JP5957758B2 - Ultrasonic transmitter / receiver and ultrasonic measuring device - Google Patents

Ultrasonic transmitter / receiver and ultrasonic measuring device Download PDF

Info

Publication number
JP5957758B2
JP5957758B2 JP2015144801A JP2015144801A JP5957758B2 JP 5957758 B2 JP5957758 B2 JP 5957758B2 JP 2015144801 A JP2015144801 A JP 2015144801A JP 2015144801 A JP2015144801 A JP 2015144801A JP 5957758 B2 JP5957758 B2 JP 5957758B2
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric
receiver
piezoelectric element
phased array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015144801A
Other languages
Japanese (ja)
Other versions
JP2015180901A (en
Inventor
毅 三原
毅 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2015144801A priority Critical patent/JP5957758B2/en
Publication of JP2015180901A publication Critical patent/JP2015180901A/en
Application granted granted Critical
Publication of JP5957758B2 publication Critical patent/JP5957758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、圧電素子を積層した探触子とフェイズドアレイパルサーとを備える超音波発受信器、およびこれを備える超音波計測装置に関する。   The present invention relates to an ultrasonic transmitter / receiver including a probe in which piezoelectric elements are stacked and a phased array pulser, and an ultrasonic measuring apparatus including the ultrasonic transmitter / receiver.

従来、物体内部の傷や空洞を調べるにあたって超音波計測装置が用いられているが、この計測精度を高くするためにSN比を向上させることが課題となっている。たとえば、特許文献1の発明は、プローブに吸音材を設けて目的外の信号を減衰させて検出されないようにする、すなわち雑音のレベルを下げることでSN比を向上させている。一方、SN比の向上のために信号のレベルを上げることも考えられるが、そのためには超音波を発生させる圧電素子をより大きく変位させて、振幅を大きくしなければならない。   Conventionally, an ultrasonic measurement apparatus has been used for examining scratches and cavities inside an object. However, in order to increase the measurement accuracy, it is a problem to improve the SN ratio. For example, the invention of Patent Document 1 improves the S / N ratio by providing a sound-absorbing material on the probe to attenuate unintended signals so that they are not detected, that is, by reducing the noise level. On the other hand, it is conceivable to increase the signal level in order to improve the S / N ratio. To this end, however, the piezoelectric element that generates ultrasonic waves must be displaced more greatly to increase the amplitude.

圧電素子について大変位を得る方法としては、圧電素子をアクチュエータとして用いる場合において、素子を積層させた例がある。しかしながら、アクチュエータは静的に変位するものであり、応答性・追従性については考慮されておらず、動的変位である超音波発生についてこの技術をそのまま適用することは難しい。また、特許文献2の発明のように、超音波探触子において圧電素子を積層させたものもあるが、これは、素子の小型化によってインピーダンスが増大してパルサーのインピーダンスと整合しなくなることを防ぐために、積層化によってインピーダンスを低下させているものであり、大変位を得ることが目的ではない。ここで、実際に圧電素子を積層させた場合にどのような変位が得られるかについての実験結果を示す。この実験では5MHz共振のPZT素子を用い、図3に示すように、単層の素子111と(図3(a))、この素子111を単純に五枚積層した素子(図3(b))とをそれぞれパルサー102に接続して励振した。図4には、それぞれの出力変位、実効素子印加電圧およびインピーダンスのスペクトラムを示す。図4の上段図に示すように、五枚を積層したことで共振周波数は約1/5に低下し、振幅は周波数の低下に伴ってやや増加するものの、期待した五倍の振幅増加は得られない。これは、中下段図からわかるように、積層によりインピーダンスが低下し、各素子の印加電圧が下がることによるものである。   As a method of obtaining a large displacement for a piezoelectric element, there is an example in which elements are stacked when the piezoelectric element is used as an actuator. However, the actuator is statically displaced, and responsiveness / followability is not taken into consideration, and it is difficult to apply this technique as it is to ultrasonic generation that is dynamic displacement. In addition, as in the invention of Patent Document 2, there is an ultrasonic probe in which piezoelectric elements are stacked. However, this is because the impedance increases due to the miniaturization of the element and does not match the impedance of the pulser. In order to prevent this, the impedance is lowered by stacking, and the purpose is not to obtain a large displacement. Here, the experimental result about what kind of displacement is obtained when a piezoelectric element is actually laminated is shown. In this experiment, a PZT element having a resonance of 5 MHz was used. As shown in FIG. 3, a single-layer element 111 (FIG. 3A) and an element obtained by simply stacking five elements 111 (FIG. 3B) Were connected to the pulsar 102 and excited. FIG. 4 shows respective output displacements, effective element applied voltages, and impedance spectra. As shown in the upper diagram of FIG. 4, by stacking five sheets, the resonance frequency decreases to about 1/5, and the amplitude increases slightly as the frequency decreases, but the expected increase in amplitude by five times is obtained. I can't. This is because, as can be seen from the middle and lower stage diagrams, the impedance decreases due to the lamination, and the applied voltage of each element decreases.

