JP5968462B2 - Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body - Google Patents

Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body Download PDF

Info

Publication number
JP5968462B2
JP5968462B2 JP2014548792A JP2014548792A JP5968462B2 JP 5968462 B2 JP5968462 B2 JP 5968462B2 JP 2014548792 A JP2014548792 A JP 2014548792A JP 2014548792 A JP2014548792 A JP 2014548792A JP 5968462 B2 JP5968462 B2 JP 5968462B2
Authority
JP
Japan
Prior art keywords
mol
terms
sintered body
atomic ratio
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014548792A
Other languages
Japanese (ja)
Other versions
JPWO2015059938A1 (en
Inventor
淳史 奈良
淳史 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Application granted granted Critical
Publication of JP5968462B2 publication Critical patent/JP5968462B2/en
Publication of JPWO2015059938A1 publication Critical patent/JPWO2015059938A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化物焼結体、酸化物スパッタリングターゲット及び高屈折率の導電性酸化物薄膜並びに酸化物焼結体の製造方法に関し、特にバルク抵抗が低くDCスパッタリングが可能な焼結体スパッタリングターゲット及びそれを用いて作製した高屈折率膜に関する。   The present invention relates to an oxide sintered body, an oxide sputtering target, a conductive oxide thin film having a high refractive index, and a method for producing the oxide sintered body, and more particularly, a sintered body sputtering target having a low bulk resistance and capable of DC sputtering. And a high refractive index film produced using the same.

ディスプレイやタッチパネル等の各種光デバイスにおいて可視光を利用する場合、使用する材料は透明である必要があり、特に、可視光領域の全域において、高い透過率をもつことが望まれる。また、各種光デバイスでは、構成される膜材料や基板との界面での屈折率差による光損失が生じることがあり、これらの光損失を改善する方法として、屈折率や光学膜厚調整のための光学調整膜を導入するという方法がある。光学調整膜に求められる屈折率は、各種デバイスの構造によって異なるため、幅広い範囲の屈折率が必要とされる。また、使用される場所によっては、導電性が必要とされることもある。   When using visible light in various optical devices such as displays and touch panels, the material used needs to be transparent, and in particular, it is desired to have a high transmittance in the entire visible light region. In addition, optical loss may occur in various optical devices due to the difference in refractive index at the interface between the film material and the substrate, and as a method to improve these optical losses, it is necessary to adjust the refractive index and optical film thickness. There is a method of introducing an optical adjustment film. Since the refractive index required for the optical adjustment film varies depending on the structure of various devices, a wide range of refractive index is required. Moreover, depending on the place used, electrical conductivity may be required.

一般に透明で導電性のある材料としては、ITO(酸化インジウム−酸化錫)、IZO(酸化インジウム−酸化亜鉛)、GZO(酸化ガリウム−酸化亜鉛)、AZO(酸化アルミニウム−酸化亜鉛)などが知られている(特許文献1〜3)。しかし、これらの材料は波長550nmにおける屈折率が1.95〜2.05程度の範囲に収まるものであり、光学調整のための高屈折率材(n>2.05)や低屈折率材(n<1.95)としては使用できない。また、ITOは、透過率を高めるために、成膜時に基板加熱するか、又は、成膜後にアニールが必要となるため、加熱できないプラスチック基板や有機ELデバイス用途などへの使用は難しいという問題がある。また、IZOは、短波長側に吸収をもつため、黄色を帯びた膜となってしまうという問題がある。 In general, ITO (indium oxide-tin oxide), IZO (indium oxide-zinc oxide), GZO (gallium oxide-zinc oxide), AZO (aluminum oxide-zinc oxide) and the like are known as transparent and conductive materials. (Patent Documents 1 to 3). However, these materials have a refractive index within a range of about 1.95 to 2.05 at a wavelength of 550 nm, and a high refractive index material (n> 2.05) or a low refractive index material for optical adjustment ( n <1.95) cannot be used. In addition, in order to increase the transmittance, ITO needs to be heated at the time of film formation or annealed after the film formation. is there. In addition, since IZO has absorption on the short wavelength side, there is a problem that it becomes a yellowish film.

特開2007−008780号公報JP 2007-008780 A 特開2009−184876号公報JP 2009-184876 A 特開2007−238375号公報JP 2007-238375 A

