JP6015876B1 - Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium - Google Patents

Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP6015876B1
JP6015876B1 JP2016133749A JP2016133749A JP6015876B1 JP 6015876 B1 JP6015876 B1 JP 6015876B1 JP 2016133749 A JP2016133749 A JP 2016133749A JP 2016133749 A JP2016133749 A JP 2016133749A JP 6015876 B1 JP6015876 B1 JP 6015876B1
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic recording
less
glass
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016133749A
Other languages
Japanese (ja)
Other versions
JP2018005964A (en
Inventor
裕 黒岩
裕 黒岩
中島 哲也
哲也 中島
順 秋山
順 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2016133749A priority Critical patent/JP6015876B1/en
Priority to PCT/JP2016/072519 priority patent/WO2018008161A1/en
Application granted granted Critical
Publication of JP6015876B1 publication Critical patent/JP6015876B1/en
Publication of JP2018005964A publication Critical patent/JP2018005964A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Abstract

【課題】歪点以上の温度での加熱による変形を抑制した、磁気記録媒体用のガラス基板の提供。【解決手段】表層に化学強化による圧縮応力層を有し、中心に貫通穴のある円盤形状を有する磁気記録媒体用のガラス基板であって、ガラスの歪点(Ts)が585℃以上であって、内周端から径方向外側に0.2mmの位置および外周端から径方向内側に0.2mmの位置のそれぞれにおいて、主表面に対し垂直に波長543nmの光を照射して測定されるリタデーションの最大値が4nm以下であり、且つ、前記リタデーションの最大値と最小値との差の大きさが1.2nm以下であり、各主表面のうち、前記内周端から径方向外側に0.5mm以上離れ且つ前記外周端から径方向内側に0.5mm以上離れる全ての部分において、化学強化により導入された導入元素の深さ(λ)が3〜9μmである、磁気記録媒体用のガラス基板。【選択図】図1To provide a glass substrate for a magnetic recording medium, in which deformation due to heating at a temperature equal to or higher than a strain point is suppressed. A glass substrate for a magnetic recording medium having a compressive stress layer formed by chemical strengthening on a surface layer and having a disk shape with a through hole in the center, wherein the glass has a strain point (Ts) of 585 ° C. or higher. Retardation measured by irradiating light having a wavelength of 543 nm perpendicular to the main surface at a position 0.2 mm radially outward from the inner peripheral edge and 0.2 mm radially inner from the outer peripheral edge. The maximum value of the retardation is 4 nm or less, and the difference between the maximum value and the minimum value of the retardation is 1.2 nm or less. A glass substrate for a magnetic recording medium in which the depth (λ) of the introduced element introduced by chemical strengthening is 3 to 9 μm in all the portions that are separated by 5 mm or more and separated from the outer peripheral edge by 0.5 mm or more radially inward . [Selection] Figure 1

Description

本発明は、磁気記録媒体用のガラス基板、および磁気記録媒体の製造方法に関する。   The present invention relates to a glass substrate for a magnetic recording medium and a method for manufacturing the magnetic recording medium.

近年、磁気記録媒体の記録容量の増大に伴い、高記録密度化がハイペースで進行している。しかし、高記録密度化に伴い、磁性粒子の微細化が熱安定性を損ない、クロストークや再生信号のSN比低下が問題となっている。即ち、高記録密度化した場合には、1ビットを記録するための面積が減少するため、ガラス基板の主表面の凹凸や傷つきをより低減する必要生じている。 In recent years, with the increase in recording capacity of magnetic recording media, higher recording density has been progressing at a high pace. However, with increasing recording density, miniaturization of magnetic particles impairs thermal stability, and crosstalk and a decrease in the S / N ratio of a reproduction signal have become problems. That is, when the high recording density, because the area for recording the 1-bit reduced, need to further reduce scratching or unevenness of the main surface of the glass substrate occurs.

さらに、高記録密度化のために、光と磁気の融合技術として熱アシスト磁気記録技術が注目されている(例えば特許文献1参照)。これは、磁気記録層にレーザ光や近接場光を照射して局所的に加熱した部分の保磁力を低下させた状態で外部磁界を印加して記録し、GMR素子等で記録磁化を読み出す技術であり、高保磁力媒体に記録できるため、熱安定性を保ちながら磁性粒子を微細化することが可能となる。しかし、高保磁力媒体をガラス基板上に成膜するには、ガラス基板を高温に加熱する必要がある(例えば特許文献2参照)。   Furthermore, in order to increase the recording density, a heat-assisted magnetic recording technique is attracting attention as a fusion technique of light and magnetism (see, for example, Patent Document 1). This is a technique in which a magnetic recording layer is irradiated with a laser beam or near-field light and recorded by applying an external magnetic field in a state where the coercive force is lowered in a locally heated portion, and the recorded magnetization is read by a GMR element or the like. Since recording can be performed on a high coercive force medium, the magnetic particles can be miniaturized while maintaining thermal stability. However, in order to form a high coercive force medium on a glass substrate, it is necessary to heat the glass substrate to a high temperature (see, for example, Patent Document 2).

また、ガラス基板の薄板化や高速回転化が求められており、ガラス基板のフラッタリング特性の改善が求められている。フラッタリング特性とガラス基板の平坦度には密接な関係が有り、ガラス基板の平坦度を低く押さえることが要求される。   In addition, the glass substrate is required to be thinned and rotated at high speed, and the fluttering characteristics of the glass substrate are required to be improved. There is a close relationship between the fluttering characteristics and the flatness of the glass substrate, and it is required to keep the flatness of the glass substrate low.

高速回転時およびハンドリング時に破壊し難いことも要求され、そのため、ガラス基板には機械的強度の改善も要求される。機械的強度を向上するため、化学強化処理をガラス基板に施すことが提案されている。   It is also required that the glass substrate is difficult to break during high-speed rotation and handling. Therefore, the glass substrate is also required to have improved mechanical strength. In order to improve mechanical strength, it has been proposed to apply a chemical strengthening treatment to a glass substrate.

特許文献3では、化学強化層のばらつきをリタデーションにより評価し、良品を選別する方法が提案されている。   Patent Document 3 proposes a method of selecting non-defective products by evaluating the variation of the chemically strengthened layer by retardation.

国際公開第2013/140469号International Publication No. 2013/140469 国際公開第2014/129633号International Publication No. 2014/129633 特開2013−12260号公報JP2013-12260A

従来、化学強化層を有するガラス基板は、磁気記録媒体の製造工程において歪点以上の温度に加熱すると、大きく変形することがあった。   Conventionally, a glass substrate having a chemically strengthened layer may be greatly deformed when heated to a temperature equal to or higher than the strain point in the manufacturing process of the magnetic recording medium.

本発明は、上記課題に鑑みてなされたものであって、歪点以上の温度での加熱による変形を抑制した、磁気記録媒体用のガラス基板の提供を主な目的とする。   The present invention has been made in view of the above problems, and a main object of the present invention is to provide a glass substrate for a magnetic recording medium in which deformation due to heating at a temperature equal to or higher than the strain point is suppressed.

上記課題を解決するため、本発明の一態様によれば、
表層に化学強化による圧縮応力層を有し、中心に貫通穴のある円盤形状を有する磁気記録媒体用のガラス基板であって、
ガラスの歪点(Ts)が585℃以上であって、
内周端から径方向外側に0.2mmの位置および外周端から径方向内側に0.2mmの位置のそれぞれにおいて、主表面に対し垂直に波長543nmの光を照射して測定されるリタデーションの最大値が4nm以下であり、且つ、前記リタデーションの最大値と最小値との差の大きさが1.2nm以下であり、
各主表面のうち、前記内周端から径方向外側に0.5mm以上離れ且つ前記外周端から径方向内側に0.5mm以上離れる全ての部分において、化学強化により導入された導入元素の深さ(λ)が3〜9μmである、磁気記録媒体用のガラス基板が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A glass substrate for a magnetic recording medium having a compressive stress layer by chemical strengthening on a surface layer and having a disk shape with a through hole in the center,
The strain point (Ts) of the glass is 585 ° C. or higher,
Maximum retardation measured by irradiating light with a wavelength of 543 nm perpendicular to the main surface at a position 0.2 mm radially outward from the inner peripheral edge and a position 0.2 mm radially inner from the outer peripheral edge The value is 4 nm or less, and the magnitude of the difference between the maximum value and the minimum value of the retardation is 1.2 nm or less,
The depth of the introduced element introduced by chemical strengthening in all portions of each main surface that are separated by 0.5 mm or more radially outward from the inner peripheral end and 0.5 mm or more radially inward from the outer peripheral end. There is provided a glass substrate for a magnetic recording medium, wherein (λ) is 3 to 9 μm.

本発明の一態様によれば、歪点以上の温度での加熱による変形を抑制した、磁気記録媒体用のガラス基板が提供される。   According to one embodiment of the present invention, a glass substrate for a magnetic recording medium is provided in which deformation due to heating at a temperature equal to or higher than the strain point is suppressed.

一実施形態による磁気記録媒体の断面図である。1 is a cross-sectional view of a magnetic recording medium according to an embodiment. 一例によるガラス基板の導入元素の深さの測定方法の説明図である。It is explanatory drawing of the measuring method of the depth of the introductory element of the glass substrate by an example. 一例によるガラス基板の熱処理試験の説明図である。It is explanatory drawing of the heat processing test of the glass substrate by an example. 図3のIV−IV線に沿ったガラス基板の断面図である。It is sectional drawing of the glass substrate along the IV-IV line of FIG. 一例による熱処理試験の前後の、ガラス基板の一方の主表面の形状変化を示す図である。It is a figure which shows the shape change of one main surface of the glass substrate before and behind the heat processing test by an example. 一例による熱処理試験の前後の、各測定点の変化量を示す図である。It is a figure which shows the variation | change_quantity of each measurement point before and after the heat processing test by an example.

以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。本明細書において、数値範囲を表す「〜」はその前後の数値を含む範囲を意味する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In this specification, “to” representing a numerical range means a range including numerical values before and after the numerical range.

図1は、一実施形態による磁気記録媒体の断面図である。   FIG. 1 is a cross-sectional view of a magnetic recording medium according to an embodiment.

磁気記録媒体10は、エネルギーアシスト磁気記録方式の記録媒体である。エネルギーアシスト磁気記録方式は、エネルギー(熱)を与えることで磁気記録層14の保磁力を低下させ、この状態で外部磁界を印加して記録する方式であり、熱安定性を保ちながら磁性粒子を微細化できる。   The magnetic recording medium 10 is an energy assisted magnetic recording type recording medium. The energy-assisted magnetic recording system is a system in which the coercive force of the magnetic recording layer 14 is reduced by applying energy (heat), and recording is performed by applying an external magnetic field in this state. The magnetic particles are recorded while maintaining thermal stability. Can be miniaturized.

磁気記録媒体10は、大気雰囲気下のほか、不活性雰囲気下で使用できる。不活性雰囲気としては、窒素雰囲気、アルゴン雰囲気のほか、特に、原子量の小さいヘリウム雰囲気が回転に伴う気流の影響を小さくできるので好ましい。記録時および再生時の少なくとも一方の磁気記録媒体10の回転数は、7200〜20000rpmであってよい。   The magnetic recording medium 10 can be used not only in an air atmosphere but also in an inert atmosphere. As the inert atmosphere, in addition to a nitrogen atmosphere and an argon atmosphere, a helium atmosphere having a small atomic weight is particularly preferable because the influence of an air flow accompanying rotation can be reduced. The rotational speed of at least one of the magnetic recording media 10 at the time of recording and reproduction may be 7200 to 20000 rpm.

磁気記録媒体10は、例えば図1に示すようにガラス基板11、ヒートシンク層12、シード層13、磁気記録層14、および保護層15を有する。尚、磁気記録媒体10は、図1の構成に限定されない。磁気記録媒体10は、ガラス基板11と、磁気記録層14とを有していればよく、例えばヒートシンク層12、シード層13、および保護層15を有しなくてもよい。また、磁気記録媒体10は、ガラス基板11と磁気記録層14との間に、密着層、軟磁性裏打ち層、中間層などをさらに有してもよい。また、磁気記録媒体10は、ガラス基板11の両側に磁気記録層14を有してもよい。   The magnetic recording medium 10 includes a glass substrate 11, a heat sink layer 12, a seed layer 13, a magnetic recording layer 14, and a protective layer 15 as shown in FIG. The magnetic recording medium 10 is not limited to the configuration shown in FIG. The magnetic recording medium 10 only needs to have the glass substrate 11 and the magnetic recording layer 14. For example, the magnetic recording medium 10 may not have the heat sink layer 12, the seed layer 13, and the protective layer 15. The magnetic recording medium 10 may further include an adhesion layer, a soft magnetic backing layer, an intermediate layer, and the like between the glass substrate 11 and the magnetic recording layer 14. Further, the magnetic recording medium 10 may have a magnetic recording layer 14 on both sides of the glass substrate 11.

先ず、ガラス基板11について説明する。ガラス基板11は、表層に化学強化による圧縮応力層を有し、中心に貫通穴のある円盤形状を有する。ガラス基板11の寸法は、典型的には内径が20mm、外径が65mmもしくは95mm、厚みが0.635mmもしくは0.8mmである。   First, the glass substrate 11 will be described. The glass substrate 11 has a compression stress layer by chemical strengthening on the surface layer, and has a disk shape with a through hole in the center. The glass substrate 11 typically has an inner diameter of 20 mm, an outer diameter of 65 mm or 95 mm, and a thickness of 0.635 mm or 0.8 mm.

化学強化法としては、例えばイオン交換法などがある。イオン交換法は、ガラス基板11を処理液(例えば硝酸ナトリウム溶融塩や硝酸カリウム溶融塩、もしくはそれらの混合塩)に浸漬する。これにより、ガラスに含まれるイオン半径の小さなイオンがイオン半径の大きなイオンに交換される。例えば、ガラスに含まれるLiイオンがNaイオンに交換される。または、ガラスに含まれるNaイオンがKイオンに交換される。あるいは、その両方が行われる。イオン交換によって、Na、K、またはその両方の元素が導入され、圧縮応力層が形成される。化学強化法により元素が導入されると、その部位に圧縮応力が発生する。ガラス構造の緩和によって、発生する応力が弱められることがあるため、圧縮応力層の深さは、導入元素の深さより浅い、もしくは同じである。   Examples of the chemical strengthening method include an ion exchange method. In the ion exchange method, the glass substrate 11 is immersed in a treatment liquid (for example, a sodium nitrate molten salt, a potassium nitrate molten salt, or a mixed salt thereof). Thereby, ions with a small ion radius contained in the glass are exchanged for ions with a large ion radius. For example, Li ions contained in the glass are exchanged for Na ions. Alternatively, Na ions contained in the glass are exchanged for K ions. Or both. By ion exchange, elements of Na, K, or both are introduced, and a compressive stress layer is formed. When an element is introduced by the chemical strengthening method, compressive stress is generated at that site. Since the generated stress may be weakened due to the relaxation of the glass structure, the depth of the compressive stress layer is shallower than or equal to the depth of the introduced element.

化学強化により導入される元素(以下、単に「導入元素」とも呼ぶ)は、その深さλを浅くする観点から、Kのみであることが好ましい。また、ガラス中のLiO含有量を低くしガラスの歪点Tsを高くする観点からも、導入元素はKのみであることが好ましい。 The element introduced by chemical strengthening (hereinafter also simply referred to as “introduced element”) is preferably only K from the viewpoint of reducing the depth λ. Further, from the viewpoint of lowering the LiO 2 content in the glass and increasing the strain point Ts of the glass, the introduced element is preferably only K.

