is stable as in the invention of claim 6, during the defrosting or pull-down It is possible to effectively prevent the occurrence of erroneous determination due to determination inside.

そして、上記は請求項7の発明の如く制御手段が、最も冷え難いショーケースの庫内温度に基づいて圧縮機の運転周波数を制御する場合に特に有効なものとなる。   The above is particularly effective when the control means controls the operation frequency of the compressor on the basis of the temperature inside the showcase which is hard to cool down as in the invention of claim 7.

更に、請求項8の発明の如く各ショーケースの冷気吹出部に設けられて各ショーケースへの冷気の吹出温度をそれぞれ検出する吹出温度センサを備えている場合に、制御手段が、ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースへの冷気の目標吹出温度を決定すると共に、吹出温度センサが検出する吹出温度と目標吹出温度との偏差に基づくPID演算により、圧縮機の目標運転周波数、及び/又は、目標過熱度を決定するようにすれば、変化が緩やかな庫内温度と変化が急峻な吹出温度とを層別してそれぞれのPID演算を行い、圧縮機と開閉弁や膨張弁の制御を行うことができるようになり、各ショーケースの蒸発器への冷媒供給のタイムラグをできるだけ解消して的確な冷却制御を実現することが可能となるものである。   Furthermore, as in the invention of claim 8, in the case where the control means is provided with a blowout temperature sensor that is provided at the cold blowout portion of each showcase and detects the blowout temperature of the cold to each showcase, The PID calculation based on the deviation between the internal temperature and the set value of the internal temperature determines the target blowing temperature of the cool air to the showcase, and the deviation between the blowing temperature detected by the blowing temperature sensor and the target blowing temperature If the target operating frequency of the compressor and / or the target superheat degree is determined by the PID calculation based on the above, the PID calculation is performed by stratifying the slowly changing internal temperature and the suddenly changing outlet temperature. The compressor, the on-off valve and the expansion valve can be controlled, and the cooling lag in the refrigerant supply to each showcase evaporator is eliminated as much as possible to ensure accurate cooling control. In which it becomes possible to realize.

また、請求項9の発明の如く各ショーケースの蒸発器の温度をそれぞれ検出する蒸発器温度センサを備えている場合には、制御手段が、ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースの目標蒸発器温度を決定すると共に、蒸発器センサが検出する蒸発器の温度と目標蒸発器温度との偏差に基づくPID演算により、圧縮機の目標運転周波数、及び/又は、目標過熱度を決定することによっても、変化が緩やかな庫内温度と変化が急峻な蒸発器の温度とを層別してそれぞれのPID演算を行い、圧縮機と開閉弁や膨張弁の制御を行うことができるようになり、各ショーケースの蒸発器への冷媒供給のタイムラグをできるだけ解消して的確な冷却制御を実現することが可能となるものである。   Further, when an evaporator temperature sensor for detecting the temperature of the evaporator of each showcase is provided as in the invention of claim 9, the control means sets the showcase internal temperature and the internal temperature. The target evaporator temperature of the showcase is determined by the PID calculation based on the deviation from the value, and the compressor of the compressor is determined by the PID calculation based on the deviation between the evaporator temperature detected by the evaporator sensor and the target evaporator temperature. By determining the target operating frequency and / or the target superheat degree, the PID calculation is performed by stratifying the internal temperature where the change is gentle and the temperature of the evaporator where the change is steep, and the compressor and the on-off valve And the expansion valve can be controlled, and it is possible to eliminate the time lag of the refrigerant supply to the evaporator of each showcase as much as possible and to realize accurate cooling control. .

本発明を適用した実施例のショーケース冷却装置の配管構成図である。It is a piping lineblock diagram of a showcase cooling device of an example to which the present invention is applied. 図1のショーケース冷却装置の冷凍機内の配管構成図である。It is a piping block diagram in the refrigerator of the showcase cooling device of FIG. 図1のショーケース冷却装置のショーケース内の配管構成図である(実施例1)。(Example 1) which is the piping block diagram in the showcase of the showcase cooling device of FIG. 図1のショーケース冷却装置の制御構成図である。It is a control block diagram of the showcase cooling device of FIG. 図4のショーケース冷却装置のデータ通信を示す図である。It is a figure which shows the data communication of the showcase cooling device of FIG. 図3のショーケースの場合の図4の主制御装置によるもう一つの液電磁弁制御を説明するタイミングチャートである(実施例2)。FIG. 10 is a timing chart for explaining another liquid electromagnetic valve control by the main controller of FIG. 4 in the case of the showcase of FIG. 3 (Example 2). 図1のショーケース冷却装置のショーケース内のもう一つの配管構成図である(実施例3)。(Example 3) which is another piping block diagram in the showcase of the showcase cooling device of FIG. 図7の場合のショーケース冷却装置の制御構成図である。It is a control block diagram of the showcase cooling device in the case of FIG. 図4、図8の主制御装置による圧縮機運転周波数、液電磁弁、電子膨張弁の制御ブロック図である。FIG. 9 is a control block diagram of a compressor operating frequency, a liquid electromagnetic valve, and an electronic expansion valve by the main controller of FIGS. 4 and 8.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1の配管構成図において、実施例のショーケース冷却装置1はコンビニエンスストア(店舗)の店内2に据え付けられた複数台のショーケース3A〜3Hを冷却するものである。店外には各ショーケース3A〜3Hと冷媒配管4、5により接続された冷凍機6が設置されており、これらショーケース3A〜3Hと冷凍機6によって実施例のショーケース冷却装置1が構成されている。   In the piping configuration diagram of FIG. 1, a showcase cooling apparatus 1 according to the embodiment cools a plurality of showcases 3 </ b> A to 3 </ b> H installed in a store 2 of a convenience store (store). A refrigerator 6 connected to each showcase 3A to 3H and refrigerant pipes 4 and 5 is installed outside the store, and the showcase cooling apparatus 1 of the embodiment is configured by these showcases 3A to 3H and the refrigerator 6. Has been.

尚、ショーケース3A〜3Fはオープンショーケースであり、このうちショーケース3A、3C〜3Fは庫内(陳列室)にチルド食品(商品)を陳列して販売するもので、庫内は当該チルド食品の冷却に適した比較的低い冷蔵温度帯(0℃〜+5℃)に冷却される。ショーケース3Bは庫内(陳列室)に弁当(商品)を陳列して販売するもので、庫内は弁当の冷却に適した比較的高い温度の冷蔵温度帯(+15℃〜+20℃)に冷却される。また、図面では示さないが、冷凍食品やアイスクリームを冷凍状態(−20℃〜−25℃)で陳列する冷凍ショーケースも設置されているものとする。   Showcases 3A to 3F are open showcases. Of these, showcases 3A and 3C to 3F display and sell chilled foods (products) in the cabinet (display room). It is cooled to a relatively low refrigeration temperature range (0 ° C. to + 5 ° C.) suitable for cooling food. Showcase 3B sells lunch boxes (products) in the cabinet (display room) and cools the cabinet to a relatively high refrigeration temperature range (+ 15 ° C to + 20 ° C) suitable for cooling the lunchbox. Is done. Moreover, although not shown in drawing, the frozen showcase which displays frozen food and ice cream in a frozen state (-20 degreeC--25 degreeC) shall also be installed.

他方、ショーケース3G、3Hは透明ガラス扉を備えて店舗の壁面に設置されたウォークインと称されるクローズドタイプのショーケースであり、庫内(陳列室)に飲料等(商品)を陳列して販売するもので、庫内は飲料の冷却に適した冷蔵温度帯(0℃〜+5℃)に冷却されるものである。そして、各ショーケース3A〜3Hは冷媒配管4、5により冷凍機6に対して並列に接続されている。   On the other hand, showcases 3G and 3H are closed-type showcases called walk-ins that have transparent glass doors and are installed on the wall of the store, and display beverages (products) in the store (display room). The interior is cooled to a refrigeration temperature zone (0 ° C. to + 5 ° C.) suitable for cooling beverages. Each showcase 3 </ b> A to 3 </ b> H is connected in parallel to the refrigerator 6 by the refrigerant pipes 4 and 5.

