JP5951181B2 - Method for saccharification of lignocellulosic biomass - Google Patents

Method for saccharification of lignocellulosic biomass Download PDF

Info

Publication number
JP5951181B2
JP5951181B2 JP2011023784A JP2011023784A JP5951181B2 JP 5951181 B2 JP5951181 B2 JP 5951181B2 JP 2011023784 A JP2011023784 A JP 2011023784A JP 2011023784 A JP2011023784 A JP 2011023784A JP 5951181 B2 JP5951181 B2 JP 5951181B2
Authority
JP
Japan
Prior art keywords
saccharification
compression molding
biomass
compression
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011023784A
Other languages
Japanese (ja)
Other versions
JP2012161275A (en
Inventor
勝部 英一
英一 勝部
律雄 児玉
律雄 児玉
朗 堀内
朗 堀内
俊作 吉川
俊作 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP2011023784A priority Critical patent/JP5951181B2/en
Publication of JP2012161275A publication Critical patent/JP2012161275A/en
Application granted granted Critical
Publication of JP5951181B2 publication Critical patent/JP5951181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非可食のバイオマス資源であるリグノセルロース系バイオマスの糖化方法に関する。   The present invention relates to a method for saccharification of lignocellulosic biomass, which is a non-edible biomass resource.

近年、石油の大量消費による二酸化炭素等の地球温暖化物質の放出が問題になっており、カーボンニュートラルの観点から、石油に代わるエネルギーあるいは原料として、各種のバイオマス資源が注目されている。
特に、バイオエタノール等の燃料製造においては、食糧との競合問題が懸念されるトウモロコシやサトウキビ等の糖質系のバイオマスに替わり、存在量が莫大な非可食のリグノセルロース系バイオマスの利用が検討されている。
このリグノセルロースの構成成分であるセルロースはグルコースが縮合したもので、加水分解することによりグルコース等の糖類を得ることができる。
更に、得られた糖類を出発原料にすることでバイオエタノールの他、石油化学工業で製造している各種の化成品基礎原料を製造することも可能であることから、早急な利用技術の確立が求められている。
In recent years, the release of global warming substances such as carbon dioxide due to large consumption of oil has become a problem, and various biomass resources have attracted attention as energy or raw materials to replace petroleum from the viewpoint of carbon neutral.
In particular, in the production of bioethanol and other fuels, consideration is being given to the use of non-edible lignocellulosic biomass with abundant abundance instead of sugar-based biomass, such as corn and sugarcane, where there are concerns about competition with food. Has been.
Cellulose, which is a constituent of this lignocellulose, is a condensate of glucose, and saccharides such as glucose can be obtained by hydrolysis.
In addition to bioethanol, it is also possible to produce various chemical basic raw materials produced in the petrochemical industry by using the obtained saccharide as a starting material, so that rapid establishment of utilization technology is possible. It has been demanded.

リグノセルロースの中でも稲わら、牧草等の草本系バイオマスは、収穫機などの普及が進み、また、将来的には耕作放棄地や休耕田などを利用し、資源作物として栽培することも可能であることから、重要なバイオマス資源として位置付けられ、国内外で活発に石油代替原料として利用するための加工手段が検討されている。
例えば、草本系バイオマスの糖化方法としては、濃度0.01wt%以上10wt%未満の希アルカリまたは希酸、有機溶媒で処理した後、その希アルカリ処理後の草本類バイオマスをクロストリジウム属細菌またはその培養液で処理する方法が開示されている(特許文献1)。また、草本系バイオマスを粉砕する工程と、得られた粉砕物を、加水分解酵素を用いて加水分解する工程とを含む、糖化液の製造方法が開示されている(特許文献2)。
Among lignocelluloses, herbaceous biomass such as rice straw and pasture has been widely used by harvesters, and can be cultivated as resource crops using abandoned cultivated land and fallow fields in the future. Therefore, it is positioned as an important biomass resource, and processing means for actively using it as an alternative raw material for petroleum both at home and abroad are being studied.
For example, as a saccharification method of herbaceous biomass, after treating with a dilute alkali or dilute acid having a concentration of 0.01 wt% or more and less than 10 wt%, an organic solvent, the herbaceous biomass after the dilute alkali treatment is treated with Clostridium bacteria or culture thereof. A method of treating with a liquid is disclosed (Patent Document 1). Moreover, the manufacturing method of the saccharified liquid including the process of grind | pulverizing herbaceous biomass and the process of hydrolyzing the obtained ground material using a hydrolase is disclosed (patent document 2).

ところで、稲わら、牧草等の草本系バイオマスは、木材、ユーカリ、竹等の木本系バイオマスに比べて、葉の占める割合が多いため、嵩高くなり易いという特徴がある。稲わらを例にとると、ロール状に巻き取り梱包するロールベーラなる機械を使用しても嵩比重は0.2前後にしかならず、一般的なカッターミル、ハンマーミル等の破砕機を使用し、せん断破砕する場合では、処理部の容積が制限となり、原料供給量を抑える必要があることから、破砕効率が悪い材料と言える。
また、仮にハンマーミルを使用して3mm以下に細かく破砕しても、破砕物が繊維状の空気をはらんだ状態となり、嵩比重や流動性については処理前の原料と同様に、扱いやすいものではない。
By the way, herbaceous biomass such as rice straw and pasture has a characteristic that it tends to be bulky because it has a higher proportion of leaves than woody biomass such as wood, eucalyptus, and bamboo. Taking rice straw as an example, the bulk specific gravity is only around 0.2 even if a roll baler that winds and packs in a roll shape is used, and a shearing machine such as a general cutter mill or hammer mill is used for shearing. In the case of crushing, it can be said that the crushing efficiency is low because the volume of the processing unit is limited and the raw material supply amount needs to be suppressed.
In addition, even if it is finely crushed to 3 mm or less using a hammer mill, the crushed material will be in a state of containing fibrous air, and the bulk specific gravity and fluidity will be easy to handle as with the raw material before processing. is not.

