JP5946728B2 - Centerless grinding method for shaft member and method for manufacturing circular shaft member - Google Patents

Centerless grinding method for shaft member and method for manufacturing circular shaft member Download PDF

Info

Publication number
JP5946728B2
JP5946728B2 JP2012196151A JP2012196151A JP5946728B2 JP 5946728 B2 JP5946728 B2 JP 5946728B2 JP 2012196151 A JP2012196151 A JP 2012196151A JP 2012196151 A JP2012196151 A JP 2012196151A JP 5946728 B2 JP5946728 B2 JP 5946728B2
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
shaft member
wheel
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196151A
Other languages
Japanese (ja)
Other versions
JP2014050908A (en
Inventor
博司 倉野
博司 倉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012196151A priority Critical patent/JP5946728B2/en
Publication of JP2014050908A publication Critical patent/JP2014050908A/en
Application granted granted Critical
Publication of JP5946728B2 publication Critical patent/JP5946728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、工作物(ワーク)である軸部材を、その両端のセンタにおいて支持することなく研削する、軸部材のセンタレス研削方法、及びその方法を用いる円軸部材の製造方法に関する。   The present invention relates to a shaft member centerless grinding method for grinding a shaft member which is a workpiece (workpiece) without being supported at the centers of both ends thereof, and a circular shaft member manufacturing method using the method.

軸部材、とくにそれが難削材である場合のセンタレス研削(心なし研削)においては、研削部位等の冷却、ないし発熱の防止、洗浄、研削面の精度の維持などを図るため、そして、研削の円滑化や、砥石車等の長寿命化のため、研削液(冷却液)の供給が極めて重要である。したがって、この種の研削(又は研磨)においては、供給配管等を介して研削液をその砥石車の砥石層の表面、ないし研削部位に供給し続けるというのが普通である(例えば、特許文献1)。特に、セラミックのような難削材の軸部材(ワークともいう)をセンタレス研削する際には、高価なダイヤモンド砥石を用いることになることから、研削液を砥石層の表面(外周面)の全体に、しかも、研削部位に効率的に行き渡るように供給することが重要である。   In centerless grinding (centerless grinding) when the shaft member is a difficult-to-cut material, the grinding part, etc. is cooled, heat generation is prevented, cleaning, the accuracy of the ground surface is maintained, and grinding. It is extremely important to supply a grinding fluid (cooling fluid) for smoothing the surface and extending the life of a grinding wheel or the like. Therefore, in this type of grinding (or polishing), it is common to continue supplying the grinding liquid to the surface of the grinding wheel layer of the grinding wheel or the grinding part via a supply pipe or the like (for example, Patent Document 1). ). In particular, when centerless grinding of a shaft member (also called a workpiece) of a difficult-to-cut material such as ceramic, an expensive diamond grindstone is used, so that the grinding liquid is applied to the entire surface (outer peripheral surface) of the grindstone layer. In addition, it is important to supply the grinding part so as to spread efficiently.

ところが、このようなセンタレス研削においては、研削を担う砥石層の表面(円筒の外周面)のうち、回転軸に平行な部位は直線であり、ここに押付けられて円筒研削される軸部材の表面(円筒の外周面)についても、同様である。このため、研削液を砥石車の外周面、すなわち、砥石層の表面の全体に供給することはできるとしても、その外周面と、ここに押付けられるワークの外周面の実際の研削部位に、研削液を十分に回り込ませることは容易でない。すなわち、通常のセンタレス研削においては、このような研削部位に研削液の円滑な供給が行えないというのが実情である。   However, in such centerless grinding, of the surface of the grindstone layer responsible for grinding (the outer peripheral surface of the cylinder), the portion parallel to the rotation axis is a straight line, and the surface of the shaft member that is pressed and cylindrically ground here The same applies to (the outer peripheral surface of the cylinder). For this reason, even if the grinding fluid can be supplied to the outer peripheral surface of the grinding wheel, that is, the entire surface of the grinding wheel layer, the grinding liquid is ground to the outer peripheral surface and the actual grinding portion of the outer peripheral surface of the workpiece pressed against the grinding wheel. It is not easy for the liquid to sufficiently wrap around. That is, in normal centerless grinding, the actual situation is that the grinding fluid cannot be smoothly supplied to such a grinding portion.

