JP6029962B2 - Strain / stress measurement method of structure and strain / stress sensor - Google Patents

Strain / stress measurement method of structure and strain / stress sensor Download PDF

Info

Publication number
JP6029962B2
JP6029962B2 JP2012270379A JP2012270379A JP6029962B2 JP 6029962 B2 JP6029962 B2 JP 6029962B2 JP 2012270379 A JP2012270379 A JP 2012270379A JP 2012270379 A JP2012270379 A JP 2012270379A JP 6029962 B2 JP6029962 B2 JP 6029962B2
Authority
JP
Japan
Prior art keywords
strain
stress
emission wavelength
sensor
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012270379A
Other languages
Japanese (ja)
Other versions
JP2014115220A (en
Inventor
芳樹 奥原
芳樹 奥原
安俊 水田
安俊 水田
健一 南原
健一 南原
泰孝 渡邉
泰孝 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Chubu Electric Power Co Inc
Original Assignee
Japan Fine Ceramics Center
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Chubu Electric Power Co Inc filed Critical Japan Fine Ceramics Center
Priority to JP2012270379A priority Critical patent/JP6029962B2/en
Publication of JP2014115220A publication Critical patent/JP2014115220A/en
Application granted granted Critical
Publication of JP6029962B2 publication Critical patent/JP6029962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、光を利用して構造物に生じた歪ないし応力を計測検知できる非接触式の歪・応力計測技術に関する。具体的には、与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動する酸化物系セラミックスからなる蛍光材料を使用した歪・応力計測技術に関する。   The present invention relates to a non-contact strain / stress measurement technique capable of measuring and detecting strain or stress generated in a structure using light. Specifically, the present invention relates to a strain / stress measurement technique using a fluorescent material made of an oxide ceramic whose emission wavelength fluctuates when irradiated with excitation light according to the magnitude of given strain / stress.

構造物の安全利用には当該構造物に作用する物理量の把握が重要であり、従来から多岐にわたるモニタリング技術の開発が進められている。この構造物に作用する物理量を計測するセンサとして、変位、歪、力、加速度、又はトルクなど、様々な物理量を対象としたセンサが利用されている。これらのセンサの原理として、上記種々の物理量を歪に変換し、それを歪センサにより計測しているケースが多い。すなわち、歪・応力場を計測できる歪センサは、様々な物理量のモニタリングに応用できる基本的なデバイスとなり得る。   Understanding the physical quantities acting on the structure is important for the safe use of the structure, and a variety of monitoring techniques have been developed. As sensors for measuring physical quantities acting on the structure, sensors for various physical quantities such as displacement, strain, force, acceleration, or torque are used. As a principle of these sensors, there are many cases where the above-mentioned various physical quantities are converted into strain and measured by the strain sensor. That is, a strain sensor that can measure strain and stress fields can be a basic device that can be applied to monitoring various physical quantities.

歪・応力場を計測する歪センサとしては、歪ゲージや圧電フィルムなどの電気的な方式を採用したセンサや、光学的な手法として光ファイバセンサなどが開発されている。しかし、これら従来の歪センサに共通する課題として、歪センサと計測者との間には電気的・光学的な信号ライン(ケーブルや導線)が必要であり、いわゆる接触式(有線)の計測というのが前提となる。これでは、信号ラインの配設にコストを要するばかりか、計測場所や計測対象も制約されてしまう。そこで、動的な応力が作用することで発光する特性を有する応力発光材料を使用した、いわゆる非接触式(無線)の歪センサとして、特許文献1ないし特許文献3がある。特許文献1ないし特許文献3では、応力発光材料が応力の大きさに比例して発光の「強度」が増大するという特性を利用している。具体的には、応力発光材料を構造物に貼着するなどして付与し、当該応力発光材料からの発光強度を計測することで、歪・応力の発生、大きさ、分布などを計測できるとしている。応力発光材料は、応力の動的変化をエネルギー源として発光し、動的な歪・応力に応答して発光強度を変えるため、外部からの電気的・光学的エネルギー供給を必要としない、という点が長所として挙げられる。   As a strain sensor for measuring a strain / stress field, a sensor employing an electrical method such as a strain gauge or a piezoelectric film, and an optical fiber sensor as an optical method have been developed. However, as a problem common to these conventional strain sensors, an electrical / optical signal line (cable or conductor) is required between the strain sensor and the measurer, so-called contact type (wired) measurement. Is the premise. This not only costs the arrangement of the signal lines, but also restricts the measurement location and measurement target. Therefore, there are Patent Documents 1 to 3 as so-called non-contact (wireless) strain sensors using a stress-stimulated luminescent material that emits light when a dynamic stress is applied. In Patent Document 1 to Patent Document 3, a stress light-emitting material utilizes the characteristic that the “intensity” of light emission increases in proportion to the magnitude of stress. Specifically, it is possible to measure the generation, size, distribution, etc. of strain / stress by applying a stress luminescent material to a structure, etc., and measuring the luminescence intensity from the stress luminescent material. Yes. Stress-stimulated luminescent materials emit light using the dynamic change of stress as an energy source, and change the emission intensity in response to dynamic strain / stress, so that no external electrical or optical energy supply is required. Can be cited as an advantage.

一方、発光「強度」ではなく、発光「波長」を計測することで構造物の変位を計測する非接触型の歪・応力センサとして、本出願人も特許文献4を提案している。特許文献4の歪・応力センサは、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、MAl24(M=Sr、Ca又はBa)に発光中心イオンとしてEuを0.1〜3.0at%添加した酸化物系セラミックスからなる。 On the other hand, the present applicant has also proposed Patent Document 4 as a non-contact type strain / stress sensor that measures displacement of a structure by measuring light emission “wavelength” instead of light emission “intensity”. In the strain / stress sensor of Patent Document 4, the emission wavelength when irradiated with excitation light varies depending on the magnitude of strain / stress, and the variation direction of the emission wavelength varies depending on the direction of strain / stress, It is made of oxide ceramics in which 0.1 to 3.0 at% Eu is added as a luminescent center ion to MAl 2 O 4 (M = Sr, Ca, or Ba).

また、特許文献5には、Cr3+イオンを含有するアルミナ結晶粒子をその組成物の1つとして分散してなる複合材からなる被測定物に生じている応力を測定する応力測定方法であって、上記被測定物自身からなる基準試料または上記複合材と同じ組成を有する基準試料を用意する試料準備ステップと、上記基準試料に応力を掛け、既知の応力が掛かっている部位に所定波長のレーザ光を照射して、上記基準試料に含まれる上記Cr3+イオンが発する蛍光のうち、絶対波数値14400cm-1付近に位置する蛍光ピークの絶対波数値を測定し、または所定絶対波数値に対する上記蛍光ピークの相対波数値を測定して、各応力値と上記蛍光ピークの絶対波数値または上記相対波数値との関係を求める関係測定ステップと、上記被測定物に上記所定波長のレーザ光を照射して、上記複合材に含まれる上記Cr3+イオンが発する上記蛍光のピークの絶対波数値を測定しまたは上記蛍光ピークの相対波数値を測定する実測ステップと、上記実測ステップで測定した上記蛍光ピークの絶対波数値または相対波数値から、上記関係測定ステップで求めた各応力値と蛍光ピークの絶対波数値または相対波数値との関係に基づいて、上記被測定物に生じている応力値を得る応力値取得ステップと、を含む応力測定方法が開示されている。 Patent Document 5 discloses a stress measurement method for measuring stress generated in a measurement object made of a composite material in which alumina crystal particles containing Cr 3+ ions are dispersed as one of its compositions. Preparing a reference sample comprising the object to be measured or a reference sample having the same composition as the composite material, applying a stress to the reference sample, and applying a predetermined wavelength to a portion where a known stress is applied. Of the fluorescence emitted from the Cr 3+ ions contained in the reference sample by irradiation with laser light, the absolute wave value of the fluorescence peak located near the absolute wave value of 14400 cm −1 is measured, or for a predetermined absolute wave value A relative measurement step of measuring a relative wave value of the fluorescence peak to obtain a relationship between each stress value and an absolute wave value of the fluorescence peak or the relative wave value; and It is irradiated with a laser beam of long, absolute wave numerical value of the peak of the fluorescence which the Cr 3+ ions emitted contained in the composite material were measured or the measured measuring the relative wave value of the fluorescence peak, the actual From the absolute wave value or relative wave value of the fluorescence peak measured in step, the measured object is measured based on the relationship between the stress value obtained in the relationship measurement step and the absolute wave value or relative wave value of the fluorescence peak. A stress measurement method is disclosed that includes a stress value acquisition step for obtaining a stress value that has occurred.