特に、草本系バイオマスの糖化処理は、通常、酸または酵素を加えた反応液中で行われるが、従来技術の破砕処理では前述のように、流動性が乏しい性状になるため、反応液への投入作業が困難となり、更には、原料の反応液中への分散性あるいは反応液の浸透性が悪いといった課題がある。
このように性状的な問題から取り扱いが難しいにも関わらず、前記先行技術では、いずれも原料から糖化に至るまでの処理工程(糖化前処理)についての課題に対する言及がなされておらず、単なる粉砕を糖化前処理の手段として行っているに過ぎない。
In particular, saccharification treatment of herbaceous biomass is usually performed in a reaction solution to which an acid or an enzyme has been added. However, as described above, in the crushing treatment of the prior art, the fluidity is poor and, as described above, The charging operation becomes difficult, and further, there is a problem that the dispersibility of the raw material in the reaction solution or the permeability of the reaction solution is poor.
Although it is difficult to handle due to the property problem in this way, in the above prior art, there is no reference to the problem about the processing step (saccharification pretreatment) from the raw material to saccharification, and the mere grinding Is only performed as a means of pre-saccharification treatment.

特開2010−110230号公報JP 2010-110230 A 特開2010−104361号公報JP 2010-104361 A

従って、本発明は従来技術の課題に鑑み、リグノセルロース系バイオマスを糖化する際の原料から糖化に至るまでの処理工程において、原料の性状に起因する取り扱い上の問題を改善すると共に、糖化率の向上を可能とするリグノセルロース系バイオマスの前処理方法を提供することにある。   Therefore, in view of the problems of the prior art, the present invention improves the handling problems due to the properties of the raw materials in the processing steps from raw materials to saccharification when saccharifying lignocellulosic biomass, and the saccharification rate is improved. An object of the present invention is to provide a pretreatment method for lignocellulosic biomass that can be improved.

上記課題を解決するために鋭意検討した結果、リグノセルロース系バイオマスを糖化するに当り、原料から糖化に至るまでの処理工程に圧縮成形工程を設けることで、原料の性状に起因する問題が改善されるだけでなく、従来技術で検討されている破砕処理に比べ糖化に対する反応効率が高まるという新たな知見を見出し、本発明を完成するに至った。   As a result of diligent studies to solve the above problems, by saccharifying lignocellulosic biomass, problems due to the properties of the raw materials are improved by providing a compression molding process in the process from raw materials to saccharification. In addition, the inventors have found a new finding that the reaction efficiency for saccharification is higher than that of the crushing treatment studied in the prior art, and have completed the present invention.

本発明の要旨は以下の通りである。
草本系バイオマスを糖化処理する糖化方法において、前記草本系バイオマスを圧縮しペレット状に成形する圧縮成形工程と、該圧縮成形工程にて圧縮成形された圧縮成形物を糖化処理する糖化処理工程を行い、前記圧縮成形工程が、フレームを有する本体と、前記フレーム内へ固定されて配置してあるダイスと、このダイス上面を摺動回転することで草本系バイオマスを擂り潰すローラーを有する圧縮成形装置を用いて、前記ローラーの回転する周速が0.5〜2m/秒で駆動し実施され、前記圧縮成形工程において、圧縮する前に草本系バイオマスを長さ50〜200mmに切断し、前記草本系バイオマスが稲わらであることを特徴とする草本系バイオマスの糖化方法。
The gist of the present invention is as follows.
In the saccharification method of saccharifying herbaceous biomass, a compression molding step of compressing the herbaceous biomass and forming it into a pellet form, and a saccharification treatment step of saccharifying the compression molded product compressed in the compression molding step are performed. The compression molding step includes a compression molding apparatus having a main body having a frame, a die fixedly arranged in the frame, and a roller for crushing herbaceous biomass by sliding and rotating the upper surface of the die. The roller is rotated at a peripheral speed of 0.5 to 2 m / sec, and the herbaceous biomass is cut into a length of 50 to 200 mm before being compressed in the compression molding step. A method for saccharification of herbaceous biomass, wherein the biomass is rice straw .

本発明によれば、前記圧縮成形工程が、フレームを有する本体と、前記フレーム内へ固定されて配置してあるダイスと、このダイス上面を摺動回転することで稲わらを擂り潰すローラーで構成される圧縮成形装置を用いることで、投入された原料がダイスとローラーの間で、せん断、及び磨砕作用を受けながら圧縮成形されるために、草本系バイオマス等の繊維の長い原料を用いても、得られる圧縮成形物は細かく粉砕された粒子で構成されたものになる。これにより、圧縮成形物を反応液に投入した際の吸水、崩壊により、細かな粒子が生じるため、酸または酵素などとの接触率が高まり、糖化率が向上する。
また、ローラーの回転する周速を0.5〜2m/秒とすることで、ローラーの回転によって発生する風による稲わらの巻き上げが抑制され、圧縮成形物の生成能力が向上する。
According to the present invention, the compression molding step includes a main body having a frame, a die fixedly arranged in the frame, and a roller that crushes rice straw by sliding and rotating the upper surface of the die. By using a compression molding apparatus, the raw material charged is subjected to compression molding while being subjected to shearing and grinding action between the die and the roller, so that a long fiber raw material such as herbaceous biomass is used. However, the compression molding obtained is composed of finely pulverized particles. As a result, fine particles are generated due to water absorption and collapse when the compression-molded product is introduced into the reaction solution, so that the contact rate with acid or enzyme is increased, and the saccharification rate is improved.
Further, by setting the peripheral speed of rotation of the roller to 0.5 to 2 m / second, winding up of rice straw by wind generated by the rotation of the roller is suppressed, and the ability to generate a compression molded product is improved.

本発明に用いる4つの圧縮成形装置を例示する図面である。It is drawing which illustrates four compression molding apparatuses used for this invention. 実施例に用いる圧縮成形装置の断面図である。It is sectional drawing of the compression molding apparatus used for an Example. 実施例1における圧縮成形物の粒度分布を示すグラフである。3 is a graph showing a particle size distribution of a compression molded product in Example 1. 実施例2における圧縮成形物と比較物の反応時間と糖化率を示すグラフである。It is a graph which shows the reaction time and saccharification rate of the compression molding in Example 2, and a comparison thing. 実施例3における圧縮成形物と比較物の糖化率を示すグラフである。It is a graph which shows the saccharification rate of the compression molding in Example 3, and a comparison material.