特開2001−138187号公報JP 2001-138187 A

こうしたことから、従来のセンタレス研削においては、その研削部位の冷却性が不十分であり、砥石車(以下、単に砥石とも言う)が高温となりがちのため、早期に砥粒の摩滅や、結合剤(ボンド)の焼け等の不具合が発生し、それによる砥石の切れ味低下や、砥粒の脱落によるその短寿命化を招いていた。しかも、上記したように、ワークがセラミックなどの難削材であったりすると、砥石への負担は大きく、したがって、こうした問題が発生しがちであった。具体的には次のようである。すなわち、こうした問題を砥石について見ると、例えば、ワークを回転軸方向に送る通常のスルーフィールド(通し送り)法にて研削する場合には、砥石のうち、ワークの投入側(入口側)における研削抵抗ないし研削負荷が、その排出側(出口側)よりも確実に大きい。このため、その砥石の表面のうち、投入側が早期に摩耗する偏摩耗ないし局部磨耗が発生しがちとなり、切れ味低下を早く招きやすい。この結果、バランス維持のための砥石の端面(投入側)の変更(交代)が早期に必要となる上、その表面精度の維持(目立て)のための補正(ツルーイング)も早期に必要となるなどから、その砥石層(ダイヤモンド)の摩滅が早くなりがちで、結果として砥石の寿命低下を招いていた。しかも、支持刃(ブレード)の焼き付き等による問題もある。   For this reason, in conventional centerless grinding, the cooling performance of the grinding part is insufficient, and the grinding wheel (hereinafter, also simply referred to as a grinding wheel) tends to become high temperature. Problems such as (bond) burn occurred, resulting in a decrease in the sharpness of the grindstone and a shortening of its life due to falling off of the abrasive grains. In addition, as described above, when the workpiece is a difficult-to-cut material such as ceramic, the burden on the grindstone is large, and thus such a problem tends to occur. Specifically, it is as follows. That is, when looking at such problems with a grindstone, for example, when grinding with a normal through-field method that feeds a workpiece in the direction of the rotation axis, grinding on the workpiece input side (inlet side) of the grindstone The resistance or grinding load is definitely greater than the discharge side (exit side). For this reason, uneven wear or local wear in which the input side wears quickly on the surface of the grindstone tends to occur, and the sharpness tends to be lowered quickly. As a result, it is necessary to change (change) the end face (input side) of the grindstone in order to maintain balance at an early stage, and to make correction (truing) to maintain its surface accuracy (sharpening) at an early stage. Therefore, the grinding wheel layer (diamond) tends to wear quickly, resulting in a reduction in the life of the grinding wheel. Moreover, there is a problem due to seizure of the support blade (blade).

また、ワークがセラミックで、焼成直後の焼き肌状態のもので、しかも、横断面形状が、いびつな円や、多角形のもの(等径丸物でないもの)である場合には、研削抵抗が大きく、偏摩耗等の問題が顕在化しやすい。例えば、ワークが、隣接するワーク相互の外周面が接してホットプレスされて焼成され、焼成後において、ワーク相互間において折り取るなどにより切断して個別化されることで製造される、多数個取りのワークでは、外周面の両側に切断時の破断面を有するものとなる。このように横断面状態が悪いワークは、必然的に研削抵抗も大きく、砥石に対する偏摩耗等の問題を顕在化させやすい。しかも、研削抵抗が大きいことから、その研削過程で、ワーク自体に、折れ、ワレ等の不良が発生しやすく、歩留まり低下の要因ともなっていた。しかも、このようなワークの研削においては、その横断面形状ゆえに、不円滑な研削となるから、騒音の増大という問題もあった。   Also, if the workpiece is ceramic and has a burned surface immediately after firing, and the cross-sectional shape is an irregular circle or a polygon (not an iso-diameter round), the grinding resistance is It is large and problems such as uneven wear tend to be obvious. For example, multiple workpieces are manufactured by cutting and individualizing workpieces by hot pressing with the outer peripheral surfaces of adjacent workpieces in contact with each other and firing after firing. This work has a fracture surface at the time of cutting on both sides of the outer peripheral surface. A workpiece having such a poor cross-sectional state inevitably has a large grinding resistance, and problems such as uneven wear on the grindstone are easily manifested. Moreover, since the grinding resistance is large, defects such as bending and cracking are likely to occur in the workpiece itself during the grinding process, which has been a factor in yield reduction. In addition, the grinding of such workpieces has a problem of increased noise because of the cross-sectional shape of the workpiece, resulting in unsmooth grinding.

本発明は、前記した問題点に鑑みてなされたもので、セラミックのような難削材からなるワーク(軸部材)の、ダイヤモンド砥石によるセンタレス研削において、研削液(冷却液)が、砥石の外周面のうち、実際にワークを研削している研削部位(実際に研削に預かる部位)に、有効かつ十分に行き渡るようにすることのできる技術を提供することをその目的とする。   The present invention has been made in view of the above-described problems. In centerless grinding of a workpiece (shaft member) made of a difficult-to-cut material such as ceramic with a diamond grindstone, the grinding liquid (cooling liquid) is the outer periphery of the grindstone. It is an object of the present invention to provide a technique capable of effectively and sufficiently spreading to a grinding part (a part actually entrusted to grinding) of a surface where a workpiece is actually ground.

請求項1に記載の本発明は、砥石層がダイヤモンド砥石からなる砥石車を用いる軸部材のセンタレス研削方法であって、
この砥石車の前記砥石層の外周面に、その周方向に延びる溝、自身の回転軸方向に間隔をおいて複数、設けられるように、
前記砥石車は、回転軸方向において、複数の分割砥石車を重ねてボルト締めによって固定してなる分割可能の組立て体から構成されており、回転軸方向において重ねられて隣り合う分割砥石車相互の間に前記溝が形成されるように、前記分割砥石車に、金属製の分割車本体とその外周面においてその幅より狭く形成された前記砥石層とを有する分割砥石車を含んでいるものとしたことを特徴とする。
請求項2に記載の本発明は、砥石層がダイヤモンド砥石からなる砥石車を用いる軸部材のセンタレス研削方法であって、
この砥石車の前記砥石層の外周面に、自身の回転軸回りに螺旋状に延びる溝を設けておくことを特徴とする。
The present invention according to claim 1 is a centerless grinding method of a shaft member using a grinding wheel whose grinding wheel layer is made of a diamond grinding wheel,
On the outer peripheral surface of the grinding wheel layer of the grinding wheel, so that the grooves extending in the circumferential direction, a plurality at intervals in the rotation axis direction of the own kicked set,
The grinding wheel is composed of a splittable assembly in which a plurality of divided grinding wheels are stacked and fixed by bolting in the direction of the rotation axis. The divided grinding wheel includes a divided grinding wheel having a metal divided wheel main body and the grinding wheel layer formed narrower than the width of the divided grinding wheel so that the groove is formed therebetween. characterized in that it was.
The present invention according to claim 2 is a centerless grinding method of a shaft member using a grinding wheel whose grinding wheel layer is made of a diamond grinding wheel,
A groove extending spirally around its rotation axis is provided on the outer peripheral surface of the grinding wheel layer of the grinding wheel.