本発明は、可視光の高透過率と高屈折率を実現できる導電性薄膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は、透過率が高く、且つ、屈折率が高いため、ディスプレイやタッチパネルなどの光デバイス用の薄膜、特に光学調整用の薄膜として有用である。また、本発明は、相対密度が高く、バルク抵抗が低く、DCスパッタリングが可能なスパッタリングターゲットを提供することを課題とする。本発明は、光デバイスの特性の向上、設備コストの低減化、成膜の特性を大幅に改善することを目的とする。   An object of the present invention is to provide a sintered body capable of obtaining a conductive thin film capable of realizing a high visible light transmittance and a high refractive index. Since this thin film has a high transmittance and a high refractive index, it is useful as a thin film for optical devices such as displays and touch panels, particularly as a thin film for optical adjustment. Another object of the present invention is to provide a sputtering target having a high relative density, a low bulk resistance, and capable of DC sputtering. An object of the present invention is to improve the characteristics of optical devices, reduce equipment costs, and greatly improve the characteristics of film formation.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、下記に提示する材料系を採用することで、高透過率かつ高屈折率の導電性薄膜を得ることが可能となり、良好な光学特性を確保することができ、さらには、DCスパッタリングによる安定的な成膜が可能であり、該薄膜を使用する光デバイスの特性改善、生産性向上が可能であるとの知見を得た。   In order to solve the above problems, the present inventors have conducted intensive research, and as a result, by adopting the material system presented below, it becomes possible to obtain a conductive thin film having a high transmittance and a high refractive index. The knowledge that good optical characteristics can be secured, and further, stable film formation by DC sputtering is possible, and characteristics of optical devices using the thin film can be improved and productivity can be improved. Obtained.

本発明はこの知見に基づき、下記の発明を提供する。
1)インジウム(In)、及び、チタン(Ti)、亜鉛(Zn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、ZnをZnO換算で60mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Znの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、バルク抵抗が8.7mΩ・cm以下であることを特徴とする焼結体、
2)インジウム(In)、及び、チタン(Ti)、スズ(Sn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、SnをSnO 換算で80mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Snの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、バルク抵抗が87mΩ・cm以下であることを特徴とする焼結体、
3)InをIn換算で2〜20mol%含有し、TiをTiO換算で3〜15.4mol%含有することを特徴とする前記1)または2)に記載の焼結体、
4)0<C/(A+B)<5であることを特徴とする前記1)〜3)のいずれか一に記載の焼結体、
5)相対密度が90%以上であることを特徴とする前記1)〜4)のいずれか一に記載の焼結体、
6)インジウム(In)、チタン(Ti)、亜鉛(Zn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、ZnをZnO換算で60mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Znの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、波長550nmにおける屈折率が2.05以上、波長450nmにおける消衰係数が0.05以下であることを特徴とする光学調整用薄膜、
7)インジウム(In)、チタン(Ti)、スズ(Sn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、SnをSnO 換算で80mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Snの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、波長550nmにおける屈折率が2.05以上、波長450nmにおける消衰係数が0.05以下であることを特徴とする光学調整用薄膜、
8)請求項1〜5のいずれか一項に記載の焼結体の製造方法であって、原料粉末を不活性ガス又は真空雰囲気の下、900℃以上1500℃以下で加圧焼結するか又は原料粉末をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、1000℃以上1500℃以下で常圧焼結することを特徴とする焼結体の製造方法。
Based on this finding, the present invention provides the following inventions.
1) It consists of indium (In), titanium (Ti), zinc (Zn), and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti in terms of TiO 2 ˜15.4 mol%, Zn is 60 mol% or more in terms of ZnO , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Zn is C (at%) ), 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, and the bulk resistance is 8.7 mΩ · cm or less,
2) It consists of indium (In), titanium (Ti), tin (Sn), and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti in terms of TiO 2 ˜15.4 mol%, Sn is contained in an amount of 80 mol% or more in terms of SnO 2 , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Sn is C ( at%), 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, and the bulk resistance is 87 mΩ · cm or less,
3) The sintered body according to 1) or 2) above, wherein In is contained in an amount of 2 to 20 mol% in terms of In 2 O 3 and Ti is contained in an amount of 3 to 15.4 mol% in terms of TiO 2 .
4) The sintered body according to any one of 1) to 3) above, wherein 0 <C / (A + B) <5,
5) The sintered body according to any one of 1) to 4) above, wherein the relative density is 90% or more,
6) It consists of indium (In), titanium (Ti), zinc (Zn) 2 , and oxygen (O), contains 2 to 20 mol% In in terms of In 2 O 3 , and Ti 2 to 15 in terms of TiO 2 .4 mol%, Zn is 60 mol% or more in terms of ZnO , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Zn is C (at%). 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, the refractive index at a wavelength of 550 nm is 2.05 or more, and the extinction coefficient at a wavelength of 450 nm is 0.05 or less. Optical adjustment thin film, characterized by
7) It consists of indium (In), titanium (Ti), tin (Sn) 2 , and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti 2 to 15 in terms of TiO 2 4 mol%, Sn is contained in an amount of 80 mol% or more in terms of SnO 2 , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Sn is C (at% ) 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, the refractive index at a wavelength of 550 nm is 2.05 or more, and the extinction coefficient at a wavelength of 450 nm is 0.05 or less. A thin film for optical adjustment, characterized in that
8) The method for producing a sintered body according to any one of claims 1 to 5, wherein the raw material powder is subjected to pressure sintering at 900 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere. Alternatively, after the raw material powder is press-molded, the compact is subjected to atmospheric pressure sintering at 1000 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere.

本発明によれば、上記に示す材料系を採用することにより、高透過率かつ高屈折率の導電性の膜を得ることが可能となり、所望の光学特性を確保することができる。また、本発明は、各種光デバイスの特性の向上、設備コストの低減化、成膜速度の向上による生産性の大幅な改善という優れた効果を有する。 According to the present invention, by employing the material system described above, it is possible to obtain a conductive film having a high transmittance and a high refractive index, and it is possible to ensure desired optical characteristics. Further, the present invention has excellent effects such as improvement of characteristics of various optical devices, reduction of equipment cost, and significant improvement of productivity due to improvement of film formation speed.