図2は図1のうちの冷凍機6内の配管構成を示している。冷凍機6には、モータ7Mによって駆動される圧縮機7と、凝縮器8と、凝縮器用送風機9と、低圧圧力センサ11を含む各種センサ等が設けられている。そして、圧縮機7の吐出配管7D(高圧側)に凝縮器8の入口配管8Aが接続され、凝縮器8の出口配管8Bが店内2に向かう冷媒配管4に接続される。また、圧縮機7の吸込配管7S(低圧側)に店内2からの冷媒配管5が接続される。そして、凝縮器用送風機9は運転されて凝縮器8を空冷する。また、低圧圧力センサ11は圧縮機7の吸込配管7Sの冷媒圧力を検出するように設けられる。   FIG. 2 shows a piping configuration in the refrigerator 6 in FIG. The refrigerator 6 is provided with a compressor 7 driven by a motor 7M, a condenser 8, a condenser blower 9, and various sensors including a low-pressure sensor 11. The inlet pipe 8A of the condenser 8 is connected to the discharge pipe 7D (high-pressure side) of the compressor 7, and the outlet pipe 8B of the condenser 8 is connected to the refrigerant pipe 4 that goes to the store 2. Further, the refrigerant pipe 5 from the store 2 is connected to the suction pipe 7S (low pressure side) of the compressor 7. The condenser blower 9 is operated to air-cool the condenser 8. The low pressure sensor 11 is provided so as to detect the refrigerant pressure in the suction pipe 7S of the compressor 7.

一方、図3は図1のうちの各ショーケース3A〜3H内の配管構成を示している。この実施例のショーケース3A〜3Hには開閉弁としての液電磁弁12と、過熱度調整手段としての機械式膨張弁13と、蒸発器14と、冷気循環用送風機16と、庫内温度センサ17、吹出温度センサ18、吸込温度センサ19を含む各主センサ等が設けられている。そして、液電磁弁12の出口に膨張弁13が接続され、膨張弁13の出口に蒸発器14が接続され、液電磁弁12の入口配管12Aが冷媒配管4に接続され、蒸発器14の出口配管14Aが冷媒配管5に接続される。前述したように各ショーケース3A〜3H内の液電磁弁12、膨張弁13及び蒸発器14の直列回路は、冷媒配管4、5間に並列に接続される。   On the other hand, FIG. 3 has shown the piping structure in each showcase 3A-3H of FIG. The showcases 3A to 3H of this embodiment include a liquid electromagnetic valve 12 as an on-off valve, a mechanical expansion valve 13 as a superheat degree adjusting means, an evaporator 14, a cooler circulation blower 16, and an internal temperature sensor. 17, main sensors including an outlet temperature sensor 18 and a suction temperature sensor 19 are provided. The expansion valve 13 is connected to the outlet of the liquid electromagnetic valve 12, the evaporator 14 is connected to the outlet of the expansion valve 13, the inlet pipe 12 </ b> A of the liquid electromagnetic valve 12 is connected to the refrigerant pipe 4, and the outlet of the evaporator 14 is connected. The pipe 14 </ b> A is connected to the refrigerant pipe 5. As described above, the series circuit of the liquid electromagnetic valve 12, the expansion valve 13, and the evaporator 14 in each showcase 3 </ b> A to 3 </ b> H is connected in parallel between the refrigerant pipes 4 and 5.

冷気循環用送風機16は庫内21の冷気を吸い込んで蒸発器14と熱交換させ、庫内21に吹き出すことにより、庫内21を前述した冷蔵温度帯に冷却する。また、庫内温度センサ17は庫内21の温度(庫内温度)を検出し、吹出温度センサ18は庫内21に吹き出される冷気の温度(吹出温度)を検出し、吸込温度センサ19は庫内21から冷気循環用送風機16に吸い込まれる冷気の温度(吸込温度)を検出するように設けられる。   The cool air circulation blower 16 sucks cool air in the interior 21 to exchange heat with the evaporator 14 and blows it out to the interior 21 to cool the interior 21 to the above-described refrigeration temperature zone. Further, the internal temperature sensor 17 detects the temperature (internal temperature) of the internal chamber 21, the blowout temperature sensor 18 detects the temperature of the cold air blown out into the internal chamber 21 (outlet temperature), and the suction temperature sensor 19 It is provided so as to detect the temperature (suction temperature) of the cool air sucked into the cool air circulation blower 16 from the interior 21.

このような配管構成により、冷凍機6の圧縮機7、凝縮器8と、ショーケース3A〜3Hの膨張弁13、蒸発器14は周知の冷媒回路22を構成する。実施例の冷凍機6の圧縮機7のモータ7Mはその運転周波数が制御される。この圧縮機7が運転されると、圧縮されて高温高圧となったガス冷媒が凝縮器8に流入し、そこで凝縮器用送風機9により空冷されて凝縮する。凝縮器8で凝縮した冷媒(液冷媒)は、冷媒配管4を経て店内2に至り、そこから各ショーケース3A〜3Hに分配供給される。   With such a piping configuration, the compressor 7 and the condenser 8 of the refrigerator 6, the expansion valve 13 and the evaporator 14 of the showcases 3 </ b> A to 3 </ b> H constitute a known refrigerant circuit 22. The operating frequency of the motor 7M of the compressor 7 of the refrigerator 6 of the embodiment is controlled. When the compressor 7 is operated, the gas refrigerant that has been compressed to a high temperature and high pressure flows into the condenser 8, where it is cooled by the condenser blower 9 and condensed. The refrigerant (liquid refrigerant) condensed in the condenser 8 reaches the store 2 through the refrigerant pipe 4, and is distributed and supplied from there to the showcases 3A to 3H.

各ショーケース3A〜3Hに流入した液冷媒は液電磁弁12を経て膨張弁13に至り、そこで絞られて減圧され、蒸発器14に流入する。蒸発器14に流入した冷媒はそこで蒸発し、そのときに生じる吸熱作用で冷却効果を発揮する。そして、蒸発器14を出た冷媒は冷媒配管5を経て冷凍機6に戻り、圧縮機7に吸い込まれる循環を繰り返す。   The liquid refrigerant that has flowed into each showcase 3A to 3H reaches the expansion valve 13 via the liquid electromagnetic valve 12, is throttled and depressurized there, and flows into the evaporator 14. The refrigerant flowing into the evaporator 14 evaporates there, and exhibits a cooling effect due to the endothermic action generated at that time. Then, the refrigerant exiting the evaporator 14 returns to the refrigerator 6 through the refrigerant pipe 5 and repeats circulation that is sucked into the compressor 7.

この実施例の機械式膨張弁13は、蒸発器14の出口配管14Aの温度に応じて伸縮するベローズ(図示せず)の作用によりその絞り度合いを自立して制御し、蒸発器14から出る冷媒の過熱度を予め設定された規定値(例えば3Kの固定過熱度)に調整するものである。それにより、蒸発器14への冷媒供給を調整し、圧縮機7への液バックを防止する。   The mechanical expansion valve 13 of this embodiment controls the degree of throttling independently by the action of a bellows (not shown) that expands and contracts in accordance with the temperature of the outlet pipe 14A of the evaporator 14, and the refrigerant that exits the evaporator 14 Is adjusted to a preset specified value (for example, a fixed superheat degree of 3K). Thereby, the refrigerant supply to the evaporator 14 is adjusted, and the liquid back to the compressor 7 is prevented.

次に、図4、図5はショーケース冷却装置1の制御構成を示している。各図において23はストアマスタと称される主制御装置である。この主制御装置23は店舗の管理室等に設置されて冷凍機6及び各ショーケース3A〜3Hの運転を集中制御するものである。冷凍機6及び各ショーケース3A〜3Hにも冷凍機制御装置24、ショーケース制御装置26がそれぞれ設けられ、それらは通信線27により主制御装置23に接続されている。主制御装置23、冷凍機制御装置24、ショーケース制御装置26は何れもマイクロコンピュータから構成されており、これらがショーケース冷却装置1の制御手段を構成する。   Next, FIG. 4 and FIG. 5 show the control configuration of the showcase cooling apparatus 1. In each figure, reference numeral 23 denotes a main control device called a store master. The main controller 23 is installed in a store management room or the like to centrally control the operation of the refrigerator 6 and the showcases 3A to 3H. The refrigerator 6 and the showcases 3 </ b> A to 3 </ b> H are also provided with a refrigerator control device 24 and a showcase control device 26, respectively, which are connected to the main control device 23 by a communication line 27. The main control device 23, the refrigerator control device 24, and the showcase control device 26 are all composed of a microcomputer, and these constitute the control means of the showcase cooling device 1.