請求項3に記載の本発明は、前記溝は、その溝の幅が研削後の前記軸部材の外径より小さいことを特徴とする、請求項1又は2に記載の軸部材のセンタレス研削方法である。
請求項4に記載の本発明は、前記砥石車は、回転軸方向において、複数分割砥石車を重ねて固定してなる分割可能の組立て体から構成されており、回転軸方向において重ねられて隣り合う分割砥石車相互の間に前記溝が形成されるように、前記分割砥石車に、金属製の分割車本体とその外周面においてその幅より狭く形成された前記砥石層とを有する分割砥石車を含んでいることを特徴とする、請求項2に記載の軸部材のセンタレス研削方法である。
3. The shaft member centerless grinding method according to claim 1, wherein the groove has a groove width smaller than an outer diameter of the shaft member after grinding. It is.
According to a fourth aspect of the present invention, the grinding wheel is composed of a splittable assembly formed by stacking and fixing a plurality of divided grinding wheels in the rotational axis direction, and is overlapped in the rotational axis direction. The divided grindstone having the metal divided wheel main body and the grindstone layer formed narrower than the width on the outer peripheral surface of the divided grindstone so that the groove is formed between the adjacent divided grindstones. The centerless grinding method for a shaft member according to claim 2, comprising a vehicle.

請求項5に記載の本発明は、請求項1〜4のいずれか1項に記載の、軸部材のセンタレス研削方法を用いた研削工程を含む、円軸部材の製造方法である。
請求項6に記載の本発明は、前記軸部材の研削前における横断面の形状が多角形又は非円形であることを特徴とする、請求項5に記載の円軸部材の製造方法である。
請求項7に記載の本発明は、前記軸部材がセラミックを主成分とするものであることを特徴とする、請求項5又は6に記載の円軸部材の製造方法である。
A fifth aspect of the present invention is a method for manufacturing a circular shaft member, including a grinding step using the centerless grinding method for a shaft member according to any one of the first to fourth aspects.
The present invention according to claim 6 is the method of manufacturing a circular shaft member according to claim 5, wherein the shape of the cross section of the shaft member before grinding is a polygon or a non-circular shape.
The present invention according to claim 7 is the method of manufacturing a circular shaft member according to claim 5 or 6, characterized in that the shaft member has ceramic as a main component.

本発明のセンタレス研削方法、及び同方法を用いた研削工程を含む円軸部材の製造方法によれば、その方法に用いられる、砥石車の砥石層の外周面に、前記溝が設けられているため、それが設けられていない砥石車を用いるセンタレス研削方法による場合に比べると、それが設けられている分、研削過程で供給される研削液が、砥石の外周面の研削部位に回り込み易い。このため、冷却効果ないし放熱効果等の優れた円滑な研削が行われる。これにより、例えば、スルーフィールド方式で、軸部材を砥石車の一端側(ワークの供給側)から他端側(ワークの排出側)へと、その軸方向に次々と供給して研削するときでも、研削負荷の大きいその砥石車の供給側の偏摩耗(局部摩耗)を低減できる。これにより、砥石の端側の変更(交代)の回数、及びその作業時間を減らすことができる。また、砥石の切れ味低下を遅延させることができる。これらにより、砥石のツルーイングの回数が低減でき、砥石の長寿命化が図られるなどの効果が得られる。なお、周方向に延びる溝を、自身の回転軸方向に間隔をおいて複数、設けるとき、その各溝は、研削液が砥石の幅方向の表面全体に行き渡るように、その幅方向において等間隔で、なるべく多く設けるのが良い。   According to the centerless grinding method of the present invention and the method of manufacturing a circular shaft member including a grinding step using the method, the groove is provided on the outer peripheral surface of the grinding wheel layer of the grinding wheel used in the method. Therefore, as compared with the case of the centerless grinding method using a grinding wheel without the grinding wheel, the grinding liquid supplied in the grinding process is more likely to go around the grinding portion of the outer peripheral surface of the grinding stone as much as it is provided. For this reason, excellent smooth grinding such as cooling effect or heat dissipation effect is performed. Thereby, for example, even when the shaft member is supplied and ground one after another in the axial direction from one end side (workpiece supply side) to the other end side (workpiece discharge side) of the grinding wheel in the through field method. Further, uneven wear (local wear) on the supply side of the grinding wheel having a large grinding load can be reduced. Thereby, the frequency | count of the change (change) of the edge side of a grindstone, and its operation | work time can be reduced. Moreover, the sharpness fall of a grindstone can be delayed. As a result, the number of times of truing of the grindstone can be reduced, and effects such as extending the life of the grindstone can be obtained. When a plurality of grooves extending in the circumferential direction are provided at intervals in the direction of their own rotation axis, the grooves are equally spaced in the width direction so that the grinding liquid spreads over the entire surface in the width direction of the grindstone. Therefore, it is preferable to provide as many as possible.