本発明は、インジウム(In)、及び、チタン(Ti)又はクロム(Cr)、及び、亜鉛(Zn)又はスズ(Sn)、及び、酸素(O)からなり、InをIn換算で2〜65mol%含有し、Ti又はCrをそれぞれTiO換算又はCr換算で2〜65mol%含有し、Inの原子比をA(at%)、Ti又はCrの原子比をB(at%)、Zn又はSnの原子比をC(at%)としたとき、0.5≦A/B≦5であり、0<C/(A+B)<10であることを特徴とするものである。これにより、高透過率かつ高屈折率を有する導電性の膜を得ることができる。
なお、本発明の材料は、インジウム(In)、及び、チタン(Ti)又はクロム(Cr)、及び、亜鉛(Zn)又はスズ(Sn)、及び、酸素(O)、を構成元素とするが、該材料中には、不可避的不純物も含まれる。
The present invention comprises indium (In), titanium (Ti) or chromium (Cr), zinc (Zn) or tin (Sn), and oxygen (O), and In is converted to In 2 O 3 . 2 to 65 mol%, Ti or Cr is contained in an amount of 2 to 65 mol% in terms of TiO 2 or Cr 2 O 3 , the atomic ratio of In is A (at%), and the atomic ratio of Ti or Cr is B (at %), Zn or Sn atomic ratio C (at%), 0.5 ≦ A / B ≦ 5, and 0 <C / (A + B) <10. . Thereby, a conductive film having a high transmittance and a high refractive index can be obtained.
The material of the present invention includes indium (In), titanium (Ti) or chromium (Cr), zinc (Zn) or tin (Sn), and oxygen (O) as constituent elements. The material also contains inevitable impurities.

本発明の材料系は、式:M(MO)(M:第一成分、M:第二成分、M:第三成分、mは1以上の自然数)で表されるホモロガス化合物を含むものであるが、ホモロガス構造となりうる材料であって、かつ、高屈折率材料として、第一成分にIn又はFe、第二成分にTi、Cr、In、Fe又はSn、第三成分にZn、Sn、Cu、Mn、Fe又はCoが挙げられる。しかし、Fe、Cu、Mn、Coは、バンドギャップが小さくて、可視光領域に吸収を生じてしまうため好ましくない。
したがって、第一成分としてInを採用することが決定される。また、第三成分には、Zn又はSnを採用することが決定される。さらに、高屈折率化させるのに第二成分としてInやSnを使用することができないため、第二成分としては、Ti又はCrを採用することが決定される。
The material system of the present invention has the formula: M 1 M 2 O 3 (M 3 O) m (M 1 : first component, M 2 : second component, M 3 : third component, m is a natural number of 1 or more) Is a material that can have a homologous structure, and as a high refractive index material, In or Fe as the first component, Ti, Cr, In, Fe or Sn as the second component, Examples of the third component include Zn, Sn, Cu, Mn, Fe, and Co. However, Fe, Cu, Mn, and Co are not preferable because the band gap is small and absorption occurs in the visible light region.
Therefore, it is decided to adopt In as the first component. Moreover, it is determined that Zn or Sn is adopted as the third component. Furthermore, since In and Sn cannot be used as the second component to increase the refractive index, it is determined to employ Ti or Cr as the second component.

本発明において、Inの含有量は、In換算で2〜65mol%とする。さらに好ましくは、2〜30mol%とする。また、Ti又はCrの含有量は、それぞれTiO換算又はCr換算で3〜65mol%とする。さらに好ましくは、3〜30mol%とする。第三成分であるZn又はSnの含有量は、InとTi又はCrの含有量及び上記で規定するC/(A+B)原子比から導き出すことができるが、好ましくは、ZnO又はSnO換算で40mol%以上とする。これにより、所望の高透過率かつ高屈折率を有する導電性の膜を実現することができる。In the present invention, the In content is 2 to 65 mol% in terms of In 2 O 3 . More preferably, it is 2-30 mol%. The content of Ti or Cr is respectively 3~65Mol% in terms of TiO 2 or terms of Cr 2 O 3. More preferably, it is 3-30 mol%. The content of the third component Zn or Sn can be derived from the content of In and Ti or Cr and the C / (A + B) atomic ratio defined above, but preferably 40 mol% in terms of ZnO or SnO. That's it. Thereby, a conductive film having a desired high transmittance and high refractive index can be realized.