化学強化処理条件はガラス基板11の厚さなどに応じて適宜選定されるが、350〜550℃の処理液に0.1〜20時間、ガラス基板11を浸漬させることが典型的である。経済的な観点から、処理液の温度は好ましくは350〜500℃、浸漬時間は0.2〜16時間である。より好ましい浸漬時間は0.5〜10時間である。   The chemical strengthening treatment conditions are appropriately selected according to the thickness of the glass substrate 11 and the like, but it is typical to immerse the glass substrate 11 in a treatment liquid at 350 to 550 ° C. for 0.1 to 20 hours. From an economical viewpoint, the temperature of the treatment liquid is preferably 350 to 500 ° C., and the immersion time is 0.2 to 16 hours. A more preferable immersion time is 0.5 to 10 hours.

圧縮応力層は、ガラス基板11の表面の全てに形成されてよい。ガラス基板11は、表面として、両主表面11a、11b、内周接続面11c、および外周接続面11dを有する。両主表面11a、11bは、互いに平行とされる。   The compressive stress layer may be formed on the entire surface of the glass substrate 11. The glass substrate 11 has both main surfaces 11a and 11b, an inner peripheral connection surface 11c, and an outer peripheral connection surface 11d as surfaces. Both main surfaces 11a and 11b are parallel to each other.

内周接続面11cは、両主表面11a、11bの内周縁同士をつなぐ。内周接続面11cは、例えば図1に示すように、両主表面11a、11bに対して垂直な垂直面を有し、その垂直面と各主表面11a、11bとの間に各主表面11a、11bに対し傾斜した傾斜面をさらに有する。尚、内周接続面11cは、傾斜面と主表面11a、11bとの間、および傾斜面と垂直面との間のそれぞれに、湾曲面を有してもよい。また、内周接続面11cは、垂直面や傾斜面を有しなくてもよく、全体的に断面円弧状の湾曲面を有してもよい。幅W1は、ガラス基板11の径方向(図1の左右方向)における内周接続面11cの幅を表す。   The inner peripheral connection surface 11c connects the inner peripheral edges of both the main surfaces 11a and 11b. For example, as shown in FIG. 1, the inner peripheral connection surface 11c has a vertical surface perpendicular to both the main surfaces 11a and 11b, and each main surface 11a is between the vertical surface and each main surface 11a and 11b. , 11b. The inner peripheral connection surface 11c may have curved surfaces between the inclined surface and the main surfaces 11a and 11b and between the inclined surface and the vertical surface. Moreover, the inner peripheral connection surface 11c does not need to have a vertical surface or an inclined surface, and may have a curved surface having an arcuate cross section as a whole. The width W1 represents the width of the inner peripheral connection surface 11c in the radial direction of the glass substrate 11 (left and right direction in FIG. 1).

外周接続面11dは、両主表面11a、11bの外周縁同士をつなぐ。外周接続面11dは、例えば図1に示すように、両主表面11a、11bに対して垂直な垂直面を有し、その垂直面と各主表面11a、11bとの間に各主表面11a、11bに対し傾斜した傾斜面をさらに有する。尚、外周接続面11dは、傾斜面と主表面11a、11bとの間、および傾斜面と垂直面との間のそれぞれに、湾曲面を有してもよい。また、外周接続面11dは、垂直面や傾斜面を有しなくてもよく、全体的に断面円弧状の湾曲面を有してもよい。幅W2は、ガラス基板11の径方向(図1の左右方向)における外周接続面11dの幅を表す。   11 d of outer periphery connection surfaces connect the outer periphery of both the main surfaces 11a and 11b. For example, as shown in FIG. 1, the outer peripheral connection surface 11d has a vertical surface perpendicular to both the main surfaces 11a and 11b, and the main surfaces 11a and 11b are arranged between the vertical surface and the main surfaces 11a and 11b. It further has an inclined surface inclined with respect to 11b. The outer peripheral connection surface 11d may have curved surfaces between the inclined surface and the main surfaces 11a and 11b and between the inclined surface and the vertical surface. Moreover, the outer peripheral connection surface 11d does not need to have a vertical surface or an inclined surface, and may have a curved surface having an arcuate cross section as a whole. The width W2 represents the width of the outer peripheral connection surface 11d in the radial direction of the glass substrate 11 (left-right direction in FIG. 1).

ガラス基板11のガラスの歪点Tsは585℃以上である。585℃未満では、磁気記録層14の成膜プロセスにおいて、成膜温度を低く抑える必要があり、保磁力の高い磁気記録層14の成膜が困難になるおそれがある。   The strain point Ts of the glass of the glass substrate 11 is 585 ° C. or higher. If it is lower than 585 ° C., it is necessary to keep the film forming temperature low in the film forming process of the magnetic recording layer 14, which may make it difficult to form the magnetic recording layer 14 having a high coercive force.

歪点Tsは、好ましくは600℃以上、より好ましくは635℃以上、さらに好ましくは650℃以上、特に好ましくは655℃以上、一層好ましくは660℃以上である。歪点Tsが635℃以上であると、650℃以上での磁気記録層14の成膜が可能になり、磁気記録層14の品質向上に寄与する。歪点Tsは、ガラス製造時の成形性の観点から、好ましくは750℃以下、より好ましくは720℃以下、さらに好ましくは700℃以下である。   The strain point Ts is preferably 600 ° C. or higher, more preferably 635 ° C. or higher, further preferably 650 ° C. or higher, particularly preferably 655 ° C. or higher, more preferably 660 ° C. or higher. When the strain point Ts is 635 ° C. or higher, the magnetic recording layer 14 can be formed at 650 ° C. or higher, which contributes to improving the quality of the magnetic recording layer 14. The strain point Ts is preferably 750 ° C. or lower, more preferably 720 ° C. or lower, and still more preferably 700 ° C. or lower, from the viewpoint of moldability during glass production.

本発明者は、ガラス基板11の化学強化後の内外周端近傍の応力分布によるリタデーションと、ガラス基板11の化学強化による導入元素の深さλとをそれぞれ適切に調整することで、歪点Ts以上の温度での加熱による変形を抑制できることを見出した。ガラス基板11の化学強化後の内外周端近傍の応力分布に着目したのは、ガラス基板11の内外周端近傍では、内外周端から遠い部分に比べて、表面粗さが粗いので、化学強化後の応力の異方性が大きくなるためである。   The inventor appropriately adjusts the retardation due to the stress distribution in the vicinity of the inner and outer peripheral edges after the chemical strengthening of the glass substrate 11 and the depth λ of the introduced element due to the chemical strengthening of the glass substrate 11, respectively. It has been found that deformation due to heating at the above temperature can be suppressed. Focusing on the stress distribution in the vicinity of the inner and outer peripheral edges of the glass substrate 11 after chemical strengthening is because the surface roughness is rougher in the vicinity of the inner and outer peripheral edges of the glass substrate 11 than in the portion far from the inner and outer peripheral ends. This is because the later stress anisotropy increases.

ガラス基板11の応力の異方性は、ガラス基板11のリタデーションで表すことができる。ガラス基板11のリタデーションは、主表面11a、11bに対し垂直に波長543nmの光を照射し、直交する2つの直線偏波の位相差を検出することで測定する。   The anisotropy of the stress of the glass substrate 11 can be represented by the retardation of the glass substrate 11. The retardation of the glass substrate 11 is measured by irradiating light with a wavelength of 543 nm perpendicularly to the main surfaces 11a and 11b and detecting the phase difference between two orthogonal linearly polarized waves.

先ず、ガラス基板11のリタデーションについて説明する。以下、ガラス基板11の内周端11eから径方向外側に0.2mmの位置でのリタデーションをRI0.2と表記する。RI0.2は、周方向全周に亘って測定する。RI0.2の最大値をRI0.2MAX、RI0.2の最小値をRI0.2MIN、RI0.2の最大値と最小値との差の大きさをRI0.2DEFと表記する。また、ガラス基板11の外周端11fから径方向内側に0.2mmの位置でのリタデーションをRO0.2と表記する。RO0.2は、周方向全周に亘って測定する。RO0.2の最大値をRO0.2MAX、RO0.2の最小値をRO0.2MIN、RO0.2の最大値と最小値との差の大きさをRO0.2DEFと表記する。 First, retardation of the glass substrate 11 will be described. Hereinafter, the retardation at a position 0.2 mm radially outward from the inner peripheral end 11e of the glass substrate 11 is denoted as RI 0.2 . RI 0.2 is measured over the entire circumference. The maximum value of RI 0.2 is expressed as RI 0.2MAX , the minimum value of RI 0.2 is expressed as RI 0.2MIN , and the difference between the maximum value and the minimum value of RI 0.2 is expressed as RI 0.2DEF . . Further, the retardation at a position of 0.2 mm radially inward from the outer peripheral end 11f of the glass substrate 11 is expressed as RO 0.2 . RO 0.2 is measured over the entire circumference. The maximum value of RO 0.2 is expressed as RO 0.2MAX , the minimum value of RO 0.2 is expressed as RO 0.2MIN , and the difference between the maximum value and the minimum value of RO 0.2 is expressed as RO 0.2DEF . .

ガラス基板11は、RI0.2MAXおよびRO0.2MAXがそれぞれ4nm以下であって、且つRI0.2DEFおよびRO0.2DEFがそれぞれ1.2nm以下である。よって、ガラス基板11の内外周端近傍において応力の異方性が小さく且つそのばらつきも小さく、これらの影響による熱処理時のガラス基板11の変形を抑制できる。すなわち、化学強化したガラス基板を歪点Ts以上の温度で加熱したときの変形を抑制できる。 In the glass substrate 11, RI 0.2MAX and RO 0.2MAX are each 4 nm or less, and RI 0.2DEF and RO 0.2DEF are 1.2 nm or less, respectively. Therefore, the anisotropy of stress is small in the vicinity of the inner and outer peripheral edges of the glass substrate 11 and the variation thereof is small, and deformation of the glass substrate 11 during heat treatment due to these influences can be suppressed. That is, it is possible to suppress deformation when the chemically strengthened glass substrate is heated at a temperature equal to or higher than the strain point Ts.

RI0.2MAXおよびRO0.2MAXは、好ましくは3.5nm以下、より好ましくは3nm以下、さらに好ましくは2.5nm、特に好ましくは2nm、一層好ましくは1.5nmである。 RI 0.2MAX and RO 0.2MAX are preferably 3.5 nm or less, more preferably 3 nm or less, still more preferably 2.5 nm, particularly preferably 2 nm, and still more preferably 1.5 nm.

また、RI0.2DEFおよびRO0.2DEFは、好ましくは1.1nm以下、より好ましくは1.0nm以下、さらに好ましくは0.9nm以下、特に好ましくは0.8nm以下、一層好ましくは0.7nm以下である。 Further, RI 0.2DEF and RO 0.2DEF are preferably 1.1 nm or less, more preferably 1.0 nm or less, still more preferably 0.9 nm or less, particularly preferably 0.8 nm or less, and more preferably 0.7 nm. It is as follows.

RI0.2は、化学強化前の、両主表面11a、11bと内周接続面11cとの表面粗さの差などに依存する。同様に、RO0.2は、化学強化前の、両主表面11a、11bと外周接続面11dとの表面粗さの差などに依存する。表面が粗いほどイオン交換が進みやすく、表面粗さの差が大きいほど化学強化後の応力の異方性が大きくなる。従って、RI0.2やRO0.2を小さくするためには、内周接続面11cや外周接続面11dを、両主表面11a、11bと同様に化学強化前に鏡面研磨することが有効である。 RI 0.2 is chemically strengthened prior to and depends on the difference in surface roughness between the both main surfaces 11a, 11b and the inner circumferential connecting surface 11c. Similarly, RO 0.2 depends on a difference in surface roughness between the main surfaces 11a and 11b and the outer peripheral connection surface 11d before chemical strengthening. As the surface is rougher, ion exchange is more likely to proceed, and as the difference in surface roughness is greater, the anisotropy of stress after chemical strengthening is greater. Therefore, in order to reduce RI 0.2 and RO 0.2 , it is effective to mirror-polish the inner peripheral connection surface 11c and the outer peripheral connection surface 11d before chemical strengthening in the same manner as the two main surfaces 11a and 11b. is there.

尚、RI0.2やRO0.2を小さくするためには、化学強化時に、内周接続面11cおよびその近傍、ならびに外周接続面11dおよびその近傍を粘土などの保護層で保護することも有効である。また、化学強化後に、内周接続面11cおよびその近傍、ならびに外周接続面11dおよびその近傍をエッチングすることも有効である。 In order to reduce RI 0.2 and RO 0.2 , the inner peripheral connection surface 11c and its vicinity, and the outer peripheral connection surface 11d and its vicinity may be protected with a protective layer such as clay during chemical strengthening. It is valid. It is also effective to etch the inner peripheral connection surface 11c and its vicinity and the outer peripheral connection surface 11d and its vicinity after chemical strengthening.

RI0.2は、幅W1の影響をうける。幅W1が小さいほど、RI0.2が小さくなる。同様に、RO0.2は、幅W2の影響をうける。幅W2が小さいほど、RO0.2が小さくなる。幅W1および幅W2は、それぞれ、好ましくは0.15mm以下、より好ましくは0.12mm以下、さらに好ましくは0.10mm以下、特に好ましくは0.08mm以下、一層好ましくは0.06mm以下である。また、幅W1および幅W2は、それぞれ、ガラス基板11の欠けを防止する観点から、0.03mm以上である。 RI 0.2 is affected by the width W1. The smaller the width W1, the smaller the RI 0.2 . Similarly, RO 0.2 is affected by the width W2. The smaller the width W2, the smaller the RO 0.2 . Each of the width W1 and the width W2 is preferably 0.15 mm or less, more preferably 0.12 mm or less, further preferably 0.10 mm or less, particularly preferably 0.08 mm or less, and further preferably 0.06 mm or less. The width W1 and the width W2 are each 0.03 mm or more from the viewpoint of preventing the glass substrate 11 from being chipped.

幅W1や幅W2が0.08mm以下である場合、内周端11eから径方向外側に0.1mmの位置でのリタデーションRI0.1や外周端11fから径方向内側に0.1mmの位置でのリタデーションRO0.1が重要である。RI0.1やRO0.1は、周方向全周に亘って測定する。以下、RI0.1の最大値をRI0.1MAX、RI0.1の最小値をRI0.1MIN、RI0.1の最大値と最小値との差の大きさをRI0.1DEFと表記する。また、RO0.1の最大値をRO0.1MAX、RO0.1の最小値をRO0.1MIN、RO0.1の最大値と最小値との差の大きさをRO0.1DEFと表記する。 When the width W1 or the width W2 is 0.08 mm or less, the retardation RI is 0.1 at a position 0.1 mm radially outward from the inner peripheral end 11e and the position is 0.1 mm radially inward from the outer peripheral end 11f. A retardation RO of 0.1 is important. RI 0.1 and RO 0.1 are measured over the entire circumference. Hereinafter, the maximum value of the RI 0.1 RI 0.1MAX, minimum value RI 0.1 min of RI 0.1, the magnitude of the difference between the maximum value and the minimum value of the RI 0.1 and RI 0.1DEF write. The maximum value RO 0.1MAX of RO 0.1, the minimum value RO 0.1 min of RO 0.1, the magnitude of the difference between the maximum value and the minimum value of RO 0.1 and RO 0.1DEF write.