また、研削されるワークである軸部材についてみると、前記溝がある分、冷却効果ないし放熱効果が高い円滑な研削が行われるため、脆性なセラミックからなるもので、横断面形状が非円形(非等径丸物)などであっても、折れ等の研削不良を発生させにくく、歩留まり低下の防止にも有効である。しかも、軸部材がこのようにその横断面形状が悪く、砥石車に対する過酷な研削条件となり、その寿命低下や研削騒音の増大を招くような場合でも、本発明によれば、前記溝がある分、研削液の砥石の外周面への回り込み性に優れることから、こうした問題の発生防止にも有効である。   In addition, when looking at the shaft member that is the workpiece to be ground, smooth grinding with high cooling effect or heat dissipation effect is performed by the amount of the groove, so that it is made of brittle ceramic and has a non-circular cross-sectional shape ( Even a non-equal-diameter round product) is less prone to grinding failure such as bending, and is effective in preventing a decrease in yield. Moreover, even if the shaft member has such a poor cross-sectional shape and becomes a severe grinding condition for the grinding wheel, resulting in a decrease in the service life and an increase in grinding noise, according to the present invention, the groove is provided. Since the grinding fluid is excellent in wrapping around the outer peripheral surface of the grindstone, it is also effective in preventing such problems.

本発明において、前記砥石層の外周面の溝の断面形状は、矩形、V形、U形など、適宜の断面形状とすることができる。また、その溝の数、又はピッチ(螺旋状(スパイラル)の溝とする場合には、そのリード)、溝の幅や深さは、研削するワークの材質、寸法、さらには、ワークの送り速度や、ワークの表面状態、砥石の砥粒の粒度や研削液の供給流量等の研削条件に応じて、適宜に設定すればよい。すなわち、砥石車の外周面(砥石の表面における幅方向の全体)に研削液が広く、かつ、実際の研削部位に効率的に回り込めるように、研削条件に基づいて設定すればよい。本発明では、通常は、ワークに回転軸方向の送りがかかるように、調整車に、上下の傾きを付与する、スルーフィールド法によるセンタレス研削となるが、インフィールド法による研削を行う場合にも適用できる。   In this invention, the cross-sectional shape of the groove | channel of the outer peripheral surface of the said grindstone layer can be made into appropriate cross-sectional shapes, such as a rectangle, V shape, and U shape. In addition, the number or pitch of the grooves (or leads in the case of spiral grooves), the width and depth of the groove, the material and dimensions of the workpiece to be ground, and the workpiece feed rate Alternatively, the surface condition of the workpiece, the grain size of the abrasive grains of the grindstone, and the grinding fluid supply flow rate may be set as appropriate. That is, the grinding liquid may be set on the basis of the grinding conditions so that the grinding liquid is wide on the outer peripheral surface of the grinding wheel (the entire width direction on the surface of the grinding wheel) and can efficiently wrap around the actual grinding site. In the present invention, the centerless grinding is normally performed by the through field method in which the adjustment wheel is given an up and down inclination so that the workpiece is fed in the rotation axis direction. Applicable.

なお、螺旋状の溝とする場合には、研削液の回り込み性を高めることができるため、研削液を砥石車の幅方向に、広く容易に行き渡らせることができる。このような螺旋状の溝とする場合、1条の螺旋としてもよいが、2条以上の螺旋としてもよい。また、上記もしたように、溝の幅は、研削条件に応じて適宜に設定すればよいが、セラミック製の細長い軸部材は折れ易いため、溝の幅寸法次第では、破断片が溝に嵌り込む可能性がある。この嵌り込みの発生防止のため、溝の幅は、請求項3に記載のように、研削後の軸部材の外径より小さくしておくのが好ましい。溝の深さは、研削液の入り込み性や流れ込み性のよさからして深いほうが良い。一方、溝が深いと、破断片の嵌り込みの可能性が高くなる。このため、溝の幅は、その深さにもよるが、研削する軸部材の外径よりなるべく小さく、好ましくは80%以下に、特に好ましくは60%以下とするのがよい。ただし溝の幅は、研削液の入り込み性や目詰まり防止の上からして、最小でも、1.0mm以上とするのが好ましい。なお、溝の深さは、ダイヤモンド砥石層の厚みと同じとするのが、砥石車の製造上において効率的である。この場合には、ダイヤモンドの砥石層がないところが溝であるから、したがって、前記溝をなさない部位にのみ、その砥石層を形成すればよい。   In addition, when it is set as a spiral groove | channel, since the wraparound property of a grinding fluid can be improved, a grinding fluid can be spread widely widely in the width direction of a grinding wheel. When it is set as such a helical groove | channel, it is good also as one spiral, but it is good also as two or more spirals. Further, as described above, the groove width may be set appropriately according to the grinding conditions. However, since the ceramic elongated shaft member is easily broken, the broken piece fits into the groove depending on the groove width dimension. There is a possibility that. In order to prevent the fitting, the width of the groove is preferably smaller than the outer diameter of the shaft member after grinding as described in claim 3. The depth of the groove should be deep in view of the ability of the grinding fluid to enter and flow. On the other hand, if the groove is deep, the possibility that the broken piece is fitted increases. For this reason, although it depends on the depth, the width of the groove is as small as possible from the outer diameter of the shaft member to be ground, preferably 80% or less, particularly preferably 60% or less. However, it is preferable that the width of the groove is 1.0 mm or more at a minimum from the viewpoint of penetration of the grinding fluid and prevention of clogging. It is efficient in manufacturing the grinding wheel that the depth of the groove is the same as the thickness of the diamond grinding wheel layer. In this case, since there is a groove where there is no diamond grindstone layer, it is only necessary to form the grindstone layer only in a portion where the groove is not formed.