また、非特許文献1には、与えられた応力の大きさに応じて励起光を照射したときの発光(フォトルミネッセンスPhotoluminescence)の波長が変動する酸化物系セラミックスからなる蛍光材料が開示されている。ここでの酸化物系セラミックスは、Al23中に発光中心イオンとしてCr3+が添加されている。この現象を応用した応力分布の解析技術として、非特許文献2がある。当該非特許文献2では、遮熱コーティングと金属基材の界面に生成するCr3+添加Al23の発光波長の変化により、応力を検出する方法が提案されている。 Non-Patent Document 1 discloses a fluorescent material made of an oxide ceramic in which the wavelength of light emission (photoluminescence) when irradiated with excitation light according to the magnitude of applied stress is varied. . In the oxide ceramics here, Cr 3+ is added as a luminescent center ion in Al 2 O 3 . There is Non-Patent Document 2 as an analysis technique of stress distribution using this phenomenon. Non-Patent Document 2 proposes a method for detecting stress based on a change in emission wavelength of Cr 3+ added Al 2 O 3 generated at the interface between the thermal barrier coating and the metal substrate.

また、非特許文献3には、与えられた静水圧(等方的な圧縮応力)の大きさに応じて励起光を照射したときの発光波長が変動する酸化物系セラミックスからなる蛍光材料が開示されている。ここでの酸化物系セラミックスは、SrAl24やCaAl24中に発光中心イオンとしてEu2+が1%添加されている。 Non-Patent Document 3 discloses a fluorescent material made of an oxide-based ceramic whose emission wavelength fluctuates when irradiated with excitation light in accordance with a given hydrostatic pressure (isotropic compressive stress). Has been. In the oxide-based ceramics here, 1% of Eu 2+ is added as a luminescent center ion in SrAl 2 O 4 or CaAl 2 O 4 .

特開2004-85483号公報JP 2004-85483 A 特開2005-307998号公報Japanese Patent Laid-Open No. 2005-307998 再表2006-85424号公報Table 2006-85424 特開2011−127992号公報JP 2011-127992 A 特開2005−147837号公報JP 2005-147837 A

J. He, and D. R. Clarke, "Determination of the Piezospectroscopic Coefficients for Chromium-Doped Sapphire", J. Am, Ceram, Soc., 78 (5), 1347-1353 (1995)J. He, and D. R. Clarke, "Determination of the Piezospectroscopic Coefficients for Chromium-Doped Sapphire", J. Am, Ceram, Soc., 78 (5), 1347-1353 (1995) 川崎重工業株式会社, 「航空機エンジンのメンテナンスにおける蛍光分光による損傷測定技術の先導調査研究」独立行政法人新エネルギー・産業技術総合開発機構 平成18年度成果報告書Kawasaki Heavy Industries, Ltd., "Leading research on damage measurement technology by fluorescence spectroscopy in aircraft engine maintenance" New Energy and Industrial Technology Development Organization, 2006 results report C. E. Tyner and H. G. Drickamer, "Studies of Luminescence Efficiency of Eu2+ Activated Phosphors as a function of Temperature and High Pressure", J. Chem, Phys., 67 (9), 4116-4122 (1977)C. E. Tyner and H. G. Drickamer, "Studies of Luminescence Efficiency of Eu2 + Activated Phosphors as a function of Temperature and High Pressure", J. Chem, Phys., 67 (9), 4116-4122 (1977)

特許文献1ないし特許文献3は、信号ラインが不要な非接触での歪・応力場のモニタリングを可能とする応力発光材料を使用した歪センサである。しかし、特許文献1ないし特許文献3では、応力発光材料の発光強度を計測することで動的な歪・応力の分布等を計測しているので、次のような問題がある。すなわち、応力発光材料における発光強度は、単純に応力や歪の大きさに依存するだけでなく、応力や歪の変化する速度にも大きく依存する。したがって、ある構造体に応力発光材料を付与して発光強度の分布が得られたとしても、それが歪・応力の大きさを反映した情報であるのか、それらの変化速度を反映したものであるのかの判定は不可能であり、対象物の何を診断しているのかを明らかとするのは難しい。また、応力発光材料によっては繰り返し応力によって発光強度が低下し、安定した特性を得るのが難しいものもある。さらに、応力や歪が変化しない場合には発光現象は止まってしまうため、そのままでは静的な歪・応力のセンシングは不可能である。これらの静的な歪・応力を診断するためには、初期の無応力状態から連続的なモニタリングを絶えず継続してその変化のデータを蓄積する必要があることから、コストの増大を招くなど大きな課題を抱える。   Patent Documents 1 to 3 are strain sensors using a stress light-emitting material that enables non-contact monitoring of strain / stress fields that do not require a signal line. However, in Patent Documents 1 to 3, since the dynamic strain / stress distribution and the like are measured by measuring the light emission intensity of the stress light-emitting material, there are the following problems. In other words, the light emission intensity in the stress luminescent material not only simply depends on the magnitude of the stress or strain, but also greatly depends on the rate at which the stress or strain changes. Therefore, even if a stress-stimulated luminescent material is applied to a certain structure and a distribution of luminescence intensity is obtained, it is information that reflects the magnitude of strain and stress, or the rate of change thereof. It is difficult to determine what the object is being diagnosed. In addition, some stress-stimulated luminescent materials have a light emission intensity that is reduced by repeated stress, and it is difficult to obtain stable characteristics. Furthermore, when the stress or strain does not change, the light emission phenomenon stops, so static strain / stress sensing is impossible as it is. In order to diagnose these static strains / stresses, it is necessary to continuously monitor data from the initial no-stress state and continuously accumulate data on the changes. Have a problem.

これに対し特許文献4は、励起光を照射して発光させ、当該発光波長の変化を計測することで構造物の変位を計測しているので、上記のような問題はない。しかし、このような歪・応力センサにおいても、より歪感度の高いものが求められている。   On the other hand, Patent Document 4 does not have the above-described problem because the displacement of the structure is measured by irradiating the excitation light to emit light and measuring the change in the emission wavelength. However, such strain / stress sensors are also required to have higher strain sensitivity.

特許文献5、非特許文献1、および非特許文献2の技術も、蛍光材料そのものの発光波長が応力に応じて変化することを利用するため、上記のような問題点はない。すなわち、動的な歪・応力だけでなく静的な歪・応力に対しても発光波長の変化を検出可能であって、蛍光材料面全体が発光するため計測対象である構造物の表面からの発光を捉えればよい。しかしながら、このCr3+添加Al23における波長シフト量は、1GPaの圧縮応力に対して14429cm-3(波長693.19nm)から14426cm-3(波長693.05nm)への変化であり、応力感度(単位応力1GPaあたりの波長シフト量)は0.14nm/GPaとなる。Al23のヤング率を335GPaとすると1GPaに対する圧縮歪は0.3%となり、単位歪(1%)当たりの波長シフト量を歪感度と定義すると、Cr3+添加Al23における歪感度は0.47nm/%となる。このように、非特許文献1および非特許文献2に記載のCr3+添加Al23では、動的な歪・応力だけでなく静的な歪・応力に対する発光波長変化を検出可能という点で有意義であるが、その歪感度や応力感度が低いという課題を有する。これら歪感度や応力感度をより向上できれば、検出精度の向上、計測時間の短縮、さらには低コスト化など、様々なメリットが期待できる。 Since the techniques of Patent Document 5, Non-Patent Document 1, and Non-Patent Document 2 also utilize the fact that the emission wavelength of the fluorescent material itself changes according to the stress, there is no such problem as described above. That is, it is possible to detect changes in the emission wavelength not only for dynamic strain / stress but also for static strain / stress, and since the entire fluorescent material surface emits light, it can be measured from the surface of the structure being measured. What is necessary is just to catch luminescence. However, the wavelength shift amount in the Cr 3+ added Al 2 O 3 is a change from 14429Cm -3 (wavelength 693.19Nm) against compressive stress of 1GPa 14426cm -3 to (wavelength 693.05Nm), stress Sensitivity (amount of wavelength shift per unit stress of 1 GPa) is 0.14 nm / GPa. When the Young's modulus of Al 2 O 3 is 335 GPa, the compressive strain for 1 GPa is 0.3%, and when the amount of wavelength shift per unit strain (1%) is defined as strain sensitivity, the strain in Cr 3+ added Al 2 O 3 is The sensitivity is 0.47 nm /%. As described above, the Cr 3 + -added Al 2 O 3 described in Non-Patent Document 1 and Non-Patent Document 2 can detect not only dynamic strain / stress but also a change in emission wavelength with respect to static strain / stress. However, the strain sensitivity and stress sensitivity are low. If these strain sensitivity and stress sensitivity can be further improved, various advantages such as improved detection accuracy, shorter measurement time, and lower cost can be expected.