RI0.1MAXおよびRO0.1MAXは、それぞれ、好ましくは5nm以下、より好ましくは4.5nm以下、さらに好ましくは4nm以下、特に好ましくは3.5nm、一層好ましくは3nmである。RI0.1MAXおよびRO0.1MAXは、低いほどよいが、典型的には0.1nm以上である。 RI 0.1MAX and RO 0.1MAX are each preferably 5 nm or less, more preferably 4.5 nm or less, further preferably 4 nm or less, particularly preferably 3.5 nm, and more preferably 3 nm. The lower the RI 0.1MAX and the RO 0.1MAX , the better, but typically 0.1 nm or more.

RI0.1DEFおよびRO0.1DEFは、それぞれ、好ましくは、2.5nm以下、より好ましくは2.0nm以下、さらに好ましくは1.5nm以下、特に好ましくは1.0nm以下、一層好ましくは0.8nm以下である。 RI 0.1DEF and RO 0.1DEF are each preferably 2.5 nm or less, more preferably 2.0 nm or less, still more preferably 1.5 nm or less, particularly preferably 1.0 nm or less, and still more preferably 0. 8 nm or less.

次に、ガラス基板11の化学強化による導入元素の深さλについて説明する。各主表面11a、11bのうち、内周端11eから径方向外側に0.5mm以上離れ且つ外周端11fから径方向内側に0.5mm以上離れる全ての部分において、導入元素の深さλが3〜9μmである。これにより、化学強化後のガラス基板を歪点Ts以上の温度で加熱したときの変形を抑制できる。その理由は、導入元素の導入量が適量であり、化学強化後の熱処理時にガラス基板11の応力を吸収するように導入元素(より詳細には導入元素のイオン)が適度に移動するためと考えられる。尚、熱処理時にガラス基板11にかかる応力は、加熱ムラや支持ムラ、重力などによって生じる。   Next, the depth λ of the introduced element due to the chemical strengthening of the glass substrate 11 will be described. Of all the main surfaces 11a and 11b, the depth λ of the introduced element is 3 in all the portions that are 0.5 mm or more away from the inner peripheral end 11e radially outward and 0.5 mm or more away from the outer peripheral end 11f radially inward. ~ 9 μm. Thereby, a deformation | transformation when the glass substrate after chemical strengthening is heated at the temperature more than the strain point Ts can be suppressed. The reason is that the introduced amount of the introduced element is an appropriate amount, and the introduced element (more specifically, ions of the introduced element) moves moderately so as to absorb the stress of the glass substrate 11 during the heat treatment after chemical strengthening. It is done. The stress applied to the glass substrate 11 during the heat treatment is caused by uneven heating, uneven support, gravity, and the like.

導入元素の深さλは、好ましくは3.5μm以上、より好ましくは4μm以上、更に好ましくは4.5μm以上、特に好ましくは5μm以上である。   The depth λ of the introduced element is preferably 3.5 μm or more, more preferably 4 μm or more, still more preferably 4.5 μm or more, and particularly preferably 5 μm or more.

導入元素の深さλは、ガラス基板11の切断面を板厚方向に化学組成分析すること、またはガラス基板11の主表面11a、11bを深さ方向にエッチングしながら化学組成分析することで測定される。切断面の化学組成分析には、電子線マイクロアナライザ分析(EPMA)、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM−EDX)等が用いられる。また、エッチングを伴う化学組成分析には、X線光電子分光分析(XPS)等が用いられる。イオン交換により導入された元素がエッチング時に移動するのを抑制するため、エッチングはC60でのエッチングが好ましい。 The depth λ of the introduced element is measured by analyzing the chemical composition of the cut surface of the glass substrate 11 in the plate thickness direction or by analyzing the chemical composition while etching the main surfaces 11a and 11b of the glass substrate 11 in the depth direction. Is done. For the chemical composition analysis of the cut surface, electron microanalyzer analysis (EPMA), scanning electron microscope / energy dispersive X-ray spectroscopy (SEM-EDX), or the like is used. For chemical composition analysis involving etching, X-ray photoelectron spectroscopy (XPS) or the like is used. In order to suppress movement of elements introduced by ion exchange during etching, etching at C 60 is preferable.

図2は、一例によるガラス基板の導入元素の深さの測定方法の説明図である。図2(a)は全体図、図2(b)は一部拡大図である。   FIG. 2 is an explanatory diagram of a method for measuring the depth of an introduced element in a glass substrate according to an example. 2A is an overall view, and FIG. 2B is a partially enlarged view.

先ず、図2(a)に示すように、主表面11a、11bから深さ方向に0.1μm毎に導入元素の濃度を測定する。測定値が低下してほぼ一定になった深さからさらに深さ21μm分まで濃度を測定する。但し、ほぼ一定になった深さが9μm未満の場合には、深さ30μmまでの濃度を測定する。なお、図2(a)および図2(b)では0.1μm毎に導入元素の濃度を全てプロットすると、表示点が増えすぎて、図が見づらくなるので、間引きしてプロットしている。   First, as shown in FIG. 2A, the concentration of the introduced element is measured every 0.1 μm in the depth direction from the main surfaces 11a and 11b. The concentration is measured from the depth at which the measured value decreases to a substantially constant level to a depth of 21 μm. However, when the substantially constant depth is less than 9 μm, the concentration up to 30 μm is measured. In FIGS. 2A and 2B, if all the concentrations of the introduced elements are plotted every 0.1 μm, the number of display points increases and it becomes difficult to see the figure.

次いで、図2(a)に示すL(μm)を、「L=(ΔC/10)+CMIN」の式から求める。ここで、ΔCは表面から測定した一番深いところ(この例では深さ30μm)までの最大濃度CMAXと最小濃度CMINとの差の大きさを表す。Lは、小数点以下2桁以上を切り捨てる。 Next, L (μm) shown in FIG. 2A is obtained from the equation “L = (ΔC / 10) + C MIN ”. Here, ΔC represents the magnitude of the difference between the maximum density C MAX and the minimum density C MIN up to the deepest point measured from the surface (in this example, the depth is 30 μm). L is rounded down to two decimal places.

次いで、図2(a)に示すように、深さがLよりも10μm深い位置から、深さがLよりも20μm深い位置までの濃度の平均値CAVEを求める。 Next, as shown in FIG. 2A, the average value C AVE of the density from the position where the depth is 10 μm deeper than L to the position where the depth is 20 μm deeper than L is obtained.

最後に、図2(b)に示すように、深さが0.75×Lの位置から深さが1.05×Lの位置までの濃度分布を最小二乗直線LSで近似し、その最小二乗直線LS上において濃度がCAVEとなる深さを導入深さλとする。 Finally, as shown in FIG. 2B, the density distribution from the position where the depth is 0.75 × L to the position where the depth is 1.05 × L is approximated by a least square line LS, and the least square is obtained. concentration and C AVE and introduce a depth becomes deep λ on the straight line LS.

尚、導入元素が複数種類である場合、そのうち、より深く侵入している導入元素の深さを、導入元素の深さλとする。   In addition, when there are a plurality of introduced elements, the depth of the introduced element that has penetrated deeper is the depth λ of the introduced element.

ところで、導入元素は、化学強化後の熱処理時にガラス内でイオン交換しながら移動すると考えられる。導入元素がNaである場合、イオン交換される元素はLiである。導入元素がKである場合、イオン交換される元素はNaである。導入元素がNaとKの両方である場合、イオン交換される元素はLiとNaの両方である。導入元素の移動量は、下記の式(1)で算出されるXで表される。
X=CA×CB×(CC/CD)×λ/d・・・(1)
上記式(1)において、ガラスの組成を酸化物換算で表したときの全酸化物の合計のモル数を100としたときの、ガラス中のAlのモル数をCA、ガラス中のイオン交換される元素の酸化物換算のモル数をCB、ガラス中のMgOのモル数をCC、ガラス中のMgOとCaOの合計のモル数をCDで夫々表す。これらの値は、導入元素が導入された深さよりも深い位置において計測する。Alはイオン交換を促進するため、CAが大きいほど、導入元素が移動しやすい。CBは、イオン交換される元素が複数である(例えばLiとNaの両方である)場合、その複数の元素の合計の含有量である。CBが大きいほど、イオン交換される元素の量が多いので、導入元素の移動が進みやすい。アルカリ土類元素の酸化物のうち、CaOよりもMgOのほうがイオン交換しやすくするはたらきが強い。よって、CC/CDが大きいほど、導入元素が移動しやすい。一方、λはイオン交換による導入元素の深さ(μm)、dはガラス基板11の厚み(μm)であって、λ/dは導入元素の導入量を相対的に表す。λ/dが大きいほど、導入元素の導入量が相対的に多く、導入元素の移動量が相対的に大きい。
By the way, it is considered that the introduced element moves while exchanging ions in the glass during the heat treatment after chemical strengthening. When the introduced element is Na, the element to be ion exchanged is Li. When the introduced element is K, the element to be ion exchanged is Na. When the introduced elements are both Na and K, the elements to be ion exchanged are both Li and Na. The amount of movement of the introduced element is represented by X calculated by the following formula (1).
X = CA × CB × (CC / CD) × λ / d (1)
In the above formula (1), when the total number of moles of all oxides when the glass composition is expressed in terms of oxide is 100, the number of moles of Al 2 O 3 in the glass is CA, The number of moles in terms of oxide of the element to be ion-exchanged is represented by CB, the number of moles of MgO in the glass by CC, and the total number of moles of MgO and CaO in the glass by CD. These values are measured at a position deeper than the depth at which the introduced element is introduced. Since Al 2 O 3 promotes ion exchange, the larger the CA, the easier the introduced element moves. CB is the total content of the plurality of elements when there are a plurality of elements to be ion-exchanged (for example, both Li and Na). The greater the CB, the greater the amount of elements that are ion-exchanged, and the easier it is for the introduced element to move. Of the oxides of alkaline earth elements, MgO has a stronger function to facilitate ion exchange than CaO. Therefore, the larger the CC / CD, the easier the introduced element moves. On the other hand, λ is the depth (μm) of the introduced element by ion exchange, d is the thickness (μm) of the glass substrate 11, and λ / d relatively represents the introduced amount of the introduced element. The larger the λ / d is, the more the introduced element is introduced and the more the introduced element is moved.

Xは、導入元素の移動のしやすさと、導入元素の導入量との積である。化学強化後の熱処理時に、導入元素が適度に移動することで、ガラス基板の変形が抑制できるように、Xは、好ましくは0.1〜1.3である。Xは、より好ましくは0.15以上、さらに好ましくは0.2以上、特に好ましくは0.3以上である。また、Xは、より好ましくは1.1以下、さらに好ましくは0.9以下、特に好ましくは0.8以下、一層好ましくは0.7以下である。CAが8以上の場合、導入元素が非常に移動しやすくなるため、Xは0.4以下が好ましく、0.35以下がさらに好ましく、0.3以下が特に好ましく、0.25以下が一層好ましい。CAが7以下の場合、導入元素が移動しにくくなるため、ガラス基板の変形が抑制できるように、Xは0.35以上がより好ましく、0.45以上がさらに好ましく、0.55以上が特に好ましく、0.6以上が一層好ましい。   X is the product of the ease of movement of the introduced element and the amount of introduced element introduced. X is preferably 0.1 to 1.3 so that the deformation of the glass substrate can be suppressed by appropriately moving the introduced element during the heat treatment after chemical strengthening. X is more preferably 0.15 or more, further preferably 0.2 or more, and particularly preferably 0.3 or more. X is more preferably 1.1 or less, still more preferably 0.9 or less, particularly preferably 0.8 or less, and still more preferably 0.7 or less. When CA is 8 or more, the introduced element is very easy to move. Therefore, X is preferably 0.4 or less, more preferably 0.35 or less, particularly preferably 0.3 or less, and further preferably 0.25 or less. . When CA is 7 or less, since the introduced element is difficult to move, X is more preferably 0.35 or more, further preferably 0.45 or more, and particularly preferably 0.55 or more so that the deformation of the glass substrate can be suppressed. Preferably, 0.6 or more is more preferable.

ガラス基板11のガラスとしては、例えばSiOとAlとを主成分として含有するアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、化学強化前に、酸化物基準のモル%表示でNaOおよびLiOを1〜25%含有するものであってよい。 As the glass of the glass substrate 11, for example, aluminosilicate glass containing SiO 2 and Al 2 O 3 as main components is used. Aluminosilicate glass before the chemical strengthening may be one which contains 1% to 25% of Na 2 O and Li 2 O in mol% based on oxides.

ガラス基板11は、導入元素が導入された深さよりも深い位置において、酸化物基準のモル%表示で、SiOを60〜75%、Alを5〜15%、Bを0〜12%、MgOを0〜20%、CaOを0〜12%、SrOを0〜10%、BaOを0〜10%、NaOは0%を超え20%以下、KOを0〜10%、LiOを0〜15%、TiOを0〜5%、ZrOを0〜5%含有し、かつ、これらを合計で95%以上含有し、NaOおよびLiOの含有量の合計が1〜25%であることが好ましい。 The glass substrate 11 is expressed in mol% on the basis of oxide at a position deeper than the depth at which the introduced element is introduced, and SiO 2 is 60 to 75%, Al 2 O 3 is 5 to 15%, and B 2 O 3 is 0-12%, 0-20% of MgO, the CaO 0-12%, 0% of SrO, 0% of BaO, Na 2 O 20% more than 0% or less, the K 2 O 0 10%, Li 2 O 0-15%, TiO 2 0-5%, ZrO 2 0-5%, and a total of 95% or more of these, Na 2 O and Li 2 O The total content of is preferably 1 to 25%.

ガラス基板11は、導入元素が導入された深さよりも深い位置において、酸化物基準のモル%表示で、SiOを65〜70%、Alを6〜12%、Bを0〜3%、MgOを1〜18%、CaOを0〜10%、SrOを0〜6%、BaOを0〜2%、NaOを0.5〜12%、KOを0〜3%、LiOを0〜5%、TiOを0〜3%、ZrOを0〜3%含有し、かつ、これらを合計で95%以上含有し、NaOおよびLiOの含有量の合計が2〜15%であることがより好ましい。 The glass substrate 11 has a SiO 2 content of 65 to 70%, an Al 2 O 3 content of 6 to 12%, and a B 2 O 3 content of not less than the depth at which the introduced element is introduced and expressed in terms of oxide-based mol%. 0 to 3%, MgO 1 to 18%, CaO 0 to 10%, SrO 0 to 6%, BaO 0 to 2%, Na 2 O 0.5 to 12%, K 2 O 0 to 0% 3%, Li 2 O 0-5%, TiO 2 0-3%, ZrO 2 0-3%, and a total of 95% or more of these, Na 2 O and Li 2 O The total content is more preferably 2 to 15%.

次に、ガラス基板11の各成分について説明する。各成分の説明において、%はモル%を意味する。   Next, each component of the glass substrate 11 will be described. In the description of each component,% means mol%.

SiOは、ガラスの骨格を形成する必須成分である。SiOの含有量が60%未満の場合、耐酸性が著しく低下しやすく、歪点Tsが低下しやすく、傷が生じやすくなる。また、この場合、液相温度が上昇すると共に、温度T(粘度が10dPa・sとなる温度)および温度T(粘度が10dPa・sとなる温度)が低下しやすく、失透が生じやすくなる。従って、SiOの含有量は、60%以上、好ましくは63%以上、より好ましくは66%以上、さらに好ましくは67%以上、特に好ましくは68%以上である。 SiO 2 is an essential component for forming a glass skeleton. When the content of SiO 2 is less than 60%, the acid resistance is remarkably lowered, the strain point Ts is easily lowered, and scratches are liable to occur. In this case, the liquidus temperature rises, and the temperature T 2 (the temperature at which the viscosity becomes 10 2 dPa · s) and the temperature T 4 (the temperature at which the viscosity becomes 10 4 dPa · s) are likely to decrease, resulting in a loss. Permeability tends to occur. Therefore, the content of SiO 2 is 60% or more, preferably 63% or more, more preferably 66% or more, still more preferably 67% or more, and particularly preferably 68% or more.