本発明において、A/B原子比は0.5≦A/B≦5とする。この範囲を超えると、所望の光学特性が得られないため好ましくない。特に、A/Bが5以上になると、高屈折率材(Ti又はCr)の含有量が減り、屈折率が低下するという問題がある。また、本発明において、C/(A+B)原子比は0<C/(A+B)<10とし、さらに好ましくは、0<C/(A+B)<5とする。この範囲を超えると、上記と同様に高屈折率材の含有量が減り、所望する高屈折率が得られないという問題がある。 In the present invention, the A / B atomic ratio is 0.5 ≦ A / B ≦ 5. Exceeding this range is not preferable because desired optical characteristics cannot be obtained. In particular, when A / B is 5 or more, there is a problem that the content of the high refractive index material (Ti or Cr) decreases and the refractive index decreases. In the present invention, the C / (A + B) atomic ratio is 0 <C / (A + B) <10, and more preferably 0 <C / (A + B) <5. If it exceeds this range, the content of the high refractive index material decreases as described above, and there is a problem that the desired high refractive index cannot be obtained.

本発明の焼結体は、スパッタリングターゲットとして使用する場合、相対密度90%以上とすることが好ましい。密度の向上は、スパッタ膜の均一性を高め、またスパッタ時のパーティクルの発生を抑制することができるという効果を有する。相対密度90%以上は、後述する本発明の焼結体の製造方法により、実現することができる。
また、本発明の焼結体は、スパッタリングターゲットとして使用する場合、バルク抵抗10Ω・cm以下とすることが好ましい。バルク抵抗の低下により、DCスパッタによる成膜が可能となる。DCスパッタはRFスパッタに比べて、成膜速度が速く、スパッタリング効率が優れており、スループットを向上できる。なお、製造条件によっては、RFスパッタを行う場合もあるが、その場合でも、成膜速度の向上がある。
When the sintered body of the present invention is used as a sputtering target, the relative density is preferably 90% or more. The improvement in density has the effect of improving the uniformity of the sputtered film and suppressing the generation of particles during sputtering. The relative density of 90% or more can be realized by the method for producing a sintered body of the present invention described later.
Moreover, when using the sintered compact of this invention as a sputtering target, it is preferable to set it as bulk resistance 10 ohm * cm or less. Due to the decrease in bulk resistance, film formation by DC sputtering becomes possible. Compared with RF sputtering, DC sputtering is faster in film formation, has better sputtering efficiency, and can improve throughput. Depending on the manufacturing conditions, RF sputtering may be performed, but even in that case, the film formation rate is improved.

本発明のスパッタリングによって作製される薄膜は、波長550nmにおける屈折率2.05以上を達成することができる。また、本発明の薄膜は、波長450nmにおける消衰係数0.05以下を達成することができる。さらに、本発明の薄膜は、比抵抗1MΩ・cm以下を達成することができる。このような高屈折率で透過率の高い導電性の薄膜は、光学調整用の薄膜として、ディスプレイやタッチパネルなどの光デバイス用に有用である。特に、本発明は、波長450nmにおける消衰係数が0.01以下と短波長域において吸収がほとんどない高屈折率の膜を得ることができるため、所望の光学特性を得るために優れた材料系といえる。 The thin film produced by sputtering according to the present invention can achieve a refractive index of 2.05 or more at a wavelength of 550 nm. The thin film of the present invention can achieve an extinction coefficient of 0.05 or less at a wavelength of 450 nm. Furthermore, the thin film of the present invention can achieve a specific resistance of 1 MΩ · cm or less. Such a conductive thin film having a high refractive index and a high transmittance is useful for optical devices such as displays and touch panels as a thin film for optical adjustment. In particular, the present invention can obtain a film having a high refractive index having an extinction coefficient of 0.01 nm or less at a wavelength of 450 nm and almost no absorption in a short wavelength region, and thus an excellent material system for obtaining desired optical characteristics. It can be said.

本発明の薄膜は、上述した組成範囲において、結晶化膜となるものとアモルファス膜となるものが存在する。さらに、両者が共存するような部分的に結晶化膜となっているような状態のものも存在する。本発明において、このような膜の結晶性については特に制限はないが、所望する結晶性に合わせて組成調整することが可能である。なお、膜の結晶性(結晶化膜、アモルファス膜、または部分的な結晶化膜)は、X線回折法による回折ピークの有無で評価することができる。 The thin film of the present invention includes a crystallized film and an amorphous film in the composition range described above. Furthermore, there exists a state in which both are coexisting and are partially crystallized films. In the present invention, the crystallinity of such a film is not particularly limited, but the composition can be adjusted in accordance with the desired crystallinity. Note that the crystallinity of the film (a crystallized film, an amorphous film, or a partially crystallized film) can be evaluated by the presence or absence of a diffraction peak by an X-ray diffraction method.