非特許文献3の技術も、蛍光材料そのものの発光波長が静水圧(等方的な応力)に応じて変化することを利用するため、上記のような問題点はない。すなわち、静的な応力に対して発光波長の変化を検出可能である。しかしながら、この文献中では、静水圧下という等方的な圧縮応力に対する発光波長の応答性について記述されているのみである。一般的な構造物などの変形において、このような応力場が想定されることは少なく、1次元もしくは2次元方向の変形がほとんどであり、さらに、圧縮方向だけではなく引張方向に対する応答性も必須である。したがって、この文献に記載された材料系(SrAl24やCaAl24中に発光中心イオンとしてEu2+を添加)が、現実的に構造物の歪・応力センサとして利用できるとは判断できない。 The technique of Non-Patent Document 3 also uses the fact that the emission wavelength of the fluorescent material itself changes according to the hydrostatic pressure (isotropic stress), and thus does not have the above problems. That is, it is possible to detect a change in the emission wavelength with respect to static stress. However, this document only describes the response of the emission wavelength to isotropic compressive stress under hydrostatic pressure. In the deformation of general structures, such a stress field is rarely expected, and deformation in one or two dimensions is almost all, and responsiveness not only in the compression direction but also in the tensile direction is essential. It is. Therefore, it is judged that the material system described in this document (Eu 2+ added as a luminescent center ion in SrAl 2 O 4 or CaAl 2 O 4 ) can be practically used as a strain / stress sensor for structures. Can not.

そこで、本発明は上記課題を解決するものであって、動的のみならず静的な歪ないし応力とその方向性(引張方向又は圧縮方向)とを任意のタイミングでより高感度に計測できる非接触式の歪・応力計測方法と、これに使用する歪・応力センサを提供することを目的とする。   Therefore, the present invention solves the above-mentioned problem, and can measure not only dynamic but also static strain or stress and its directionality (tensile direction or compression direction) with higher sensitivity at any timing. It is an object of the present invention to provide a contact-type strain / stress measurement method and a strain / stress sensor used therefor.

そのための手段として、本発明は、構造物に与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性(引張歪・応力か圧縮歪・応力か)に応じて発光波長の変動方向が異なる蛍光材料、具体的にはSr1-XAl24(X=0.02〜0.20)にCrを0.1〜3.0at%(好ましくは0.5〜1.5at%)添加した酸化物系セラミックスを有効材料として含む歪・応力センサを設置し、任意のタイミングで前記歪・応力センサに励起光を照射して蛍光発光させ、このときの発光波長を波長計測手段によって計測し、予め計測しておいた前記構造物に歪・応力が作用していない状態における基準発光波長に対する発光波長変化量とその変化の方向(短波長側への変化か長波長側への変化か)を計測することで、構造物に生じた静的および動的な歪ないし応力の計測とその方向性(引張方向か圧縮方向か)の判定とを行う、構造物の歪・応力計測方法を提案できる。なお、Crの添加量とSrの欠損量(Xの値)との間には直接の関連性はない。 As a means for that purpose, the present invention changes the emission wavelength when the excitation light is irradiated according to the magnitude of strain / stress applied to the structure, and the direction of strain / stress (tensile strain / stress Fluorescent material whose emission wavelength varies depending on compression strain / stress), specifically, Cr is added to Sr 1-X Al 2 O 4 (X = 0.02 to 0.20 ) with 0.1 to 3 Cr. A strain / stress sensor including an oxide-based ceramic added with 0.0 at% (preferably 0.5 to 1.5 at%) as an effective material is installed, and the strain / stress sensor is irradiated with excitation light at an arbitrary timing. Fluorescence is emitted, the emission wavelength at this time is measured by the wavelength measuring means, and the emission wavelength change amount with respect to the reference emission wavelength and the direction of the change in a state where no strain or stress is applied to the structure measured in advance (Change to short wavelength side or change to long wavelength side )) To measure static and dynamic strain or stress generated in the structure and determine its directionality (tensile direction or compression direction). Can be proposed. Note that there is no direct relationship between the amount of Cr added and the amount of missing Sr (value of X).

Cr添加Sr1-XAl24からなる酸化物系セラミックス(蛍光材料)においては、発光中心イオンとなるCrの電子軌道間もしくは欠陥準位において励起された電子が遷移する際に発光現象を引き起こす。この発光現象において、Cr添加Sr1-XAl24の結晶構造に歪・応力が作用すると、配位子場が変化することで電子軌道間もしくは欠陥準位のエネルギー状態が変化し、これによって発光特性が変化するという原理を応用している。そして、蛍光材料に引張もしくは圧縮方向の歪・応力を与えた状態で、フォトルミネッセンス(励起光照射)によって電子の励起−再結合過程における発光現象である蛍光発光させることで、動的のみならず静止した歪・応力場においても歪・応力の分布に応じた発光波長が得られるというコンセプトである。 In oxide-based ceramics (fluorescent material) made of Cr-added Sr 1-X Al 2 O 4 , the light emission phenomenon occurs when electrons excited between the electron orbits of Cr, which is the emission center ion, or in the defect level transition. cause. In this light emission phenomenon, when strain / stress acts on the crystal structure of Cr-added Sr 1-X Al 2 O 4 , the energy state between electron orbital or defect level changes due to the change of the ligand field. Applying the principle that the light emission characteristics change depending on. Then, in a state where strain or stress in the tensile or compressive direction is applied to the fluorescent material, fluorescence is emitted as a light emission phenomenon in the excitation-recombination process of electrons by photoluminescence (excitation light irradiation). The concept is that a light emission wavelength corresponding to the strain / stress distribution can be obtained even in a static strain / stress field.

前記歪・応力センサは、前記酸化物系セラミックスを焼結したバルク体として前記構造物の表面へ接着したり、前記酸化物系セラミックス粒子を含む薄膜として前記構造物の表面に成膜することもできる。なお、バルク体とは、例えば板状(薄片状)や塊状など、一定の厚みを有する立体形状のものであり、具体的な形状は特に制限されない。構造物に作用した応力は、歪・応力センサによって求めた歪量から、計測対象物である構造物のヤング率をもとに計測することができる。   The strain / stress sensor may be bonded to the surface of the structure as a bulk body obtained by sintering the oxide ceramic, or may be formed on the surface of the structure as a thin film containing the oxide ceramic particles. it can. The bulk body is a three-dimensional shape having a certain thickness such as a plate shape (flaky shape) or a lump shape, and the specific shape is not particularly limited. The stress acting on the structure can be measured based on the Young's modulus of the structure that is the object to be measured from the amount of strain obtained by the strain / stress sensor.

また、構造物に設置して該構造物に生じた歪ないし応力を計測するための歪・応力センサであって、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Sr1-XAl24(X=0.02〜0.20)にCrを0.1〜3.0at%(好ましくは0.5〜1.5at%)添加した酸化物系セラミックスを含む歪・応力センサも提案できる。当該歪・応力センサとしても、前記酸化物系セラミックスを焼結したバルク体として前記構造物へ接着したり、前記酸化物系セラミックス粒子を含む薄膜として前記構造物の表面に成膜することができる。

Also, a strain / stress sensor that is installed in a structure and measures strain or stress generated in the structure, and the emission wavelength varies when excitation light is irradiated according to the magnitude of the strain / stress. In addition, Sr 1-X Al 2 O 4 (X = 0.02 to 0.20 ) has a Cr content of 0.1 to 3.0 at%, and the direction of fluctuation of the emission wavelength varies depending on the direction of strain and stress. A strain / stress sensor including an added oxide ceramic (preferably 0.5 to 1.5 at%) can also be proposed. The strain / stress sensor can also be adhered to the structure as a bulk body obtained by sintering the oxide ceramic, or can be formed on the surface of the structure as a thin film containing the oxide ceramic particles. .

本発明の歪・応力センサは、Cr添加Sr1-XAl24からなる蛍光材料である酸化物系セラミックスを含み、与えられた歪・応力の大きさに応じた基準発光波長に対する発光波長のシフト量が、従来のCr3+添加Al23や特許文献4のMAl24(M=Sr、Ca又はBa)にEuを添加した蛍光材料等を使用した歪・応力センサよりよりも大きい。したがって、この蛍光材料を使用した歪・応力センサによれば、従来の歪・応力センサに比べて歪感度及び応力感度が高く、構造物における高精度な歪ないし応力の計測が可能となる。また、計測時間の短縮や低コスト化にも有利である。また、本発明の歪・応力センサでは、引張・圧縮という歪・応力の印加方向によって発光波長シフトの方向を変えること、さらに等方的な応力でなくても1次元もしくは2次元的な歪・応力場に対しても応答性を示すことが初めて見出されており、実際の構造体における変形診断を可能としている。すなわち、構造物に生じた引張方向のみならず圧縮方向における静的および動的な歪ないし応力の計測を確実に計測できる。しかも、その方向性の判定、すなわち引張方向の歪・応力か圧縮方向の歪・応力かを判定することができる。 The strain / stress sensor of the present invention includes an oxide-based ceramic that is a fluorescent material made of Cr-added Sr 1-X Al 2 O 4, and an emission wavelength with respect to a reference emission wavelength according to the magnitude of the applied strain / stress. More than the conventional Cr 3+ added Al 2 O 3 and the strain / stress sensor using a fluorescent material in which Eu is added to MAl 2 O 4 (M = Sr, Ca or Ba) of Patent Document 4 Is also big. Therefore, according to the strain / stress sensor using this fluorescent material, the strain sensitivity and the stress sensitivity are higher than those of the conventional strain / stress sensor, and the strain or stress in the structure can be measured with high accuracy. It is also advantageous for shortening the measurement time and reducing the cost. Further, in the strain / stress sensor of the present invention, the direction of the emission wavelength shift is changed depending on the strain / stress application direction of tension / compression, and one-dimensional or two-dimensional strain / It has been found for the first time that it exhibits responsiveness to a stress field, and enables deformation diagnosis in an actual structure. That is, it is possible to reliably measure static and dynamic strains or stresses in the compression direction as well as the tensile direction generated in the structure. Moreover, it is possible to determine the directionality, that is, whether the strain / stress in the tensile direction or the strain / stress in the compression direction.