請求項1又は請求項4に記載の組立て体構造の砥石車によれば、溝はその組み立て過程で形成されるので、砥石車の製造が容易となる。しかも、砥石車自体の幅を、分割砥石車の数次第で、容易に変更、ないし選択できるし、砥石の部分的な交換もできるので、使い勝手もよい。なお、本明細書においては、回転軸方向において重ねて固定してなる組立て体からなる砥石車を構成する、複数に分割可能の砥石車の個々を、分割砥石車といい、その1つの分割砥石車を構成する砥石層を除く砥石車本体を分割車本体と言うものとしている。 According to the grinding wheel having the assembly structure according to claim 1 or 4, since the groove is formed in the assembling process, the grinding wheel can be easily manufactured. Moreover, the width of the grinding wheel itself can be easily changed or selected depending on the number of divided grinding wheels, and the grinding wheel can be partially replaced. In addition, in this specification, each of the grinding wheels that can be divided into a plurality of parts that constitutes a grinding wheel composed of an assembly that is overlapped and fixed in the rotation axis direction is referred to as a divided grinding wheel, and one of these divided grinding wheels. The grinding wheel main body excluding the grinding wheel layer constituting the car is referred to as a divided vehicle main body.

センタレス研削で、例えば、スルーフィールド法でセラミック製の軸部材を、焼成直後の焼き肌状態のものから、高度の表面粗さ、高精度の丸棒に仕上げるためには、研削工程は、複数の研削工程(例えば、2〜5工程)を要する。とくに、ワークをなす軸部材が、上記もしたよう、焼成直後のもので、その外周面に、個別に折り取る(切断する)際に生じた破断面を有するなど、横断面状態が悪く、多角形又は非円形の物であり、これを円軸部材に仕上げる場合には、特に1回目の研削に使用される砥石の負担が大きい。それ故、砥石の寿命が短くなるような場合であるとしても、本発明によれば、前記溝がある分、それがない場合に比べると、研削部位への研削液の回り込み性が向上するため、砥石の長寿命化が図られるし、騒音の低減防止にも有効である。このため、本発明の円軸部材の製造方法によれば、とくに、軸部材がセラミックを主成分として含むようなもので、横断面状態が悪いものである場合には、大きな効果が得られる。   In centerless grinding, for example, in order to finish a shaft member made of ceramic by a through-field method from a burned skin state immediately after firing to a high-quality surface roughness and high-precision round bar, the grinding process includes a plurality of grinding processes. A grinding process (for example, 2-5 processes) is required. In particular, the shaft member forming the workpiece is immediately after firing as described above, and the outer peripheral surface has a fractured surface generated when it is individually folded (cut). When it is a square or non-circular object and is finished into a circular shaft member, the burden on the grindstone used for the first grinding is particularly large. Therefore, even if it is a case where the life of the grindstone is shortened, according to the present invention, since the groove is present, the wraparound property of the grinding fluid to the grinding portion is improved as compared with the case where there is no groove. In addition, the service life of the grindstone can be extended and the reduction of noise can be effectively prevented. For this reason, according to the manufacturing method of the circular shaft member of this invention, a big effect is acquired especially when a shaft member is a thing which contains a ceramic as a main component and a cross-sectional state is bad.

本発明とは別の参考発明を具体化した、センタレス研削方法を用いた円軸部材の製造方法(参考形態例)を説明する、センタレス研削盤における主要部であるところの、砥石車、調整車、及び支持刃(ブレード)等の配置を示した概略構成図であり、Aはその立面図、Bはその平面図。A grinding wheel and an adjustment wheel, which are the main parts of a centerless grinding machine, for explaining a manufacturing method ( reference embodiment ) of a circular shaft member using a centerless grinding method that embodies a reference invention different from the present invention. FIG. 2 is a schematic configuration diagram showing an arrangement of support blades and the like, in which A is an elevation view and B is a plan view thereof. 図1のAにおいて、その研削液の供給配管を省略して斜め上から見た斜視図。FIG. 2A is a perspective view of the grinding fluid supply pipe as viewed from obliquely above in FIG. 軸部材の横断面形状を説明する図。The figure explaining the cross-sectional shape of a shaft member. 図2において、砥石車に設けた溝を螺旋状のものとした別例の斜視図。In FIG. 2, the perspective view of another example which made the groove | channel provided in the grinding wheel spiral. 図1の砥石車を複数の分割砥石車からなるものとした説明図であって、上図(A)は分割状態を説明する図であり、下図(B)は組立て後の砥石車の説明図。It is explanatory drawing which assumed that the grinding wheel of FIG. 1 consists of a some division | segmentation grinding wheel, Comprising: The upper figure (A) is a figure explaining a division | segmentation state, and the lower figure (B) is explanatory drawing of the grinding wheel after an assembly. . 組立て体からなる砥石車の別例を説明する図であって、Aはその半断面図、及び部分拡大図、BはAの右側面図。It is a figure explaining the other example of the grinding wheel which consists of an assembly, Comprising: A is the half sectional view and the elements on larger scale, B is a right view of A. 組立て体からなる砥石車のさらなる別例を説明する図であって、その半断面図、及び部分拡大図。It is a figure explaining the further another example of the grinding wheel which consists of an assembly, Comprising: The half sectional view and the partial enlarged view.