一方、SiOの含有量が75%超の場合、温度Tおよび温度Tが上昇しやすく、ガラスの溶解が困難となりやすく、清澄時の脱泡性が低下し欠点が生じやすくなる。また、この場合、比弾性率E/ρが低下しやすい。さらに、この場合、ガラスの50〜350℃における平均線膨張係数α(以下、単に「平均線膨張係数α」ともいう)が小さくなりやすい。従って、SiOの含有量は、75%以下、好ましくは70%以下である。 On the other hand, when the content of SiO 2 is more than 75%, the temperature T 2 and the temperature T 4 are likely to rise, and it becomes difficult to melt the glass, and the defoaming property at the time of refining is lowered and defects are likely to occur. In this case, the specific elastic modulus E / ρ tends to decrease. Furthermore, in this case, the average linear expansion coefficient α (hereinafter also simply referred to as “average linear expansion coefficient α”) of the glass at 50 to 350 ° C. tends to be small. Therefore, the content of SiO 2 is 75% or less, preferably 70% or less.

Alは、ヤング率、耐アルカリ性を高める必須成分である。Alの含有量が5%未満の場合、ヤング率Eが低下しやすく、また、歪点Tsが低下しやすい。従って、Alの含有量は、5%以上とし、好ましくは6%以上、より好ましくは7%以上、さらに好ましくは8%以上、特に好ましくは9%以上、一層好ましくは10%以上である。 Al 2 O 3 is an essential component that enhances Young's modulus and alkali resistance. When the content of Al 2 O 3 is less than 5%, the Young's modulus E tends to decrease, and the strain point Ts tends to decrease. Therefore, the content of Al 2 O 3 is 5% or more, preferably 6% or more, more preferably 7% or more, still more preferably 8% or more, particularly preferably 9% or more, more preferably 10% or more. is there.

一方、Alの含有量が15%超の場合、密度ρが大きく比弾性率E/ρが小さくなりやすく、フラッタリング特性が悪化しやすい。また、この場合、耐酸性が低下しやすい。さらに、この場合、液相温度が高くなりすぎる傾向があるため成形が困難となりやすい。従って、Alの含有量は、15%以下、好ましくは12%以下、より好ましくは11.5%以下、さらに好ましくは11%以下、特に好ましくは10.5%以下である。 On the other hand, when the content of Al 2 O 3 is more than 15%, the density ρ is large and the specific modulus E / ρ is likely to be small, and the fluttering characteristics are likely to be deteriorated. In this case, the acid resistance tends to decrease. Furthermore, in this case, since the liquidus temperature tends to be too high, molding tends to be difficult. Therefore, the content of Al 2 O 3 is 15% or less, preferably 12% or less, more preferably 11.5% or less, still more preferably 11% or less, and particularly preferably 10.5% or less.

は、耐薬品性、耐傷性、ガラスの溶解性を向上させるために、含有してもよい。一方、Bの含有量が12%超の場合、ヤング率Eひいては比弾性率E/ρが低下しやすく、歪点Tsも低下しやすい。従って、Bの含有量は、12%以下、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下、一層好ましくは実質的に含有しない。 B 2 O 3 may be contained in order to improve chemical resistance, scratch resistance, and glass solubility. On the other hand, when the content of B 2 O 3 is more than 12%, the Young's modulus E and thus the specific elastic modulus E / ρ are likely to be lowered, and the strain point Ts is also likely to be lowered. Therefore, the content of B 2 O 3 is 12% or less, preferably 3% or less, more preferably 2% or less, still more preferably 1% or less, and still more preferably substantially free.

MgOは、必須ではないが、溶解性の向上、ヤング率Eひいては比弾性率E/ρの向上、歪点Tsの上昇のため、20%以下の範囲で含有してもよい。MgOの含有量が20%超の場合、液相温度が上昇しやすく、製造が困難になりやすい。MgOの含有量は、好ましくは18%以下、より好ましくは17%以下、さらに好ましくは15%以下、特に好ましくは12%以下、一層好ましくは10%以下である。また、MgOの含有量は、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上、特に好ましくは5%以上、一層好ましくは8%以上である。   MgO is not essential, but may be contained in a range of 20% or less in order to improve the solubility, improve the Young's modulus E and consequently the specific elastic modulus E / ρ, and increase the strain point Ts. When the content of MgO exceeds 20%, the liquidus temperature tends to rise, and the production tends to be difficult. The content of MgO is preferably 18% or less, more preferably 17% or less, still more preferably 15% or less, particularly preferably 12% or less, and even more preferably 10% or less. Further, the content of MgO is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, particularly preferably 5% or more, and further preferably 8% or more.

CaOは、歪点の低下を抑えながら溶解温度を低くし、失透温度を下げるために、含有してもよい。また、化学強化の際のイオン交換速度遅くするはたらきがあり、導入元素の深さλを浅く抑えるのに有効である。CaOの含有量は、好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上、特に好ましくは4%以上、一層好ましくは5%以上である。
CaO may be contained in order to lower the melting temperature and lower the devitrification temperature while suppressing a decrease in strain point. In addition, there is a function of slowing the ion exchange rate at the time of chemical strengthening, which is effective for keeping the depth λ of the introduced element shallow. The content of CaO is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, particularly preferably 4% or more, and further preferably 5% or more.

一方、CaOの含有量が12%超の場合、ヤング率E、比弾性率E/ρ、ガラス転移点Tgが低下しやすい。また、化学強化の際のイオン交換速度が極端に遅くなりすぎて圧縮応力層を形成するのに時間がかかりすぎるおそれがある。従って、CaOの含有量は、好ましくは11%以下、より好ましくは10%以下、さらに好ましくは9%以下、特に好ましくは8%以下、一層好ましくは7%以下である。   On the other hand, when the content of CaO is more than 12%, Young's modulus E, specific elastic modulus E / ρ, and glass transition point Tg tend to decrease. In addition, the ion exchange rate during chemical strengthening may become extremely slow, and it may take too much time to form the compressive stress layer. Therefore, the CaO content is preferably 11% or less, more preferably 10% or less, further preferably 9% or less, particularly preferably 8% or less, and even more preferably 7% or less.

SrOは必要に応じて含有してもよいが、溶解性を向上するため10%以下の範囲で含有してもよい。10%を超えると化学強化の際のイオン交換速度が極端に遅くなりすぎて圧縮応力層を形成するのに時間がかかりすぎるおそれがある。好ましくは6%、より好ましくは2%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、一層好ましくは実質的に含有しない。   SrO may be contained as necessary, but may be contained in a range of 10% or less in order to improve solubility. If it exceeds 10%, the ion exchange rate during chemical strengthening becomes extremely slow, and it may take too much time to form the compressive stress layer. Preferably it is 6%, more preferably 2% or less, still more preferably 1% or less, particularly preferably 0.5% or less, and still more preferably substantially free.

BaOは必要に応じて含有してもよいが、溶解性を向上するため10%以下の範囲で含有してもよい。10%を超えると化学強化の際のイオン交換速度が極端に遅くなりすぎて圧縮応力層を形成するのに時間がかかりすぎるおそれがある。また、ガラスが脆くなりキズがつきやすくなるおそれがある。好ましくは2%以下、より好ましくは1%以下、さらに好ましくは0.5%以下、特に好ましくは0.2%以下、一層好ましくは実質的に含有しない。   BaO may be contained as necessary, but may be contained in a range of 10% or less in order to improve solubility. If it exceeds 10%, the ion exchange rate during chemical strengthening becomes extremely slow, and it may take too much time to form the compressive stress layer. In addition, the glass becomes brittle and may be easily scratched. Preferably it is 2% or less, More preferably, it is 1% or less, More preferably, it is 0.5% or less, Most preferably, it is 0.2% or less, More preferably, it does not contain substantially.

MgO、CaO、SrO、およびBaO(以下、「RO」と総称する)の含有量の合計は、比弾性率E/ρの値を増大させるため、また、ガラスの溶解性を向上させるため含有してもよい。好ましくは4%以上、より好ましくは7%以上、さらに好ましくは10%以上、特に好ましくは13%以上、一層好ましくは15%以上である。ROの含有量の合計が22%超の場合、液相温度が上昇して粘性が低下しやすく、また耐酸性が低くなりやすい。ROの含有量の合計は、22%以下、好ましくは20%以下、より好ましくは19%以下、さらに好ましくは18%以下、特に好ましくは17%以下、一層好ましくは16%以下である。   The total content of MgO, CaO, SrO, and BaO (hereinafter collectively referred to as “RO”) is included in order to increase the specific elastic modulus E / ρ and to improve the solubility of the glass. May be. Preferably it is 4% or more, More preferably, it is 7% or more, More preferably, it is 10% or more, Especially preferably, it is 13% or more, More preferably, it is 15% or more. When the total content of RO exceeds 22%, the liquidus temperature rises, the viscosity tends to decrease, and the acid resistance tends to decrease. The total RO content is 22% or less, preferably 20% or less, more preferably 19% or less, still more preferably 18% or less, particularly preferably 17% or less, and even more preferably 16% or less.

NaOはK溶融塩を用いたイオン交換により圧縮応力層を形成させ、また、ガラスの溶融性を向上させる成分であり、必須である。好ましくは0.5%以上、より好ましくは2%以上、さらに好ましくは3%以上、特に好ましくは4%、一層好ましくは5%以上である。また、NaOが20%を超えると歪点が低下する、もしくはガラスの耐候性が低下する、ヤング率が低下するおそれがある。好ましくは20%以下、より好ましくは12%以下、さらに好ましくは10%以下、特に好ましくは8%以下、一層好ましくは7%以下である。 Na 2 O is a component that forms a compressive stress layer by ion exchange using K molten salt and improves the meltability of glass, and is essential. Preferably it is 0.5% or more, More preferably, it is 2% or more, More preferably, it is 3% or more, Especially preferably, it is 4%, More preferably, it is 5% or more. On the other hand, if Na 2 O exceeds 20%, the strain point may decrease, or the weather resistance of the glass may decrease, and the Young's modulus may decrease. It is preferably 20% or less, more preferably 12% or less, further preferably 10% or less, particularly preferably 8% or less, and still more preferably 7% or less.

Oは必須ではないが、化学強化の際に導入元素の深さλが深くなりすぎるのを防ぐために含有させてもよい。但し、10%を超えると化学強化の際のイオン交換速度が極端に遅くなりすぎて圧縮応力層を形成するのに時間がかかりすぎるおそれがある。もしくは歪点が低下する、もしくはガラスの耐候性が低下するおそれがある。好ましくは10%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、一層好ましくは実質的に含有しない。 K 2 O is not essential, but may be contained in order to prevent the depth λ of the introduced element from becoming too deep during chemical strengthening. However, if it exceeds 10%, the ion exchange rate during chemical strengthening becomes extremely slow, and it may take too much time to form the compressive stress layer. Alternatively, the strain point may be lowered, or the weather resistance of the glass may be lowered. Preferably it is 10% or less, More preferably, it is 3% or less, More preferably, it is 1% or less, Most preferably, it is 0.5% or less, More preferably, it does not contain substantially.

LiOはNa溶融塩を用いたイオン交換により圧縮応力層を形成させ、また、ヤング率を高くする成分であり含有させてもよいが、一方で、15%を超えると、化学強化の際のイオン交換速度が速く、表面圧縮層が深くなりすぎるおそれがある。また、歪点が低下して耐熱性が悪化するおそれがある。好ましくは15%以下、より好ましくは5%以下、さらに好ましくは2%以下、特に好ましくは0.8%、一層好ましくは0.5%以下、より一層好ましくは0.1%以下、さらに一層好ましくは0.05%以下、特に一層好ましくは実質的に含有しない。 Li 2 O forms a compressive stress layer by ion exchange using Na molten salt, and may be included because it is a component that increases the Young's modulus. The ion exchange rate is high, and the surface compression layer may become too deep. Moreover, there exists a possibility that a strain point may fall and heat resistance may deteriorate. Preferably it is 15% or less, more preferably 5% or less, even more preferably 2% or less, particularly preferably 0.8%, even more preferably 0.5% or less, even more preferably 0.1% or less, and even more preferably. Is 0.05% or less, particularly preferably not substantially contained.

NaOおよびLiOは、化学強化によりイオン交換を起こさせる元素であり、ガラスの溶融性を向上させる成分であるため合量で1%以上含有させる。NaOおよびLiOの含有量の合計は、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上、一層好ましくは5.5%以上である。 Na 2 O and Li 2 O are elements that cause ion exchange by chemical strengthening, and are components that improve the meltability of glass, so that they are contained in a total amount of 1% or more. The total content of Na 2 O and Li 2 O is preferably at least 2%, more preferably at least 3%, even more preferably at least 4%, particularly preferably at least 5%, more preferably at least 5.5%. is there.

一方、NaOおよびLiOの含有量の合計が25%超の場合、ヤング率Eひいては比弾性率E/ρが低下しやすく、フラッタリング特性が悪化するおそれがある。また、歪点Tsが低下しやすく、磁気記録層の成膜時の基板加熱の際に熱変形をおこしやすくなる。従って、NaOおよびLiOの含有量の合計は、25%以下とし、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは12%以下、特に好ましくは10%以下である。 On the other hand, when the total content of Na 2 O and Li 2 O exceeds 25%, the Young's modulus E and thus the specific modulus E / ρ tends to decrease, and fluttering characteristics may be deteriorated. In addition, the strain point Ts is likely to be lowered, and thermal deformation is likely to occur when the substrate is heated during the formation of the magnetic recording layer. Therefore, the total content of Na 2 O and Li 2 O is 25% or less, preferably 20% or less, more preferably 15% or less, still more preferably 12% or less, and particularly preferably 10% or less.

NaO、LiOおよびKOは、ガラスの溶融性を向上させる成分であり合計で1%以上含有させる。NaOおよびLiOおよびKOの含有量の合計は、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上、一層好ましくは5.5%以上である。 Na 2 O, Li 2 O, and K 2 O are components that improve the meltability of the glass, and are contained in a total of 1% or more. The total content of Na 2 O, Li 2 O and K 2 O is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more, particularly preferably 5% or more, and still more preferably 5. 5% or more.

一方、NaO、LiOおよびKOの含有量の合計が25%超の場合、歪点が低下しやすく、磁気記録層の成膜時の基板加熱の際に熱変形しやすくなる。また、線膨張係数αが増大し、耐熱衝撃性が低下するため、後述のとおり磁気記録媒体の製造時にガラス基板11の冷却速度を上げることができず、生産性が低下するおそれがある。NaOおよびLiOの含有量の合計は、25%以下、好ましくは18%以下、より好ましくは13%以下、さらに好ましくは11%以下、特に好ましくは9.5%以下、一層好ましくは8.5%以下、最も好ましくは8%以下である。 On the other hand, when the total content of Na 2 O, Li 2 O, and K 2 O exceeds 25%, the strain point tends to decrease, and thermal deformation tends to occur when the substrate is heated during the formation of the magnetic recording layer. . Further, since the linear expansion coefficient α increases and the thermal shock resistance decreases, the cooling rate of the glass substrate 11 cannot be increased during the production of the magnetic recording medium as described later, and the productivity may be reduced. The total content of Na 2 O and Li 2 O is 25% or less, preferably 18% or less, more preferably 13% or less, still more preferably 11% or less, particularly preferably 9.5% or less, more preferably 8.5% or less, most preferably 8% or less.