本発明の構造物の歪・応力計測方法は、蛍光材料の発光現象を利用した非接触式の計測方法なので、診断対象が広範囲にわたる大型構造体における多点計測、高所や立入り管理区域などの危険箇所における計測、真空中での計測、高速回転体における計測など、接触式のセンサでは困難もしくは不可能な診断対象に対しても高精度な計測が可能となる。また、集光・発散できるという光の性質により、計測点のサイズを微小なミクロ領域から任意のセンシング領域を選定でき、2次元的な走査によって平面内における歪・応力分布診断の高精度化・高速化にも有効となる。   Since the strain / stress measurement method of the structure of the present invention is a non-contact type measurement method using the light emission phenomenon of the fluorescent material, such as multi-point measurement in a large structure having a wide range of diagnosis targets, such as high places and access control areas, etc. High-precision measurement is possible even for diagnostic objects that are difficult or impossible with contact-type sensors, such as measurement in hazardous locations, measurement in a vacuum, and measurement in a high-speed rotating body. In addition, due to the nature of light that can be condensed and diverged, it is possible to select an arbitrary sensing area from the micro area of the measurement point, and to improve the accuracy of strain and stress distribution diagnosis in the plane by two-dimensional scanning. It is also effective for speeding up.

そのうえで、励起光を照射した際の蛍光発光波長の変化(シフト)量によって歪ないし応力を計測するので、従来技術のような動的な歪・応力場だけではなく、静的な歪・応力場における歪ないし応力も計測できる。すなわち、応力が作用している瞬間のみならず、応力が作用した後においても歪ないし応力を計測できる。静的な歪・応力場における歪・応力による波長変化を計測するので、動的な歪・応力場のように歪・応力の変化速度の影響はなく、的確に歪ないし応力を計測できる。また、励起光を照射すればいつでも発光するので、動的な歪・応力のように常時観測している必要は無く、任意のタイミングで歪ないし応力を計測できる。また、本発明では蛍光材料の構造変化に基づく発光波長変化を検出するので、グレーティングを使用する場合に比べて、集光などによって空間分解能を狭くすることもでき、発光の検出方向にも制約を受けない。   In addition, since strain or stress is measured by the amount of change (shift) in the fluorescence emission wavelength when irradiated with excitation light, not only dynamic strain and stress fields as in the prior art, but also static strain and stress fields. Strain or stress can be measured. That is, the strain or stress can be measured not only at the moment when the stress is applied but also after the stress is applied. Since the wavelength change due to the strain / stress in the static strain / stress field is measured, there is no influence of the strain / stress change rate unlike the dynamic strain / stress field, and the strain or stress can be accurately measured. In addition, since it emits light whenever it is irradiated with excitation light, there is no need to constantly observe it like dynamic strain / stress, and strain or stress can be measured at any timing. In addition, since the present invention detects a change in emission wavelength based on a change in the structure of the fluorescent material, the spatial resolution can be narrowed by condensing light compared to the case of using a grating, and the detection direction of emission is also limited. I do not receive it.

本発明の歪・応力センサを、酸化物系セラミックスを焼結したバルク体としておけば、歪・応力に対する感度が薄膜とした場合よりも良好となる。しかし、この場合、接着剤の耐熱性を考慮する必要がある。これに対し、歪・応力センサを構造物の表面へ成膜した薄膜としていれば、接着剤が不要となるので、接着剤の耐熱性を考慮する必要がなくなる。   If the strain / stress sensor of the present invention is a bulk body obtained by sintering an oxide-based ceramic, the sensitivity to strain / stress is better than when a thin film is used. However, in this case, it is necessary to consider the heat resistance of the adhesive. On the other hand, if the strain / stress sensor is a thin film formed on the surface of the structure, an adhesive is not necessary, and it is not necessary to consider the heat resistance of the adhesive.

歪・応力計測方法の機構を示す模式図である。It is a schematic diagram which shows the mechanism of the strain / stress measurement method. 歪・応力センサに励起光を照射して得られるPL発光スペクトルである。It is a PL emission spectrum obtained by irradiating a strain / stress sensor with excitation light. Cr添加量に応じたPL発光強度の変化を示すグラフである。It is a graph which shows the change of PL emitted light intensity according to Cr addition amount. Sr欠損量に応じたPL発光強度の変化を示すグラフである。It is a graph which shows the change of PL emitted light intensity according to Sr defect | deletion amount. 引張歪を作用させる機構を示す模式図である。It is a schematic diagram which shows the mechanism in which a tensile strain acts. バルク体からなる歪・応力センサにおける引張歪の大きさとこれに伴う波長シフト量との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the tensile strain in the strain and stress sensor which consists of a bulk body, and the wavelength shift amount accompanying this. 薄膜からなる歪・応力センサにおける引張歪の大きさとこれに伴う波長シフト量との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the tensile strain in the strain and stress sensor which consists of a thin film, and the wavelength shift amount accompanying this.

本発明は、与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性(引張方向又は圧縮方向)に応じて発光波長の変動方向が異なる酸化物系セラミックスからなる蛍光材料を歪・応力センサとして使用し、構造物に応力が作用した場合の動的又は静的な歪ないし応力を計測するものである。なお、以下の説明では、励起光照射による蛍光発光を、PL発光と称すことがある。   In the present invention, the emission wavelength varies when the excitation light is irradiated according to the applied strain / stress, and the emission wavelength varies according to the direction of the strain / stress (tensile direction or compression direction). A fluorescent material made of oxide ceramics with different directions is used as a strain / stress sensor to measure dynamic or static strain or stress when stress acts on a structure. In the following description, fluorescence emission due to excitation light irradiation may be referred to as PL emission.

本発明の歪・応力センサに使用する蛍光材料は、Cr添加Sr1-XAl24からなる酸化物系セラミックスである。ここで、Xの値(Srの欠損量)が0.00であって欠損がない場合には発光強度は極めて低く、Xの値を0.02〜0.20としてSr欠損を導入することで、発光強度を高めることができる。より高い発光強度を得るのに好ましいSr欠損量は0.02〜0.08の範囲であり、より好ましくは0.02〜0.06とする。一方、Crの添加割合は0.1〜3.0at%の範囲で添加する。この範囲を外れると、良好な発光強度や歪感度が得られない。より高い発光強度を得るのに好ましいCrの添加割合は0.5〜1.5at%であり、より好ましくは0.8〜1.0at%である。 The fluorescent material used in the strain / stress sensor of the present invention is an oxide-based ceramic made of Cr-added Sr 1-X Al 2 O 4 . Here, when the value of X (a missing amount of Sr) is 0.00 and there is no defect, the emission intensity is extremely low. By introducing an Sr defect with an X value of 0.02 to 0.20, The emission intensity can be increased. A preferable amount of Sr deficiency for obtaining higher emission intensity is in the range of 0.02 to 0.08, and more preferably 0.02 to 0.06. On the other hand, the addition ratio of Cr is added in the range of 0.1 to 3.0 at%. Outside this range, good emission intensity and strain sensitivity cannot be obtained. A preferable Cr addition ratio for obtaining higher light emission intensity is 0.5 to 1.5 at%, and more preferably 0.8 to 1.0 at%.

当該蛍光材料におけるPL発光は、発光中心イオン内の電子軌道間もしくは欠陥準位における励起−再結合過程によって発光現象が発現する。本発明の蛍光材料では、励起光照射によって赤色にPL発光する。そして、このような蛍光材料を歪・応力センサとして使用する場合、上記発光現象において、Sr1-XAl24の結晶構造に歪が作用することによって配位子場が変化することで発光中心イオンもしくは欠陥準位のエネルギー状態が変化し、これによって発光特性、すなわちPL発光波長が変動(シフト)する原理を応用している。 The PL light emission in the fluorescent material exhibits a light emission phenomenon due to an excitation-recombination process between electron orbits in a luminescent center ion or in a defect level. The fluorescent material of the present invention emits PL in red when irradiated with excitation light. When such a fluorescent material is used as a strain / stress sensor, light emission occurs due to a change in the ligand field caused by strain acting on the crystal structure of Sr 1-X Al 2 O 4 in the above light emission phenomenon. The principle that the energy state of the central ion or defect level changes and the emission characteristics, that is, the PL emission wavelength fluctuate (shift) by this is applied.