特開2010−145357号公報JP 2010-145357 A 特開平1−139041号公報Japanese Patent Laid-Open No. 1-139041

このように、圧電素子を単純に積層しても、インピーダンスが低下してしまい、同じ電圧を加えても各素子の印加電圧が低下するため、積層枚数に見合った振幅増加は得られない。また、広範な対象物の超音波計測のためには、空間分解能の確保のためMHzオーダーの高周波が不可欠であるが、圧電素子を単純に積層するだけでは、その分共振周波数が低くなるのでkHzオーダーが限界となってしまう点も問題である。   Thus, even if the piezoelectric elements are simply laminated, the impedance is lowered, and even if the same voltage is applied, the applied voltage of each element is lowered. Therefore, an increase in amplitude corresponding to the number of laminated layers cannot be obtained. In addition, for ultrasonic measurement of a wide range of objects, high frequency in the order of MHz is indispensable to ensure spatial resolution. However, simply laminating piezoelectric elements lowers the resonance frequency accordingly, so kHz Another problem is that the order is limited.

本発明は、上記事情を鑑みたものであり、圧電素子を積層した探触子を有するものであって、インピーダンスを低下させることなく大変位を得ることができ、かつ高周波を発信できる超音波発受信器およびこれを備える超音波計測装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a probe in which piezoelectric elements are laminated, and is capable of obtaining a large displacement without lowering impedance and transmitting ultrasonic waves. It is an object of the present invention to provide a receiver and an ultrasonic measurement apparatus including the receiver.

本発明に係る超音波発受信器は、探触子と、フェイズドアレイパルサーとを備え、前記探触子が、複数枚の圧電素子を積層したものであり、前記フェイズドアレイパルサーが、複数チャンネルのパルサーを備えるものであり、前記の各圧電素子は、二枚の圧電体を互いの分極方向が対向するように接合したものであり、各圧電体の上面および下面には電極が接合されており、各圧電素子の上面および下面の電極は、負極としてグラウンドに接続され、各圧電素子の二枚の圧電体に挟まれた電極は、正極として前記フェイズドアレイパルサーの各チャンネルのパルサーに接続されていることを特徴とする。   An ultrasonic transmitter / receiver according to the present invention includes a probe and a phased array pulser, wherein the probe is formed by stacking a plurality of piezoelectric elements, and the phased array pulser includes a plurality of channels. Each piezoelectric element includes a pulsar, and is formed by bonding two piezoelectric bodies so that their polarization directions face each other, and electrodes are bonded to the upper and lower surfaces of each piezoelectric body. The electrodes on the upper and lower surfaces of each piezoelectric element are connected to the ground as a negative electrode, and the electrode sandwiched between the two piezoelectric bodies of each piezoelectric element is connected to the pulsar of each channel of the phased array pulser as the positive electrode It is characterized by being.

本発明に係る超音波発受信器は、各パルサーがそれぞれ接続された圧電素子を個別に印加するので、積層によるインピーダンスの低下を避けることができる。よって、印加電圧が大きくなり大変位を得ることができる。また、共振周波数も単層の場合と同等になり、MHzオーダーの高周波を発生させることも可能である。   Since the ultrasonic transmitter / receiver according to the present invention individually applies the piezoelectric element to which each pulsar is connected, it is possible to avoid a decrease in impedance due to lamination. Therefore, the applied voltage increases and a large displacement can be obtained. Further, the resonance frequency is equivalent to that in the case of a single layer, and it is possible to generate a high frequency on the order of MHz.