以下に本発明の実施の形態を説明する。
本発明で用いるリグノセルロース系バイオマスとしては、木材・ユーカリ・竹等の木本系バイオマス、及び稲わら・牧草・麦わら等の草本系バイオマス、あるいは、建築廃材・古紙・パームヤシ空果房・バガスなどの廃棄物系バイオマスが挙げられる。
Embodiments of the present invention will be described below.
Examples of lignocellulosic biomass used in the present invention include woody biomass such as wood, eucalyptus and bamboo, and herbaceous biomass such as rice straw, pasture and wheat straw, or building waste, waste paper, palm palm empty fruit bunch, bagasse, etc. Of waste biomass.

本発明に係る圧縮成形工程に用いられる圧縮成形装置の例として、図1に圧縮成形装置(A)〜(D)を示す。
図1に示すように、中空筒状の成形部内で回転する一軸スクリューで原料を円柱状に圧縮成形する圧縮成形装置(A)(特開平10−75759号参照)、原料を一対の回転ロールの間で挟み込みアーモンド状に圧縮成形する圧縮成形装置(B)(特開2010−285691号参照)、回転するリング状のダイスに設けられた複数の穴に、リング内で回転するローラーで押し込み円柱状に圧縮成形する圧縮成形装置(C)(特開2000−355006号参照)など、投入される原料を、接着材等を使用することなく圧縮作用のみで成形できる装置であれば良い。
特に、草本系バイオマス等の繊維の長い原料に対しては、本体フレーム内に固定的に配置してあるダイスと、このダイス上面を摺動回転するローラーで構成され、投入された原料がダイスとローラーの間で、せん断、及び磨砕作用を加えながら円柱状に圧縮成形する圧縮成形装置(D)(特開2006−272044号参照)が好適に利用できる。
FIG. 1 shows compression molding apparatuses (A) to (D) as an example of the compression molding apparatus used in the compression molding process according to the present invention.
As shown in FIG. 1, a compression molding apparatus (A) (see Japanese Patent Application Laid-Open No. 10-75759) for compressing and molding a raw material into a cylindrical shape with a single screw rotating in a hollow cylindrical molding part, a raw material of a pair of rotating rolls Compression molding device (B) (see Japanese Patent Application Laid-Open No. 2010-285691) for compression molding in an almond shape sandwiched between them, a plurality of holes provided in a rotating ring-shaped die, and a cylindrical shape that is pushed by a roller that rotates in the ring Any apparatus can be used as long as it can form the raw material to be charged only by a compression action without using an adhesive or the like, such as a compression molding apparatus (C) (see JP 2000-355006 A).
In particular, for raw materials with long fibers such as herbaceous biomass, it is composed of a die fixedly placed in the main body frame and a roller that slides and rotates on the upper surface of the die. A compression molding apparatus (D) (see Japanese Patent Application Laid-Open No. 2006-272044) that performs compression molding in a cylindrical shape while applying shearing and grinding action between rollers can be suitably used.

以下に前述の圧縮成形装置(D)を用いた実施例を示す。
本実施例に用いる圧縮成形装置(D)は、図2に示すように、本体フレーム1に固定されて設けられた円盤状のダイス2と、該ダイス2の中央に配置したローラー駆動部3と、該ローラー駆動部3の周方向外方へ取り付けられたローラー4が備えられている。
前記ダイス2には、多数の小孔5が垂直方向に貫通して穿設されており、前記小孔5は直径4〜20mm、好ましくは6〜13mmに形成されている。
ローラー駆動部3は図示しない駆動源によってダイス2の鉛直軸芯を中心に回転駆動が可能になされており、このローラー駆動部3に取り付けられたローラー4は図示しない駆動源により自転することで、ダイス2の上面を摺動回転可能になされている。
The Example using the above-mentioned compression molding apparatus (D) is shown below.
As shown in FIG. 2, the compression molding apparatus (D) used in the present embodiment includes a disk-shaped die 2 fixed to the main body frame 1, and a roller driving unit 3 disposed at the center of the die 2. The roller 4 attached to the outer periphery in the circumferential direction of the roller drive unit 3 is provided.
A large number of small holes 5 are formed in the die 2 so as to penetrate in the vertical direction. The small holes 5 have a diameter of 4 to 20 mm, preferably 6 to 13 mm.
The roller driving unit 3 can be driven to rotate about the vertical axis of the die 2 by a driving source (not shown), and the roller 4 attached to the roller driving unit 3 is rotated by a driving source (not shown). The upper surface of the die 2 is slidably rotatable.

本発明のリグノセルロース系バイオマスの糖化方法について以下に示す。
圧縮成形工程において、前述の圧縮成形装置へリグノセルロース系バイオマスWを投入すると、ローラー駆動部3の回転に伴うローラー4の摺動回転により、リグノセルロース系バイオマスWは、ローラー4とダイス2との間に挟み込まれて圧縮される。このときローラー4がダイス2の上面を摺動回転することによって、リグノセルロース系バイオマスWはローラー4とダイス2との間で擂り潰され、せん断・磨砕作用をうけることで、内部の繊維が押しつぶされて細かく粉砕される。
この粉砕物は、ローラー4の摺動回転によりダイス2に設けられた小孔5へ次から次へと押しこまれ加圧されて、ダイス2の下方へ小孔5から押し出されることで円筒形状に圧縮成形される。
The method for saccharification of lignocellulosic biomass of the present invention is shown below.
In the compression molding process, when the lignocellulosic biomass W is introduced into the compression molding apparatus described above, the lignocellulosic biomass W is formed by the roller 4 and the die 2 by the sliding rotation of the roller 4 accompanying the rotation of the roller driving unit 3. It is sandwiched between and compressed. At this time, the roller 4 slides and rotates on the upper surface of the die 2, so that the lignocellulosic biomass W is crushed between the roller 4 and the die 2, and is subjected to a shearing / grinding action so that the internal fibers are It is crushed and finely crushed.
This pulverized material is pushed into the small hole 5 provided in the die 2 by the sliding rotation of the roller 4 from one to the next, is pressurized, and is pushed out from the small hole 5 below the die 2 to form a cylindrical shape. Compression molding.