このような酸化物系セラミックスを使用した歪・応力センサの一形態としては、セラミックスの原料(出発原料)を焼成した焼結体(バルク体)とすることができる。代表的には、セラミックスの原料粉末を混合・焼成する公知の固相反応法によって製造できる。具体的には、各種出発原料を混合し、各出発原料の融点未満の温度で焼成して焼結体を得ればよい。このとき、必要に応じて各出発原料を混合した状態で、焼成(本焼)温度より低い温度で仮焼し、該仮焼後の焼結体を粉砕・成型したうえで、焼成(本焼)することが好ましい。組成の均一化や緻密化を図ることができるからである。   As one form of the strain / stress sensor using such oxide ceramics, a sintered body (bulk body) obtained by firing a ceramic raw material (starting raw material) can be used. Typically, it can be produced by a known solid phase reaction method in which ceramic raw material powders are mixed and fired. Specifically, various starting materials may be mixed and fired at a temperature lower than the melting point of each starting material to obtain a sintered body. At this time, if necessary, the starting materials are mixed and calcined at a temperature lower than the firing (fired) temperature, and the sintered body after the calcination is pulverized and molded, followed by firing (fired). ) Is preferable. This is because the composition can be made uniform and dense.

このとき、母材(Sr1-XAl24)中の酸素欠損量や添加Crの酸化状態がPL発光波長のシフト量だけでなく発光強度にも影響し、大気中で焼成するとPL発光強度が弱くなる傾向がある。したがって、焼成プロセスでは酸化を防ぐために無酸素雰囲気で行う。無酸素雰囲気としては、Arガスなどの不活性ガスや窒素ガス雰囲気とすればよい。 At this time, the amount of oxygen deficiency in the base material (Sr 1-X Al 2 O 4 ) and the oxidation state of the added Cr affect not only the shift amount of the PL emission wavelength but also the emission intensity. There is a tendency for strength to become weaker. Therefore, the firing process is performed in an oxygen-free atmosphere to prevent oxidation. The oxygen-free atmosphere may be an inert gas such as Ar gas or a nitrogen gas atmosphere.

酸化物系セラミックスのバルク体からなる歪・応力センサの形状は、構造物に設置できる形状であれば特に限定されないが、薄片状(例えば厚み0.1〜5mm程度)とすることが好ましい。薄片状であれば、構造物に生じた歪への追従性が良好であると共に、施工性も良い。または、一定の厚みを有する立体形状とすることもできる。薄片状の歪・応力センサは、直接薄片状に焼結するほか、ある程度の厚みを有するバルク体を切断、切削、又は研削等の後加工によって薄片状とすることもできる。バルク体からなる歪・応力センサは、構造物の表面に接着することで設置することができる。このとき、構造物の任意の部位に凹みを設けて歪・応力センサを埋め込むように設置したり、構造物における二点の間に挟まれるように設置することもできる。構造物によって挟持されるように設置した場合は、圧縮応力の計測に適している。   The shape of the strain / stress sensor made of a bulk body of oxide ceramics is not particularly limited as long as it is a shape that can be installed on a structure, but is preferably in the form of a flake (for example, about 0.1 to 5 mm in thickness). If it is flake-like, the followability to the strain generated in the structure is good and the workability is also good. Or it can also be set as the solid | 3D shape which has fixed thickness. The flaky strain / stress sensor can be directly sintered into a flaky shape, or a bulk material having a certain thickness can be formed into a flaky shape by post-processing such as cutting, cutting, or grinding. A strain / stress sensor made of a bulk body can be installed by adhering to the surface of the structure. At this time, a dent can be provided at an arbitrary part of the structure so as to embed the strain / stress sensor, or it can be installed so as to be sandwiched between two points in the structure. When installed so as to be sandwiched between structures, it is suitable for measurement of compressive stress.

また、歪・応力センサの他の形態としては、構造物の表面に薄膜として成膜することもできる。具体的には、上記酸化物系セラミックスからなる粉体を混合分散したフリットを構造物の表面へ塗布、噴霧、または印刷し、焼付けして構造物表面でフリットを融解させることで酸化物系セラミックスを含む薄膜を成膜することで設置できる。ここでのフリットとしては、ガラスフリットを使用できる。焼付け温度は、フリットの融点以上、酸化物系セラミックス粒子の融点未満の温度で行う。具体的には、400〜800℃程度で行えばよい。   As another form of the strain / stress sensor, a thin film can be formed on the surface of the structure. Specifically, the oxide ceramics are prepared by applying, spraying, or printing a frit in which powders made of the above oxide ceramics are mixed and dispersed on the surface of the structure, and baking the frit to melt the frit on the surface of the structure. It can be installed by depositing a thin film containing As the frit here, a glass frit can be used. The baking temperature is a temperature not lower than the melting point of the frit and lower than the melting point of the oxide ceramic particles. Specifically, it may be performed at about 400 to 800 ° C.

このようにして設置した歪・応力センサによって、構造物に生じた歪ないし応力の計測方法について説明する。図1に示すように、構造物1に設置した歪・応力センサ10に励起光11を照射すると、当該歪・応力センサ10が蛍光発光するので、その蛍光発光12の発光波長を図外の波長計測手段によって計測する。照射する励起光11には、発光波長よりも高エネルギー(短波長)の光を使用する。Cr添加Sr1-XAl24の場合には、波長250〜600nm程度の励起光が挙げられる。波長計測手段としては、光の波長を計測できるものであれば特に限定されず、公知の機器を使用できる。代表的には、分光器が挙げられる。 A method for measuring strain or stress generated in the structure using the strain / stress sensor thus installed will be described. As shown in FIG. 1, when the strain / stress sensor 10 installed in the structure 1 is irradiated with excitation light 11, the strain / stress sensor 10 emits fluorescence. Measure by measuring means. As the excitation light 11 to be irradiated, light having a higher energy (short wavelength) than the emission wavelength is used. In the case of Cr-added Sr 1-X Al 2 O 4 , excitation light having a wavelength of about 250 to 600 nm can be mentioned. The wavelength measuring means is not particularly limited as long as it can measure the wavelength of light, and a known device can be used. A typical example is a spectroscope.

これを前提として、先ずは、構造物1に歪が生じていない状態における基準発光波長を予め計測しておく。基準発光波長は、歪・応力センサ10を構造物1に設置した直後、又は構造物1に設置する前に計測しておけばよい。そして、歪・応力センサ10を構造物1へ設置した後、任意のタイミング(任意の時間経過後)で蛍光発光12の波長を計測したとき、構造物1に歪が生じていれば、蛍光発光12の波長は基準発光波長とは異なる波長となっている。そこで、基準発光波長に対する発光波長変化(シフト量)を計測することで、構造物1に生じた歪を計測することができる。このとき、歪の方向性、すなわち引張方歪か圧縮歪かによって、発光波長変化の方向性が逆(短波長側へのシフトか長波長側へのシフトか)になるので、当該発光波長変化の方向性によって引張方向の歪か圧縮方向の歪かを判定することもできる。もちろん、構造物1に歪が生じていなければ、発光波長の変動は無い。また、歪と応力はヤング率を比例定数として比例関係にあるため、計測された歪値から応力を求めることもできる。同時に、引張応力か圧縮応力かも判定できる。基準発光波長は、波長計測手段に連結された情報処理装置に記憶しておき、基準発光波長と発光波長との対比も当該情報処理装置によって行うと効率的である。   On the premise of this, first, the reference emission wavelength in a state where the structure 1 is not distorted is measured in advance. The reference emission wavelength may be measured immediately after the strain / stress sensor 10 is installed on the structure 1 or before the strain / stress sensor 10 is installed on the structure 1. Then, after the strain / stress sensor 10 is installed on the structure 1, when the wavelength of the fluorescence emission 12 is measured at an arbitrary timing (after an arbitrary time has elapsed), if the structure 1 is distorted, the fluorescence emission The wavelength of 12 is different from the reference emission wavelength. Therefore, by measuring the emission wavelength change (shift amount) with respect to the reference emission wavelength, the strain generated in the structure 1 can be measured. At this time, depending on the direction of strain, that is, tensile strain or compression strain, the direction of emission wavelength change is reversed (shift to short wavelength side or shift to long wavelength side). Whether the strain is in the tensile direction or the strain in the compression direction can also be determined based on the directionality. Of course, if the structure 1 is not distorted, there is no change in the emission wavelength. Further, since the strain and the stress are in a proportional relationship with the Young's modulus as a proportional constant, the stress can be obtained from the measured strain value. At the same time, it can be determined whether it is tensile stress or compressive stress. It is efficient that the reference emission wavelength is stored in an information processing apparatus connected to the wavelength measuring means, and the reference emission wavelength and the emission wavelength are also compared by the information processing apparatus.