また、積層する圧電素子の分極方向がすべて同じであると、隣接する圧電素子において当接面の極性が一致しないので、間に絶縁体を挟まなくてはならず、この絶縁体が振動伝達の妨げになってしまうが、本発明に係る超音波発受信器によれば、圧電素子を二枚の分極方向が対向する圧電体を接合して構成したため、隣接する圧電素子において当接面の極性が一致するので、絶縁体は不要であり、より効率よく振動が伝達される。なお、探触子をこのように構成した場合、フェイズドアレイパルサーのチャンネル数をNとすると、圧電素子をN枚(圧電体を2N枚)積層して、振幅をN倍に増加させることができる。   In addition, if the polarization directions of the stacked piezoelectric elements are all the same, the polarities of the contact surfaces do not match in adjacent piezoelectric elements, so an insulator must be sandwiched between them, and this insulator can transmit vibration. According to the ultrasonic transmitter / receiver according to the present invention, since the piezoelectric element is formed by joining two piezoelectric bodies having opposite polarization directions, the polarity of the contact surface in the adjacent piezoelectric element is Therefore, an insulator is unnecessary and vibration is transmitted more efficiently. When the probe is configured in this manner, assuming that the number of channels of the phased array pulser is N, N piezoelectric elements (2N piezoelectric elements) can be stacked to increase the amplitude N times. .

本発明に係る超音波計測装置は、本発明に係る超音波発受信器を備えることを特徴とする。   The ultrasonic measurement apparatus according to the present invention includes the ultrasonic transmitter / receiver according to the present invention.

本発明に係る超音波計測装置は、大振幅の超音波を発生させることができるから、相対的に雑音が小さくなるので、SN比が大きく向上する。よって、従来の超音波計測装置では困難であった、減衰の大きな素材や板厚の厚い材料についての計測が可能となり、また、限定的にしか行われていなかった空中超音波計測や非線形超音波計測などについても、実用の範囲が大きく広がる。   Since the ultrasonic measurement apparatus according to the present invention can generate ultrasonic waves with a large amplitude, the noise is relatively reduced, so that the SN ratio is greatly improved. Therefore, it is possible to measure materials with large attenuation and thick materials, which was difficult with conventional ultrasonic measurement devices, and it was also possible to perform aerial ultrasonic measurements and nonlinear ultrasonic waves that were performed only on a limited basis. In terms of measurement, the practical range is greatly expanded.

本発明によれば、圧電素子を積層した探触子を有するものであって、インピーダンスを低下させることなく大変位を得ることができ、かつ高周波を発信できる超音波発受信器およびこれを備える超音波計測装置を提供することができる。   According to the present invention, an ultrasonic transmitter / receiver having a probe in which piezoelectric elements are stacked, capable of obtaining a large displacement without reducing impedance, and capable of transmitting a high frequency, and a super A sound wave measuring apparatus can be provided.

本発明の超音波発受信器の構成を示す模式図。The schematic diagram which shows the structure of the ultrasonic transmitter / receiver of this invention. 一枚の圧電素子(圧電体二層)と二枚の圧電素子(圧電体四層)の基本特性を示すグラフ。The graph which shows the basic characteristic of one piezoelectric element (piezoelectric two layers) and two piezoelectric elements (piezoelectric four layers). 単層の圧電素子と五枚積層した圧電素子のそれぞれをパルサーに接続した状態を示す模式図。The schematic diagram which shows the state which connected each of the single layer piezoelectric element and the piezoelectric element which laminated | stacked five sheets to the pulsar. 単層の圧電素子と五枚積層した圧電素子の基本特性を示すグラフ。The graph which shows the basic characteristic of the piezoelectric element which laminated | stacked the single-layer piezoelectric element and five sheets.