TiOは、溶解性の向上のため、もしくは酸やアルカリに対する化学的耐久性の向上のため、5%以下の範囲で含有できる。TiOの含有量が5%を超えると、ガラスの失透温度が上昇しやすく成形性が悪化しやすいほか、表面が傷つきやすくなる。TiOの含有量は、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、一層好ましくは実質的に含有しない。 TiO 2 can be contained in a range of 5% or less for improving solubility or improving chemical durability against acids and alkalis. When the content of TiO 2 exceeds 5%, the devitrification temperature of the glass tends to increase, the moldability tends to deteriorate, and the surface tends to be damaged. The content of TiO 2 is preferably 3% or less, more preferably 2% or less, further preferably 1% or less, particularly preferably 0.5% or less, and still more preferably substantially free.

ZrOは、ガラスのヤング率Eおよび比弾性率E/ρを向上させるため、もしくは酸やアルカリに対する化学的耐久性の向上のため含有してもよい。しかし、ZrOが多すぎると、失透温度が上昇する。従って、ZrOの含有量は、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、一層好ましくは実質的に含有しない。 ZrO 2 may be contained for improving the Young's modulus E and specific modulus E / ρ of the glass, or for improving the chemical durability against acids and alkalis. However, when there is too much ZrO 2 , the devitrification temperature increases. Therefore, the ZrO 2 content is preferably 5% or less, more preferably 3% or less, further preferably 1% or less, particularly preferably 0.5% or less, and still more preferably substantially free.

ガラス基板11は、その他の成分をそれぞれ1%以下、合計で5%以下含有してもよい。たとえば、剛性、耐候性、溶解性、失透性等の改善を目的に、ガラス基板11は、ZnO、WO、Nb、V、Bi、MoO、P等を含有してもよい。また、ガラスの溶解性、清澄性を改善するため、ガラス基板11は、清澄剤に起因する成分として、SO、F、Cl、SnO、PbO、As、CeO、Sbなどを含有してもよい。SnOの含有量が0.01%以上で脱泡性が向上する。また、SnOの含有量が0.5%超の場合、材料特性に影響しやすい。尚、PbO、As、Sbは、含有してもよいが、ガラスのリサイクルを容易にするため、実質的に含有しないことが好ましい。 The glass substrate 11 may contain other components at 1% or less and 5% or less in total. For example, the glass substrate 11 is made of ZnO, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 , P 2 for the purpose of improving rigidity, weather resistance, solubility, devitrification and the like. O 5 or the like may be contained. Further, in order to improve solubility of the glass, the clarity, the glass substrate 11, as a component resulting from the refining agent, SO 3, F, Cl, SnO 2, PbO, As 2 O 3, CeO 2, Sb 2 O 3 may be contained. The defoaming property is improved when the SnO 2 content is 0.01% or more. Moreover, when the content of SnO 2 is more than 0.5%, the material characteristics are easily affected. Incidentally, PbO, As 2 O 3, Sb 2 O 3 is may contain, for ease of recycling glass, it is preferred not substantially contained.

ガラス基板11の水分量を表すβ−OHは、0.05〜0.35mm−1であることが好ましい。β−OHが0.35mm−1を超えると、歪点Tsが低くなるおそれがある。β−OHは、より好ましくは0.3mm−1、さらに好ましくは0.25mm−1で、特に好ましくは0.2mm−1、一層好ましくは0.15mm−1である。 Β-OH representing the moisture content of the glass substrate 11 is preferably 0.05 to 0.35 mm −1 . If β-OH exceeds 0.35 mm −1 , the strain point Ts may be lowered. β-OH is more preferably 0.3 mm −1 , further preferably 0.25 mm −1 , particularly preferably 0.2 mm −1 , more preferably 0.15 mm −1 .

ガラス基板11のヤング率Eは70GPa以上であることが好ましい。70GPa未満では後述の比弾性率が小さくなり、磁気記録媒体10の回転中にフラッタリングが起きやすくなるだけでなく、ガラスの耐クラック性や破壊強度が不十分となるおそれがある。より好ましくは75GPa以上、さらに好ましくは80GPa以上、特に好ましくは81GPa以上、一層好ましくは82GPa以上である。典型的にはガラス材料の制約から、ヤング率は88GPa以下である。   The Young's modulus E of the glass substrate 11 is preferably 70 GPa or more. If it is less than 70 GPa, the specific elastic modulus described later becomes small, and not only fluttering is likely to occur during rotation of the magnetic recording medium 10, but the crack resistance and breaking strength of the glass may be insufficient. More preferably, it is 75 GPa or more, More preferably, it is 80 GPa or more, Especially preferably, it is 81 GPa or more, More preferably, it is 82 GPa or more. Typically, Young's modulus is 88 GPa or less due to restrictions of the glass material.

ガラス基板11の密度ρは2.55g/cm以下であることが好ましい。密度ρが2.55を超えるとヤング率Eを密度ρで割った比弾性率E/ρが小さくなりフラッタリングが起きやすくなる。密度ρは、より好ましくは2.53g/cm以下、さらに好ましくは2.51g/cm以下、特に好ましくは2.49g/cm以下、一層好ましくは2.47g/cm以下である。典型的には密度ρは2.35g/cm以上である。 The density ρ of the glass substrate 11 is preferably 2.55 g / cm 3 or less. When the density ρ exceeds 2.55, the specific modulus E / ρ obtained by dividing the Young's modulus E by the density ρ becomes small, and fluttering is likely to occur. The density [rho, more preferably 2.53 g / cm 3 or less, more preferably 2.51 g / cm 3 or less, particularly preferably 2.49 g / cm 3 or less, more preferably 2.47 g / cm 3 or less. The density ρ is typically 2.35 g / cm 3 or more.

ガラス基板11の比弾性率E/ρは、28MNm/kg以上が好ましい。比弾性率E/ρが28MNm/kgより小さいと、前述のフラッタリングが起きやすくなるだけでなく、ローラー搬送中、もしくは部分的な支持の場合に自重で撓んでしまい、製造工程で正常に流動させられないおそれがある。比弾性率E/ρは、より好ましくは30MNm/kg以上、さらに好ましくは31MNm/kg以上、特に好ましくは32MNm/kg以上、一層好ましくは33MNm/kg以上である。   The specific elastic modulus E / ρ of the glass substrate 11 is preferably 28 MNm / kg or more. When the specific elastic modulus E / ρ is smaller than 28 MNm / kg, not only the fluttering described above is likely to occur, but also it is bent by its own weight during roller conveyance or partial support, and flows normally in the manufacturing process. There is a risk that it will not be allowed. The specific modulus E / ρ is more preferably 30 MNm / kg or more, further preferably 31 MNm / kg or more, particularly preferably 32 MNm / kg or more, and further preferably 33 MNm / kg or more.

なお、比弾性率E/ρを28MNm/kg以上とするには、例えばヤング率Eが70GPa以上であれば、密度ρを2.50g/cm以下とし、ヤング率Eが80GPa以上であれば、密度ρを2.85g/cm以下とすればよい。比弾性率E/ρは、典型的には35MNm/kg以下である。 In order to set the specific modulus E / ρ to 28 MNm / kg or more, for example, if the Young's modulus E is 70 GPa or more, the density ρ is 2.50 g / cm 3 or less and the Young's modulus E is 80 GPa or more. The density ρ may be 2.85 g / cm 3 or less. The specific modulus E / ρ is typically 35 MNm / kg or less.

ガラス基板11の平均線膨張係数αは、好ましくは30×10−7〜80×10−7/℃である。平均線膨張係数αが30×10−7/℃未満、または80×10−7/℃超では、磁気記録層14との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じやすくなる。 The average linear expansion coefficient α of the glass substrate 11 is preferably 30 × 10 −7 to 80 × 10 −7 / ° C. If the average linear expansion coefficient α is less than 30 × 10 −7 / ° C. or more than 80 × 10 −7 / ° C., the difference in thermal expansion from the magnetic recording layer 14 becomes too large, and defects such as peeling tend to occur.

また、この平均線膨張係数αが35×10−7/℃以上であれば、ガラス基板11を保持する金属製のスピンドルチャックとの平均線膨張係数との差が小さく、ガラス基板11の割れなどが抑制できるため、より好ましい。平均線膨張係数αは、さらに好ましくは40×10−7/℃以上、特に好ましくは45×10−7/℃以上、一層好ましくは50×10−7/℃以上である。一方、この平均線膨張係数αが70×10−7/℃以上である場合、耐熱衝撃性が低下するため、磁気記録媒体の製造プロセスにおいてガラス基板11の冷却速度を上げることができず生産性が低下する。平均線膨張係数αは、好ましくは65×10−7/℃以下、より好ましくは60×10−7/℃以下、一層好ましくは55×10−7/℃以下である。 If the average linear expansion coefficient α is 35 × 10 −7 / ° C. or more, the difference between the average linear expansion coefficient and the metal spindle chuck holding the glass substrate 11 is small, and the glass substrate 11 is cracked. Is more preferable. The average linear expansion coefficient α is more preferably 40 × 10 −7 / ° C. or more, particularly preferably 45 × 10 −7 / ° C. or more, and further preferably 50 × 10 −7 / ° C. or more. On the other hand, when the average linear expansion coefficient α is 70 × 10 −7 / ° C. or more, the thermal shock resistance is lowered, and thus the cooling rate of the glass substrate 11 cannot be increased in the manufacturing process of the magnetic recording medium. Decreases. The average linear expansion coefficient α is preferably 65 × 10 −7 / ° C. or less, more preferably 60 × 10 −7 / ° C. or less, and still more preferably 55 × 10 −7 / ° C. or less.

ガラス基板11は、例えばフロート法、スロットダウンドロー法、またはフュージョン法(所謂、オーバーフローダウンドロー法)により板状に成形されたガラスを加工してなる。もしくは、プレス法により成形されたガラスを加工してもよい。尚、板状のガラスは、円柱状に成形されたガラスをワイヤーソーで切断して作製されてもよい。   The glass substrate 11 is formed by processing glass formed into a plate shape by, for example, a float method, a slot down draw method, or a fusion method (so-called overflow down draw method). Or you may process the glass shape | molded by the press method. In addition, plate-shaped glass may be produced by cutting glass formed into a cylindrical shape with a wire saw.

ガラス基板11は、磁気記録媒体10の製造に用いられる。ガラス基板11上には、例えば、前述の如く、ヒートシンク層12、シード層13、磁気記録層14、保護層15などが形成される。この過程で、ガラス基板11は、歪点Ts以上の温度に加熱される。   The glass substrate 11 is used for manufacturing the magnetic recording medium 10. On the glass substrate 11, for example, as described above, the heat sink layer 12, the seed layer 13, the magnetic recording layer 14, the protective layer 15 and the like are formed. In this process, the glass substrate 11 is heated to a temperature equal to or higher than the strain point Ts.

ヒートシンク層12は、エネルギーアシスト磁気記録時に発生する磁気記録層14の余分な熱を効果的に吸収する。ヒートシンク層12は、熱伝導率および比熱容量が高い金属により形成できる。ヒートシンク層12の材料としては、一般的なものが用いられる。   The heat sink layer 12 effectively absorbs excess heat of the magnetic recording layer 14 generated during energy-assisted magnetic recording. The heat sink layer 12 can be formed of a metal having high thermal conductivity and specific heat capacity. As the material of the heat sink layer 12, a general material is used.

シード層13は、ヒートシンク層12と磁気記録層14との間の密着性を確保する。また、シード層13は、磁気記録層14の磁性結晶粒の粒径および結晶配向を制御する。さらに、シード層13は、熱的なバリアとして磁気記録層14の温度上昇および温度分布を制御する。シード層13の材料としては、一般的なものが用いられる。   The seed layer 13 ensures adhesion between the heat sink layer 12 and the magnetic recording layer 14. The seed layer 13 controls the grain size and crystal orientation of the magnetic crystal grains of the magnetic recording layer 14. Further, the seed layer 13 controls the temperature rise and temperature distribution of the magnetic recording layer 14 as a thermal barrier. As the material of the seed layer 13, a general material is used.

磁気記録層14は、エネルギーアシスト磁気記録用の材料からなり、特に熱アシスト磁気記録用の材料が好ましい。その材料としてはCoおよびFeのうちのいずれか1つを少なくとも含む材料とすることが好ましく、さらにPt、Pd、Ni、Mn、Cr、Cu、Ag、Auのうちの少なくともいずれか1つを含むことが好ましい。例えば、CoCr系合金、CoCrPt系合金、FePt系合金、FePd系合金等を用いることができる。磁気特性向上等の観点から、特にFePt系合金が好ましい。   The magnetic recording layer 14 is made of a material for energy-assisted magnetic recording, and a material for heat-assisted magnetic recording is particularly preferable. The material is preferably a material containing at least one of Co and Fe, and further contains at least one of Pt, Pd, Ni, Mn, Cr, Cu, Ag, and Au. It is preferable. For example, a CoCr alloy, a CoCrPt alloy, a FePt alloy, a FePd alloy, or the like can be used. From the viewpoint of improving magnetic properties, an FePt alloy is particularly preferable.

磁気記録層14は、信号を書き込む層である。磁気記録層14は複数層構造であってよく、各層は磁性結晶粒および非磁性部で構成されるグラニュラー構造を有する。磁気記録層14の材料としては、一般的なものが用いられるが、エネルギーアシスト磁気記録用の材料であり、特に熱アシスト磁気記録用の材料が好ましい。尚、磁気記録層14は単層構造であってもよい。   The magnetic recording layer 14 is a layer for writing signals. The magnetic recording layer 14 may have a multi-layer structure, and each layer has a granular structure composed of magnetic crystal grains and nonmagnetic portions. As the material of the magnetic recording layer 14, a general material is used, but it is a material for energy-assisted magnetic recording, and a material for heat-assisted magnetic recording is particularly preferable. The magnetic recording layer 14 may have a single layer structure.

磁気記録層14の面記録密度は、800Gbits/in以上であってよい。 The surface recording density of the magnetic recording layer 14 may be 800 Gbits / in 2 or more.

保護層15は、磁気記録層14を保護する。保護層15は、単層構造、積層構造のいずれでもよい。保護層15の材料としては、一般的なものが用いられる。   The protective layer 15 protects the magnetic recording layer 14. The protective layer 15 may have either a single layer structure or a laminated structure. As the material of the protective layer 15, a general material is used.

ところで、磁気記録媒体10の製造方法は、歪点Ts以上の温度でガラス基板11を加熱する加熱工程を有する。   By the way, the manufacturing method of the magnetic recording medium 10 has a heating process of heating the glass substrate 11 at a temperature equal to or higher than the strain point Ts.

本実施形態によれば、上述の如く、ガラス基板11の化学強化後の内外周端近傍の応力分布と、ガラス基板11の化学強化による導入元素の深さλとがそれぞれ適切に調整されているため、加熱工程における歪点Ts以上の温度での加熱による変形が抑制できる。   According to the present embodiment, as described above, the stress distribution in the vicinity of the inner and outer peripheral edges after the chemical strengthening of the glass substrate 11 and the depth λ of the introduced element due to the chemical strengthening of the glass substrate 11 are adjusted appropriately. Therefore, deformation due to heating at a temperature equal to or higher than the strain point Ts in the heating process can be suppressed.