計測対象としては、応力が作用し得る構造物であれば特に限定されず、大型の構造物から小型の構造部位まで、種々の構造体が含まれる。特に、本発明の歪・応力計測方法は非接触式の計測方法なので、ダムやトンネルなどの診断範囲が広範囲にわたる大型構造体における多点計測、電波塔や送電塔などの鉄塔、高層ビル、発電所構造物など、高所や立入り管理区域などの危険箇所における計測、タービンやモータなど高速回転体における計測、真空中など密閉空間における計測など、接触式のセンサでは困難もしくは不可能な計測に好適である。   The measurement object is not particularly limited as long as it is a structure on which stress can act, and includes various structures from large structures to small structure parts. In particular, since the strain / stress measurement method of the present invention is a non-contact measurement method, multipoint measurement in large structures with a wide diagnostic range such as dams and tunnels, steel towers such as radio towers and power transmission towers, high-rise buildings, power generation Suitable for measurements that are difficult or impossible with contact-type sensors, such as measurements in hazardous places such as high places and access control areas, measurements in high-speed rotating bodies such as turbines and motors, and measurements in sealed spaces such as in vacuum. It is.

(バルク体試験1)
先ず、バルク体からなる歪・応力センサについて、Cr添加量に応じた性能を評価した。歪・応力センサ用の試料としては、Sr1-XAl24においてX=0.02として、Cr添加割合を0.1、0.5、1.0、5.0at%とした4種類を合成した。
(Bulk body test 1)
First, the performance according to Cr addition amount was evaluated about the strain / stress sensor which consists of a bulk body. There are four types of strain / stress sensor samples, Sr 1-X Al 2 O 4 with X = 0.02 and Cr addition ratios of 0.1, 0.5, 1.0, 5.0 at%. Was synthesized.

Cr添加Sr1-XAl24の合成プロセスを示す。出発原料としてSrCO3(99.9%、高純度化学製)と、α−Al23(99.99%>、高純度化学製)と、Cr23(99.9%>、高純度化学製)との各粉体を、それぞれの化学量論組成に合致するよう秤量し、エタノールを分散媒体としてZrO2ボールとともにPET容器にて1時間混合した。混合後のスラリーに対して、130℃雰囲気中にてエタノールを飛散させて混合粉を抽出し、乳鉢にて粉砕しつつメッシュサイズ250μmのふるいにて整粒した。その後、直径30mmφ×厚み5mmtの形状に350kgf/mm2の圧力にて一軸プレス成形した。この成形体を昇温速度200℃/hにて900℃まで加熱して1時間保持させて仮焼し、炉冷速度にて降温させた。仮焼後の焼結体を再度乳鉢にて粉砕しメッシュサイズ250μmのふるいにて整粒してから、エタノールを分散媒体としてZrO2ボールおよびZrO2ポットミルにて24時間粉砕処理した。この粉砕後のスラリーを同じく130℃雰囲気中にてエタノールを飛散させて混合粉を抽出し、乳鉢にて粉砕しつつメッシュサイズ250μmのふるいにて整粒した。その後、直径20mmφ×厚み2mmtに500kgf/mm2の圧力にて一軸プレス成形した。この成形体の焼成(本焼)は、昇温速度を200℃/hとして1400℃まで加熱し、その温度を12時間保持してから、炉冷速度にて降温させるプロセスとした。焼成雰囲気はAr不活性雰囲気中とした。最後に、得られた焼結体を厚み0.5mmtの薄片状に加工して、酸化物系セラミックスを焼結したバルク体からなる歪・応力センサとした。これらの歪・応力センサを、模擬構造物としてのステンレス板(長さ150mmL×幅25mmW×厚み2mmt)に接着した。 The synthesis process of Cr added Sr 1-X Al 2 O 4 . As starting materials, SrCO 3 (99.9%, high purity chemical), α-Al 2 O 3 (99.99%>, high purity chemical), Cr 2 O 3 (99.9%>, high Each powder with a purity chemical) was weighed to match the respective stoichiometric composition, and mixed with ZrO 2 balls in a PET container for 1 hour using ethanol as a dispersion medium. The mixed slurry was extracted from the mixed slurry by dispersing ethanol in an atmosphere at 130 ° C., and sized with a sieve having a mesh size of 250 μm while being pulverized in a mortar. Thereafter, uniaxial press molding was performed at a pressure of 350 kgf / mm 2 into a shape of diameter 30 mmφ × thickness 5 mmt. The molded body was heated to 900 ° C. at a temperature rising rate of 200 ° C./h, held for 1 hour, calcined, and cooled at a furnace cooling rate. The sintered body after calcination was again pulverized in a mortar and sized with a sieve having a mesh size of 250 μm, and then pulverized for 24 hours with a ZrO 2 ball and ZrO 2 pot mill using ethanol as a dispersion medium. The ground slurry was similarly sprinkled with ethanol in a 130 ° C. atmosphere to extract a mixed powder, and sized with a sieve having a mesh size of 250 μm while being ground in a mortar. Thereafter, uniaxial press molding was performed at a pressure of 500 kgf / mm 2 to a diameter of 20 mmφ and a thickness of 2 mmt. Firing (main firing) of the molded body was a process of heating to 1400 ° C. at a temperature rising rate of 200 ° C./h, holding the temperature for 12 hours, and then lowering the temperature at the furnace cooling rate. The firing atmosphere was an Ar inert atmosphere. Finally, the obtained sintered body was processed into a thin piece having a thickness of 0.5 mm to obtain a strain / stress sensor composed of a bulk body obtained by sintering an oxide ceramic. These strain / stress sensors were bonded to a stainless steel plate (length 150 mmL × width 25 mmW × thickness 2 mmt) as a simulated structure.

得られた各歪・応力センサについて、蛍光特性評価システム(堀場製作所製、Fluorolog)によりPL発光スペクトルを観測した。励起光を250〜620nmの波長範囲として変化させ、それぞれの励起光にて得られるPL発光を650〜850nmの波長範囲にて観測した。代表的なPL発光スペクトルとして、1.0at%のCrを添加したSr0.98Al24の発光スペクトルを図2に示す。これらの結果より、励起波長350nm、発光波長770nmにおける発光強度を図3にグラフ化して示した。この図3の結果から、1.0at%Cr添加Sr1-XAl24における発光強度が最も高かった。 About each obtained strain / stress sensor, PL emission spectrum was observed with the fluorescence characteristic evaluation system (Horiba, Fluorolog). Excitation light was changed as a wavelength range of 250 to 620 nm, and PL emission obtained by each excitation light was observed in a wavelength range of 650 to 850 nm. As a typical PL emission spectrum, an emission spectrum of Sr 0.98 Al 2 O 4 to which 1.0 at% Cr is added is shown in FIG. From these results, the emission intensity at an excitation wavelength of 350 nm and an emission wavelength of 770 nm is graphed in FIG. From the results shown in FIG. 3, the emission intensity in Sr 1-X Al 2 O 4 containing 1.0 at% Cr was the highest.

(バルク体試験2)
次に、Cr添加割合を1.0at%に固定し、Cr添加Sr1-XAl24におけるSr欠損量(Xの値)を、X=0.02、0.05、0.2としてバルク体試験1と同様に合成した3種類の歪・応力センサについて、それぞれPL発光スペクトルを観測した。それらの発光強度を比較するために、励起波長350nm、発光波長770nmにおける発光強度を図4にグラフ化して示した。この図4の結果から、X=0.05としたCr添加Sr1-XAl24において最も発光強度が強かった。
(Bulk body test 2)
Next, the Cr addition ratio is fixed at 1.0 at%, and the amount of Sr deficiency (value of X) in Cr-added Sr 1-X Al 2 O 4 is set to X = 0.02, 0.05, 0.2. With respect to three types of strain / stress sensors synthesized in the same manner as in bulk body test 1, PL emission spectra were observed respectively. In order to compare the emission intensities, the emission intensities at an excitation wavelength of 350 nm and an emission wavelength of 770 nm are shown in a graph in FIG. From the result of FIG. 4, the emission intensity was the strongest in Cr-added Sr 1-X Al 2 O 4 with X = 0.05.

さらに、このSr欠損量を変えたCr添加Sr1-XAl24それぞれについて引張変形を与えるために、油圧式材料強度試験装置(MTS製、858)の上下動する油圧シリンダーに引張用のグリップアタッチメントを取り付け、その間に各試験片をセットして、図5に示すように引張変形を与えた。なお、符号1は模擬構造物としてのステンレス板、符号10は歪・応力センサ、符号100は試験片である。この油圧シリンダーの上下動を0.01mmステップで稼動させ、各試験片に定量的な引張歪を与えることができる。 Furthermore, in order to give tensile deformation to each of the Cr-added Sr 1-X Al 2 O 4 in which the amount of Sr deficiency is changed, a tensile force is applied to the hydraulic cylinder that moves up and down of the hydraulic material strength test apparatus (manufactured by MTS, 858). Grip attachments were attached, and each test piece was set between them to give tensile deformation as shown in FIG. Reference numeral 1 denotes a stainless steel plate as a simulated structure, reference numeral 10 denotes a strain / stress sensor, and reference numeral 100 denotes a test piece. The hydraulic cylinder can be moved up and down in steps of 0.01 mm to give a quantitative tensile strain to each test piece.