本発明の超音波発受信器の具体的な構成について、図面に基づいて説明する。この超音波発受信器は、図1に示すように、探触子1と、フェイズドアレイパルサー2とを備えるものである。探触子1は、二枚の圧電素子11a,11bを積層したものであり、各圧電素子11a,11bは、二枚の圧電体12を互いの分極方向(図中矢印で表記)が対向するように接合したものである。各圧電体12の上面および下面には電極13が接合されており、一つの圧電素子11a,11bは、上側から電極13、圧電体12、電極13、圧電体12、電極13の順に積層した構造となっている。そして、圧電素子11a,11bの上面および下面の電極13を負極、二枚の圧電体12に挟まれた電極13を正極として、正極がフェイズドアレイパルサー2の各チャンネル(ch1,ch2)のパルサーに接続され、負極がグラウンド(GND)に接続されている。   A specific configuration of the ultrasonic transmitter / receiver of the present invention will be described with reference to the drawings. As shown in FIG. 1, the ultrasonic transmitter / receiver includes a probe 1 and a phased array pulser 2. The probe 1 is a laminate of two piezoelectric elements 11a and 11b, and each piezoelectric element 11a and 11b has two piezoelectric elements 12 facing each other in the polarization direction (indicated by arrows in the figure). Are joined together. An electrode 13 is bonded to the upper surface and the lower surface of each piezoelectric body 12, and one piezoelectric element 11a, 11b has a structure in which the electrode 13, the piezoelectric body 12, the electrode 13, the piezoelectric body 12, and the electrode 13 are laminated in this order from the upper side. It has become. The upper and lower electrodes 13 of the piezoelectric elements 11a and 11b are the negative electrode, the electrode 13 sandwiched between the two piezoelectric bodies 12 is the positive electrode, and the positive electrode is the pulsar of each channel (ch1, ch2) of the phased array pulser 2. The negative electrode is connected to the ground (GND).

この超音波発受信器において、フェイズドアレイパルサー2の各チャンネルから電圧を印加すれば、圧電素子11a,11bが振動して超音波を発信できる。この際、各素子から発信する超音波の波形が同期するように、各チャンネルのパルサーを制御しなければならない。すなわち、たとえば図1において上方へ超音波を発信する場合、まずch2から電圧を印加して、下側の圧電素子11bを振動させる。この振動は上側の圧電素子11aへと伝達されるので、伝達された振動に同期するようにch1から電圧を印加して、上側の圧電素子11aを振動させることで、上側と下側の圧電素子11a,11bから発信する超音波の波形が同期する。なお、このような制御は、一般のフェイズドアレイパルサーの標準機能により可能である。   In this ultrasonic transmitter / receiver, when a voltage is applied from each channel of the phased array pulser 2, the piezoelectric elements 11a and 11b can vibrate to transmit ultrasonic waves. At this time, it is necessary to control the pulsar of each channel so that the waveform of the ultrasonic wave transmitted from each element is synchronized. That is, for example, when transmitting an ultrasonic wave upward in FIG. 1, a voltage is first applied from ch2 to vibrate the lower piezoelectric element 11b. Since this vibration is transmitted to the upper piezoelectric element 11a, a voltage is applied from ch1 so as to synchronize with the transmitted vibration, and the upper piezoelectric element 11a is vibrated, thereby causing the upper and lower piezoelectric elements to vibrate. Waveforms of ultrasonic waves transmitted from 11a and 11b are synchronized. Such control is possible by a standard function of a general phased array pulser.

このように構成した超音波発受信器は、フェイズドアレイパルサーの各チャンネルのパルサーがそれぞれ接続された圧電素子を個別に印加するので、積層によるインピーダンスの低下を避けることができ、印加電圧が大きくなって大変位を得ることができる。また、共振周波数も一枚の圧電素子の場合と同等になり、MHzオーダーの高周波を発生させることも可能である。さらに、二枚の圧電体を互いの分極方向が対向するように接合して一枚の圧電素子を構成したことにより、積層する際に絶縁体を挟む必要がないので、より効率よく振動が伝達される。   The ultrasonic transmitter / receiver configured in this way individually applies the piezoelectric elements to which the pulsars of each channel of the phased array pulsar are connected, so that it is possible to avoid a decrease in impedance due to lamination, and the applied voltage increases. Large displacement can be obtained. Further, the resonance frequency is equivalent to that of a single piezoelectric element, and it is possible to generate a high frequency on the order of MHz. In addition, by joining two piezoelectric elements so that their polarization directions oppose each other, a single piezoelectric element is constructed, so there is no need to sandwich an insulator when stacking, so vibration can be transmitted more efficiently. Is done.