前記圧縮成形工程によって得られたペレット状の圧縮成形物Pは、次工程である糖化処理工程により、糖化処理される。糖化処理工程は、前記圧縮成形物Pを反応液中へ投入し、反応液の作用により糖化処理を実施する。これにより、グルコース等の糖類を得ることができる。
このとき、リグノセルロース系バイオマスWは、圧縮成形されていることにより、反応液中に速やかに沈降し、吸水、膨潤しながら崩壊し、反応液中にバイオマス原料を高濃度で素早く分散させることができる。これにより糖化率が著しく向上するという効果が得られる。
The pellet-shaped compression molded product P obtained by the compression molding step is saccharified by a saccharification processing step which is the next step. In the saccharification treatment step, the compression molded product P is introduced into the reaction solution, and the saccharification treatment is performed by the action of the reaction solution. Thereby, saccharides, such as glucose, can be obtained.
At this time, the lignocellulosic biomass W can be quickly formed in the reaction solution by being compression-molded, disintegrated while absorbing water and swelling, and can quickly disperse the biomass raw material in the reaction solution at a high concentration. it can. Thereby, the effect that the saccharification rate is remarkably improved is obtained.

前記実施例における圧縮成形装置の小孔5は、直径4〜20mmに形成されているが、前記小孔5が、直径20mm以上になると、リグノセルロース系バイオマスWがローラー4によりせん断、磨砕作用を十分にうけることなく小孔5に入ることとなり、圧縮成形物Pの密度が小さくなり、さらには圧縮成形物Pを構成する粒子も粗くなるため、本発明の効果が得難い。
また、前記ローラー4の回転する際の周速は、草本系バイオマスが原料の場合、0.5〜2m/秒が好ましい。ローラー4の周速が2m/秒以上になると、ローラー4の回転によって発生する風によって繊維状の原料が巻き上げられ、圧縮成形物Pの生成能力が低下してしまう。
The small holes 5 of the compression molding apparatus in the embodiment are formed to have a diameter of 4 to 20 mm. When the small holes 5 are 20 mm or more in diameter, the lignocellulosic biomass W is sheared and ground by the roller 4. Therefore, it is difficult to obtain the effect of the present invention because the density of the compression molded product P is reduced and the particles constituting the compression molded product P are also coarsened.
Moreover, when the herbaceous biomass is a raw material, the peripheral speed at the time of rotation of the roller 4 is preferably 0.5 to 2 m / sec. When the peripheral speed of the roller 4 is 2 m / second or more, the fibrous raw material is wound up by the wind generated by the rotation of the roller 4, and the generation ability of the compression molded product P is reduced.

本発明は、リグノセルロース系バイオマスWを糖化処理する前に、圧縮成形工程において擂り潰して圧縮成形することに特徴がある。
リグノセルロース系バイオマスWは圧縮されることで、従来の方法のように短く分断化されるのではなく、擂り潰されて、せん断及び磨砕作用を受けながら圧縮成形され、繊維自体が押しつぶされる。その際リグノセルロース系バイオマスWの繊維内にある空洞部分も押しつぶされて空域が無くなり、空気が押し出される。そのため、リグノセルロース系バイオマスを構成する粒子の微細組織中の空気が取り除かれ、リグノセルロース系バイオマス自体の嵩密度が大きくなり、高密度のものとなる。
The present invention is characterized in that before lignocellulosic biomass W is saccharified, it is crushed and compression-molded in a compression molding step.
The lignocellulosic biomass W is compressed so that it is not shredded shortly as in the conventional method, but is crushed and compression-molded while undergoing shearing and grinding, and the fibers themselves are crushed. At that time, the hollow portion in the fiber of the lignocellulosic biomass W is also crushed, the air space disappears, and the air is pushed out. Therefore, the air in the fine structure of the particles constituting the lignocellulosic biomass is removed, and the bulk density of the lignocellulosic biomass itself is increased, resulting in high density.

このように圧縮成形工程で圧縮された圧縮成形物Pは、糖化処理工程において反応液に投入された際には、押しつぶされて空気が取り除かれた微細組織の内部へ反応液が急激に吸収される。圧縮成形物Pの吸水性が高まることにより、反応液が圧縮成形物Pの内方深く浸透し、糖化反応が圧縮成形物Pの全域にわたり隅々まで促進されて、バイオマス原料を単純に破砕して分断化させた場合と比べて、糖化率が著しく向上するという効果が得られる。   Thus, when the compression molded product P compressed in the compression molding step is put into the reaction solution in the saccharification treatment step, the reaction solution is rapidly absorbed into the inside of the fine structure that has been crushed and the air removed. The By increasing the water absorption of the compression molded product P, the reaction solution penetrates deeply into the compression molded product P, and the saccharification reaction is promoted to every corner of the compression molded product P to simply crush the biomass raw material. As compared with the case where the saccharification is performed, the saccharification rate is significantly improved.

特に本発明の圧縮成形工程において、原料となるリグノセルロース系バイオマスの圧縮成形物Pは、その嵩密度が0.4以上になるように圧縮成形されていることが好ましい。圧縮成形物Pの嵩比重を0.4以上に圧縮することで、圧縮成形物Pを構成する粒子の微細組織中の空気が取り除かれ、反応液に投入した際に、微細組織中への反応液の浸透がスムーズとなり、糖化率がさらに向上するという効果が得られる。   In particular, in the compression molding step of the present invention, the compression molded product P of lignocellulosic biomass as a raw material is preferably compression molded so that its bulk density is 0.4 or more. By compressing the bulk specific gravity of the compression molded product P to 0.4 or more, the air in the microstructure of the particles constituting the compression molded product P is removed, and when it is put into the reaction solution, the reaction into the microstructure The penetration of the liquid becomes smooth and the effect of further improving the saccharification rate is obtained.