各ショーケース制御装置26には例えば101〜108までの個別のIDが付与され、冷凍機制御装置24には301のIDが付与されている。主制御装置23はこれらのIDで各ショーケース制御装置26、冷凍機制御装置24を識別し、図5に示すように各ショーケース制御装置26からは当該ショーケース3A〜3Hの庫内温度や吹出温度、吸込温度に関するデータ等を受信する。そして、主制御装置23からは各ショーケース3A〜3Hのショーケース制御装置26に液電磁弁12の開閉指示に関するデータ等が送信されると共に、冷凍機6の冷凍機制御装置24には目標低圧圧力や圧縮機7の目標運転周波数等の目標値指示に関するデータ等が送信される。   Each showcase control device 26 is assigned an individual ID of 101 to 108, for example, and the refrigerator control device 24 is assigned an ID of 301. The main control device 23 identifies each showcase control device 26 and the refrigerator control device 24 with these IDs. As shown in FIG. 5, each showcase control device 26 determines the inside temperature of the showcases 3 </ b> A to 3 </ b> H. Receives data related to blowing temperature and suction temperature. The main controller 23 transmits data related to the opening / closing instruction of the liquid electromagnetic valve 12 to the showcase controllers 26 of the showcases 3A to 3H, and the target low pressure is supplied to the refrigerator controller 24 of the refrigerator 6. Data relating to a target value instruction such as pressure and a target operating frequency of the compressor 7 is transmitted.

また、主制御装置23には温度/湿度センサ28が接続されている。この温度/湿度センサ28は店内2の温度/湿度を検出する。主制御装置23は温度/湿度センサ28が検出した店内2の温度/湿度データに基づいて店内2のエンタルピを算出し、冷媒回路22の目標低圧圧力を設定する。尚、この目標低圧圧力は、全てのショーケース3A〜3Hを十分冷却可能な値に設定されるものである。また、主制御装置23では各ショーケース3A〜3Hの庫内温度の設定値を入力可能とされ、各ショーケース3A〜3Hの庫内温度等のデータも確認可能とされており、これにより、主制御装置23を用いた店舗におけるショーケース3A〜3Hの集中管理を実現している。   A temperature / humidity sensor 28 is connected to the main controller 23. The temperature / humidity sensor 28 detects the temperature / humidity in the store 2. The main controller 23 calculates the enthalpy of the store 2 based on the temperature / humidity data of the store 2 detected by the temperature / humidity sensor 28 and sets the target low pressure of the refrigerant circuit 22. The target low pressure is set to a value that can sufficiently cool all the showcases 3A to 3H. In addition, the main controller 23 can input the set values of the internal temperatures of the showcases 3A to 3H, and the data such as the internal temperatures of the showcases 3A to 3H can be confirmed. Centralized management of the showcases 3A to 3H in the store using the main control device 23 is realized.

以上の構成で、次にこの実施例のショーケース冷却装置1の動作を説明する。先ず、主制御装置23は各ショーケース制御装置26から受信した庫内温度(庫内温度センサ17が検出)を常時監視しており、各ショーケース3A〜3Hの庫内温度の設定値と比較して、それらの冷え具合を監視している。そして、各ショーケース3A〜3Hのうち、最も冷え難いショーケースを判別している。例えば、他のショーケースに比してショーケース3G、3Hの液電磁弁12が継続して開放されているにも拘わらず、その庫内温度が設定値になるまでの長時間を要し、或いは、庫内温度が設定値以上となる状態が長く続いている場合等には、主制御装置23がショーケース3G、3Hを最も冷え難いショーケースとして決定する。尚、このように二台のショーケースに限らず、一台のショーケースの場合もある。   Next, the operation of the showcase cooling apparatus 1 according to this embodiment will be described. First, the main control device 23 constantly monitors the internal temperature (detected by the internal temperature sensor 17) received from each showcase control device 26, and compares it with the set value of the internal temperature of each showcase 3A to 3H. And they are monitoring their coldness. And the showcase which is hard to cool out of each showcase 3A-3H is discriminate | determined. For example, although the liquid solenoid valve 12 of the showcases 3G and 3H is continuously opened compared to other showcases, it takes a long time until the inside temperature reaches a set value, Alternatively, when the state in which the internal temperature is equal to or higher than the set value has continued for a long time, the main control device 23 determines the showcases 3G and 3H as the showcase that is most difficult to cool. It should be noted that the present invention is not limited to two showcases, and may be a single showcase.

このようにショーケース3G、3Hを最も冷え難いショーケースとして決定された場合、主制御装置23はショーケース3G、3Hのショーケース制御装置26に指示を送信して液電磁弁12を100%開放状態とする。これにより、ショーケース3G、3Hの蒸発器14には膨張弁13で絞られた液冷媒が常時供給される状態となる(稼働率100%)。また、主制御装置23はショーケース3G、3Hの庫内温度に基づいて冷凍機6の圧縮機7(モータ7M)の運転周波数を制御し、ショーケース3G、3Hの庫内温度を設定値に制御する。   When the showcases 3G and 3H are thus determined as the most difficult to cool down, the main controller 23 sends an instruction to the showcase controller 26 of the showcases 3G and 3H to open the liquid electromagnetic valve 12 100%. State. As a result, the liquid refrigerant throttled by the expansion valve 13 is constantly supplied to the evaporators 14 of the showcases 3G and 3H (operation rate 100%). The main controller 23 controls the operating frequency of the compressor 7 (motor 7M) of the refrigerator 6 based on the inside temperature of the showcases 3G and 3H, and sets the inside temperature of the showcases 3G and 3H to a set value. Control.

その場合の具体的な制御方式を図9に基づいて説明する。先ず、主制御装置23はショーケース3G、3Hの庫内温度センサ17が検出する庫内温度と設定値(目標値)とを比較し、それらの偏差e1をPID演算部31でPID演算することで目標吹出温度(制御量)を決定する。次に、このショーケース3G、3Hの吹出温度センサ18が検出する吹出温度と目標吹出温度とを比較し、それらの偏差e2をPID演算部32でPID演算することで圧縮機7の目標運転周波数(制御量)を決定する。   A specific control method in that case will be described with reference to FIG. First, the main control device 23 compares the internal temperature detected by the internal temperature sensor 17 of the showcases 3G and 3H with a set value (target value), and performs PID calculation of the deviation e1 by the PID calculation unit 31. To determine the target blowout temperature (control amount). Next, the blowout temperature detected by the blowout temperature sensor 18 of the showcases 3G and 3H is compared with the target blowout temperature, and the deviation e2 is subjected to PID calculation by the PID calculation unit 32, whereby the target operating frequency of the compressor 7 is obtained. (Control amount) is determined.

決定された目標運転周波数は主制御装置23から冷凍機6の冷凍機制御装置24に指示される。冷凍機制御装置24は受信した目標運運転周波数となるように圧縮機7(モータ7M)の運転周波数を制御する。ここで、圧縮機7の運転周波数の変更により蒸発器14における冷却効果が変化した場合、ショーケース3G、3Hの庫内温度の変化は緩やかであるが、吹出温度の変化は急峻となる。そのため、実施例のように変化が緩やかな庫内温度と変化が急峻な吹出温度とを層別してPID演算部31、32にてそれぞれのPID演算を行えば、圧縮機7からショーケース3G、3Hの蒸発器への冷媒供給のタイムラグが少なくなる。   The determined target operating frequency is instructed from the main controller 23 to the refrigerator control device 24 of the refrigerator 6. The refrigerator control device 24 controls the operation frequency of the compressor 7 (motor 7M) so that the received target operation frequency is obtained. Here, when the cooling effect in the evaporator 14 is changed by changing the operating frequency of the compressor 7, the change in the internal temperature of the showcases 3G and 3H is gradual, but the change in the blowing temperature is steep. For this reason, if the PID calculation units 31 and 32 perform the PID calculation by stratifying the internal temperature where the change is gentle and the blowing temperature where the change is steep as in the embodiment, the compressor 7 shows the showcases 3G and 3H. The time lag of the refrigerant supply to the evaporator is reduced.

一方、ショーケース3G、3Hよりも冷え易い他のショーケース3A〜3Fについて主制御装置23は、各ショーケース3A〜3Fの庫内温度センサ17が検出する庫内温度と設定値に基づいて目標過熱度を決定する。この目標過熱度の決定に際しても、主制御装置23は同様に図9のPID演算を行う。但し、この場合のPID演算部32の操作量となるものは当該ショーケース3A〜3Fの目標過熱度となる。即ち、庫内温度が設定値よりも高い場合には目標過熱度は小さくなり、低い場合には大きくなる。   On the other hand, for the other showcases 3A to 3F that are more easily cooled than the showcases 3G and 3H, the main controller 23 sets the target based on the internal temperature and the set value detected by the internal temperature sensor 17 of each of the showcases 3A to 3F. Determine the degree of superheat. In determining the target superheat degree, the main controller 23 similarly performs the PID calculation of FIG. However, in this case, the operation amount of the PID calculation unit 32 is the target superheat degree of the showcases 3A to 3F. That is, when the internal temperature is higher than the set value, the target superheat degree is small, and when it is low, it is large.