本発明の焼結体は、各構成金属の酸化物粉末からなる原料粉末を、不活性ガス雰囲気又は真空雰囲気の下、加圧焼結(ホットプレス)するか、又は、原料粉末をプレス成形した後、この成形体を常圧焼結することによって、製造することができる。このとき、焼結温度は、900℃以上1500℃以下とすることが好ましい。900℃未満とすると、高密度の焼結体が得られず、一方、1500℃超とすると、材料の蒸発による組成ズレや密度の低下が生じるため、好ましくない。 In the sintered body of the present invention, the raw material powder composed of the oxide powder of each constituent metal is subjected to pressure sintering (hot pressing) under an inert gas atmosphere or a vacuum atmosphere, or the raw material powder is press-molded. Then, it can manufacture by carrying out an atmospheric pressure sintering of this molded object. At this time, the sintering temperature is preferably 900 ° C. or higher and 1500 ° C. or lower. When the temperature is lower than 900 ° C., a high-density sintered body cannot be obtained. On the other hand, when the temperature is higher than 1500 ° C., composition deviation and density decrease due to evaporation of the material are undesirable.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

実施例、比較例における評価方法等は、以下の通りである。
(成分組成について)
装置:SII社製SPS3500DD
方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(相対密度について)
焼結体密度は、焼結体の寸法をノギスで測長し、その体積と測定重量から算出した。
理論密度は、下記に示すように、原料の酸化物の単体密度それぞれに、混合質量比を掛け、得られた値を合計して求めた。また、相対密度は、酸化物焼結体の密度を理論密度で除し、100を掛けて求めた。
理論密度=Σ{(各酸化物の単体密度×混合質量比)+(各酸化物の単体密度×混合重量比)+・・・}
相対密度={(焼結体の密度)/(理論密度)}×100
(バルク抵抗[比抵抗、シート抵抗]について)
装置:NPS社製 抵抗率測定器 Σ−5+
方法:直流4探針法
(屈折率、消衰係数について)
装置:SHIMADZU社製 分光光度計 UV−2450
方法:透過率、表裏面反射率から算出
(成膜方法、条件について)
装置:ANELVA SPL−500
基板:φ4inch
基板温度:室温
Evaluation methods and the like in Examples and Comparative Examples are as follows.
(About component composition)
Device: SPS3500DD manufactured by SII
Method: ICP-OES (High Frequency Inductively Coupled Plasma Atomic Emission Analysis)
(About relative density)
The density of the sintered body was calculated from the volume and measured weight of the sintered body measured with a caliper.
As shown below, the theoretical density was obtained by multiplying each single element density of the raw material oxide by the mixing mass ratio and totaling the obtained values. The relative density was obtained by dividing the density of the oxide sintered body by the theoretical density and multiplying by 100.
Theoretical density = Σ {(unit density of each oxide × mixing mass ratio) + (unit density of each oxide × mixing weight ratio) +.
Relative density = {(density of sintered body) / (theoretical density)} × 100
(About bulk resistance [specific resistance, sheet resistance])
Apparatus: Resistivity measuring instrument Σ-5 + manufactured by NPS
Method: DC 4 probe method (refractive index, extinction coefficient)
Apparatus: Spectrophotometer UV-2450 manufactured by SHIMADZU
Method: Calculated from transmittance and front and back surface reflectance (deposition method and conditions)
Equipment: ANELVA SPL-500
Substrate: φ4inch
Substrate temperature: room temperature

(実施例1)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。
次に、上記の仕上げ加工した直径6インチのターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、酸素を0〜2vol%含有するArガス圧0.5Paとし、膜厚5000Åに成膜した。なお、スパッタ時の基板加熱やスパッタ後のアニールは行わなかった。
結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が98.9%に達し、バルク抵抗は2.9×10−3Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.10(波長550nm)、消衰係数が0.01(波長450nm)、抵抗値が2.3×10−2Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。なお、抵抗値については、スパッタ時の酸素量によって若干変動し、酸素量を多くすると抵抗値が上がる傾向にある。そのため、その下限値を記載した。
Example 1
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape.
Next, sputtering was carried out using the above-finished target having a diameter of 6 inches. The sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 0 to 2 vol% oxygen, and a film thickness of 5000 mm. The substrate was not heated during sputtering or annealed after sputtering.
The results are shown in Table 1. As shown in Table 1, the sputtering target had a relative density of 98.9%, the bulk resistance was 2.9 × 10 −3 Ω · cm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.10 (wavelength 550 nm), an extinction coefficient of 0.01 (wavelength 450 nm), and a resistance value of 2.3 × 10 −2 Ω · cm or higher, which is highly refractive. And a highly transparent conductive film was obtained. The resistance value varies slightly depending on the amount of oxygen during sputtering, and the resistance value tends to increase as the amount of oxygen increases. Therefore, the lower limit value is described.

(実施例2)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が100.3%に達し、バルク抵抗は8.7×10−3Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.15(波長550nm)、消衰係数が0.01未満(波長450nm)、抵抗値が1.8×10+2Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
(Example 2)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 100.3%, the bulk resistance was 8.7 × 10 −3 Ω · cm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.15 (wavelength 550 nm), an extinction coefficient of less than 0.01 (wavelength 450 nm), and a resistance value of 1.8 × 10 +2 Ω · cm or higher, which is highly refractive. And a highly transparent conductive film was obtained.

参考例3)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1100℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が99.5%に達し、バルク抵抗は3.5×10−3Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.22(波長550nm)、消衰係数が0.01未満(波長450nm)、抵抗値が1.2×10+2Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
( Reference Example 3)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 99.5%, the bulk resistance was 3.5 × 10 −3 Ω · cm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.22 (wavelength 550 nm), an extinction coefficient of less than 0.01 (wavelength 450 nm), and a resistance value of 1.2 × 10 +2 Ω · cm or higher, which is highly refractive. And a highly transparent conductive film was obtained.