なお、本発明の糖化処理に用いる原料である、リグノセルロース系バイオマスWの長さが特に長い場合には、圧縮成形工程の前処理としてリグノセルロース系バイオマス原料を短く切断する破砕処理を行うことにより、圧縮成形工程においてリグノセルロース系バイオマス原料を短時間に圧縮することができ、より効率的に圧縮成形処理を実施することができる。
例えば、あらかじめハンマーミルやカッターミル等の破砕処理装置を用いて、適宜次工程である圧縮成形工程に用いる圧縮成形装置に適した大きさにリグノセルロース系バイオマス原料を破砕しておく。前記圧縮成形工程に用いる圧縮成形装置が、圧縮成形装置(A)、圧縮成形装置(B)、圧縮成形装置(C)の場合には、リグノセルロース系バイオマス原料Wの最適な長さは木質系バイオマス、草本系バイオマスの何れも1mm〜5mm程度が良い。
圧縮成形装置が圧縮成形装置(D)の場合には、リグノセルロース系バイオマスWの最適な長さは、木質系バイオマスで1mm〜10mm、草本系バイオマスで1mm〜200mm程度となる。草本系バイオマスの長さが200mm程度であっても前述のようなローラー4とダイス2を用いて原料を擂り潰して、せん断、磨砕作用を受けさせることにより、圧縮成形物Pを構成する粒子径を概ね3mm以下とすることができ、糖化処理が行いやすくなる。
In addition, when the length of the lignocellulosic biomass W, which is a raw material used for the saccharification treatment of the present invention, is particularly long, by performing a crushing process for cutting the lignocellulosic biomass raw material shortly as a pretreatment of the compression molding step. In the compression molding process, the lignocellulosic biomass raw material can be compressed in a short time, and the compression molding process can be carried out more efficiently.
For example, the lignocellulosic biomass raw material is crushed in advance to a size suitable for a compression molding apparatus used in the subsequent compression molding process using a crushing processing apparatus such as a hammer mill or a cutter mill. When the compression molding apparatus used for the compression molding process is a compression molding apparatus (A), a compression molding apparatus (B), or a compression molding apparatus (C), the optimum length of the lignocellulosic biomass raw material W is a woody system. Either 1 mm to 5 mm is preferable for both biomass and herbaceous biomass.
When the compression molding apparatus is the compression molding apparatus (D), the optimum length of lignocellulosic biomass W is about 1 mm to 10 mm for woody biomass and about 1 mm to 200 mm for herbaceous biomass. Even if the length of the herbaceous biomass is about 200 mm, the particles constituting the compression molded product P are obtained by crushing the raw material using the roller 4 and the die 2 as described above, and subjecting to shearing and grinding. The diameter can be approximately 3 mm or less, and the saccharification treatment is facilitated.

また、本発明の他の実施例では、圧縮成形工程と糖化処理工程の間に、圧縮成形物Pを粉砕し、粉体化する粉砕工程を実施することにより、さらに効率的に糖化処理反応を促進させることが可能となる。前記粉砕工程は、圧縮成形工程で得られた圧縮成形物Pをハンマーミルやカッターミル等の破砕機を用いて粉砕し粉体化しておくものである。この微小な粉体物を糖化処理工程において反応槽内の反応液中へ投入する。一旦、圧縮成形した原料を粉砕し粉体化することにより、少ない動力で嵩密度の高い粉体物が得られ、糖化処理工程での反応液との接触率が高まる効果が得られる。   In another embodiment of the present invention, the saccharification reaction is more efficiently performed by performing a pulverization step of pulverizing the compression-molded product P between the compression molding step and the saccharification treatment step. It becomes possible to promote. In the pulverization step, the compression molded product P obtained in the compression molding step is pulverized and pulverized using a crusher such as a hammer mill or a cutter mill. This fine powder is put into the reaction solution in the reaction tank in the saccharification treatment step. Once the compression-molded raw material is pulverized and pulverized, a powder product with a high bulk density can be obtained with a small amount of power, and the effect of increasing the contact rate with the reaction solution in the saccharification treatment step can be obtained.

本発明の糖化処理工程で使用する触媒は、特に制限はないが、生化学的なものでは、セルラーゼ、ヘミセルラーゼ、キシラナーゼ、β−グルコシダーゼ等が挙げられ、必要に応じてこれらの酵素を適宜組合せて使用することができる。また、化学的なものでは、希硫酸が挙げられる。また、高温・高圧水等による熱分解的な糖化処理の前処理工程としても利用できる。   The catalyst used in the saccharification treatment step of the present invention is not particularly limited, but biochemical ones include cellulase, hemicellulase, xylanase, β-glucosidase, etc., and these enzymes are appropriately combined as necessary. Can be used. Moreover, dilute sulfuric acid is mentioned as a chemical thing. It can also be used as a pretreatment step for pyrolytic saccharification treatment with high-temperature, high-pressure water or the like.

また、リグノセルロース系バイオマスの圧縮成形物P、または前記粉砕工程によって圧縮成形物を微粉砕した粉体物を水酸化ナトリウム、水酸化カルシウム、アンモニア等のアルカリ物質で処理し、脱リグニン、あるいはセルロースの結晶状態を変化させ、中和あるいは洗浄を行った後に、触媒による糖化処理工程を行うことで更に糖化率を高めることができる。   In addition, a compression molded product P of lignocellulosic biomass, or a powder product obtained by finely pulverizing the compression molded product in the pulverization step, is treated with an alkaline substance such as sodium hydroxide, calcium hydroxide, ammonia, delignified or cellulose. The saccharification rate can be further increased by carrying out a saccharification treatment step with a catalyst after changing the crystal state of the solution and neutralizing or washing.

以下に実施例を示し従来例との効果を比較して、本発明をさらに詳細に説明するが、本発明は後述の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by comparing examples and effects of the conventional example. However, the present invention is not limited to the examples described later.