主制御装置23は決定した目標過熱度と膨張弁13の過熱度の既定値(固定過熱度の3K)とに基づき、各ショーケース3A〜3Fの液電磁弁12の開閉率を演算して算出する。例えば、ショーケース3Dの目標過熱度が5Kであった場合、液電磁弁12の開閉率(即ち、稼働率)は60%となる。主制御装置23は決定した各ショーケース3A〜3Fに関する開閉率に基づいて液電磁弁12の開閉に関する指示を各ショーケース制御装置26に送信する。ショーケース制御装置26は受信した開閉指示に基づいて液電磁弁12を開閉(オンオフ)することで、ショーケース3A〜3Fの庫内温度を設定値に制御する。   Based on the determined target superheat degree and a predetermined value of the superheat degree of the expansion valve 13 (fixed superheat degree 3K), the main controller 23 calculates and calculates the open / close rate of the liquid electromagnetic valve 12 of each showcase 3A to 3F. To do. For example, when the target superheat degree of the showcase 3D is 5K, the open / close rate (that is, the operation rate) of the liquid electromagnetic valve 12 is 60%. The main control device 23 transmits an instruction for opening / closing the liquid electromagnetic valve 12 to each showcase control device 26 based on the determined open / close rates for the showcases 3A to 3F. The showcase control device 26 controls the internal temperature of the showcases 3A to 3F to a set value by opening and closing (on / off) the liquid electromagnetic valve 12 based on the received opening / closing instruction.

このように、主制御装置23が各ショーケース3A〜3Hのうちの最も冷え難いショーケースの庫内温度に基づいて圧縮機7の運転を制御するようにしたので、低圧圧力で制御する場合に比して各ショーケース3A〜3Hの液電磁弁12の動作の影響を受け難くなる。これにより、圧縮機7の運転状態の変動が抑制され、消費電力が低減される。一方で、各ショーケース3A〜3Hのうち最も冷え難いショーケース(実施例では3G、3H)の冷却は確実に行われることになるので、他のショーケース(実施例では3A〜3F)に対する過剰な圧縮機7の能力によるエネルギーロスも解消される。これらにより、圧縮機7における消費電力を抑制しながら、複数台のショーケース3A〜3Hの全てを支障無く冷却することができるようになる。   As described above, the main controller 23 controls the operation of the compressor 7 based on the inside temperature of the showcase that is hard to cool among the showcases 3A to 3H. In comparison, the operation of the liquid solenoid valves 12 of the showcases 3A to 3H is less likely to be affected. Thereby, the fluctuation | variation of the driving | running state of the compressor 7 is suppressed and power consumption is reduced. On the other hand, among the showcases 3A to 3H, the coolest showcase (3G, 3H in the embodiment) is surely cooled, so it is excessive with respect to other showcases (3A to 3F in the embodiment). The energy loss due to the ability of the compressor 7 is also eliminated. Accordingly, it is possible to cool all of the plurality of showcases 3A to 3H without hindrance while suppressing power consumption in the compressor 7.

特に、この実施例のように膨張弁13として機械式膨張弁を採用している場合には、主制御装置23が、最も冷え難いショーケース(実施例では3G、3H)の庫内温度に基づいて圧縮機7の運転を制御すると共に、他のショーケース(実施例では3A〜3F)の庫内温度に基づいて当該ショーケースの目標過熱度を設定し、この目標過熱度と規定値(固定過熱度)に基づいて液電磁弁12の開閉率を算出して開閉することにより、最も冷え難いショーケースによる圧縮機7の制御と他のショーケースの液電磁弁12の制御による全てのショーケース3A〜3Hの庫内温度制御を円滑に行うことが可能となる。これにより、前述した温度/湿度センサ28による店内エンタルピに基づいた目標低圧圧力の設定制御が不要となる効果もある。   In particular, when a mechanical expansion valve is employed as the expansion valve 13 as in this embodiment, the main controller 23 is based on the internal temperature of the showcase (3G, 3H in the embodiment) that is most difficult to cool. In addition to controlling the operation of the compressor 7, the target superheat degree of the showcase is set based on the inside temperature of the other showcase (3A to 3F in the embodiment), and the target superheat degree and a specified value (fixed) By calculating the opening / closing rate of the liquid solenoid valve 12 based on the degree of superheat), all the showcases by the control of the compressor 7 by the showcase that is hard to cool and the control of the liquid solenoid valve 12 of other showcases It is possible to smoothly control the internal temperature of 3A to 3H. As a result, there is an effect that the setting control of the target low pressure based on the in-store enthalpy by the temperature / humidity sensor 28 described above becomes unnecessary.

尚、前述した如く主制御装置23は、各ショーケース3A〜3Hの冷却状態を常に監視し、そのうち最も冷え難いショーケースを判別している。そして、現在その庫内温度に基づいて圧縮機7の運転周波数を制御しているショーケース3G、3Hより冷え難い他のショーケースが存在する場合は、当該他のショーケースを最も冷え難いショーケースに決定し、その庫内温度に基づいて圧縮機7の運転を制御する状態に切り換える。これにより、各ショーケース3A〜3Hの陳列商品(負荷)の量や環境の変化等によって最も冷え難いショーケースに入れ替わりが生じた場合にも、支障無く運転状態を切り換えることが可能となる。   As described above, the main controller 23 constantly monitors the cooling state of each of the showcases 3A to 3H, and determines the showcase that is most difficult to cool. And if there is another showcase that is harder to cool than the showcases 3G and 3H that are currently controlling the operating frequency of the compressor 7 based on the internal temperature, the showcase that is the hardest to cool the other showcase And switch to a state in which the operation of the compressor 7 is controlled based on the internal temperature. As a result, even when the showcases 3A to 3H are replaced with the most difficult-to-cool showcases due to the amount of displayed products (loads) or changes in the environment, it is possible to switch the operating state without any trouble.

但し、主制御装置23は上記のような最も冷え難いショーケースの判別を、各ショーケース3A〜3Hの庫内温度が安定しているときのみ実行する。即ち、各ショーケース3A〜3Hの除霜(一日に4回実行)中やプルダウン中には係る最も冷え難いショーケースの判別を行わなわず、除霜前の制御状態を維持する。これにより、誤判定の発生を回避する。   However, the main control device 23 executes the determination of the showcase that is hard to cool as described above only when the internal temperature of each of the showcases 3A to 3H is stable. That is, during the defrosting of each showcase 3A to 3H (executed four times a day) or during pull-down, the most difficult showcase is not determined, and the control state before the defrosting is maintained. This avoids the occurrence of erroneous determination.

ここで、上記実施例では他のショーケース3A〜3Fについて、目標過熱度を決定して液電磁弁12の開閉率を算出することで当該ショーケースの庫内冷却を制御するようにしたが、それに限らず、各ショーケース3A〜3Fの庫内温度とその設定値に基づいてそれらの液電磁弁12を開閉制御してもよい。その場合には、庫内温度の設定値の上下に所定のディファレンシャルで設定されたON温度(上限値)とOFF温度(下限値)に基づいて液電磁弁12を開/閉するものであるが(設定値は平均温度となる)、そのままでは各ショーケース3A〜3Fの負荷が近似している場合、液電磁弁12が同期して開閉してしまい、それの影響で圧縮機7の運転周波数が大きく変動するようになる危険性がある。   Here, in the above embodiment, for the other showcases 3A to 3F, the target superheat degree is determined and the open / close rate of the liquid electromagnetic valve 12 is calculated to control the inside cooling of the showcase. However, the liquid electromagnetic valves 12 may be controlled to open and close based on the internal temperature of each showcase 3A to 3F and the set value. In this case, the liquid electromagnetic valve 12 is opened / closed based on the ON temperature (upper limit value) and OFF temperature (lower limit value) set with a predetermined differential above and below the set value of the internal temperature. (The set value is the average temperature.) If the load of each showcase 3A to 3F is approximated as it is, the liquid electromagnetic valve 12 opens and closes synchronously, and the operating frequency of the compressor 7 is affected by that. There is a risk that will vary greatly.