発光波長を計測する分光器には、CCDリニアイメージセンサにより200〜950nmの波長を一度に分光検出可能な分光器(浜松ホトニクス製、C10027−1)を採用した。各試験片に照射する励起光源としては、365nmに発光波長をもつUV−LED光源(浜松ホトニクス製、L9610)を使用した。   As the spectrometer for measuring the emission wavelength, a spectrometer (C10027-1, manufactured by Hamamatsu Photonics) capable of spectrally detecting a wavelength of 200 to 950 nm at a time using a CCD linear image sensor was adopted. As an excitation light source for irradiating each test piece, a UV-LED light source (manufactured by Hamamatsu Photonics, L9610) having an emission wavelength at 365 nm was used.

また、比較例1として、1.0at%Eu添加SrAl24からなる酸化物系セラミックスからなる歪・応力センサについても、同様に試験した。このEu添加Sr1-XAl24の合成プロセスでは、出発原料としてSrCO3(99.9%、高純度化学製)と、α−Al23(99.99%>、高純度化学製)と、Eu23(99.95%>、関東化学製)との各粉体を、それぞれの化学量論組成に合致するよう秤量し、その後はCr添加Sr1-XAl24と同様のプロセスによって製造した。ただし、Eu添加SrAl24成形体の焼成(本焼)は、昇温速度を200℃/hとして1300℃までの加熱とし、焼成雰囲気は4%H2+Ar還元雰囲気中とした。 Further, as Comparative Example 1, a strain / stress sensor made of an oxide ceramic made of 1.0 at% Eu-added SrAl 2 O 4 was also tested in the same manner. In this synthesis process of Eu-added Sr 1-X Al 2 O 4 , SrCO 3 (99.9%, manufactured by High Purity Chemical) and α-Al 2 O 3 (99.99%>, High Purity Chemical) are used as starting materials. And Eu 2 O 3 (99.95%>, manufactured by Kanto Chemical Co., Ltd.) are weighed to match the stoichiometric composition, and thereafter Cr-added Sr 1-X Al 2 O Manufactured by the same process as 4 . However, firing (main firing) of the Eu-added SrAl 2 O 4 shaped body was performed up to 1300 ° C. at a rate of temperature increase of 200 ° C./h, and the firing atmosphere was 4% H 2 + Ar reducing atmosphere.

これにより得られた引張歪に応じたPL発光スペクトルの波長をエネルギーに変換してガウス分布を仮定したフィッティングを行い、ガウス分布の中心波長としてピーク位置の波長を同定した。そのピーク波長のシフト量(縦軸)と引張歪の大きさ(横軸)との関係をまとめた結果を図6に示す。   The wavelength of the PL emission spectrum corresponding to the tensile strain thus obtained was converted into energy and fitting assuming a Gaussian distribution was performed, and the wavelength at the peak position was identified as the central wavelength of the Gaussian distribution. FIG. 6 shows the result of summarizing the relationship between the shift amount of the peak wavelength (vertical axis) and the magnitude of the tensile strain (horizontal axis).

図6の結果の傾きから、Sr欠損量x=0.02における単位歪(1%歪)あたりの波長変化(歪感度)は9.07nm/%(18.8meV/%)、x=0.05では7.89nm/%(16.4meV/%)、x=0.20では2.85nm/%(6.0meV/%)、比較例1としてのEu添加Sr1-XAl24では−2.29nm/%(−10.6meV/%)と見積もることができ、Cr添加Sr1-XAl24は比較例1よりも高い歪感度を有していることが確認された。この引張歪の増加に伴うPL発光スペクトルの変化にはヒステリシスのような履歴もなく、このPL発光スペクトルの時間変化を連続計測することで動的な歪に対する応答性を評価することも可能である。 From the slope of the result of FIG. 6, the wavelength change (strain sensitivity) per unit strain (1% strain) at the Sr deficit amount x = 0.02 is 9.07 nm /% (18.8 meV /%), and x = 0. In case of 05, 7.89 nm /% (16.4 meV /%), in case of x = 0.20, 2.85 nm /% (6.0 meV /%), and in the case of Eu addition Sr 1-X Al 2 O 4 as Comparative Example 1, It can be estimated as −2.29 nm /% (−10.6 meV /%), and it was confirmed that Cr-added Sr 1-X Al 2 O 4 has higher strain sensitivity than Comparative Example 1. There is no history such as hysteresis in the change in PL emission spectrum accompanying the increase in tensile strain, and it is also possible to evaluate the response to dynamic strain by continuously measuring the time change of this PL emission spectrum. .

(薄膜試験)
次に、構造物へ成膜により設置した形態の歪・応力センサについても評価した。ここでの組成としては、上記バルク体試験2の結果を参考に、1.0at%Cr添加Sr0.95Al24とした。一方、比較例2として、上記比較例1と同様に1.0at%Eu添加SrAl24とした。
(Thin film test)
Next, the strain / stress sensor in a form installed on the structure by film formation was also evaluated. The composition here was 1.0 at% Cr-added Sr 0.95 Al 2 O 4 with reference to the result of the bulk test 2. On the other hand, as Comparative Example 2, as in Comparative Example 1, 1.0 at% Eu-added SrAl 2 O 4 was used.

成膜の方法として、バルク体試験2におけるバルク体を粉砕した粉末をガラスフリットと混合し、その混合粉を構造物表面へ塗布して焼き付けるプロセスとした。まず、Cr添加Sr0.95Al24もしくはEu添加SrAl24の焼結体を粉砕した粉体を用意し、ガラスフリット(日本フリット(株)製JYM0005M:推奨焼成温度650〜900℃)に対して重量比で7:3の割合で混合した。さらに、この混合粉をビヒクル(テルピネオールに対してPVB 7wt%添加)中に分散させて、自動乳鉢で約20分間混練することで印刷用ペーストとし、SUS430(100×20×0.5mm)基材の中央に直径9mmの円としてスクリーン印刷した。ビヒクルの割合はガラスフリットに対して200wt%(2倍)とした。その印刷膜を120℃にて乾燥した。Cr添加Sr0.95Al24の印刷膜については雰囲気をAr中として、比較例2としてのEu添加SrAl24の印刷膜については雰囲気をAr+4%H2中として、それぞれ900℃(昇温350℃/h、降温は炉冷)にて2時間焼き付けた。 As a film forming method, a powder obtained by pulverizing a bulk body in bulk body test 2 was mixed with glass frit, and the mixed powder was applied to the surface of the structure and baked. First, a powder obtained by pulverizing a sintered body of Cr-added Sr 0.95 Al 2 O 4 or Eu-added SrAl 2 O 4 was prepared, and a glass frit (JYM0005M manufactured by Nippon Frit Co., Ltd .: recommended firing temperature of 650 to 900 ° C.) was prepared. The mixture was mixed at a weight ratio of 7: 3. Furthermore, this mixed powder is dispersed in a vehicle (added 7 wt% of PVB with respect to terpineol), and kneaded for about 20 minutes in an automatic mortar to obtain a printing paste. SUS430 (100 × 20 × 0.5 mm) base material The screen was printed as a circle with a diameter of 9 mm in the center. The ratio of the vehicle was 200 wt% (twice) with respect to the glass frit. The printed film was dried at 120 ° C. For the Cr-added Sr 0.95 Al 2 O 4 printed film, the atmosphere was Ar, and for the Eu-added SrAl 2 O 4 printed film as Comparative Example 2, the atmosphere was Ar + 4% H 2 , respectively, at 900 ° C. It was baked for 2 hours at 350 ° C./h, and the temperature was lowered in the furnace.

得られたCr添加Sr0.95Al24印刷膜及び比較例2の歪・応力センサに、バルク体試験2と同様に引張変形を与え、バルク体試験2と同様にして求めたピーク波長のシフト量(縦軸)と引張歪の大きさ(横軸)との関係をまとめた結果を図7に示す。図7の結果の傾きから、Cr添加Sr0.95Al24印刷膜における単位歪(1%歪)あたりの波長変化(歪感度)は2.11nm/%(4.4meV/%)、比較例2は−0.82nm/%(−3.8meV/%)と見積もることができ、Cr添加Sr0.95Al24印刷膜は比較例2よりも高い歪感度を有していることが確認された。 The obtained Cr-added Sr 0.95 Al 2 O 4 printed film and the strain / stress sensor of Comparative Example 2 were subjected to tensile deformation in the same manner as in bulk test 2, and the peak wavelength shift obtained in the same manner as in bulk test 2 was obtained. The result of summarizing the relationship between the amount (vertical axis) and the magnitude of the tensile strain (horizontal axis) is shown in FIG. From the slope of the results in FIG. 7, the wavelength change (strain sensitivity) per unit strain (1% strain) in the Cr-added Sr 0.95 Al 2 O 4 printed film is 2.11 nm /% (4.4 meV /%), Comparative Example 2 can be estimated to be −0.82 nm /% (−3.8 meV /%), and it was confirmed that the Cr-added Sr 0.95 Al 2 O 4 printed film has higher strain sensitivity than Comparative Example 2. It was.