コンバインで長さ50mm〜200mmに切断された含水率14%の稲わら(広島県庄原市産)を、本体フレーム内に固定的に配置してあるダイスと、このダイス上面を摺動回転するローラーで構成された圧縮成形装置(商品名:ペレメイク(登録商標)、株式会社北川鉄工所製)へ投入して、直径7mm、長さ約20mmの円柱状で、容器に充填した際の嵩比重が0.58、0.56、及び0.46となる3種類の圧縮成形物を作製した。
作製した嵩比重の異なる圧縮成形物について、それぞれ200g程度を水で湿らせて解し、105°Cで乾燥させた状態で、圧縮成形物を構成する粒子の粒度分布を調べた結果、図3に示すように殆どが3mm以下の粒子に磨砕されていた。
A die in which rice straw (produced by Shobara City, Hiroshima Prefecture) cut into a length of 50 mm to 200 mm with a combiner is fixedly placed in the main body frame, and a roller that slides and rotates on the upper surface of the die. A compression molding apparatus (trade name: Pellemake (registered trademark), manufactured by Kitagawa Iron Works Co., Ltd.) configured in the form of a cylinder with a diameter of 7 mm and a length of about 20 mm, and the bulk specific gravity when filled into a container is Three types of compression molded products having 0.58, 0.56, and 0.46 were produced.
About the produced compression molding products having different bulk specific gravity, about 200 g was wetted with water and dried at 105 ° C., and the particle size distribution of the particles constituting the compression molding products was examined. As shown in FIG. 3, most of the particles were ground to 3 mm or less.

更に、作製した嵩比重の異なる圧縮成形物3種について、吸水による崩壊、分散性を確認するため、直系50mm、深さ60mmのガラス製容器に20gの水を入れたものへ、各圧縮成形物を1gづつ投入し、水温を30°Cに調整した振とう恒温水槽に容器をセットした後、回転数150rpm/振幅20mmで振動させた。振とうを開始してから、それぞれの圧縮成形物が吸水し、崩壊、分散するまでの時間を測定した。尚、圧縮成形物は水の中に沈んだ状態から吸水し、崩壊、分散が進行した。   Furthermore, in order to confirm the disintegration and dispersibility due to water absorption of the three compression molded products having different bulk specific gravities, each compression molded product was prepared by adding 20 g of water to a glass container having a straight line of 50 mm and a depth of 60 mm. 1 g each was added, the container was set in a shaking water bath whose water temperature was adjusted to 30 ° C., and then vibrated at a rotation speed of 150 rpm and an amplitude of 20 mm. The time from the start of shaking until each compression molded product absorbed water, disintegrated and dispersed was measured. The compression molded product absorbed water from the state where it was submerged in water, and the disintegration and dispersion proceeded.

(比較例1)
コンバインで長さ50mm〜200mmに切断された含水率14%の稲わら(広島県庄原市産)を、裁断処理によって3mm以下に破砕し、稲わら破砕物を作製した。得られた稲わら破砕物について、吸水による分散性を確認するため、直系50mm、深さ60mmのガラス製容器に20gの水を入れたものに、1g投入し、以下、実施例1と同様に操作し、稲わら破砕物が吸水し、分散するまでの時間を測定した。尚、稲わら破砕物は、水の上に浮いた状態から、吸水し、水への分散が進行した。
実施例1、比較例1について、分散に要した時間を表1に示す。結果は、おのおの3反復して得られた値の平均である。表1に示すように本発明の圧縮成形物は、稲わら破砕物に比べ水への分散性が良いことが分かる。
(Comparative Example 1)
Rice straw (produced by Shobara City, Hiroshima Prefecture) having a moisture content of 14%, which was cut into a length of 50 mm to 200 mm with a combine, was crushed to 3 mm or less by a cutting process to produce a crushed rice straw. In order to confirm the dispersibility due to water absorption, 1 g of the obtained rice straw crushed material was put into a glass container having a straight line of 50 mm and a depth of 60 mm, and 20 g of water was added. The time until the crushed rice straw was absorbed and dispersed was measured. The crushed rice straw was absorbed from the state of floating on the water, and the dispersion into water proceeded.
Table 1 shows the time required for dispersion in Example 1 and Comparative Example 1. The result is the average of the values obtained from each of the three replicates. As shown in Table 1, it can be seen that the compression molded product of the present invention has better dispersibility in water than the crushed rice straw.

Figure 0005951181
Figure 0005951181

実施例1で作製した圧縮成形物、及び嵩比重0.56の圧縮成形物を籾殻粉砕機(商品名:MILLKURU(登録商標)、株式会社北川鉄工所製)で粉砕して作製した微粉体物、及び比較例1で作製した稲わら破砕物について糖化試験を行った。
各サンプルについて、75mg宛てサンプル瓶に秤量し、酢酸緩衝液(pH5.0)を22.5mLを添加した。次いで、酢酸緩衝液75mLにメイセラーゼ(登録商標)、明治製菓製)75.4mgを溶解した酵素液3mLを添加し、振とう恒温水槽(45°C、230rpm)で糖化処理した。
Fine powder produced by crushing the compression molded product produced in Example 1 and the compression molded product having a bulk specific gravity of 0.56 with a rice husk crusher (trade name: MILLKURU (registered trademark), manufactured by Kitagawa Iron Works Co., Ltd.). A saccharification test was conducted on the crushed rice straw prepared in Comparative Example 1.
For each sample, 75 mg was weighed into a sample bottle, and 22.5 mL of acetate buffer (pH 5.0) was added. Next, 3 mL of an enzyme solution in which 75.4 mg of Mecelase (registered trademark, manufactured by Meiji Seika Co., Ltd.) was dissolved in 75 mL of an acetate buffer solution was added, and saccharification was performed in a shaking water bath (45 ° C., 230 rpm).

糖化処理0時間後、3時間後、18時間後、24時間後、48時間後に500μLを採取し、生成したグルコース濃度を測定した。グルコース濃度の測定は、熱処理(95°C、15min)で酵素を失活させた後、グルコースCII−テストワコー(和光純薬工業株式会社製)を用いて行った。
尚、糖化率は、試験に用いた稲わらのセルロース量から理論グルコース量を算出し、次式によって求めた。
糖化率(%)=糖化後のグルコース生成量(mg)/試料中の理論グルコース量(mg)×100
その結果のグラフを図4に示す。図4に示すように、稲わら破砕品に比べ、本発明の稲わらの圧縮成形物は、糖化率が高い傾向にあり、特に、圧縮成形物を粉砕して作製した微粉砕物の糖化率が最も高くなった。
After 0 hours, 3 hours, 18 hours, 24 hours, and 48 hours after saccharification treatment, 500 μL was sampled, and the produced glucose concentration was measured. The glucose concentration was measured using glucose CII-Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) after inactivating the enzyme by heat treatment (95 ° C., 15 min).
In addition, the saccharification rate calculated | required theoretical glucose amount from the cellulose amount of the rice straw used for the test, and calculated | required by following Formula.
Saccharification rate (%) = glucose production amount after saccharification (mg) / theoretical glucose amount in the sample (mg) × 100
The resulting graph is shown in FIG. As shown in FIG. 4, the rice straw compression-molded product of the present invention tends to have a higher saccharification rate than the crushed rice straw product, and in particular, the saccharification rate of the finely pulverized product prepared by pulverizing the compression-molded product. Became the highest.