そこで、係る不都合を解消する主制御装置23による制御例を図6に示す。図6の最上段は上記のようにON温度にて液電磁弁12を開放し、OFF温度にて閉じる場合を示している。各ショーケース3A〜3Fの冷えやすさが同じ場合には、全てのショーケース3A〜3Fの液電磁弁12が同期して開閉する危険性が大きくなる。そこで、図6の最上段を含め、上から2段目、3段目、最下段の制御を組み合わせて各ショーケース3A〜3Fのそれぞれで実行する。即ち、ショーケース3Aは最上段、ショーケース3C、3Dは上から2段目、ショーケース3Fは上から3段目、ショーケース3Bは最下段等の如くである。   FIG. 6 shows an example of control by the main controller 23 that eliminates such inconvenience. 6 shows the case where the liquid electromagnetic valve 12 is opened at the ON temperature and closed at the OFF temperature as described above. When each showcase 3A to 3F has the same ease of cooling, the risk that the liquid electromagnetic valves 12 of all the showcases 3A to 3F are opened and closed synchronously increases. Therefore, the control of the second, third, and lowermost stages from the top including the uppermost stage in FIG. 6 is executed in each of the showcases 3A to 3F. That is, the showcase 3A is the top level, the showcases 3C and 3D are the second level from the top, the showcase 3F is the third level from the top, the showcase 3B is the bottom level, and so on.

図6の上から2段目の制御は、庫内温度がON温度以上となったときに液電磁弁12を開放、設定値未満となったときに閉じる制御である。この場合には最上段の場合よりも液電磁弁12の開閉は頻繁となり、平均温度(太い破線)は設定値より少許高くなる。また、図6の上から3段目の制御は、庫内温度がON温度以上となったときに液電磁弁12を開放、ON温度未満となったときに閉じる制御である。この場合には液電磁弁12の開閉は更に頻繁となり、平均温度(太い破線)は設定値より更に高くなる。また、図6の最下段の制御は、庫内温度がON温度以上となったときに液電磁弁12を開放、温度が降下に転じたときに閉じる制御である。この場合には液電磁弁12の開閉は更に頻繁となり、平均温度(太い破線)は設定値より更に高くなる。従って、平均温度が高くなる分、予め設定値を低めにシフトする。   The control in the second stage from the top in FIG. 6 is a control in which the liquid electromagnetic valve 12 is opened when the internal temperature becomes equal to or higher than the ON temperature, and is closed when the internal temperature becomes less than the set value. In this case, the liquid electromagnetic valve 12 is opened and closed more frequently than in the uppermost stage, and the average temperature (thick broken line) is slightly higher than the set value. Further, the control in the third step from the top in FIG. 6 is a control in which the liquid electromagnetic valve 12 is opened when the internal temperature becomes equal to or higher than the ON temperature, and is closed when the internal temperature becomes lower than the ON temperature. In this case, the liquid electromagnetic valve 12 is opened and closed more frequently, and the average temperature (thick broken line) becomes higher than the set value. Further, the lowermost control in FIG. 6 is a control in which the liquid electromagnetic valve 12 is opened when the internal temperature becomes equal to or higher than the ON temperature, and is closed when the temperature starts to drop. In this case, the liquid electromagnetic valve 12 is opened and closed more frequently, and the average temperature (thick broken line) becomes higher than the set value. Therefore, the set value is shifted to a lower value in advance as the average temperature increases.

この場合、冷え難く暖まり難いショーケース(温度変化が大きい)程図6の上段の制御を割り当て、冷え易く暖まり易いショーケース(温度変化が小さい)程図6の下段の制御を割り当てるとよい。冷え難い(暖まり難い)か、冷え易い(暖まり易い)かは、庫内温度が安定している状態における液電磁弁12の開/閉後の庫内温度変化やその変動幅で順位付けする。   In this case, the upper control in FIG. 6 may be assigned to a showcase that is difficult to cool and hard to warm (the temperature change is large), and the lower control in FIG. 6 is assigned to a showcase that is easy to cool and warm (the temperature change is small). Whether it is difficult to cool (hard to warm) or easy to cool (easy to warm) is ranked according to the temperature change in the chamber after the opening / closing of the liquid electromagnetic valve 12 and its fluctuation range when the chamber temperature is stable.

このような液電磁弁12の開閉制御を各ショーケース3A〜3Fで組み合わせて実行することにより、各液電磁弁12の動作タイミングが相互にずれ、それらの開閉が異なるタイミングで行われるようになる。これにより、最も冷え難いショーケース3G、3Hによる圧縮機7の運転制御と、他のショーケース3A〜3Fの液電磁弁12の制御による全てのショーケース3A〜3Hの庫内温度制御を円滑に行いながら、複数のショーケース3A〜3Fの開閉弁が同期して開閉される不都合が解消され、それによる圧縮機7の運転状態の変動も抑制されることになる。   By performing the opening / closing control of the liquid electromagnetic valve 12 in combination with each of the showcases 3A to 3F, the operation timings of the liquid electromagnetic valves 12 are shifted from each other, and the opening / closing thereof is performed at different timings. . Thereby, the operation control of the compressor 7 by the showcases 3G and 3H which are hard to cool down and the inside temperature control of all the showcases 3A to 3H by the control of the liquid solenoid valves 12 of the other showcases 3A to 3F are smoothly performed. While performing, the inconvenience that the opening / closing valves of the plurality of showcases 3A to 3F are opened / closed in synchronization is solved, and the fluctuation of the operating state of the compressor 7 due to this is also suppressed.

尚、上記実施例では液電磁弁12を開閉する温度を切り換えることで開閉タイミングをずらしたが、それに限らず、ON温度とOFF温度のディファレンシャルはそのままで、設定値を各ショーケース3A〜3F毎に異なる値にシフトしてもよい。   In the above-described embodiment, the opening / closing timing is shifted by switching the temperature at which the liquid electromagnetic valve 12 is opened / closed. However, the present invention is not limited to this, and the set value is set for each showcase 3A to 3F without changing the differential between the ON temperature and the OFF temperature. May be shifted to different values.

次に、ショーケース3A〜3Hの膨張弁として例えばステッピングモータで動作する電子式膨張弁(電動膨張弁)を使用した場合の制御について説明する。図7はその場合のショーケース3A〜3H内の配管構成図、図8は制御構成図である。尚、各図において図3乃至図5と同一符号で示すものは同一若しくは同様の機能を奏するものとする。   Next, control when an electronic expansion valve (electric expansion valve) that operates with, for example, a stepping motor is used as the expansion valve of the showcases 3A to 3H will be described. FIG. 7 is a piping configuration diagram in the showcases 3A to 3H in that case, and FIG. 8 is a control configuration diagram. In addition, what is shown with the same code | symbol as FIG. 3 thru | or FIG. 5 in each figure shall show | play the same or the same function.

この場合、各ショーケース3A〜3Hには機械式膨張弁の代わりに電子式膨張弁(電動膨張弁)33が採用されている。また、蒸発器の入口配管14Bと出口配管14Aにはそれぞれ蒸発器入口温度センサ36、蒸発器出口温度センサ37が設けられ、蒸発器14に入る冷媒の温度と蒸発器14から出る冷媒の温度を検出する。そして、それらの出力はショーケース制御装置26を介して主制御装置23に送信され、それらの温度差から主制御装置23は蒸発器14の過熱度を算出する。また、膨張弁33の弁開度はショーケース制御装置26を介して主制御装置23により制御される構成とされている。   In this case, an electronic expansion valve (electric expansion valve) 33 is employed in each of the showcases 3A to 3H instead of the mechanical expansion valve. Further, an evaporator inlet temperature sensor 36 and an evaporator outlet temperature sensor 37 are provided in the evaporator inlet pipe 14B and the outlet pipe 14A, respectively, so that the temperature of the refrigerant entering the evaporator 14 and the temperature of the refrigerant exiting the evaporator 14 can be determined. To detect. These outputs are transmitted to the main control device 23 via the showcase control device 26, and the main control device 23 calculates the degree of superheat of the evaporator 14 from the temperature difference therebetween. Further, the opening degree of the expansion valve 33 is controlled by the main control device 23 via the showcase control device 26.