また、この超音波発受信器は、そのままの構成で超音波を受信できる。受信の際も、発信の際と同様に、各素子で受信した超音波の波形が同期するように、各チャンネルのパルサーを制御しなければならない。すなわち、たとえば図1において上方からの超音波を受信する場合、まず上側の圧電素子11aが超音波により振動してch1に信号を送信し、その後下側の圧電素子11bが振動してch2に信号を送信する。このように位相がずれた信号を、フェイズドアレイパルサー2において同期させ、一つの信号として検出する。なお、このような制御は、一般のフェイズドアレイパルサーの標準機能により可能である。   In addition, this ultrasonic transmitter / receiver can receive ultrasonic waves with the same configuration. At the time of reception, similarly to the case of transmission, the pulsar of each channel must be controlled so that the ultrasonic waveform received by each element is synchronized. That is, for example, when receiving ultrasonic waves from above in FIG. 1, the upper piezoelectric element 11a first vibrates with ultrasonic waves and transmits a signal to ch1, and then the lower piezoelectric element 11b vibrates and signals to ch2. Send. The phase-shifted signals are synchronized in the phased array pulser 2 and detected as one signal. Such control is possible by a standard function of a general phased array pulser.

次に、本発明の超音波発受信器の効果を確認するための実験結果を示す。この実験では6MHz共振のPZT素子を用い、一枚の圧電素子(圧電体二層)を一チャンネルのパルサーに接続して励振した場合と、図1に示したような二枚の圧電素子(圧電体四層)を二チャンネルのパルサーに接続して励振した場合とを比較した。図2には、それぞれの変位波形および変位スペクトルを示す。上段図に示すように、一枚の圧電素子(圧電体二層)の場合に比べて二枚の圧電素子(圧電体四層)の場合は略二倍の振幅となっており、積層枚数に比例した振幅が得られることが確認された。また、下段図に示すように、圧電体を二層積層した一枚の圧電素子の場合、中心周波数が3MHzとなっており、PZT素子の共振周波数の半分に低下しているのに対し、圧電体を四層積層した二枚の圧電素子の場合においても、中心周波数は同じく略3MHzである。よって、各圧電素子を個別に印加したことにより、圧電素子を複数枚積層しても一枚の場合と同等の共振周波数となり、高周波を発信可能であることが確認された。   Next, experimental results for confirming the effect of the ultrasonic transmitter / receiver of the present invention will be shown. In this experiment, a 6 MHz resonant PZT element was used, and when one piezoelectric element (piezoelectric double layer) was connected to a one-channel pulsar and excited, and two piezoelectric elements (piezoelectric) as shown in FIG. Comparison was made with the case where the four-layer body was connected to a two-channel pulsar and excited. FIG. 2 shows each displacement waveform and displacement spectrum. As shown in the upper diagram, the amplitude of the two piezoelectric elements (piezoelectric four layers) is approximately twice that of the single piezoelectric element (piezoelectric two layers). It was confirmed that a proportional amplitude was obtained. Moreover, as shown in the lower diagram, in the case of a single piezoelectric element in which two piezoelectric layers are laminated, the center frequency is 3 MHz, which is reduced to half of the resonance frequency of the PZT element. In the case of two piezoelectric elements in which the body is laminated in four layers, the center frequency is also about 3 MHz. Therefore, by applying each piezoelectric element individually, it was confirmed that even when a plurality of piezoelectric elements were stacked, the resonance frequency was equivalent to that of a single sheet, and a high frequency could be transmitted.