実施例1で作製した圧縮成形物、及び比較例1で作製した稲わら破砕物について、アルカリ処理を行った後に糖化処理を行った。
200mLの容器に各サンプル15g(乾燥重量)に純水135mLおよび水酸化カルシウム3gを加え、薬液をよくなじませた後、120°C、1時間、オートクレーブ内で加温・加圧処理を行った。処理後、薬液のpHが中性付近になるまで塩酸で中和し、遠心分離(8000×g、20分、4°C)により固液分離を行った。沈殿部(アルカリ処理稲わら)を数回純水で洗浄し、65°Cで3日間乾燥させた物を50 mL容器に秤量し、次いで10mL の50mM酢酸緩衝液(pH5.0)、及び20mLの市販酵素製剤(商品名:セルクラスト1.5L(登録商標)、ノボザイム188(登録商標)、ウルトラフロL(登録商標)、ノボザイム社製)を添加して、50°C、24時間(6回転/min)の条件で酵素糖化を行った。酵素糖化反応時に防腐剤として0.02%のアジ化ナトリウムを添加した。反応後、熱処理(100°C、20分)で酵素を失活させ、遠心分離(6000×g、10分、4°C)にて上澄み液を回収し、回収液中のグルコース量およびキシロース量を、それぞれグルコーステスト(和光純薬工業(株)製)およびキシロース定量キット(Megazyme社製)を用いて測定した。
The compression molded product produced in Example 1 and the rice straw crushed product produced in Comparative Example 1 were subjected to alkali treatment and then saccharification treatment.
After adding 135 mL of pure water and 3 g of calcium hydroxide to 15 g (dry weight) of each sample in a 200 mL container and thoroughly blending the chemical solution, the sample was heated and pressurized in an autoclave at 120 ° C. for 1 hour. . After the treatment, the solution was neutralized with hydrochloric acid until the pH of the solution became near neutral, and solid-liquid separation was performed by centrifugation (8000 × g, 20 minutes, 4 ° C.). The precipitate (alkali-treated rice straw) was washed several times with pure water and dried at 65 ° C. for 3 days, and weighed into a 50 mL container, then 10 mL of 50 mM acetate buffer (pH 5.0), and 20 mL Commercially available enzyme preparation (trade name: Cellcrust 1.5L (registered trademark), Novozyme 188 (registered trademark), Ultraflo L (registered trademark), manufactured by Novozyme) was added at 50 ° C for 24 hours (6 Enzyme saccharification was performed under the conditions of rotation / min). 0.02% sodium azide was added as a preservative during the enzymatic saccharification reaction. After the reaction, the enzyme is inactivated by heat treatment (100 ° C., 20 minutes), and the supernatant is recovered by centrifugation (6000 × g, 10 minutes, 4 ° C.). The amount of glucose and xylose in the recovered solution Were measured using a glucose test (manufactured by Wako Pure Chemical Industries, Ltd.) and a xylose quantification kit (manufactured by Megazyme), respectively.

糖化率は、原料の稲わらを250μm以下に粉砕したものを100mg秤量し、72%硫酸1mLを添加し、30°Cで1時間処理後、硫酸濃度9%になるようにメスアップし、次いで、100°Cで2時間の処理を行った。この一部をサンプリングして10% NaOH水溶液で中和し、原料中の総グルコース量および総キシロース量を、それぞれグルコースC−IIテストワコー(和光純薬工業(株)製)およびキシロース定量キット(Megazyme社製)を用いて測定し、次式により、グルカン糖化率、及びキシラン糖化率を算出した。
グルカン糖化率(%)=糖化後のグルコース生成量(mg)/試料中の総グルコース量(mg)×100
キシラン糖化率(%)=糖化後のキシロース生成量(mg)/試料中の総キシロース量(mg)×100
なお、測定は3連で行った。結果を図5に示す。図5に示すように、実施例の圧縮成形物は、アルカリ処理後のグルカン糖化率、及びキシラン糖化率ともに比較例の稲わら破砕物に比べて、高い値となった。
The saccharification rate was determined by weighing 100 mg of the raw rice straw crushed to 250 μm or less, adding 1 mL of 72% sulfuric acid, treating it at 30 ° C. for 1 hour, and then measuring up to a sulfuric acid concentration of 9%. For 2 hours at 100 ° C. A part of this was sampled and neutralized with a 10% NaOH aqueous solution, and the total amount of glucose and the total amount of xylose in the raw material were determined using glucose C-II test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) and xylose quantification kit ( And the glucan saccharification rate and the xylan saccharification rate were calculated according to the following equations.
Glucan saccharification rate (%) = glucose production amount after saccharification (mg) / total glucose amount in sample (mg) × 100
Xylan saccharification rate (%) = xylose production after saccharification (mg) / total amount of xylose in sample (mg) × 100
Measurement was performed in triplicate. The results are shown in FIG. As shown in FIG. 5, the compression-molded products of the Examples both had higher values for the glucan saccharification rate and the xylan saccharification rate after the alkali treatment than the rice straw crushed product of the comparative example.