次に、この場合の動作を説明する。この場合も主制御装置23は各ショーケース制御装置26から受信した庫内温度(庫内温度センサ17が検出)を常時監視しており、各ショーケース3A〜3Hの庫内温度の設定値と比較して、それらの冷え具合を監視している。そして、各ショーケース3A〜3Hのうち、最も冷え難いショーケースを判別している。例えば、他のショーケースに比してショーケース3G、3Hの膨張弁33の弁開度が継続して大きい状態であるにも拘わらず、その庫内温度が設定値になるまでの長時間を要し、或いは、庫内温度が設定値以上となる状態が長く続いている場合等には、主制御装置23がショーケース3G、3Hを最も冷え難いショーケースとして決定する。尚、このように二台のショーケースに限らず、一台のショーケースの場合もある。   Next, the operation in this case will be described. Also in this case, the main control device 23 constantly monitors the internal temperature (detected by the internal temperature sensor 17) received from each showcase control device 26, and the set value of the internal temperature of each showcase 3A to 3H. In comparison, they are monitoring their coldness. And the showcase which is hard to cool out of each showcase 3A-3H is discriminate | determined. For example, although the opening degree of the expansion valve 33 of the showcases 3G and 3H is continuously large as compared with other showcases, it takes a long time until the inside temperature reaches the set value. In other words, or when the state in which the internal temperature is equal to or higher than the set value continues for a long time, the main control device 23 determines the showcases 3G and 3H as the showcase that is most difficult to cool. It should be noted that the present invention is not limited to two showcases, and may be a single showcase.

このようにショーケース3G、3Hを最も冷え難いショーケースとして決定された場合、主制御装置23はショーケース3G、3Hのショーケース制御装置26に指示を送信して膨張弁33の弁開度を、蒸発器14の過熱度が規定値(例えば5K)となるように制御する。また、主制御装置23はショーケース3G、3Hの庫内温度に基づいて冷凍機6の圧縮機7(モータ7M)の運転周波数を制御する。その場合の具体的な制御方式は図9と同様である。これにより、ショーケース3G、3Hの庫内温度を設定値に制御する。   When the showcases 3G and 3H are thus determined as the most difficult to cool down, the main controller 23 sends an instruction to the showcase controller 26 of the showcases 3G and 3H to increase the valve opening of the expansion valve 33. The superheat degree of the evaporator 14 is controlled to a specified value (for example, 5K). Moreover, the main control apparatus 23 controls the operating frequency of the compressor 7 (motor 7M) of the refrigerator 6 based on the inside temperature of the showcases 3G and 3H. The specific control method in that case is the same as that in FIG. Thereby, the internal temperature of the showcases 3G and 3H is controlled to a set value.

一方、ショーケース3G、3Hよりも冷え易い他のショーケース3A〜3Fについて主制御装置23は、各ショーケース3A〜3Fの庫内温度センサ17が検出する庫内温度と設定値に基づいて目標過熱度を決定する。この目標過熱度の決定に際しても、主制御装置23は同様に図9のPID演算を行う。但し、この場合のPID演算部32の操作量となるものは当該ショーケース3A〜3Fの目標過熱度となる。即ち、庫内温度が設定値よりも高い場合には目標過熱度は小さくなり、低い場合には大きくなる。   On the other hand, for the other showcases 3A to 3F that are more easily cooled than the showcases 3G and 3H, the main controller 23 sets the target based on the internal temperature and the set value detected by the internal temperature sensor 17 of each of the showcases 3A to 3F. Determine the degree of superheat. In determining the target superheat degree, the main controller 23 similarly performs the PID calculation of FIG. However, in this case, the operation amount of the PID calculation unit 32 is the target superheat degree of the showcases 3A to 3F. That is, when the internal temperature is higher than the set value, the target superheat degree is small, and when it is low, it is large.

主制御装置23は各ショーケース13A〜13Fの蒸発器14の過熱度が、決定した目標過熱度となるように膨張弁33の目標弁開度を決定する。主制御装置23は決定した各ショーケース3A〜3Fに関する目標弁開度に基づいて膨張弁33の弁開度に関する指示を各ショーケース制御装置26に送信する。ショーケース制御装置26は受信した目標弁開度に基づいて膨張弁33の弁開度を制御する。尚、液電磁弁12は開放状態とする。これにより、ショーケース3A〜3Fの庫内温度を設定値に制御する。また、実施例では膨張弁33の前段に液電磁弁12を設けているが、電子膨張弁である膨張弁33は全閉も可能であるので、制御追従性によっては液電磁弁12は削除しても良い。更に、複数の膨張弁33が全閉となった状態からそれらが開放されるときには、そのタイミングが異なるように制御することで、前述同様に圧縮機7の運転状態の変動を抑制することができる。   The main controller 23 determines the target valve opening degree of the expansion valve 33 so that the superheat degree of the evaporator 14 of each showcase 13A to 13F becomes the determined target superheat degree. The main controller 23 transmits an instruction regarding the valve opening of the expansion valve 33 to each showcase controller 26 based on the determined target valve openings regarding the showcases 3A to 3F. The showcase control device 26 controls the valve opening of the expansion valve 33 based on the received target valve opening. The liquid solenoid valve 12 is opened. Thereby, the internal temperature of showcase 3A-3F is controlled to a setting value. In the embodiment, the liquid electromagnetic valve 12 is provided in front of the expansion valve 33. However, since the expansion valve 33, which is an electronic expansion valve, can be fully closed, the liquid electromagnetic valve 12 may be deleted depending on control followability. May be. Further, when the plurality of expansion valves 33 are opened from the fully closed state, by controlling so that the timing is different, fluctuations in the operating state of the compressor 7 can be suppressed as described above. .

このように、この実施例の如くショーケース3A〜3Hが膨張弁として電子膨張弁33を採用している場合には、主制御装置23が、最も冷え難いショーケース3G、3Hの目標過熱度を規定値として当該ショーケース3G、3Hの膨張弁33の弁開度を制御し、且つ、当該ショーケース3G、3Hの庫内温度に基づいて圧縮機7の運転を制御すると共に、他のショーケース3A〜3Fの庫内温度に基づいて当該ショーケース3A〜3Fの目標過熱度を設定し、当該ショーケース3A〜3Fの膨張弁33の弁開度を制御することにより、最も冷え難いショーケース3G、3Hによる圧縮機7の制御と他のショーケース3A〜3Fの膨張弁33の制御による全てのショーケース3A〜3Hの庫内温度制御を円滑に行うことが可能となるものである。   As described above, when the showcases 3A to 3H employ the electronic expansion valve 33 as the expansion valve as in this embodiment, the main controller 23 sets the target superheat degree of the showcases 3G and 3H that are most difficult to cool. The opening degree of the expansion valve 33 of the showcases 3G and 3H is controlled as a specified value, and the operation of the compressor 7 is controlled based on the internal temperature of the showcases 3G and 3H. By setting the target superheat degree of the showcases 3A to 3F based on the internal temperature of 3A to 3F and controlling the valve opening degree of the expansion valve 33 of the showcases 3A to 3F, the showcase 3G that is hard to cool down It is possible to smoothly control the internal temperature of all the showcases 3A to 3H by the control of the compressor 7 by 3H and the control of the expansion valve 33 of the other showcases 3A to 3F. .

尚、上記各実施例では主制御装置23が各液電磁弁12や膨張弁33の制御指示を各ショーケース3A〜3Hに送信して制御する方式で説明したが、それに限らず、主制御装置23は最も冷え難いショーケースの決定を行い、決定したショーケースに対して当該ショーケースが最も冷え難いショーケースであることを指示し、該ショーケースの庫内温度に基づいて圧縮機7の運転周波数を制御すると共に、各ショーケースに目標過熱度を送信し、各ショーケースにおける液電磁弁12や膨張弁33の実際の制御については、各ショーケースのショーケース制御装置26が実行するようにしてもよい。   In each of the above embodiments, the main control device 23 has been described with a method of controlling the liquid electromagnetic valves 12 and the expansion valves 33 by transmitting control instructions to the showcases 3A to 3H, but the main control device is not limited thereto. 23 determines the showcase that is most difficult to cool, instructs the determined showcase that the showcase is the most difficult to cool, and operates the compressor 7 based on the internal temperature of the showcase. In addition to controlling the frequency, the target superheat degree is transmitted to each showcase, and the actual control of the liquid electromagnetic valve 12 and the expansion valve 33 in each showcase is executed by the showcase control device 26 of each showcase. May be.