本発明を具体化した実施の形態例を説明する前に、本発明とは別の参考発明の参考形態例として、センタレス研削方法、及びこれを用いた研削工程を含む円軸部材の製造方法(参考例)を、図1〜図3を参照しながら詳細に説明する。図1、2は、センタレス研削盤における主要部であるところの、砥石車10と調整車20、そして、この両者に平面視、挟まれるように配置された支持刃(ブレード)30等を示したものである。すなわち、砥石車10と調整車20とはその回転軸11,21間の中心距離が調節可能に、平面視、平行に配置され、その間に、位置を調節可能に配置された支持刃(ブレード)30が設けられている。また、図1−Aに示したように、砥石車10の上方には、研削液供給用の供給用配管40におけるその先端(吐出口)41が、研削液を砥石車10の外周面、すなわち、砥石層15の外周面16のうち、ワークである軸部材101寄り部位に浴びせかけれるように下向きで開口されている。これにより、研削液を砥石車10と、軸部材101との間(研削部位)に供給できるように設定されている。ただし、その配管40の先端41は、砥石車10の回転軸11に沿って間隔をおいて複数(本参考例(以下、本例ともいう)では2個所)開口されるように設けられており、研削液が砥石車10の幅方向の全体に供給されるよう設定されている。なお、研削中の軸部材101を軸方向へ送る(推進力の付与)ため、ワークである軸部材101に押付けられる調整車20(例えば、外周面がゴム製)の回転軸21は、砥石車10の回転軸11に対し、横から見たときは図示はしないが、微小角度傾けられている。以上、砥石車10等の配置は、従来公知のセンタレス研削盤におけるそれと同じであり、相違するのは砥石車10の構成のみである。このため、以下、この相違点を中心として、研削方法等について説明する。 Before explaining an embodiment of the present invention, as a reference embodiment of a reference invention different from the present invention , a centerless grinding method and a method of manufacturing a circular shaft member including a grinding step using the centerless grinding method ( Reference Example) will be described in detail with reference to FIGS. 1 and 2 show a grinding wheel 10 and an adjustment wheel 20, which are main parts of a centerless grinding machine, and a support blade (blade) 30 and the like arranged so as to be sandwiched between the grinding wheel 10 and the two in plan view. Is. That is, the grinding wheel 10 and the adjustment wheel 20 are arranged in parallel in plan view so that the center distance between the rotating shafts 11 and 21 can be adjusted, and the support blade (blade) arranged so that the position can be adjusted between them. 30 is provided. Further, as shown in FIG. 1-A, above the grinding wheel 10, the tip (discharge port) 41 of the supply pipe 40 for supplying the grinding fluid is used to feed the grinding fluid to the outer peripheral surface of the grinding wheel 10, that is, the grinding wheel 10. The outer circumferential surface 16 of the grindstone layer 15 is opened downward so as to be exposed to a portion near the shaft member 101 that is a workpiece. Thereby, it sets so that a grinding fluid can be supplied between the grinding wheel 10 and the shaft member 101 (grinding site | part). However, the tip 41 of the pipe 40 is provided so as to be opened at a plurality (two in this reference example (hereinafter also referred to as this example )) at intervals along the rotating shaft 11 of the grinding wheel 10. The grinding fluid is set to be supplied to the entire width direction of the grinding wheel 10. In addition, in order to send the shaft member 101 being ground in the axial direction (applying a propulsive force), the rotary shaft 21 of the adjusting wheel 20 (for example, the outer peripheral surface is made of rubber) pressed against the shaft member 101 as a workpiece is a grinding wheel. Although not shown in the figure when viewed from the side with respect to the ten rotation shafts 11, they are tilted by a small angle. As described above, the arrangement of the grinding wheel 10 and the like is the same as that of a conventionally known centerless grinding machine, and only the configuration of the grinding wheel 10 is different. For this reason, the grinding method and the like will be described below centering on this difference.

ただし、本例で研削されるワークである軸部材101は、セラミック製(窒化珪素製)の棒材とする。具体的には、ディーゼルエンジンの着火の促進に使用されるグロープラグ用のセラミック製のヒータ部材である。このものは、図1、2中においては説明を容易とすため、単に短い円柱状のものとして示しているが、実際には、図示しない抵抗発熱体が埋没状に設けられており、例えば長さが40mmで、最終的な仕上げ後の外径がφ3.5mmの細長い丸棒を呈している。なお、この軸部材101は、焼成時には、図3に示したように、その一端側から見たときは、多数をその外周面をなす両側面において連ねてなる集合体100とされており、焼成後、これをその各部位の側面において折り取る(破断する)ことで個別に分割された後の横断面形状は、同図中において拡大して示したようなものである。すなわち、研削前の出発素材である軸部材101は、その横断面が、多角形又は非円形とでもいうべき不整形状で、真っ直ぐに長く延びる棒材である。   However, the shaft member 101 which is a workpiece to be ground in this example is a rod made of ceramic (made of silicon nitride). Specifically, it is a ceramic heater member for glow plugs used for promoting ignition of diesel engines. In FIG. 1 and FIG. 2, this is simply shown as a short cylindrical shape for ease of explanation, but in reality, a resistance heating element (not shown) is provided in an embedded state. Is a long and thin round bar having an outer diameter of φ3.5 mm after final finishing. In addition, as shown in FIG. 3, the shaft member 101 is an aggregate 100 in which a large number are connected to each other on both sides forming the outer peripheral surface when viewed from one end side, as shown in FIG. Thereafter, the cross-sectional shape after being divided individually by breaking (breaking) the side surface of each part is as shown in an enlarged manner in FIG. That is, the shaft member 101, which is a starting material before grinding, is a bar that has an irregular shape that should be called a polygon or a non-circular shape, and extends straight and long.