参考例4)
In粉、Cr粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1100℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が100.2%に達し、バルク抵抗は8.0×10−4Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.10(波長550nm)、消衰係数が0.02(波長450nm)、抵抗値が2.8×10−2Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
( Reference Example 4)
In 2 O 3 powder, Cr 2 O 3 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1100 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 100.2%, the bulk resistance was 8.0 × 10 −4 Ω · cm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.10 (wavelength 550 nm), an extinction coefficient of 0.02 (wavelength 450 nm), and a resistance value of 2.8 × 10 −2 Ω · cm or higher, which is highly refractive. And a highly transparent conductive film was obtained.

(実施例5)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が100.1%に達し、バルク抵抗は9.6×10−4Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.12(波長550nm)、消衰係数が0.01未満(波長450nm)、抵抗値が8.7×10−3Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
(Example 5)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 100.1%, the bulk resistance was 9.6 × 10 −4 Ω · cm, and stable DC sputtering was possible. The thin film formed by sputtering has a refractive index of 2.12 (wavelength 550 nm), an extinction coefficient of less than 0.01 (wavelength 450 nm), and a resistance value of 8.7 × 10 −3 Ω · cm or higher. A conductive film having a refractive index and a high transmittance was obtained.

(実施例6)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1100℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が99.8%に達し、バルク抵抗は8.4×10−4Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.05(波長550nm)、消衰係数が0.01未満(波長450nm)、抵抗値が9.3×10−3Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
(Example 6)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 99.8%, the bulk resistance was 8.4 × 10 −4 Ω · cm, and stable DC sputtering was possible. The thin film formed by sputtering has a refractive index of 2.05 (wavelength 550 nm), an extinction coefficient of less than 0.01 (wavelength 450 nm), and a resistance value of 9.3 × 10 −3 Ω · cm or higher. A conductive film having a refractive index and a high transmittance was obtained.

参考例7)
In粉、Cr粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が98.2%に達し、バルク抵抗は5.2×10−3Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.07(波長550nm)、消衰係数が0.03(波長450nm)、抵抗値が3.6×10−2Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
( Reference Example 7)
In 2 O 3 powder, Cr 2 O 3 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 98.2%, the bulk resistance was 5.2 × 10 −3 Ω · cm, and stable DC sputtering was possible. The thin film formed by sputtering has a refractive index of 2.07 (wavelength 550 nm), an extinction coefficient of 0.03 (wavelength 450 nm), and a resistance value of 3.6 × 10 −2 Ω · cm or higher and a high refractive index. And a highly transparent conductive film was obtained.

(実施例8)
In粉、TiO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をプレス成形した後、成形体をアルゴン雰囲気下、温度1300℃の条件で常温焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタリングターゲットは、相対密度が97.8%に達し、バルク抵抗は8.7×10−2Ω・cmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.08(波長550nm)、消衰係数が0.01(波長450nm)、抵抗値が3.1×10Ω・cm以上と、高屈折率かつ高透過率の導電性膜が得られた。
(Example 8)
In 2 O 3 powder, TiO 2 powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, after press-molding this mixed powder, the compact was sintered at room temperature in an argon atmosphere at a temperature of 1300 ° C. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the relative density of the sputtering target reached 97.8%, the bulk resistance was 8.7 × 10 −2 Ω · cm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.08 (wavelength 550 nm), an extinction coefficient of 0.01 (wavelength 450 nm), a resistance value of 3.1 × 10 1 Ω · cm or higher, and a high refractive index. In addition, a highly transparent conductive film was obtained.

(比較例1)
In粉、Fe粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、消衰係数が0.16(波長450nm)と低波長域において光の吸収が生じ、所望の高透過率膜が得られなかった。
(Comparative Example 1)
In 2 O 3 powder, Fe 2 O 3 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film had an extinction coefficient of 0.16 (wavelength 450 nm) and light absorption occurred in a low wavelength region, and a desired high transmittance film could not be obtained.

(比較例2)
In粉、TiO粉、CuO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、消衰係数が0.2以上(波長450nm)と低波長域において光の吸収が生じ、所望の高透過率膜が得られなかった。
(Comparative Example 2)
In 2 O 3 powder, TiO 2 powder, and CuO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film had an extinction coefficient of 0.2 or more (wavelength 450 nm) and light absorption occurred in a low wavelength region, and a desired high transmittance film could not be obtained.

(比較例3)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。このとき、In/Tiの原子比を8.0と大きくした。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、屈折率が2.01(波長550nm)と屈折率が低下し、所望の高屈折率膜が得られなかった。
(Comparative Example 3)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. At this time, the atomic ratio of In / Ti was increased to 8.0. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film had a refractive index of 2.01 (wavelength 550 nm) and a refractive index decreased, and a desired high refractive index film could not be obtained.

(比較例4)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。このとき、Zn/(In+Ti)の原子比を15と大きくした。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、屈折率が2.02(波長550nm)と、屈折率が低下し、所望の高屈折率膜が得られなかった。
(Comparative Example 4)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. At this time, the atomic ratio of Zn / (In + Ti) was increased to 15. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film had a refractive index of 2.02 (wavelength 550 nm) and the refractive index decreased, and a desired high refractive index film could not be obtained.