前記加熱工程において、歪点Tsを基準として10℃低い温度T1(T1=Ts−10)以上の温度にガラス基板11を加熱する間の時間平均の温度をTave(℃)、温度T1以上の温度にガラス基板11を加熱する時間をtave(分)とすると、下記式(2)で算出されるYが140以下である。
Y=(Tave−Ts)×tave・・・(2)
上記式(2)で温度T1以上の温度を考慮するのは、温度T1以上の温度ではガラスが流動しやすいためである。Taveは、加熱温度が温度T1以上の間、加熱温度を積分し、その積分値を時間taveで割ることにより求める。TaveとTsとの差(Tave−Ts)は、ガラスの流動しやすさを表す。
In the heating step, a time average temperature during heating the glass substrate 11 to a temperature T1 (T1 = Ts−10) or higher at a temperature 10 ° C. lower than the strain point Ts is T ave (° C.) or higher than the temperature T1. If the time for heating the glass substrate 11 to the temperature is t ave (min), Y calculated by the following formula (2) is 140 or less.
Y = (T ave −Ts) × t ave (2)
The reason why the temperature equal to or higher than the temperature T1 is considered in the above formula (2) is that the glass easily flows at the temperature equal to or higher than the temperature T1. T ave is obtained by integrating the heating temperature while the heating temperature is equal to or higher than temperature T1, and dividing the integrated value by time t ave . The difference between T ave and Ts (T ave −Ts) represents the ease of glass flow.

Yは、ガラスの流動しやすさと、ガラスが流動し得る時間との積であって、ガラスの流動によるガラス基板11の変形しやすさを表す。Yが140以下であれば、ガラスの流動によるガラス基板11の変形が抑制できる。Yは、より好ましくは130以下、さらに好ましくは120以下、特に好ましくは110以下、一層好ましくは100以下である。   Y is the product of the ease of glass flow and the time during which the glass can flow, and represents the ease of deformation of the glass substrate 11 due to glass flow. If Y is 140 or less, the deformation of the glass substrate 11 due to glass flow can be suppressed. Y is more preferably 130 or less, still more preferably 120 or less, particularly preferably 110 or less, and still more preferably 100 or less.

また、前記加熱工程において、ガラス基板11を500℃以上の温度に加熱する間の時間平均の温度をT500(℃)、ガラス基板11を500℃以上の温度に加熱する時間をt500(分)とすると、下記式(3)で算出されるZが5〜32である。
Z=(T500/Ts)×(t5001/2×λ・・・(3)
上記式(3)で500℃(℃)以上の温度を考慮するのは、500℃以上の温度で導入元素が他の元素とイオン交換しながら移動しやすいためである。尚、典型的な化学強化では400〜500℃でイオン交換が行われる。T500は、加熱工程においてガラス基板11の温度が500℃以上の間、その温度を積分し、その積分値を時間t500で割ることにより求める。T500/Tsは、加熱工程における導入元素の移動しやすさの指標となる。t500の平方根は、加熱工程における導入元素の移動距離を相対的に表す。λは、化学強化による導入元素の深さを表しており、導入量を相対的に表す。よって、Zは、加熱工程における導入元素の移動しやすさと、加熱工程における導入元素の移動距離の相対値と、化学強化による導入元素の導入量の相対値との積であって、加熱工程において導入元素がどれくらいの範囲に移動したかを相対的に示す量となる。
Further, in the above heating step, T 500 (° C.) the temperature of the time average during heating the glass substrate 11 to a temperature above 500 ° C., the time to heat the glass substrate 11 to a temperature above 500 ° C. t 500 (min ), Z calculated by the following formula (3) is 5 to 32.
Z = (T 500 / Ts) × (t 500 ) 1/2 × λ (3)
The reason why the temperature of 500 ° C. (° C.) or higher is considered in the above formula (3) is that the introduced element easily moves while ion exchange with other elements at a temperature of 500 ° C. or higher. In typical chemical strengthening, ion exchange is performed at 400 to 500 ° C. T 500 is obtained by integrating the temperature of the glass substrate 11 in the heating step while the temperature of the glass substrate 11 is 500 ° C. or higher and dividing the integrated value by the time t 500 . T 500 / Ts is an index of the ease of movement of the introduced element in the heating process. The square root of t 500 relatively represents the moving distance of the introduced element in the heating process. λ represents the depth of the introduced element due to chemical strengthening, and relatively represents the introduced amount. Therefore, Z is the product of the ease of movement of the introduced element in the heating step, the relative value of the distance of movement of the introduced element in the heating step, and the relative value of the amount of introduced element introduced by chemical strengthening. This is an amount that relatively indicates how far the introduced element has moved.

Zが5〜32であれば、導入元素が適度な範囲に移動し、ガラス基板11の変形が抑制できる。Zは、より好ましくは7以上、さらに好ましくは10以上、特に好ましくは15以上、一層好ましくは20以上である。また、Zは、より好ましくは30以下、さらに好ましくは28以下、特に好ましくは26以下、一層好ましくは24以下である。   If Z is 5 to 32, the introduced element moves to an appropriate range, and the deformation of the glass substrate 11 can be suppressed. Z is more preferably 7 or more, further preferably 10 or more, particularly preferably 15 or more, and still more preferably 20 or more. Z is more preferably 30 or less, still more preferably 28 or less, particularly preferably 26 or less, and still more preferably 24 or less.

加熱工程におけるガラス基板11の最高温度TMAXは、600℃以上であることが好ましい。これにより、600℃以上の温度で磁気記録層14を成膜することで、磁気記録層14の特性を向上できる。TMAXは、より好ましくは620℃以上、さらに好ましくは630℃以上、特に好ましくは640℃以上、一層好ましくは650℃以上である。 The maximum temperature T MAX of the glass substrate 11 in the heating step is preferably 600 ° C. or higher. Thereby, the characteristics of the magnetic recording layer 14 can be improved by forming the magnetic recording layer 14 at a temperature of 600 ° C. or higher. T MAX is more preferably 620 ° C. or higher, further preferably 630 ° C. or higher, particularly preferably 640 ° C. or higher, more preferably 650 ° C. or higher.

また、TMAXは、歪点Ts以上、かつ歪点Tsを基準として15℃高い温度T2(T2=Ts+15)以下であることが好ましい。TMAXがTs以上T2以下であると、加熱時の変形抑制効果が享受できる。TMAXがT2より高いと、ガラスの流動による変形が顕著になる。歪点Tsが735℃以上のガラス基板11を製造することは困難であるので、TMAXは750℃以下であることが好ましい。TMAXは、より好ましくは730℃以下、さらに好ましくは720℃以下、特に好ましくは710℃以下、一層好ましくは700℃以下である。 Further, T MAX is preferably not less than the strain point Ts and not more than a temperature T2 (T2 = Ts + 15) which is 15 ° C. higher than the strain point Ts. When T MAX is Ts or more and T2 or less, the effect of suppressing deformation during heating can be enjoyed. When T MAX is higher than T2, deformation due to the flow of glass becomes remarkable. Since it is difficult to produce the glass substrate 11 having a strain point Ts of 735 ° C. or higher, T MAX is preferably 750 ° C. or lower. T MAX is more preferably 730 ° C. or less, further preferably 720 ° C. or less, particularly preferably 710 ° C. or less, and further preferably 700 ° C. or less.

以下、実施例および比較例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。例1〜5、11〜12、17〜19が実施例、例6〜10、13〜16、20〜22が比較例である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples. Examples 1 to 5, 11 to 12, and 17 to 19 are examples, and examples 6 to 10, 13 to 16, and 20 to 22 are comparative examples.

(ガラス素板の作製)
表1で表示したガラス組成(酸化物基準のモル%)になるように原料を調製し、調製した原料を白金坩堝に入れ1650℃の温度で3時間加熱し溶解して溶融ガラスを作製し、溶融ガラスを板状に成形しガラス素板を作製した。作製したガラス素板から試験片を切り出し、平均線膨張係数α(×10−7/℃)、歪点Ts(℃)、密度ρ(g/cm)、ヤング率E(GPa)、比弾性率E/ρを測定した。以下に各物性の測定方法を示す。
(Production of glass base plate)
A raw material was prepared so as to have the glass composition (mole% based on oxide) displayed in Table 1, and the prepared raw material was put in a platinum crucible and heated for 3 hours at a temperature of 1650 ° C. to prepare a molten glass. Molten glass was formed into a plate shape to produce a glass base plate. A test piece was cut out from the produced glass base plate, average linear expansion coefficient α (× 10 −7 / ° C.), strain point Ts (° C.), density ρ (g / cm 3 ), Young's modulus E (GPa), specific elasticity. The rate E / ρ was measured. The measuring method of each physical property is shown below.

平均線膨張係数αは、示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)に準拠して測定した。   The average linear expansion coefficient α was measured using a differential thermal dilatometer (TMA), and was measured in accordance with JIS R3102 (1995).

歪点Tsは、歪点測定装置を用いて、JIS R3103−2(2001年度)に準拠して測定した。   The strain point Ts was measured according to JIS R3103-2 (2001) using a strain point measuring apparatus.

密度ρは、アルキメデス法によって測定した。   The density ρ was measured by the Archimedes method.

ヤング率Eは、超音波パルス法(オリンパス、DL35)により25℃で測定した。   Young's modulus E was measured at 25 ° C. by an ultrasonic pulse method (Olympus, DL35).

結果を表1に示す。   The results are shown in Table 1.

Figure 0006015876
表1から明らかなように、ガラスA、ガラスB、ガラスCのいずれも、酸化物基準のモル%表示で、SiOを60〜75%、Alを5〜15%、Bを0〜12%、MgOを0〜20%、CaOを0〜12%、SrOを0〜10%、BaOを0〜10%、NaOを0〜20%、KOを0〜10%、LiOを0〜15%、TiOを0〜5%、ZrOを0〜5%の範囲内で含有し、NaOおよびLiOの含有量の合計が1〜25%の範囲内であった。
Figure 0006015876
As is clear from Table 1, all of glass A, glass B, and glass C are expressed in terms of mol% on the basis of oxide, and SiO 2 is 60 to 75%, Al 2 O 3 is 5 to 15%, and B 2 O. 3 0 to 12% of MgO 0 to 20% 0 to 12% of CaO, 0% to SrO, 0% to BaO, 0 to 20% of Na 2 O, 0 to a K 2 O 10%, Li 2 O 0-15%, TiO 2 0-5%, ZrO 2 in the range of 0-5%, the total content of Na 2 O and Li 2 O is 1-25 %.

特に、ガラスBおよびガラスCは、SiOを65〜70%、Alを6〜12%、Bを0〜3%、MgOを1〜18%、CaOを0〜10%、SrOを0〜6%、BaOを0〜2%、NaOを0.5〜12%、KOを0〜3%、LiOを0〜5%、TiOを0〜3%、ZrOを0〜3%の範囲内で含有し、NaO、LiO、およびKOの含有量の合計が2〜15%の範囲内であった。 In particular, the glass B and glass C is a SiO 2 65 to 70% of Al 2 O 3 6~12%, B 2 O 3 and 0-3% to 18% of MgO, the CaO 0% SrO 0-6%, BaO 0-2%, Na 2 O 0.5-12%, K 2 O 0-3%, Li 2 O 0-5%, TiO 2 0-3 %, ZrO 2 was contained in the range of 0 to 3%, and the total content of Na 2 O, Li 2 O, and K 2 O was in the range of 2 to 15%.

(ガラス基板の作製)
得られたガラス素板は、下記の手順で加工した。
(Production of glass substrate)
The obtained glass base plate was processed according to the following procedure.

第1ステップでは、ガラス素板を加工することにより、中央部に円孔を有する円盤状のガラス基板を得た。   In the first step, a disk-shaped glass substrate having a circular hole in the center was obtained by processing the glass base plate.

第2ステップでは、砥石でガラス基板の内外周を研削した。ガラス基板のガラスがガラスAの場合、内外周に、両主表面に対し垂直な垂直面と、各主表面と垂直面との間に各主表面に対し45°で傾斜する傾斜面とを形成した。一方、ガラス基板のガラスがガラスBまたはガラスCの場合、内外周に、両主表面に対し垂直な垂直面のみを形成した。   In the second step, the inner and outer circumferences of the glass substrate were ground with a grindstone. When the glass of the glass substrate is glass A, a vertical surface perpendicular to both main surfaces and an inclined surface inclined at 45 ° with respect to each main surface are formed between the main surfaces and the vertical surface on the inner and outer circumferences. did. On the other hand, when the glass of the glass substrate was glass B or glass C, only vertical surfaces perpendicular to both main surfaces were formed on the inner and outer circumferences.

第3ステップでは、アルミナ砥粒を用いてガラス基板の両主表面をラッピング加工し、砥粒を洗浄除去した。   In the third step, both main surfaces of the glass substrate were lapped using alumina abrasive grains, and the abrasive grains were washed and removed.

第4ステップでは、ガラス基板の外周をブラシ研磨し、第2ステップによる加工変質層(傷など)を除去し、鏡面加工した後、洗浄した。ブラシ研磨では、酸化セリウム砥粒を含有する研磨液を用い、加工変質層を確実に除去し、表面粗さを十分に低減するため長時間研磨した。これにより、ガラス基板のガラスがガラスAの場合、ガラス基板の主表面と傾斜面の間及び垂直面と傾斜面の間の角部が面取りされて湾曲面が形成された。一方、ガラス基板のガラスがガラスBまたはガラスCの場合、ガラス基板の主表面と垂直面の間の角部が面取りされて湾曲面が形成された。また、ガラス基板のガラスがガラスBにおいて、他の実施例に比べて研磨時間を短くして、ガラス基板の外周の表面粗さが高いガラス基板を作成し、これを例13とした。   In the fourth step, the outer periphery of the glass substrate was brush-polished, the processing-affected layer (scratches, etc.) in the second step was removed, mirror-finished, and then washed. In brush polishing, a polishing liquid containing cerium oxide abrasive grains was used, and the work-affected layer was reliably removed, and polishing was performed for a long time in order to sufficiently reduce the surface roughness. Thereby, when the glass of the glass substrate was glass A, the corners between the main surface and the inclined surface of the glass substrate and between the vertical surface and the inclined surface were chamfered to form a curved surface. On the other hand, when the glass of the glass substrate was glass B or glass C, the corner between the main surface and the vertical surface of the glass substrate was chamfered to form a curved surface. Further, when the glass of the glass substrate was glass B, a polishing time was shortened compared to other examples, and a glass substrate having a high surface roughness on the outer periphery of the glass substrate was prepared.

第5ステップでは、ガラス基板の内周をブラシ研磨し、第2ステップによる加工変質層(傷など)を除去し、鏡面加工した後、洗浄した。ブラシ研磨では、酸化セリウム砥粒を含有する研磨液を用い、加工変質層を確実に除去し、表面粗さを十分に低減するため長時間研磨した。これにより、ガラス基板のガラスがガラスAの場合、ガラス基板の主表面と傾斜面の間及び垂直面と傾斜面の間の角部が面取りされて湾曲面が形成された。一方、ガラス基板のガラスがガラスBまたはガラスCの場合、ガラス基板の主表面と垂直面の間の角部が面取りされて湾曲面が形成された。また、ガラス基板のガラスがガラスBにおいて、他の実施例に比べて研磨時間を短くして、ガラス基板の内周の表面粗さが高いガラス基板を作成し、これを例13とした。   In the fifth step, the inner periphery of the glass substrate was brush-polished, and the work-affected layer (scratches, etc.) in the second step was removed, mirror-finished, and then washed. In brush polishing, a polishing liquid containing cerium oxide abrasive grains was used, and the work-affected layer was reliably removed, and polishing was performed for a long time in order to sufficiently reduce the surface roughness. Thereby, when the glass of the glass substrate was glass A, the corners between the main surface and the inclined surface of the glass substrate and between the vertical surface and the inclined surface were chamfered to form a curved surface. On the other hand, when the glass of the glass substrate was glass B or glass C, the corner between the main surface and the vertical surface of the glass substrate was chamfered to form a curved surface. In addition, when the glass of the glass substrate was glass B, the polishing time was shortened compared with other examples, and a glass substrate having a high surface roughness on the inner periphery of the glass substrate was prepared.