一方、本例において使用する砥石車10は、金属製の砥石車本体13の外周面に、ダイヤモンドを砥粒として用い、結合材等を含んで層状に形成された砥石層15を有するもので、その砥石層15のなす外周面16における砥石車10の外径が200mm、その幅が100mmのものとされている。なお、本例では、その砥粒は粒度が、120番のものとされている。また、砥石層15の厚みは、1〜10mmの範囲内で設定されている。このような砥石車10は、図1−B、図2に示したように、その砥石層15の外周面16において、その周方向に周回状に連なって延びる溝18が、母線方向において、所定の等間隔をおいて複数切り込まれた形で形成されている。ただし、この溝18は、例えば、その断面形状が、幅の狭い矩形溝をなしており、幅Wが1mm(又は2mm)、深さDが5mmとされている。ただし、溝18相互のピッチは10mmとされている。本例では、このような砥石車10に対し、スルーフィールド法にて、軸部材101を連続的に供給して、外周面16を円筒研削するため、上記した調整車20、及び支持刃30の位置が調節され、保持されている。   On the other hand, the grinding wheel 10 used in this example has a grinding wheel layer 15 formed in a layered shape including a binder and the like using diamond as abrasive grains on the outer peripheral surface of a metallic grinding wheel main body 13. The outer diameter of the grinding wheel 10 on the outer peripheral surface 16 formed by the grinding wheel layer 15 is 200 mm, and the width is 100 mm. In this example, the abrasive grains have a particle size of No. 120. Moreover, the thickness of the grindstone layer 15 is set within a range of 1 to 10 mm. In such a grinding wheel 10, as shown in FIGS. 1B and 2, the outer circumferential surface 16 of the grinding wheel layer 15 has a groove 18 extending continuously in a circumferential manner in the circumferential direction. A plurality of cuts are formed at regular intervals. However, the groove 18 has, for example, a rectangular groove whose cross-sectional shape is narrow, the width W is 1 mm (or 2 mm), and the depth D is 5 mm. However, the pitch between the grooves 18 is 10 mm. In this example, the shaft member 101 is continuously supplied to such a grinding wheel 10 by the through field method, and the outer peripheral surface 16 is cylindrically ground. Therefore, the adjustment wheel 20 and the support blade 30 described above are used. The position is adjusted and held.

しかして、このような砥石車10、及び調整車20に、図中矢印で示したように同方向で、異なる回転数の回転を付与しつつ、相対的に高速で回転する砥石車10の外周面16(砥石層15)に、供給用配管40の先端から研削液を吐出させる。この状態の下で、砥石車10の一方の端面(図1−Bの下、図2の左)側から、軸部材101を次々と供給し、これを押え部材35で上から弾性的に押える。こうすることで、各軸部材101は回転が与えられ、砥石車10により研削が行われる。そして、各軸部材101は、調整車20で軸方向への送り(推進力)が与えられるため、円筒研削されながら、砥石車10の一側(図1−Bの下、図2の左)から、他側に送られて排出される。このようにして、ワークである軸部材101はスルーフィールド方式で、次々とその研削が行われる。そして、2回目以降、所望とする回数、研削を繰り返し行うことで、最終的に所望とする円形の横断面形状、外径寸法の円軸部材、すなわち、セラミック製のヒータ部材(円筒研削終了品)が得られる。   Thus, the outer periphery of the grinding wheel 10 that rotates at a relatively high speed while giving rotations at different rotational speeds in the same direction to the grinding wheel 10 and the adjustment wheel 20 as indicated by arrows in the figure. Grinding liquid is discharged from the front end of the supply pipe 40 onto the surface 16 (grindstone layer 15). Under this state, the shaft member 101 is supplied one after another from the one end face (lower side of FIG. 1-B, left side of FIG. 2) of the grinding wheel 10 and is elastically pressed from above by the pressing member 35. . By doing so, each shaft member 101 is rotated, and grinding is performed by the grinding wheel 10. Since each shaft member 101 is fed in the axial direction (propulsive force) by the adjusting wheel 20, one side of the grinding wheel 10 (below FIG. 1-B, left in FIG. 2) while being cylindrically ground. Is sent to the other side and discharged. In this way, the shaft member 101 which is a workpiece is ground one after another by the through field method. The second and subsequent rounds of grinding are repeated for a desired number of times, so that a circular member having a circular cross-sectional shape and an outer diameter that are finally desired, that is, a ceramic heater member (cylindrical grinding finished product) ) Is obtained.