本発明のスパッタリングによって形成される薄膜は、ディスプレイやタッチパネルにおける光学調整用の薄膜や光ディスクの構造の一部を形成して、透過率、屈折率、導電性において、極めて優れた特性を有するという効果がある。
また、本発明の焼結体からなるスパッタリングターゲットは、バルク抵抗値が低く、高密度であることから、安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴であるスパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。また、成膜の際にスパッタ時に発生するパーティクルを低減し、膜の品質を向上させることができる。
The thin film formed by sputtering according to the present invention forms a part of the structure of an optical adjustment thin film or an optical disk in a display or touch panel, and has extremely excellent characteristics in transmittance, refractive index, and conductivity. There is.
Moreover, since the sputtering target made of the sintered body of the present invention has a low bulk resistance value and a high density, it enables stable DC sputtering. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. In addition, particles generated during sputtering during film formation can be reduced, and film quality can be improved.

Claims (8)

インジウム(In)、及び、チタン(Ti)、亜鉛(Zn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、ZnをZnO換算で60mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Znの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、バルク抵抗が8.7mΩ・cm以下であることを特徴とする焼結体。 It consists of indium (In), titanium (Ti), zinc (Zn), and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti in the range of 2 to 15 in terms of TiO 2. .4 mol%, Zn is 60 mol% or more in terms of ZnO , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Zn is C (at%). A sintered body characterized in that 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, and the bulk resistance is 8.7 mΩ · cm or less. インジウム(In)、及び、チタン(Ti)、スズ(Sn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、SnをSnO 換算で80mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Snの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、バルク抵抗が87mΩ・cm以下であることを特徴とする焼結体。 It consists of indium (In), titanium (Ti), tin (Sn), and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti in the range of 2 to 15 in terms of TiO 2. 4 mol%, Sn is contained in an amount of 80 mol% or more in terms of SnO 2 , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Sn is C (at% ), 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, and the bulk resistance is 87 mΩ · cm or less. InをIn換算で2〜20mol%含有し、TiをTiO換算で3〜15.4mol%含有することを特徴とする請求項1または2に記載の焼結体。 3. The sintered body according to claim 1, wherein In is contained in an amount of 2 to 20 mol% in terms of In 2 O 3 and Ti is contained in an amount of 3 to 15.4 mol% in terms of TiO 2 . 0<C/(A+B)<5であることを特徴とする請求項1〜3のいずれか一項に記載の焼結体。   The sintered body according to claim 1, wherein 0 <C / (A + B) <5. 相対密度が90%以上であることを特徴とする請求項1〜4のいずれか一項に記載の焼結体。   A relative density is 90% or more, The sintered compact as described in any one of Claims 1-4 characterized by the above-mentioned. インジウム(In)、チタン(Ti)、亜鉛(Zn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、ZnをZnO換算で60mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Znの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、波長550nmにおける屈折率が2.05以上、波長450nmにおける消衰係数が0.05以下であることを特徴とする光学調整用薄膜。 It consists of indium (In), titanium (Ti), zinc (Zn) 2 , and oxygen (O), contains 2 to 20 mol% In in terms of In 2 O 3 , and Ti 2 to 15.4 mol in terms of TiO 2. When Zn is 60 mol% or more in terms of ZnO , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Zn is C (at%) 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, the refractive index at a wavelength of 550 nm is 2.05 or more, and the extinction coefficient at a wavelength of 450 nm is 0.05 or less. A thin film for optical adjustment. インジウム(In)、チタン(Ti)、スズ(Sn)、及び、酸素(O)からなり、InをIn換算で2〜20mol%含有し、TiをTiO換算で2〜15.4mol%含有し、SnをSnO 換算で80mol%以上含有し、Inの原子比をA(at%)、Tiの原子比をB(at%)、Snの原子比をC(at%)としたとき、0.5≦A/B≦5かつ0<C/(A+B)<10であり、波長550nmにおける屈折率が2.05以上、波長450nmにおける消衰係数が0.05以下であることを特徴とする光学調整用薄膜。 It consists of indium (In), titanium (Ti), tin (Sn) 2 , and oxygen (O), contains 2 to 20 mol% of In in terms of In 2 O 3 , and Ti 2 to 15.4 mol in terms of TiO 2. And Sn is contained in an amount of 80 mol% or more in terms of SnO 2 , the atomic ratio of In is A (at%), the atomic ratio of Ti is B (at%), and the atomic ratio of Sn is C (at%). 0.5 ≦ A / B ≦ 5 and 0 <C / (A + B) <10, the refractive index at a wavelength of 550 nm is 2.05 or more, and the extinction coefficient at a wavelength of 450 nm is 0.05 or less. An optical adjustment thin film characterized by 請求項1〜5のいずれか一項に記載の焼結体の製造方法であって、原料粉末を不活性ガス又は真空雰囲気の下、900℃以上1500℃以下で加圧焼結するか又は原料粉末をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、1000℃以上1500℃以下で常圧焼結することを特徴とする焼結体の製造方法。   It is a manufacturing method of the sintered compact as described in any one of Claims 1-5, Comprising: Raw material powder is pressure-sintered at 900 degreeC or more and 1500 degrees C or less under inert gas or a vacuum atmosphere, or a raw material A method for producing a sintered body comprising press-molding powder and then sintering the compact at 1000 ° C to 1500 ° C under an inert gas or vacuum atmosphere.
JP2014548792A 2013-10-24 2014-01-08 Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body Active JP5968462B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013220805 2013-10-24
JP2013220805 2013-10-24
PCT/JP2014/050106 WO2015059938A1 (en) 2013-10-24 2014-01-08 Oxide sintered body, oxide sputtering target and conductive oxide thin film with high refractive index, and method for producing oxide sintered body