このような超音波発受信器によって対象物に向けて超音波を発信し、その反射波を受信することで超音波計測が可能となる。本発明の超音波計測装置は、超音波発受信器に加えて、計測結果を表示する表示部を備えるものであり、さらに計測結果を解析する計算機や、探触子を移動させる走査機構などを備えていてもよい。本発明の超音波計測装置によれば、上記のように超音波発受信器が大振幅の超音波を発生させることができるから、相対的に雑音が小さくなるので、SN比が大きく向上する。よって、従来の装置よりも実用の範囲が大きく広がるものであり、具体的には、以下のような例が挙げられる。   Ultrasonic measurement can be performed by transmitting an ultrasonic wave toward an object using such an ultrasonic transmitter / receiver and receiving the reflected wave. The ultrasonic measurement apparatus of the present invention includes a display unit for displaying measurement results in addition to the ultrasonic transmitter / receiver, and further includes a computer for analyzing the measurement results, a scanning mechanism for moving the probe, and the like. You may have. According to the ultrasonic measurement apparatus of the present invention, since the ultrasonic transmitter / receiver can generate a large amplitude ultrasonic wave as described above, the noise is relatively reduced, so that the SN ratio is greatly improved. Therefore, the range of practical use is broader than that of conventional devices, and specific examples include the following.

まず、本発明の超音波計測装置はTOFD法に利用できる。TOFD法は、レーダーのように縦波超音波を対象物に広範に入射し、欠陥があった場合の回折波の受信時間差から高精度に欠陥のサイジングを行う方法である。計測が迅速で、また欠陥深さ測定精度が高いことが知られており、特に火力発電機器や各種プラント部材で適用が進んでいる。最大の課題は、広範に超音波を入射する分、従来の端部エコー法に比べて欠陥エコーが微弱でSN比が悪い点である。このため、原子力発電機器などに用いられているような、ステンレスなどの減衰が大きい素材や、板厚が厚い溶接材料などには適用できなかった。しかしながら、本発明の超音波計測装置によれば、SN比が大きく向上するので、従来適用できなかった部材まで高精度な欠陥サイジングが可能となる。   First, the ultrasonic measurement apparatus of the present invention can be used for the TOFD method. The TOFD method is a method of sizing a defect with high accuracy from a difference in reception time of a diffracted wave when a longitudinal wave ultrasonic wave is widely incident on an object like a radar and there is a defect. It is known that the measurement is quick and the defect depth measurement accuracy is high, and the application is particularly advanced in thermal power generation equipment and various plant members. The biggest problem is that the defect echo is weak and the S / N ratio is poor as compared with the conventional end echo method because of the wide incidence of ultrasonic waves. For this reason, it could not be applied to a material such as stainless steel, which is used for nuclear power generation equipment, etc., which has a large attenuation, or a welding material having a large plate thickness. However, according to the ultrasonic measurement apparatus of the present invention, since the SN ratio is greatly improved, highly accurate defect sizing is possible even for members that could not be applied conventionally.

また、本発明の超音波計測装置は空中超音波計測にも利用できる。空中超音波計測は、通常の超音波計測で不可欠のカップラント(探触子と対象物の間に挟む液体)を使わない計測方法で、濡らすことを嫌う複合材料やセラミックスについて特に需要が高く、ロケット筐体の生産検査などで実用されている。しかし、超音波がほとんど伝搬しない空中をkHzレベルの超音波を伝搬させる技術であり、接触式の測定に比べ100dB程度と極端に感度が低下することが最大の課題であった。そこで、大振幅の超音波を発生させることができる本発明の超音波計測装置を用いることで、従来の限界を超えた空中超音波計測システムが実現できる。   Moreover, the ultrasonic measurement apparatus of the present invention can also be used for aerial ultrasonic measurement. In-air ultrasonic measurement is a measurement method that does not use the coupling agent (liquid sandwiched between the probe and the object) that is indispensable for normal ultrasonic measurement, and there is particularly high demand for composite materials and ceramics that do not want to be wet. It is used in production inspection of rocket housings. However, it is a technique for propagating ultrasonic waves at the kHz level through the air in which ultrasonic waves hardly propagate, and the biggest problem is that sensitivity is extremely reduced to about 100 dB compared with contact-type measurement. Therefore, by using the ultrasonic measurement apparatus of the present invention capable of generating a large amplitude ultrasonic wave, an aerial ultrasonic measurement system exceeding the conventional limit can be realized.