1 構造物
10 歪・応力センサ
11 励起光
12 蛍光発光
100 試験片

DESCRIPTION OF SYMBOLS 1 Structure 10 Strain / stress sensor 11 Excitation light 12 Fluorescence emission 100 Test piece

Claims (8)

構造物に、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Sr1-XAl24(X=0.02〜0.20)にCrを0.1〜3.0at%添加した酸化物系セラミックスを含む歪・応力センサを設置し、
前記歪・応力センサに励起光を照射して蛍光発光させ、該発光波長を波長計測手段によって計測し、前記構造物に歪・応力が作用していない状態における基準発光波長に対する発光波長変化量とその変化の方向を計測することで、構造物に生じた静的および動的な歪ないし応力の計測とその方向性の判定を行う、構造物の歪・応力計測方法。
Sr 1-X Al 2 in which the emission wavelength varies when the structure is irradiated with excitation light according to the magnitude of strain / stress, and the variation direction of the emission wavelength varies depending on the direction of strain / stress. A strain / stress sensor including an oxide ceramic in which Cr is added to 0.1 to 3.0 at% in O 4 (X = 0.02 to 0.20 ),
The strain / stress sensor is irradiated with excitation light to emit fluorescence, the emission wavelength is measured by a wavelength measuring means, and the emission wavelength change amount with respect to a reference emission wavelength in a state in which no strain / stress acts on the structure; A structure strain / stress measurement method for measuring static and dynamic strain or stress generated in a structure and determining its direction by measuring the direction of the change.
前記Crの添加量が0.5〜1.5at%である、請求項1に記載の歪・応力計測方法。   The strain / stress measurement method according to claim 1, wherein the added amount of Cr is 0.5 to 1.5 at%. 前記歪・応力センサが、前記構造物に接着された、前記酸化物系セラミックスを焼結したバルク体からなる、請求項1または請求項2に記載の構造物の歪・応力計測方法。   3. The strain / stress measurement method for a structure according to claim 1, wherein the strain / stress sensor is formed of a bulk body obtained by sintering the oxide ceramics, which is bonded to the structure. 前記歪・応力センサは、前記構造物の表面に成膜された、前記酸化物系セラミックス粒子を含む薄膜である、請求項1または請求項2に記載の構造物の歪・応力計測方法。   3. The strain / stress measurement method for a structure according to claim 1, wherein the strain / stress sensor is a thin film including the oxide ceramic particles formed on a surface of the structure. 構造物に設置して該構造物に生じた引張及び圧縮方向の歪ないし応力を計測するための歪・応力センサであって、
歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Sr1-XAl24(X=0.02〜0.20)にCrを0.1〜3.0at%添加した酸化物系セラミックスを含む、歪・応力センサ。
A strain / stress sensor for measuring strain or stress in the tensile and compression directions generated in the structure when installed in the structure,
Sr 1-X Al 2 O 4 (X) in which the emission wavelength varies when the excitation light is irradiated according to the magnitude of strain / stress, and the variation direction of the emission wavelength varies depending on the direction of strain / stress. = including oxide-based ceramics and Cr added 0.1~3.0At% to .02-.20), strain and stress sensors.
前記Crの添加量が0.5〜1.5at%である、請求項5に記載の歪・応力センサ。   The strain / stress sensor according to claim 5, wherein the amount of Cr added is 0.5 to 1.5 at%. 前記酸化物系セラミックスを焼結したバルク体からなる、請求項5または請求項6に記載の構造物の歪・応力センサ。   The strain / stress sensor for a structure according to claim 5 or 6, comprising a bulk body obtained by sintering the oxide ceramic. 前記構造物の表面に成膜された前記酸化物系セラミックス粒子を含む薄膜からなる、請求項5または請求項6に記載の構造物の歪・応力センサ。   The strain / stress sensor for a structure according to claim 5 or 6, comprising a thin film containing the oxide-based ceramic particles formed on the surface of the structure.
JP2012270379A 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor Active JP6029962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270379A JP6029962B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270379A JP6029962B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Publications (2)

Publication Number Publication Date
JP2014115220A JP2014115220A (en) 2014-06-26
JP6029962B2 true JP6029962B2 (en) 2016-11-24

Family

ID=51171367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270379A Active JP6029962B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Country Status (1)

Country Link
JP (1) JP6029962B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256380B2 (en) 2015-02-26 2018-01-10 コニカミノルタ株式会社 Strain sensor and strain amount measuring method
US9557164B2 (en) * 2015-04-15 2017-01-31 General Electric Company Data acquisition devices, systems and method for analyzing strain sensors and monitoring turbine component strain
CN105181016A (en) * 2015-09-10 2015-12-23 南昌航空大学 Broadband fluorescence spectrum strain sensing method
CN108610023B (en) 2016-12-09 2021-07-23 深圳光峰科技股份有限公司 Preparation method of ceramic composite material, ceramic composite material and wavelength converter
CN106768512B (en) * 2017-02-08 2022-09-02 徐州工程学院 Display method of 12-point-direction 12-point-stress video display sensor device
JPWO2022219973A1 (en) * 2021-04-14 2022-10-20

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072568A (en) * 1997-03-03 2000-06-06 Howmet Research Corporation Thermal barrier coating stress measurement
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same
JP2003262558A (en) * 2002-03-11 2003-09-19 Railway Technical Res Inst Method and apparatus for detecting external force of structure body
JP4836117B2 (en) * 2005-11-28 2011-12-14 独立行政法人産業技術総合研究所 Method for producing high-luminance luminescent particles
JP5019504B2 (en) * 2006-04-14 2012-09-05 独立行政法人産業技術総合研究所 Method for producing nanoparticles
JP5627882B2 (en) * 2009-12-17 2014-11-19 一般財団法人ファインセラミックスセンター Strain / stress measurement method of structure, strain / stress sensor, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014115220A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6029962B2 (en) Strain / stress measurement method of structure and strain / stress sensor
Tu et al. LiNbO3: Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence
Xu et al. Direct view of stress distribution in solid by mechanoluminescence
Back et al. Effective ratiometric luminescent thermal sensor by Cr3+‐doped mullite Bi2Al4O9 with robust and reliable performances
JP5627882B2 (en) Strain / stress measurement method of structure, strain / stress sensor, and manufacturing method thereof
Yun et al. Stress sensing performance using mechanoluminescence of SrAl2O4: Eu (SAOE) and SrAl2O4: Eu, Dy (SAOED) under mechanical loadings
Xu et al. Dynamic visualization of stress distribution by mechanoluminescence image
CN105203041B (en) A kind of method of broadband fluorescence integrated intensity than measuring strain
Qiu et al. Cr 3+-Doped InTaO 4 phosphor for multi-mode temperature sensing with high sensitivity in a physiological temperature range
Hashemi et al. Temperature measurements using YAG: Dy and YAG: Sm under diode laser excitation (405 nm)
CN113292998B (en) Double-activated ion doped double-perovskite type fluorescent temperature probe material and preparation method and application thereof
CN111073642B (en) Novel self-calibration fluorescent temperature probe material and preparation method and application thereof
Chen et al. Mn4+-activated double-perovskite-type Sr2LuNbO6 multifunctional phosphor for optical probing and lighting
CN110184559A (en) Thermal barrier coating and its preparation method and application containing YAG:Ce
Cai et al. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model
Zhou et al. Optical properties of Nd3+ ions doped GdTaO4 for pressure and temperature sensing
CN105181016A (en) Broadband fluorescence spectrum strain sensing method
CN109764992A (en) A kind of residual stress lossless detection method for 3D printing zirconia ceramics structure
JP6000837B2 (en) Strain / stress measurement method of structure and strain / stress sensor
CN109945987B (en) Method for realizing high-sensitivity temperature measurement in higher temperature range
CN113403075B (en) Mn (manganese) 4+ -Sm 3+ Co-doped antimonate fluorescent temperature probe material and preparation method and application thereof
CN115029137B (en) High-sensitivity multi-parameter temperature probe fluorescent powder and preparation method and application thereof
WO2018070072A1 (en) Stress light-emitting material, stress light-emitter, and use of stress light-emitting material
Zhou et al. Optical pressure and temperature sensing properties of Nd 3+: YTaO 4
CN107603618B (en) A kind of no rare-earth fluorescent temperature-sensitive material and the preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R150 Certificate of patent or registration of utility model

Ref document number: 6029962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250