第6ステップでは、ダイヤモンド砥粒を含有する固定粒工具と研削液を用いて、ガラス基板の両主表面をラッピング加工し、洗浄した。   In the sixth step, both main surfaces of the glass substrate were lapped using a fixed grain tool containing diamond abrasive grains and a grinding liquid, and washed.

第7ステップでは、両面研磨装置によりガラス基板の両主表面を1次研磨し、洗浄した。1次研磨では、硬質ウレタン製の研磨パッドと、酸化セリウム砥粒を含有する研磨液とを用いた。   In the seventh step, both main surfaces of the glass substrate were primarily polished by a double-side polishing apparatus and cleaned. In the primary polishing, a hard urethane polishing pad and a polishing liquid containing cerium oxide abrasive grains were used.

第8ステップでは、上記両面研磨装置によりガラス基板の両主表面を2次研磨し、洗浄した。2次研磨では、軟質ウレタン製の研磨パッドと、1次研磨よりも平均粒径の小さい酸化セリウム砥粒を含有する研磨液とを用いた。   In the eighth step, both main surfaces of the glass substrate were secondarily polished by the double-side polishing apparatus and washed. In the secondary polishing, a soft urethane polishing pad and a polishing liquid containing cerium oxide abrasive grains having an average particle size smaller than that of the primary polishing were used.

第9ステップでは、上記両面研磨装置によりガラス基板の両主表面を3次研磨し、洗浄した。3次研磨では、軟質ウレタン製の研磨パッドと、コロイダルシリカを含有する研磨液とを用いた。   In the ninth step, both main surfaces of the glass substrate were subjected to third polishing by the double-side polishing apparatus and washed. In the tertiary polishing, a soft urethane polishing pad and a polishing liquid containing colloidal silica were used.

第10ステップでは、3次研磨後のガラス基板に対し、スクラブ洗浄、洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄を順次行い、イソプロピルアルコール蒸気による乾燥を行った。   In the tenth step, scrub cleaning, ultrasonic cleaning in a state of being immersed in a detergent solution, and ultrasonic cleaning in a state of being immersed in pure water are sequentially performed on the glass substrate after the third polishing, followed by drying with isopropyl alcohol vapor. Went.

上記の手順により、直径65mm、板厚0.8mm、中央部に20mmの円孔を有する円盤状のガラス基板を得た。内周接続面の幅W1、および外周接続面の幅W2は、表2〜4に示す通りであった。   By the above procedure, a disk-shaped glass substrate having a diameter of 65 mm, a plate thickness of 0.8 mm, and a 20 mm circular hole at the center was obtained. The width W1 of the inner peripheral connection surface and the width W2 of the outer peripheral connection surface were as shown in Tables 2 to 4.

続いて、例1〜6、8、10〜13、15〜19、21〜22では、ガラス基板の化学強化処理を行った。化学強化処理では、これらのガラス基板を425℃の95重量%のKNOおよび5重量%のNaNOを混合した溶融塩にそれぞれ表2〜4記載の浸漬時間にて浸漬した。 Then, in Examples 1-6, 8, 10-13, 15-19, 21-22, the glass substrate was chemically strengthened. In the chemical strengthening treatment, these glass substrates were dipped in a molten salt mixed with 95 wt% KNO 3 and 5 wt% NaNO 3 at 425 ° C. for dipping times shown in Tables 2 to 4, respectively.

(ガラス基板の評価)
化学強化による導入元素の深さλは、電子線マイクロアナライザ分析(EPMA)を用いて前述の方法で算出した。導入元素の深さλは、ガラス基板の内周端から径方向外側に0.5mmの2箇所、ガラス基板の内周端から径方向外側に11mmの2箇所、ガラス基板の外周端から径方向内側に0.5mmの2箇所で測定した。計6箇所で測定したλの最大値λMAXと最小値λMINとを表2〜4に示す。
(Evaluation of glass substrate)
The depth λ of the introduced element by chemical strengthening was calculated by the method described above using electron beam microanalyzer analysis (EPMA). The depth λ of the introduced element is 0.5 mm radially outward from the inner peripheral edge of the glass substrate, two locations 11 mm radially outward from the inner peripheral edge of the glass substrate, and radial from the outer peripheral edge of the glass substrate. Measurements were taken at two locations of 0.5 mm inside. Tables 2 to 4 show the maximum value λ MAX and the minimum value λ MIN of λ measured at a total of six locations.

リタデーションは、後述の熱変形試験の前に、フォトニックラティス社製WPA−microにより測定した。特許文献3との比較のため、化学強化による導入元素の深さλが10μm以上である例6および例10において、ガラス基板の内周端から径方向外側に0.5mmの位置から、ガラス基板の外周端から径方向内側に0.5mmの位置までにおけるリタデーションR0.5を測定した。測定結果は、リタデーションR0.5の最大値をR0.5MAX、リタデーションR0.5の最大値と最小値との差の大きさをR0.5DEFで示す。例6のガラス基板は、R0.5MAXが0.8nm、R0.5DEFが0.6nmであった。例10のガラス基板は、R0.5MAXが0.9nm、R0.5DEFが0.7nmであった。例6および例10ではR0.5MAXが1nm未満であるが、後述の熱処理試験の前後での変形量ΔDが3.5μmを超えるものであった。 Retardation was measured with a WPA-micro manufactured by Photonic Lattice before the thermal deformation test described later. For comparison with Patent Document 3, in Example 6 and Example 10 in which the depth λ of the introduced element by chemical strengthening is 10 μm or more, the glass substrate is positioned from a position 0.5 mm radially outward from the inner peripheral edge of the glass substrate. Retardation R 0.5 was measured from the outer peripheral edge to the position 0.5 mm radially inward. The measurement results indicate the maximum value of retardation R 0.5 as R 0.5MAX and the difference between the maximum value and minimum value of retardation R 0.5 as R 0.5DEF . The glass substrate of Example 6 had R 0.5MAX of 0.8 nm and R 0.5DEF of 0.6 nm. The glass substrate of Example 10 had R 0.5MAX of 0.9 nm and R 0.5DEF of 0.7 nm . In Example 6 and Example 10, R 0.5MAX was less than 1 nm, but the deformation amount ΔD before and after the heat treatment test described later was more than 3.5 μm.

熱処理試験では、電気炉を炉内温度400℃に加熱した後、電気炉にガラス基板を投入し、図3および図4に示すように、両主表面を鉛直にしたガラス基板の下部を鉄製の台座20、21で挟持した。ガラス基板の投入から0.5分後より、電気炉の設定温度を200℃/分の速さで表2〜4の最高温度TMAXまで昇温し、その後、最高温度TMAXで保持時間tMAXにて保持した。その後、電気炉の設定温度を60℃/分の速さで降温した。電気炉の炉内温度が400℃以下となった後、ガラス基板を電気炉外に取り出して室温のシリカウール上に主表面を略水平にして置き、そのまま放置して冷却した。鉄製の台座20、21は直方体であって、その外形寸法は約70mm×90mm×高さ12mmであった。最高温度TMAXでの保持時間tMAX、tAVE、t500、TAVE、T500は、表2〜4に示すとおりであった。 In the heat treatment test, after heating the electric furnace to a furnace temperature of 400 ° C., a glass substrate was put into the electric furnace, and as shown in FIGS. 3 and 4, the lower part of the glass substrate with both main surfaces vertical was made of iron. The pedestals 20 and 21 were clamped. After 0.5 minutes from the introduction of the glass substrate, the set temperature of the electric furnace is raised to the maximum temperature T MAX in Tables 2 to 4 at a rate of 200 ° C./min, and then the holding time t at the maximum temperature T MAX is reached. Hold by MAX . Thereafter, the temperature of the electric furnace was lowered at a rate of 60 ° C./min. After the furnace temperature in the electric furnace reached 400 ° C. or lower, the glass substrate was taken out of the electric furnace, placed on silica wool at room temperature with the main surface substantially horizontal, and allowed to cool as it was. The iron pedestals 20 and 21 were rectangular parallelepipeds, and their external dimensions were about 70 mm × 90 mm × height 12 mm. The holding times t MAX , t AVE , t 500 , T AVE , T 500 at the maximum temperature T MAX were as shown in Tables 2 to 4.

図5は、一例による熱処理試験の前後の、ガラス基板の一方の主表面の形状変化を示す図である。図5において、破線31は熱処理試験前の主表面の形状を、実線32は熱処理試験後の主表面の形状をそれぞれ誇張して表す。   FIG. 5 is a diagram illustrating a shape change of one main surface of the glass substrate before and after the heat treatment test according to an example. In FIG. 5, the broken line 31 exaggerates the shape of the main surface before the heat treatment test, and the solid line 32 exaggerates the shape of the main surface after the heat treatment test.

熱処理試験前の主表面の形状は、NIDEK社製のフラットネステスターFT−17により測定した。測定範囲は、ガラス基板の中心から半径13.30〜32.06mmの範囲とした。この測定範囲の全体に0.5mmピッチで複数の縦線を設定すると共に0.5mmピッチで複数の横線を設定し、縦線と横線との交点を測定点とした。   The shape of the main surface before the heat treatment test was measured with a flatness tester FT-17 manufactured by NIDEK. The measurement range was a range of a radius of 13.30 to 32.06 mm from the center of the glass substrate. A plurality of vertical lines were set at a pitch of 0.5 mm and a plurality of horizontal lines were set at a pitch of 0.5 mm over the entire measurement range, and an intersection of the vertical lines and the horizontal lines was used as a measurement point.

熱処理試験前の主表面の形状は、各測定点のxyz直交座標で表した。ここで、x軸およびy軸を含むxy平面は、複数の測定点の最小二乗平面とした。尚、x軸は横線に平行とし、y軸は縦線に平行とした。   The shape of the main surface before the heat treatment test was represented by xyz orthogonal coordinates at each measurement point. Here, the xy plane including the x-axis and the y-axis is a least square plane of a plurality of measurement points. The x axis was parallel to the horizontal line, and the y axis was parallel to the vertical line.

熱処理試験後の主表面の形状は、熱処理試験前の主表面の形状と同様に、各測定点のxyz直交座標で表した。   The shape of the main surface after the heat treatment test was represented by xyz orthogonal coordinates at each measurement point, similarly to the shape of the main surface before the heat treatment test.

熱処理試験の前後で、座標軸を揃えることにより、主表面の形状を比較し、各測定点のz軸方向における変化量Δzを測定した。   Before and after the heat treatment test, the coordinate surfaces were aligned, the shapes of the main surfaces were compared, and the amount of change Δz in the z-axis direction at each measurement point was measured.

図6は、一例による熱処理試験の前後の、各測定点の変化量を示す図である。ここで、変化量Δzの正負は、変化方向を表す。変化量Δzの最大値(>0)と、変化量Δzの最小値(<0)との差の大きさを変形量ΔDとした。   FIG. 6 is a diagram illustrating the amount of change at each measurement point before and after the heat treatment test according to an example. Here, the sign of the change amount Δz represents the change direction. The magnitude of the difference between the maximum value (> 0) of the change amount Δz and the minimum value (<0) of the change amount Δz was defined as the deformation amount ΔD.

結果を、ガラスの種類や化学強化条件、熱処理条件などと共に、表2〜4に示す。尚、表2〜4に示す条件以外の条件は、例1〜21において同じとした。   A result is shown to Tables 2-4 with the kind of glass, chemical strengthening conditions, heat processing conditions, etc. The conditions other than those shown in Tables 2 to 4 were the same in Examples 1 to 21.

Figure 0006015876
Figure 0006015876

Figure 0006015876
Figure 0006015876

Figure 0006015876
表2〜4から明らかなように、例1〜5、11〜12、17〜19では、RI0.2MAXおよびRO0.2MAXが4nm以下、RI0.2DEFおよびRO0.2DEFが1.2nm以下、且つ導入元素の深さλが3〜9μmであった。また、これらの例では、上記式(1)で算出されるXが0.1〜1.3の範囲内であり、上記式(2)で算出されるYが140以下であり、上記式(3)で算出されるZが5〜32の範囲内であった。そのため、これらの例では、熱処理試験の前後での変形量ΔDが3.5μm以下であった。
Figure 0006015876
As is clear from Tables 2 to 4, in Examples 1 to 5, 11 to 12, and 17 to 19 , RI 0.2MAX and RO 0.2MAX are 4 nm or less, and RI 0.2DEF and RO 0.2DEF are 1.2 nm. Hereinafter, the depth λ of the introduced element was 3 to 9 μm. In these examples, X calculated by the above formula (1) is in the range of 0.1 to 1.3, Y calculated by the above formula (2) is 140 or less, and the above formula ( Z calculated in 3) was in the range of 5 to 32. Therefore, in these examples, the deformation amount ΔD before and after the heat treatment test was 3.5 μm or less.

特に、例11〜12、17〜19では、ヤング率Eが80GPa以上、比弾性率E/ρが30MNm/kg以上、歪点Tsが635℃以上であり、平均線膨張係数αが40×10−7〜70×10−7/℃の範囲内であった。例11〜12、17〜19では、歪点Tsが635℃以上のガラスを用いため、650℃以上での熱処理が可能であった。 In particular, in Examples 11 to 12 and 17 to 19, the Young's modulus E is 80 GPa or more, the specific modulus E / ρ is 30 MNm / kg or more, the strain point Ts is 635 ° C. or more, and the average linear expansion coefficient α is 40 × 10. It was in the range of −7 to 70 × 10 −7 / ° C. In Examples 11 to 12 and 17 to 19, since glass having a strain point Ts of 635 ° C. or higher was used, heat treatment at 650 ° C. or higher was possible.

一方、例6〜10、14〜16、20〜22では、導入元素の深さλが3〜9μmの範囲外であった。また、例6、8、10、13、15、16、22では、RI0.2MAXが4nmより大きかった。また、例6、8、10、13、15、16、21、22では、RI0.2DEFが1.2nmより大きかった。そのため、これらの例では、熱処理試験の前後での変形量ΔDが3.5μmより大きかった、または熱処理試験の前後での変形量ΔDが大き過ぎてガラス基板が割れてしまった。例13は、導入元素の深さが3〜9μmの範囲内であったが、内外周端の表面粗さが高いため、RI0.2MAXが4nmより大きく、さらにRI0.2DEFも1.2nmより大きくなり、問題があった。 On the other hand, in Examples 6 to 10, 14 to 16, and 20 to 22, the depth λ of the introduced element was outside the range of 3 to 9 μm. In Examples 6, 8, 10, 13 , 15, 16 , and 22 , RI 0.2MAX was larger than 4 nm. In Examples 6, 8, 10, 13 , 15, 16 , 21, and 22 , RI 0.2DEF was larger than 1.2 nm. Therefore, in these examples, the deformation amount ΔD before and after the heat treatment test was larger than 3.5 μm, or the deformation amount ΔD before and after the heat treatment test was too large, and the glass substrate was cracked. In Example 13, the depth of the introduced element was in the range of 3 to 9 μm, but the surface roughness of the inner and outer peripheral edges was high, so RI 0.2MAX was larger than 4 nm, and RI 0.2DEF was also 1.2 nm. There was a problem that became larger.

特に、例6および例10では、特許文献3に記載の要件を満たしているが、問題が有った。   In particular, Examples 6 and 10 satisfy the requirements described in Patent Document 3, but have problems.

以上、磁気記録媒体用のガラス基板の実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。   The embodiment of the glass substrate for the magnetic recording medium has been described above, but the present invention is not limited to the above embodiment, and various modifications are possible within the scope of the gist of the present invention described in the claims. Improvements are possible.