さらに、本発明の超音波計測装置は非線形超音波計測にも利用できる。電力機器やプラントなどで、部材の劣化が進行しているが部材内のき裂が残留応力などで閉口した場合、探傷法の中核である超音波法でも、き裂の見逃しや過小評価を生じる。最近、通常より10倍程度以上の大振幅超音波をき裂に入力した場合、入力した周波数f以外の周波数(2f、f/2)の非線形超音波がき裂から発生することが知られている。しかし、実用構造部材におけるき裂は、開口が大きく非線形現象が発生するき裂は限定されることが、広範な実用を阻んでいる。そこで、本発明の超音波計測装置を用いれば、現在のシステムより10倍以上の大振幅超音波が容易に得られるため、実用の範囲が大きく広がる。   Furthermore, the ultrasonic measurement apparatus of the present invention can also be used for nonlinear ultrasonic measurement. In power equipment and plants, when the deterioration of a member is progressing, but the crack in the member is closed due to residual stress, etc., the ultrasonic method, which is the core of the flaw detection method, overlooks and underestimates the crack. . Recently, it has been known that when a large-amplitude ultrasonic wave about 10 times larger than usual is input to a crack, nonlinear ultrasonic waves of frequencies (2f, f / 2) other than the input frequency f are generated from the crack. . However, a crack in a practical structural member is limited to a crack having a large opening and causing a nonlinear phenomenon. Therefore, if the ultrasonic measuring apparatus of the present invention is used, a large-amplitude ultrasonic wave 10 times or more than that of the current system can be easily obtained, and the practical range is greatly expanded.

本発明は、上記の実施形態に限定されない。たとえば、圧電素子の積層枚数は、必要とされる超音波の振幅に応じて適宜増やすことができる。もちろん、その際にはフェイズドアレイパルサーのチャンネル数も増やさなければならない。また、超音波計測装置においては、超音波発受信器を超音波の発信と受信の両方に用いているが、超音波加工などのために超音波を発信する用途のみに用いてもよいし、発信はせず外部からの超音波を受信する用途のみに用いてもよい。   The present invention is not limited to the above embodiment. For example, the number of stacked piezoelectric elements can be appropriately increased according to the required amplitude of the ultrasonic wave. Of course, the number of Phased Array Pulser channels must be increased. Moreover, in the ultrasonic measurement device, the ultrasonic transmitter / receiver is used for both transmission and reception of ultrasonic waves, but it may be used only for the purpose of transmitting ultrasonic waves for ultrasonic processing, You may use only for the use which does not transmit but receives the ultrasonic wave from the outside.

1 探触子
2 フェイズドアレイパルサー
11a,11b 圧電素子
12 圧電体
DESCRIPTION OF SYMBOLS 1 Probe 2 Phased array pulser 11a, 11b Piezoelectric element 12 Piezoelectric body

Claims (2)

探触子と、フェイズドアレイパルサーとを備え、
前記探触子が、複数枚の圧電素子を積層したものであり、
前記フェイズドアレイパルサーが、複数チャンネルのパルサーを備えるものであり、
前記の各圧電素子は、二枚の圧電体を互いの分極方向が対向するように接合したものであり、各圧電体の上面および下面には電極が接合されており、
各圧電素子の上面および下面の電極は、負極としてグラウンドに接続され、各圧電素子の二枚の圧電体に挟まれた電極は、正極として前記フェイズドアレイパルサーの各チャンネルのパルサーに接続されていることを
特徴とする超音波発受信器。
It has a probe and a phased array pulsar,
The probe is a laminate of a plurality of piezoelectric elements,
The phased array pulser comprises a multi-channel pulser,
Each of the piezoelectric elements is obtained by bonding two piezoelectric bodies so that their polarization directions face each other, and electrodes are bonded to the upper and lower surfaces of each piezoelectric body,
The electrodes on the upper and lower surfaces of each piezoelectric element are connected to the ground as a negative electrode, and the electrode sandwiched between the two piezoelectric bodies of each piezoelectric element is connected to the pulsar of each channel of the phased array pulser as the positive electrode. An ultrasonic transmitter / receiver characterized by the above.
請求項1記載の超音波発受信器を備えることを特徴とする超音波計測装置。
An ultrasonic measurement apparatus comprising the ultrasonic transmitter / receiver according to claim 1.
JP2015144801A 2015-07-22 2015-07-22 Ultrasonic transmitter / receiver and ultrasonic measuring device Active JP5957758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015144801A JP5957758B2 (en) 2015-07-22 2015-07-22 Ultrasonic transmitter / receiver and ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144801A JP5957758B2 (en) 2015-07-22 2015-07-22 Ultrasonic transmitter / receiver and ultrasonic measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010233738A Division JP2012088113A (en) 2010-10-18 2010-10-18 Ultrasound transceiver and ultrasound measuring device