また、実施例では全てのショーケース3A〜3Hにおいて機械式膨張弁13を用いた場合と、電子式膨張弁33を用いた場合とで説明したが、それらが混在する場合にも本発明は有効である。その場合には、機械式膨張弁13を用いた最も冷え難いショーケースについては液電磁弁12を開放し、電子式膨張弁33を用いた最も冷え難いショーケースについては目標過熱度を規定値として当該膨張弁33の弁開度を制御する指示を当該ショーケースのショーケース制御装置26に送信する。また、冷凍機6の圧縮機7はそれらの庫内温度で制御するようにし、機械式膨張弁13を用いた他の冷え易いショーケースについては液電磁弁12の開閉率を、電子式膨張弁33を用いた他の冷え易いショーケースについては目標過熱度をそれぞれ主制御装置23が演算し、各ショーケース制御装置26に対して指示するようにすればよい。   Further, in the embodiment, the case where the mechanical expansion valve 13 is used in all the showcases 3A to 3H and the case where the electronic expansion valve 33 is used have been described, but the present invention is also effective when they are mixed. It is. In that case, the liquid solenoid valve 12 is opened for the most difficult-to-cool showcase using the mechanical expansion valve 13, and the target superheat degree is set as the specified value for the most difficult-to-cool showcase using the electronic expansion valve 33. An instruction to control the valve opening degree of the expansion valve 33 is transmitted to the showcase control device 26 of the showcase. In addition, the compressor 7 of the refrigerator 6 is controlled by the temperature inside the refrigerator, and the open / close rate of the liquid electromagnetic valve 12 is changed to an electronic expansion valve for other easy-to-cool showcases using the mechanical expansion valve 13. For other easily cool showcases using 33, the main controller 23 may calculate the target superheat degree and instruct each showcase controller 26.

更に、上記実施例では庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により目標吹出温度を決定し、吹出温度センサ18が検出する吹出温度と目標吹出温度との偏差に基づくPID演算により圧縮機7の目標運転周波数や蒸発器14から出る冷媒の目標過熱度を決定するようにしたが、変化が急峻であるという意味では蒸発器14の温度も採用できるので、係る吹出温度によらず、蒸発器14の温度を検出する温度センサを設け、庫内温度と設定値で目標蒸発器温度を決定し、蒸発器14の温度センサが検出する蒸発器14の温度と目標蒸発器温度に基づいてPID演算を行い、目標運転周波数や目標過熱度を決定するようにしてもよい。   Furthermore, in the said Example, a target blowing temperature is determined by PID calculation based on the deviation of the chamber internal temperature and the setting value of the said chamber internal temperature, and based on the deviation of the blowing temperature detected by the blowing temperature sensor 18 and a target blowing temperature. Although the target operating frequency of the compressor 7 and the target superheat degree of the refrigerant coming out of the evaporator 14 are determined by PID calculation, the temperature of the evaporator 14 can also be adopted in the sense that the change is steep. Regardless, a temperature sensor for detecting the temperature of the evaporator 14 is provided, the target evaporator temperature is determined by the internal temperature and the set value, and the temperature of the evaporator 14 detected by the temperature sensor of the evaporator 14 and the target evaporator PID calculation may be performed based on the temperature to determine the target operating frequency and the target superheat degree.

更にまた、実施例では圧縮機7の目標運転周波数と蒸発器14から出る冷媒の目標過熱度の双方を図9の制御で決定するようにしたが、それに限らず、目標過熱度か目標運転周波数の何れか一方を図9の制御で決定し、他方は庫内温度と設定値とに基づく通常のPID演算にて決定するようにしてもよい。   Furthermore, in the embodiment, both the target operating frequency of the compressor 7 and the target superheat degree of the refrigerant coming out of the evaporator 14 are determined by the control of FIG. 9, but not limited thereto, the target superheat degree or the target operating frequency is determined. Any one of these may be determined by the control of FIG. 9, and the other may be determined by a normal PID calculation based on the internal temperature and the set value.

また、実施例では機械式膨張弁や電子式膨張弁を用いた冷媒回路に本発明を適用したが、請求項1の発明はそれに限らず、キャピラリチューブで蒸発器に流入する冷媒を絞る場合にも有効である。   In the embodiment, the present invention is applied to a refrigerant circuit using a mechanical expansion valve or an electronic expansion valve. However, the invention of claim 1 is not limited thereto, and the capillary tube is used to throttle the refrigerant flowing into the evaporator. Is also effective.

1 ショーケース冷却装置
3A〜3H ショーケース
4、5 冷媒配管
6 冷凍機
7 圧縮機
8 凝縮器
12 液電磁弁(開閉弁)
13、33 膨張弁
14 蒸発器
17 庫内温度センサ
17 吹出温度センサ
23 主制御装置(制御手段)
24 冷凍機制御装置(制御手段)
26 ショーケース制御装置(制御手段)
31、32 PID演算部
DESCRIPTION OF SYMBOLS 1 Showcase cooling device 3A-3H Showcase 4, 5 Refrigerant piping 6 Refrigerator 7 Compressor 8 Condenser 12 Liquid solenoid valve (open / close valve)
13, 33 Expansion valve 14 Evaporator 17 Internal temperature sensor 17 Blowout temperature sensor 23 Main controller (control means)
24 Refrigerator control device (control means)
26 Showcase control device (control means)
31, 32 PID calculation unit

Claims (9)

圧縮機から吐出された冷媒を複数台のショーケースに設けられた蒸発器に分配供給するショーケース冷却装置において、
前記各ショーケースの庫内温度をそれぞれ検出する庫内温度センサと、
前記圧縮機の運転を制御する制御手段とを備え、
該制御手段は、前記各ショーケースのうちの最も冷え難いショーケースの庫内温度に基づいて前記圧縮機の運転を制御することを特徴とするショーケース冷却装置。
In a showcase cooling device that distributes and supplies refrigerant discharged from a compressor to evaporators provided in a plurality of showcases,
An internal temperature sensor for detecting the internal temperature of each showcase,
Control means for controlling the operation of the compressor,
The control means controls the operation of the compressor based on the inside temperature of the showcase that is hard to cool among the showcases.
前記各ショーケースは、前記蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、前記蒸発器への冷媒の流入を制御する開閉弁とを備え、
前記制御手段は、前記最も冷え難いショーケースの庫内温度に基づいて前記圧縮機の運転を制御すると共に、他の前記ショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、該目標過熱度と前記過熱度の既定値に基づいて前記開閉弁を開閉することを特徴とする請求項1に記載のショーケース冷却装置。
Each showcase includes a superheat degree adjusting means for restricting a refrigerant flowing into the evaporator and adjusting a superheat degree of the refrigerant coming out of the evaporator to a specified value, and an on-off valve for controlling the refrigerant flow into the evaporator And
The control means controls the operation of the compressor based on the inside temperature of the showcase that is hard to cool, and sets the target superheat degree of the showcase based on the inside temperature of the other showcase. The showcase cooling apparatus according to claim 1, wherein the on-off valve is opened and closed based on the target superheat degree and a predetermined value of the superheat degree.
前記各ショーケースは、前記蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を規定値に調整する過熱度調整手段と、前記蒸発器への冷媒の流入を制御する開閉弁とを備え、
前記制御手段は、前記最も冷え難いショーケースの庫内温度に基づいて前記圧縮機の運転を制御すると共に、他の前記ショーケースの庫内温度に基づいて前記開閉弁を開閉し、且つ、当該他のショーケースの開閉弁を開閉する際、各開閉弁の開閉を異なるタイミングで実行することを特徴とする請求項1に記載のショーケース冷却装置。
Each showcase includes a superheat degree adjusting means for restricting a refrigerant flowing into the evaporator and adjusting a superheat degree of the refrigerant coming out of the evaporator to a specified value, and an on-off valve for controlling the inflow of the refrigerant to the evaporator And
The control means controls the operation of the compressor based on the inside temperature of the showcase that is hard to cool, opens and closes the on-off valve based on the inside temperature of the other showcase, and 2. The showcase cooling apparatus according to claim 1, wherein when opening / closing the opening / closing valve of another showcase, the opening / closing of each opening / closing valve is executed at different timings.
前記各ショーケースは、前記蒸発器に流入する冷媒を絞り、当該蒸発器から出る冷媒の過熱度を目標過熱度に制御する膨張弁を備え、
前記制御手段は、前記最も冷え難いショーケースの目標過熱度を規定値として当該ショーケースの膨張弁の弁開度を制御し、且つ、当該ショーケースの庫内温度に基づいて前記圧縮機の運転を制御すると共に、他の前記ショーケースの庫内温度に基づいて当該ショーケースの目標過熱度を設定し、当該ショーケースの膨張弁の弁開度を制御することを特徴とする請求項1に記載のショーケース冷却装置。
Each showcase includes an expansion valve that restricts the refrigerant flowing into the evaporator and controls the degree of superheat of the refrigerant that exits the evaporator to a target superheat degree.
The control means controls the opening degree of the expansion valve of the showcase with the target superheat degree of the showcase that is hard to cool as a specified value, and operates the compressor based on the internal temperature of the showcase And controlling the valve opening degree of the expansion valve of the showcase by setting a target superheat degree of the showcase based on the inside temperature of the other showcase. The showcase cooling device described.
前記制御手段は、前記各ショーケースのうち最も冷え難いショーケースを判別しており、
庫内温度に基づいて前記圧縮機の運転を制御している前記ショーケースより冷え難い他のショーケースが存在する場合は、当該ショーケースの庫内温度に基づいて前記圧縮機の運転を制御する状態に切り換えることを特徴とする請求項1乃至請求項4のうちの何れかに記載のショーケース冷却装置。
The control means discriminates the showcase that is most difficult to cool among the showcases,
When there is another showcase that is harder to cool than the showcase that controls the operation of the compressor based on the internal temperature, the operation of the compressor is controlled based on the internal temperature of the showcase. The showcase cooling apparatus according to claim 1, wherein the showcase cooling apparatus is switched to a state.
前記制御手段は、庫内温度が安定している状態において、前記各ショーケースのうちの最も冷え難いショーケースの判別を行うことを特徴とする請求項5に記載のショーケース冷却装置。   6. The showcase cooling apparatus according to claim 5, wherein the control means determines the showcase that is most difficult to cool among the showcases in a state where the inside temperature is stable. 前記制御手段は、前記最も冷え難いショーケースの庫内温度に基づいて前記圧縮機の運転周波数を制御することを特徴とする請求項1乃至請求項6のうちの何れかに記載のショーケース冷却装置。   The showcase cooling according to any one of claims 1 to 6, wherein the control means controls an operating frequency of the compressor based on an inside temperature of the showcase that is hard to cool. apparatus. 前記各ショーケースの冷気吹出部に設けられ、各ショーケースへの冷気の吹出温度をそれぞれ検出する吹出温度センサを備え、
前記制御手段は、前記ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースへの冷気の目標吹出温度を決定すると共に、
前記吹出温度センサが検出する前記吹出温度と前記目標吹出温度との偏差に基づくPID演算により、前記圧縮機の目標運転周波数、及び/又は、前記目標過熱度を決定することを特徴とする請求項7に記載のショーケース冷却装置。
Provided in the cold air blowing part of each showcase, provided with a blowing temperature sensor for detecting the cold air blowing temperature to each showcase,
The control means determines a target blowing temperature of cool air to the showcase by PID calculation based on a deviation between the inside temperature of the showcase and a set value of the inside temperature,
The target operating frequency and / or the target superheat degree of the compressor is determined by PID calculation based on a deviation between the outlet temperature detected by the outlet temperature sensor and the target outlet temperature. 8. The showcase cooling device according to 7.
前記各ショーケースの蒸発器の温度をそれぞれ検出する蒸発器温度センサを備え、
前記制御手段は、前記ショーケースの庫内温度と当該庫内温度の設定値との偏差に基づくPID演算により、当該ショーケースの目標蒸発器温度を決定すると共に、
前記蒸発器センサが検出する前記蒸発器の温度と前記目標蒸発器温度との偏差に基づくPID演算により、前記圧縮機の目標運転周波数、及び/又は、前記目標過熱度を決定することを特徴とする請求項7に記載のショーケース冷却装置。
An evaporator temperature sensor for detecting the temperature of each showcase evaporator;
The control means determines a target evaporator temperature of the showcase by a PID calculation based on a deviation between the inside temperature of the showcase and a set value of the inside temperature,
The target operating frequency of the compressor and / or the target superheat degree is determined by PID calculation based on a deviation between the temperature of the evaporator and the target evaporator temperature detected by the evaporator sensor. The showcase cooling apparatus according to claim 7.
JP2013024004A 2013-02-12 2013-02-12 Showcase cooling system Active JP6040041B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013024004A JP6040041B2 (en) 2013-02-12 2013-02-12 Showcase cooling system
EP14751932.6A EP2937650A4 (en) 2013-02-12 2014-02-10 Showcase cooling device
US14/765,484 US20150374143A1 (en) 2013-02-12 2014-02-10 Showcase cooling device
CN201480007727.0A CN104981669B (en) 2013-02-12 2014-02-10 showcase cooling device
PCT/JP2014/052999 WO2014126027A1 (en) 2013-02-12 2014-02-10 Showcase cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024004A JP6040041B2 (en) 2013-02-12 2013-02-12 Showcase cooling system