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014221234A Division JP5913523B2 (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP2014221233A Division JP2015107909A (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, conductive oxide thin film having high refractive index and method for producing oxide sintered body

Publications (2)

Publication Number Publication Date
JP5968462B2 true JP5968462B2 (en) 2016-08-10
JPWO2015059938A1 JPWO2015059938A1 (en) 2017-03-09

Family

ID=52992551

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014548792A Active JP5968462B2 (en) 2013-10-24 2014-01-08 Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP2014221234A Active JP5913523B2 (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP2014221233A Pending JP2015107909A (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, conductive oxide thin film having high refractive index and method for producing oxide sintered body

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014221234A Active JP5913523B2 (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP2014221233A Pending JP2015107909A (en) 2013-10-24 2014-10-30 Oxide sintered body, oxide sputtering target, conductive oxide thin film having high refractive index and method for producing oxide sintered body

Country Status (5)

Country Link
JP (3) JP5968462B2 (en)
KR (1) KR101748017B1 (en)
CN (1) CN104736497B (en)
TW (1) TWI608111B (en)
WO (1) WO2015059938A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350564B (en) * 2015-12-25 2020-05-15 株式会社爱发科 Oxide sintered body sputtering target and method for producing same
JP7416885B1 (en) 2022-09-30 2024-01-17 鹿島建設株式会社 Floating floor structure and floating floor construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083183A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical membrane laminate
WO2012029455A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Sintered oxide and oxide semiconductor thin film
WO2012153507A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2O3-SnO2-ZnO SPUTTERING TARGET
WO2012153522A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2o3-zno sputtering target
WO2013065786A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264021A (en) * 1995-03-26 1996-10-11 Gunze Ltd Transparent conductive film
JP3803132B2 (en) * 1996-01-31 2006-08-02 出光興産株式会社 Target and manufacturing method thereof
CN1320155C (en) * 2001-06-26 2007-06-06 三井金属矿业株式会社 Sputtering target for high resistance transparent conductive membrane and mfg. method of high resistance transparent conductive membrane
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film
JP4793773B2 (en) * 2003-03-04 2011-10-12 Jx日鉱日石金属株式会社 Manufacturing method of sputtering target
CN102046835B (en) * 2008-06-03 2013-01-02 Jx日矿日石金属株式会社 Sputtering target and non-crystalline optical thin film
JP5337016B2 (en) * 2009-12-25 2013-11-06 Jx日鉱日石金属株式会社 Sintered sputtering target, method for producing thin film for optical recording medium, and thin film for optical recording medium
JP5440388B2 (en) * 2010-05-26 2014-03-12 三菱マテリアル株式会社 Oxide sputtering target and oxide film for optical recording medium
JP5339100B2 (en) * 2011-09-22 2013-11-13 住友金属鉱山株式会社 Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083183A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical membrane laminate
WO2012029455A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Sintered oxide and oxide semiconductor thin film
WO2012153507A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2O3-SnO2-ZnO SPUTTERING TARGET
WO2012153522A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2o3-zno sputtering target
WO2013065786A1 (en) * 2011-11-04 2013-05-10 株式会社コベルコ科研 Oxide sintered compact and sputtering target, and method for producing same

Also Published As

Publication number Publication date
KR101748017B1 (en) 2017-06-15
CN104736497A (en) 2015-06-24
JPWO2015059938A1 (en) 2017-03-09
TW201516168A (en) 2015-05-01
KR20150059136A (en) 2015-05-29
TWI608111B (en) 2017-12-11
WO2015059938A1 (en) 2015-04-30
CN104736497B (en) 2017-09-12
JP2015107910A (en) 2015-06-11
JP5913523B2 (en) 2016-04-27
JP2015107909A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
TWI564250B (en) Oxide sintered body, sputtering target and oxide film
WO2019176552A1 (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
JP5550768B1 (en) Sintered body and amorphous film
CN107207356B (en) Oxide sintered body, oxide sputtering target, and oxide thin film
JP5913523B2 (en) Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JP5876172B1 (en) Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body
JP6064895B2 (en) Indium oxide-based oxide sintered body and method for producing the same
TW201405580A (en) Sintered body and amorphous thin film
JP5695221B2 (en) Sintered body and amorphous film
JP5690982B1 (en) Sintered body and amorphous film
CN107012435B (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250