Publications (2)

Publication Number Publication Date
JP2015180901A JP2015180901A (en) 2015-10-15
JP5957758B2 true JP5957758B2 (en) 2016-07-27

Family

ID=54329185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144801A Active JP5957758B2 (en) 2015-07-22 2015-07-22 Ultrasonic transmitter / receiver and ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP5957758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402255A (en) * 2017-06-22 2017-11-28 南京琅迪思信息技术有限公司 A kind of blower fan main shaft surface defect supersonic array on-line detecting system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991798A (en) * 1982-11-18 1984-05-26 Mitsubishi Electric Corp Ultrasonic wave probe
JPS6457164A (en) * 1987-08-28 1989-03-03 Toshiba Corp Ultrasonic wave diagnostic apparatus
JPH07194517A (en) * 1993-12-31 1995-08-01 Olympus Optical Co Ltd Ultrasonic probe
JPH07303299A (en) * 1994-04-29 1995-11-14 Olympus Optical Co Ltd Ultrasonic probe
JP2007244638A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Ultrasonograph
JP4909115B2 (en) * 2007-02-21 2012-04-04 富士フイルム株式会社 Ultrasound probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402255A (en) * 2017-06-22 2017-11-28 南京琅迪思信息技术有限公司 A kind of blower fan main shaft surface defect supersonic array on-line detecting system
CN107402255B (en) * 2017-06-22 2020-01-17 南京琅迪思信息技术有限公司 Ultrasonic array online detection system for surface defects of fan spindle

Also Published As

Publication number Publication date
JP2015180901A (en) 2015-10-15

Similar Documents

Publication Publication Date Title
Ren et al. PVDF multielement lamb wave sensor for structural health monitoring
US20100192693A1 (en) Acoustic transducer assembly
Sun et al. A methodological review of piezoelectric based acoustic wave generation and detection techniques for structural health monitoring
Köhler et al. Shear horizontal piezoelectric fiber patch transducers (SH-PFP) for guided elastic wave applications
Sohn et al. Development of dual PZT transducers for reference-free crack detection in thin plate structures
JP5986709B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Remillieux et al. Review of air-coupled transduction for nondestructive testing and evaluation
JP5328651B2 (en) Ultrasonic probe, ultrasonic diagnostic apparatus and ultrasonic flaw detector using the same
Platte PVDF ultrasonic transducers
JP5957758B2 (en) Ultrasonic transmitter / receiver and ultrasonic measuring device
US7791253B2 (en) Multi-layer gas matrix piezoelectric composite transducer
Zheng et al. Research and validation of design principles for PVDF wideband ultrasonic transducers based on an equivalent circuit model
Huang et al. Design, modelling, and characterization of display compatible pMUT device
JP2012088113A (en) Ultrasound transceiver and ultrasound measuring device
Gaal et al. Phased array probes for air-coupled ultrasonic testing based on cellular polymer
Schubert et al. A novel sensor design for generation and detection of shear-horizontal waves based on piezoelectric fibres
Huang et al. Display compatible pMUT device for mid air ultrasound gesture recognition
Kiel et al. Quality Classification of Adhesive Bonds in Composite Structures by Single-sided Air-coupled Ultrasonic Testing Using Linear Phased Array Probes
Wang et al. Damage detection in metallic plates using d36 piezoelectric phased arrays
Wang et al. NDE Application of Air-Coupled Transducer for Surface Crack Detection
Jisheng et al. The study of phased-ultrasonic receiving-planar array transducer for PD location in power transformer
Zhang et al. Air-coupled capacitive micromachined transducer array for non-contact Lamb wave detection
JPH11234797A (en) Ultrasonic wave probe
Akhnak et al. Development of a segmented annular array transducer for acoustic imaging
Greve et al. Coupling of MEMS ultrasonic transducers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150807

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5957758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350