Publications (2)

Publication Number Publication Date
JP2014153007A JP2014153007A (en) 2014-08-25
JP6040041B2 true JP6040041B2 (en) 2016-12-07

Family

ID=51354030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024004A Active JP6040041B2 (en) 2013-02-12 2013-02-12 Showcase cooling system

Country Status (5)

Country Link
US (1) US20150374143A1 (en)
EP (1) EP2937650A4 (en)
JP (1) JP6040041B2 (en)
CN (1) CN104981669B (en)
WO (1) WO2014126027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014439A (en) * 2013-07-08 2015-01-22 サンデン株式会社 Showcase cooling device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207901B2 (en) * 2013-07-08 2017-10-04 サンデンホールディングス株式会社 Showcase cooling system
JP2016099013A (en) * 2014-11-18 2016-05-30 サンデンホールディングス株式会社 Refrigeration device
US10188224B2 (en) * 2015-03-03 2019-01-29 Killion Industries, Inc. Refrigerated case with a self-contained condensate removal system and leak detection
JP6540666B2 (en) * 2016-11-24 2019-07-10 ダイキン工業株式会社 Refrigeration system
CN112303978A (en) * 2019-07-30 2021-02-02 开利公司 Refrigeration cabinet system and control method thereof
US11903499B2 (en) * 2020-04-03 2024-02-20 Hill Phoenix, Inc. Systems and methods for display case turndown
CN112167891A (en) * 2020-09-25 2021-01-05 珠海格力电器股份有限公司 Integrated control method, device and equipment for display cabinet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644216A (en) 1987-06-26 1989-01-09 Agency Ind Science Techn Production of thin membrane for separating gas
JPH11281221A (en) * 1998-03-31 1999-10-15 Nippon Kentetsu Co Ltd Cooler of open show case
JP3686815B2 (en) * 2000-03-29 2005-08-24 シャープ株式会社 Refrigerant control of multi-room air conditioner
JP4253537B2 (en) * 2003-07-14 2009-04-15 三菱電機株式会社 Refrigeration air conditioner
JP5053527B2 (en) * 2005-07-29 2012-10-17 サンデン株式会社 Showcase cooling system
JP4584107B2 (en) * 2005-10-13 2010-11-17 ホシザキ電機株式会社 Cooling storage
JP5017000B2 (en) * 2007-07-04 2012-09-05 三洋電機株式会社 COOLING SYSTEM, MANAGEMENT DEVICE, MANAGEMENT PROGRAM, AND MANAGEMENT METHOD
JP2009236347A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Cooling storage cabinet
JP5045524B2 (en) * 2008-03-31 2012-10-10 ダイキン工業株式会社 Refrigeration equipment
JP2010249346A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Showcase
US20130025304A1 (en) * 2011-07-27 2013-01-31 Dorman Dennis R Loading and unloading of compressors in a cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014439A (en) * 2013-07-08 2015-01-22 サンデン株式会社 Showcase cooling device

Also Published As

Publication number Publication date
WO2014126027A1 (en) 2014-08-21
EP2937650A1 (en) 2015-10-28
US20150374143A1 (en) 2015-12-31
CN104981669B (en) 2017-05-17
JP2014153007A (en) 2014-08-25
EP2937650A4 (en) 2016-11-09
CN104981669A (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP6040041B2 (en) Showcase cooling system
US9140479B2 (en) Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
US9810472B2 (en) Synchronous temperature rate control for refrigeration with reduced energy consumption
AU2014368139B2 (en) Refrigerator
US9140477B2 (en) Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
US11226145B2 (en) Refrigerator and method for controlling a compressor based on temperature of storage compartment
CN106164610B (en) Refrigerator
JP5758663B2 (en) Air conditioner
JP6355325B2 (en) Refrigerator and control method of refrigerator
KR20180061762A (en) Refrigerator and method for controlling the same
JP6143585B2 (en) Showcase cooling system
JP4497915B2 (en) Cooling system
CN104075511A (en) Refrigerating device
JP2014190657A (en) Open showcase and refrigerator including the same
KR102617277B1 (en) Refrigerator and method for controlling the same
JP5627522B2 (en) Air conditioner
JPH04251164A (en) Freezing cycle device
JP6145867B2 (en) Open showcase
JP5950167B2 (en) Control device for cooling system
JP5627523B2 (en) Air conditioner
JP2016080304A (en) Control device and control method of cooling box
KR102153056B1 (en) A refrigerator and a control method the same
KR102144467B1 (en) A refrigerator and a control method the same
KR102255294B1 (en) A refrigerator
JP4626520B2 (en) Showcase cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6040041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250