例えば、上記実施形態の磁気記録媒体の記録方式は熱アシスト磁気記録方式であるが、本発明はこれに限定されない。磁気記録媒体の記録方式は、例えば、マイクロ波アシスト磁気記録方式などの他のエネルギーアシスト磁気記録方式でもよいし、通常の磁気記録方式でもよい。   For example, the recording method of the magnetic recording medium of the above embodiment is a heat-assisted magnetic recording method, but the present invention is not limited to this. The recording system of the magnetic recording medium may be another energy assisted magnetic recording system such as a microwave assisted magnetic recording system, or a normal magnetic recording system.

10 磁気記録媒体
11 ガラス基板
11a、11b 主表面
11c 内周接続面
11d 外周接続面
11e 内周端
11f 外周端
12 ヒートシンク層
13 シード層
14 磁気記録層
15 保護層
DESCRIPTION OF SYMBOLS 10 Magnetic recording medium 11 Glass substrate 11a, 11b Main surface 11c Inner peripheral connection surface 11d Outer peripheral connection surface 11e Inner peripheral end 11f Outer peripheral end 12 Heat sink layer 13 Seed layer 14 Magnetic recording layer 15 Protective layer

Claims (12)

表層に化学強化による圧縮応力層を有し、中心に貫通穴のある円盤形状を有する磁気記録媒体用のガラス基板であって、
ガラスの歪点(Ts)が585℃以上であって、
内周端から径方向外側に0.2mmの位置および外周端から径方向内側に0.2mmの位置のそれぞれにおいて、主表面に対し垂直に波長543nmの光を照射して測定されるリタデーションの最大値が4nm以下であり、且つ、前記リタデーションの最大値と最小値との差の大きさが1.2nm以下であり、
各主表面のうち、前記内周端から径方向外側に0.5mm以上離れ且つ前記外周端から径方向内側に0.5mm以上離れる全ての部分において、化学強化により導入された導入元素の深さ(λ)が3〜9μmである、磁気記録媒体用のガラス基板。
A glass substrate for a magnetic recording medium having a compressive stress layer by chemical strengthening on a surface layer and having a disk shape with a through hole in the center,
The strain point (Ts) of the glass is 585 ° C. or higher,
Maximum retardation measured by irradiating light with a wavelength of 543 nm perpendicular to the main surface at a position 0.2 mm radially outward from the inner peripheral edge and a position 0.2 mm radially inner from the outer peripheral edge The value is 4 nm or less, and the magnitude of the difference between the maximum value and the minimum value of the retardation is 1.2 nm or less,
The depth of the introduced element introduced by chemical strengthening in all portions of each main surface that are separated by 0.5 mm or more radially outward from the inner peripheral end and 0.5 mm or more radially inward from the outer peripheral end. A glass substrate for a magnetic recording medium, wherein (λ) is 3 to 9 μm.
前記歪点(Ts)が600℃以上である、請求項1に記載の磁気記録媒体用のガラス基板。 The glass substrate for a magnetic recording medium according to claim 1, wherein the strain point (Ts) is 600 ° C. or higher. 前記導入元素が導入された深さよりも深い位置において、ガラスの組成を酸化物換算で表したときの全酸化物の合計のモル数を100としたときの、前記ガラス中のAlのモル数をCA、前記ガラス中の前記導入元素とイオン交換される元素の酸化物換算のモル数をCB、前記ガラス中のMgOのモル数をCC、前記ガラス中のMgOとCaOの合計のモル数をCDとし、前記導入元素の深さをλ(μm)とし、ガラス基板の厚みをd(μm)すると、下記式(1)で算出されるXが0.1以上、1.3以下である、請求項1または2に記載の磁気記録媒体用のガラス基板。
X=CA×CB×(CC/CD)×λ/d・・・(1)
At a position deeper than the depth at which the introduction element is introduced, the total number of moles of all oxides when the glass composition is expressed in terms of oxide is 100, and the Al 2 O 3 content in the glass is 100%. The number of moles is CA, the number of moles in terms of oxide of the element ion-exchanged with the introduced element in the glass is CB, the number of moles of MgO in the glass is CC, and the total number of moles of MgO and CaO in the glass When the number is CD, the depth of the introduced element is λ (μm), and the thickness of the glass substrate is d (μm), X calculated by the following formula (1) is 0.1 or more and 1.3 or less. The glass substrate for magnetic recording media according to claim 1 or 2.
X = CA × CB × (CC / CD) × λ / d (1)
前記導入元素が導入された深さよりも深い位置において、酸化物基準のモル%表示で、SiOを60〜75%、Alを5〜15%、Bを0〜12%、MgOを0〜20%、CaOを0〜12%、SrOを0〜10%、BaOを0〜10%、NaOは0%を超え20%以下、KOを0〜10%、LiOを0〜15%、TiOを0〜5%、ZrOを0〜5%含有し、かつ、これらを合計で95%以上含有し、NaOおよびLiOの含有量の合計が1〜25%である、請求項1〜3のいずれか1項に記載の磁気記録媒体用のガラス基板。 At a position deeper than the depth at which the introduced element is introduced, SiO 2 is 60 to 75%, Al 2 O 3 is 5 to 15%, and B 2 O 3 is 0 to 12% in terms of mol% based on oxide. MgO 0-20%, CaO 0-12%, SrO 0-10%, BaO 0-10%, Na 2 O more than 0% but not more than 20%, K 2 O 0-10%, Li 2 O 0 to 15% of TiO 2 0-5%, a ZrO 2 containing 0-5%, and, they contain more than 95% in total, the content of Na 2 O and Li 2 O The glass substrate for magnetic recording media according to any one of claims 1 to 3, wherein the total is 1 to 25%. 前記導入元素が導入された深さよりも深い位置において、酸化物基準のモル%表示で、SiOを65〜70%、Alを6〜12%、Bを0〜3%、MgOを1〜18%、CaOを0〜10%、SrOを0〜6%、BaOを0〜2%、NaOを0.5〜12%、KOを0〜3%、LiOを0〜5%、TiOを0〜3%、ZrOを0〜3%含有し、かつ、これらを合計で95%以上含有し、NaOおよびLiOの含有量の合計が2〜15%である、請求項4に記載の磁気記録媒体用のガラス基板。 In a position deeper than the depth at which the introduced element is introduced, the SiO 2 is 65 to 70%, the Al 2 O 3 is 6 to 12%, and the B 2 O 3 is 0 to 3% in terms of mol% based on the oxide. the MgO 1 to 18%, 0% and CaO, the SrO 0~6%, 0~2% of BaO, 0.5 to 12% of Na 2 O, 0 to 3% of K 2 O, Li the 2 O 0 to 5%, the TiO 2 0 to 3%, containing ZrO 2 0 to 3%, and the total content of these contained more than 95% in total, Na 2 O and Li 2 O The glass substrate for magnetic recording media according to claim 4, wherein is 2 to 15%. 表面として、互いに平行な2つの主表面と、両主表面の内周縁同士をつなぐ内周接続面と、両主表面の外周縁同士をつなぐ外周接続面とを有し、
ガラス基板の径方向における前記内周接続面の幅およびガラス基板の径方向における前記外周接続面の幅が、それぞれ、0.03〜0.15mmである、請求項1〜5のいずれか1項に記載の磁気記録媒体用のガラス基板。
As surfaces, there are two main surfaces parallel to each other, an inner peripheral connection surface that connects the inner peripheral edges of both main surfaces, and an outer peripheral connection surface that connects the outer peripheral edges of both main surfaces,
The width of the inner peripheral connection surface in the radial direction of the glass substrate and the width of the outer peripheral connection surface in the radial direction of the glass substrate are 0.03 to 0.15 mm, respectively. The glass substrate for magnetic recording media as described in 2.
ガラス基板の径方向における前記内周接続面の幅およびガラス基板の径方向における前記外周接続面の幅が、それぞれ、0.03〜0.08mmであって、
前記内周端から径方向外側に0.1mmの位置、および、前記外周端から径方向内側に0.1mmの位置のそれぞれにおいて、前記リタデーションの最大値が5nm以下であり、前記リタデーションの最大値と最小値との差の大きさが2.5nm以下である、請求項6に記載の磁気記録媒体用のガラス基板。
The width of the inner peripheral connection surface in the radial direction of the glass substrate and the width of the outer peripheral connection surface in the radial direction of the glass substrate are 0.03 to 0.08 mm, respectively.
The maximum value of the retardation is 5 nm or less at each of the position 0.1 mm radially outward from the inner peripheral edge and the position 0.1 mm radially inner from the outer peripheral edge, and the maximum value of the retardation The glass substrate for magnetic recording media according to claim 6, wherein the difference between the minimum value and the minimum value is 2.5 nm or less.
エネルギーアシスト磁気記録用の磁気記録媒体に使用される、請求項1〜7のいずれか1項に記載の磁気記録媒体用のガラス基板。   The glass substrate for a magnetic recording medium according to any one of claims 1 to 7, which is used for a magnetic recording medium for energy-assisted magnetic recording. 請求項1〜8のいずれか1項に記載の磁気記録媒体用のガラス基板と、磁気記録層とを有する、磁気記録媒体の製造方法であって、
歪点(Ts)以上の温度に前記ガラス基板を加熱する加熱工程を有する、磁気記録媒体の製造方法。
A method for producing a magnetic recording medium, comprising the glass substrate for a magnetic recording medium according to any one of claims 1 to 8 and a magnetic recording layer,
A method for producing a magnetic recording medium, comprising a heating step of heating the glass substrate to a temperature equal to or higher than a strain point (Ts).
前記加熱工程において、前記歪点(Ts)を基準として10℃低い温度以上の温度に前記ガラス基板を加熱する間の時間平均の温度をTave(℃)、前記歪点(Ts)を基準として10℃低い温度以上の温度に前記ガラス基板を加熱する時間をtave(分)とすると、下記式(2)で算出されるYが140以下である、請求項9に記載の磁気記録媒体の製造方法。
Y=(Tave−Ts)×tave・・・(2)
In the heating step, the time average temperature during heating the glass substrate to a temperature of 10 ° C. or lower with respect to the strain point (Ts) is T ave (° C.), and the strain point (Ts) is the reference. 10. The magnetic recording medium according to claim 9, wherein Y calculated by the following formula (2) is 140 or less, where t ave (min) is a time during which the glass substrate is heated to a temperature of 10 ° C. or lower. Production method.
Y = (T ave −Ts) × t ave (2)
前記加熱工程において、前記ガラス基板を500℃以上の温度に加熱する間の時間平均の温度をT500(℃)、前記ガラス基板を500℃以上の温度に加熱する時間をt500(分)、前記加熱工程の前の前記導入元素の深さをλ(μm)とすると、下記式(3)で算出されるZが5〜32である、請求項9または10に記載の磁気記録媒体の製造方法。
Z=(T500/Ts)×(t5001/2×λ・・・(3)
In the heating step, T 500 (° C.) is a time average temperature during heating the glass substrate to a temperature of 500 ° C. or higher, and t 500 (min) is a time for heating the glass substrate to a temperature of 500 ° C. or higher. 11. The manufacturing of a magnetic recording medium according to claim 9, wherein Z calculated by the following formula (3) is 5 to 32, where λ (μm) is the depth of the introduced element before the heating step. Method.
Z = (T 500 / Ts) × (t 500 ) 1/2 × λ (3)
前記加熱工程における前記ガラス基板の最高温度が650℃以上である、請求項9〜11のいずれか1項に記載の磁気記録媒体の製造方法。   The method for manufacturing a magnetic recording medium according to claim 9, wherein the maximum temperature of the glass substrate in the heating step is 650 ° C. or higher.
JP2016133749A 2016-07-05 2016-07-05 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium Active JP6015876B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016133749A JP6015876B1 (en) 2016-07-05 2016-07-05 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
PCT/JP2016/072519 WO2018008161A1 (en) 2016-07-05 2016-08-01 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133749A JP6015876B1 (en) 2016-07-05 2016-07-05 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP6015876B1 true JP6015876B1 (en) 2016-10-26
JP2018005964A JP2018005964A (en) 2018-01-11

Family

ID=57197542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133749A Active JP6015876B1 (en) 2016-07-05 2016-07-05 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium

Country Status (2)

Country Link
JP (1) JP6015876B1 (en)
WO (1) WO2018008161A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613490B2 (en) * 2017-09-06 2023-03-28 AGC Inc. 3D cover glass, mold for molding same, and method for manufacturing 3D cover glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283222B2 (en) * 2019-05-17 2023-05-30 Agc株式会社 Glass substrate and in-vehicle display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144237A1 (en) * 2011-04-21 2012-10-26 Hoya株式会社 Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
JP2013012260A (en) * 2011-06-28 2013-01-17 Konica Minolta Advanced Layers Inc Inspection and selection method for glass substrate for hdd, manufacturing method for information recording medium for hdd
WO2013046583A1 (en) * 2011-09-28 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP2016013964A (en) * 2014-06-13 2016-01-28 信越化学工業株式会社 Method of manufacturing synthetic quartz glass substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144237A1 (en) * 2011-04-21 2012-10-26 Hoya株式会社 Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
JP2013012260A (en) * 2011-06-28 2013-01-17 Konica Minolta Advanced Layers Inc Inspection and selection method for glass substrate for hdd, manufacturing method for information recording medium for hdd
WO2013046583A1 (en) * 2011-09-28 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP2016013964A (en) * 2014-06-13 2016-01-28 信越化学工業株式会社 Method of manufacturing synthetic quartz glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613490B2 (en) * 2017-09-06 2023-03-28 AGC Inc. 3D cover glass, mold for molding same, and method for manufacturing 3D cover glass

Also Published As

Publication number Publication date
WO2018008161A1 (en) 2018-01-11
JP2018005964A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP5393974B2 (en) Manufacturing method of glass substrate for magnetic disk and magnetic disk
US9023421B2 (en) Method for producing magnetic disk, and glass substrate for information recording medium
JP3995902B2 (en) Glass substrate for information recording medium and magnetic information recording medium using the same
WO2008062656A1 (en) Glass substrate for information recording medium, method for manufacturing glass substrate for information recording medium, and information recording medium
JPWO2004041740A1 (en) SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND ITS MANUFACTURING METHOD
JP4218839B2 (en) Glass substrate for information recording medium and magnetic information recording medium using the same
JP6308044B2 (en) Alkali-free glass for magnetic recording media and glass substrate for magnetic recording media using the same
JP5907259B2 (en) Manufacturing method of magnetic disk and glass substrate for information recording medium
JP2015027932A (en) Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium prepared using the same
WO2011096310A1 (en) Glass substrate for information recording medium, method for producing glass substrate for information recording medium, and information recording medium
JP6015876B1 (en) Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP6481509B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate, and magnetic recording medium
JP4930838B2 (en) Glass substrate for information recording medium and information recording medium
JP6299472B2 (en) Alkali-free glass for magnetic recording media and glass substrate for magnetic recording media using the same
JPWO2017204224A1 (en) Glass for magnetic recording media, glass substrate for magnetic recording media, and magnetic disk
JP6029740B2 (en) Glass substrate for information recording medium and information recording medium
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
JP5667403B2 (en) Manufacturing method of glass substrate for information recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP5706250B2 (en) Glass substrate for HDD
JP5071603B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP2008130180A (en) Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium, and information recording medium
JP5227711B2 (en) Glass substrate for magnetic disk and manufacturing method thereof
JP2008021399A (en) Method of polishing glass material for information recording glass substrate, information recording glass substrate, information recording disk, and hard disk drive
JPWO2013094451A1 (en) Glass substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160805

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250