1 本体フレーム
2 ダイス
3 ローラー駆動部
4 ローラー
5 小孔
1 Body frame 2 Dies 3 Roller drive 4 Roller 5 Small hole

Claims (1)

草本系バイオマスを糖化処理する糖化方法において、前記草本系バイオマスを圧縮しペレット状に成形する圧縮成形工程と、該圧縮成形工程にて圧縮成形された圧縮成形物を糖化処理する糖化処理工程を行い、前記圧縮成形工程が、フレームを有する本体と、前記フレーム内へ固定されて配置してあるダイスと、このダイス上面を摺動回転することで草本系バイオマスを擂り潰すローラーを有する圧縮成形装置を用いて、前記ローラーの回転する周速が0.5〜2m/秒で駆動し実施され、前記圧縮成形工程において、圧縮する前に草本系バイオマスを長さ50〜200mmに切断し、前記草本系バイオマスが稲わらであることを特徴とする草本系バイオマスの糖化方法。 In the saccharification method of saccharifying herbaceous biomass, a compression molding step of compressing the herbaceous biomass and forming it into a pellet form, and a saccharification treatment step of saccharifying the compression molded product compressed in the compression molding step are performed. The compression molding step includes a compression molding apparatus having a main body having a frame, a die fixedly arranged in the frame, and a roller for crushing herbaceous biomass by sliding and rotating the upper surface of the die. The roller is rotated at a peripheral speed of 0.5 to 2 m / sec, and the herbaceous biomass is cut into a length of 50 to 200 mm before being compressed in the compression molding step. A method for saccharification of herbaceous biomass, wherein the biomass is rice straw .
JP2011023784A 2011-02-07 2011-02-07 Method for saccharification of lignocellulosic biomass Active JP5951181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023784A JP5951181B2 (en) 2011-02-07 2011-02-07 Method for saccharification of lignocellulosic biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023784A JP5951181B2 (en) 2011-02-07 2011-02-07 Method for saccharification of lignocellulosic biomass

Publications (2)

Publication Number Publication Date
JP2012161275A JP2012161275A (en) 2012-08-30
JP5951181B2 true JP5951181B2 (en) 2016-07-13

Family

ID=46841353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023784A Active JP5951181B2 (en) 2011-02-07 2011-02-07 Method for saccharification of lignocellulosic biomass

Country Status (1)

Country Link
JP (1) JP5951181B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ708507A (en) * 2008-11-17 2016-01-29 Xyleco Inc Processing biomass
DE102012020166A1 (en) * 2012-10-13 2014-04-30 Green Sugar Gmbh Produktinnovationen Aus Biomasse Process for the hydrolysis of pelletable biomasses by means of hydrohalic acids
MY189104A (en) * 2013-11-12 2022-01-25 Kao Corp Method for producing xylan-containing composition and method for producing glucan-containing composition
JPWO2015098946A1 (en) * 2013-12-25 2017-03-23 加藤 進 Lignocellulosic biomass processing apparatus, processing method, processed product and saccharification method
JP6639075B2 (en) * 2014-03-28 2020-02-05 日本製紙株式会社 Method for producing solid fuel and solid fuel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052193B2 (en) * 2003-07-04 2008-02-27 日立化成工業株式会社 Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP2006272044A (en) * 2005-03-28 2006-10-12 Kikukawa Tekkosho:Kk Pellet production apparatus
EP2069423A2 (en) * 2006-10-26 2009-06-17 Marshall Medoff Processing biomass
JP2009136202A (en) * 2007-12-05 2009-06-25 Research Institute Of Tsukuba Bio-Tech Corp Method for producing fuel alcohol from biomass, and apparatus for producing the same
NZ708507A (en) * 2008-11-17 2016-01-29 Xyleco Inc Processing biomass
JP2010130906A (en) * 2008-12-02 2010-06-17 Hiroto Sato Pellet made from rice straw, method for producing the same, and livestock feed
JP2010252783A (en) * 2009-03-31 2010-11-11 Daiken Corp Wood pellets and method of manufacturing them, and pet litter box
US8846123B2 (en) * 2009-05-08 2014-09-30 Pellet Technology Llc Biomass pelletizing process
JP2012050408A (en) * 2010-09-03 2012-03-15 Aomori Prefectural Industrial Technology Research Center Saccharification raw material and method for producing the same, and method for producing ethanol
JP2012085544A (en) * 2010-10-15 2012-05-10 Taisei Corp Method for saccharifying herb-based biomass

Also Published As

Publication number Publication date
JP2012161275A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
CA2583256C (en) Process for producing a pretreated feedstock
AU2009308624B2 (en) Sugar production process and ethanol production process
EP2225387B1 (en) Process for producing saccharide
JP6063661B2 (en) Method for producing pulverized material
JP4619917B2 (en) Pretreatment method of lignocellulose
JP5951181B2 (en) Method for saccharification of lignocellulosic biomass
JP5442284B2 (en) Pretreatment method for enzymatic hydrolysis treatment of herbaceous biomass and ethanol production method using herbaceous biomass as raw material
JP5662724B2 (en) Saccharification method of woody biomass
WO2013136940A1 (en) Method for producing saccharide
KR101493227B1 (en) Pretreatment method of lignocellulose biomass, and manufacturing method of saccharides and biofuel using the same
JP5693286B2 (en) Saccharification method of woody biomass
WO2010016536A1 (en) Method for treating lignocellulose material
KR101554874B1 (en) Manufacturing Method Of Saccharides Using Lignocellulose Biomass
WO2022210558A1 (en) Pellets and method for producing pellets
JP2013085523A (en) Production method for xylose, xylobiose and/or xylooligosaccharide
WO2010077172A1 (en) Process for pretreatment of wood raw material for saccharification, system and product
JP2012085544A (en) Method for saccharifying herb-based biomass
JP2011083238A (en) Method for producing saccharide from bark raw material
US20160348193A1 (en) Lignocellulose biomass treatment device, treatment method, treated product, and saccharification method
JP6050090B2 (en) Evaluation method of saccharification performance
WO2014192401A1 (en) Method for pretreating cellulose-containing biomass, method for producing biomass composition for saccharification use, and method for producing sugar
JP2015070822A (en) Production method of saccharide
WO2014109345A1 (en) Biomass composition for saccharification use, method for selecting biomass composition for saccharification use, and method for producing sugar
JP2010115171A (en) Method for producing saccharide from bark feedstock
JP2013192472A (en) Method for producing sugar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R150 Certificate of patent or registration of utility model

Ref document number: 5951181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250