上記研削工程においては、供給用配管40の先端41から吐出する研削液は、砥石車10の外周面16と共に、その外周面16と軸部材101の研削部位に供給され、その中で研削が行われる。この研削工程において本例では、その砥石車10の砥石層15(ダイヤモンドの砥石層15)の外周面16に、上記したように複数の溝18が設けられている。このため、研削液は、砥石層15の外周面16に供給され、その溝18に入り込んで周方向に回り込む。これにより、このような砥石車10を用いた本例のセンタレス研削方法によれば、砥石車10に上記のような溝18がない従来の砥石車を用いた研削による場合に比べると、その溝18がある分、研削液は、砥石車10(砥石層15)の外周面16、及び砥石車10とワークの間の研削部位に、確実に、しかも良く行き渡ることになる。このため、従来の研削法による場合に比べると、研削液が十分に多くある中で、それに洗われる状態の下で研削が行われるから、次のような特有の効果が得られる。   In the grinding step, the grinding liquid discharged from the tip 41 of the supply pipe 40 is supplied to the grinding surface of the outer circumferential surface 16 and the shaft member 101 together with the outer circumferential surface 16 of the grinding wheel 10, and grinding is performed therein. Is called. In this grinding process, in this example, a plurality of grooves 18 are provided on the outer peripheral surface 16 of the grinding wheel layer 15 (diamond grinding wheel layer 15) of the grinding wheel 10 as described above. For this reason, the grinding liquid is supplied to the outer peripheral surface 16 of the grindstone layer 15, enters the groove 18, and goes around in the circumferential direction. Thereby, according to the centerless grinding method of this example using such a grinding wheel 10, compared with the case of grinding using a conventional grinding wheel in which the grinding wheel 10 does not have the groove 18 as described above, the groove As much as 18, the grinding fluid is surely and well distributed to the outer peripheral surface 16 of the grinding wheel 10 (grinding wheel layer 15) and the grinding site between the grinding wheel 10 and the workpiece. For this reason, as compared with the case of the conventional grinding method, the grinding is performed in a state where the grinding liquid is sufficiently washed while the grinding liquid is sufficiently washed. Thus, the following specific effects can be obtained.

すなわち、本例によるセンタレス研削方法を用いた研削工程を含む円軸部材の製造方法においては、砥石車10の円筒をなす砥石層15の外周面16に溝18が設けられていることから、外周面に溝がない砥石車を用いる従来の研削法による場合に比べると、その溝18がある分、研削液が研削部位に効率的に供給される。このため、その分、放熱効果が高い円滑な研削が行われる。これにより、軸部材101をスルーフィールド方式で研削するとしても、砥石車10の外周面16のうち、軸部材101の投入側(図1−Bの下側、図2の左側)の端面側(寄り部位)において発生しがちの偏摩耗(局部摩耗)も低減できる。この結果、砥石車10の投入側の変更(砥石車10における端面の入れ替え)の回数を減らせるし、研ぎ直し回数も低減できる。このように、本例の研削方法、及びこれを用いる円軸部材の製造方法によれば、研削効率が高められる上に、砥石車10の長寿命化が図られる。因みに、本願発明者らによる実測結果からすると、1つの砥石車10で研削できる軸部材101の数は、溝18なしの従来の砥石車を使用した場合に比べると、平均でも2倍以上、すなわち、砥石車10の寿命が2倍以上となった。   That is, in the manufacturing method of the circular shaft member including the grinding process using the centerless grinding method according to the present example, the groove 18 is provided on the outer peripheral surface 16 of the grinding wheel layer 15 forming the cylinder of the grinding wheel 10, so Compared with the case of the conventional grinding method using a grinding wheel having no groove on the surface, the grinding liquid is efficiently supplied to the grinding portion by the amount of the groove 18. For this reason, smooth grinding with a high heat dissipation effect is performed accordingly. Thus, even if the shaft member 101 is ground by the through-field method, the end surface side (the lower side of FIG. 1-B, the left side of FIG. 2) of the outer peripheral surface 16 of the grinding wheel 10 (the lower side of FIG. 1-B) It is also possible to reduce uneven wear (local wear) that tends to occur in the shift part). As a result, the number of changes on the input side of the grinding wheel 10 (replacement of the end face in the grinding wheel 10) can be reduced, and the number of sharpening can also be reduced. Thus, according to the grinding method of this example and the manufacturing method of the circular shaft member using the same, the grinding efficiency can be increased and the life of the grinding wheel 10 can be extended. Incidentally, from the actual measurement results by the inventors of the present application, the number of shaft members 101 that can be ground with one grinding wheel 10 is twice or more on average as compared with the case where a conventional grinding wheel without grooves 18 is used, that is, The service life of the grinding wheel 10 has more than doubled.

また、本例のように研削されるワークが、細長く、脆性なセラミックからなる軸部材101であるとしても、上記砥石車10を用いることで、研削液が研削部位に良好に行き渡り、回り込むことから、放熱効果が高められだけでなく、円滑な研削が行われることから、軸部材101に折れ等の破損を発生させにくい。これにより、研削不良の発生の防止、歩留まり低下の防止も図られる。しかも、本例のように、軸部材が焼成後において、上記したように破断されたもので、その横断面形状が不整形状のものである場合には、砥石車10にとっては極めて過酷な負荷、条件下での研削となるところ、上記溝18による研削液の、砥石層15の表面への円滑な行き渡りにより、その負担軽減が図られる。それゆえ、このような研削においては従来、発生する騒音も非常に大きいものとなっていたのに対し、その騒音の減小も図られる。   Moreover, even if the workpiece to be ground as in this example is the shaft member 101 made of a long and brittle ceramic, the grinding fluid can be well distributed to the grinding site and wrap around by using the grinding wheel 10. Since the heat dissipation effect is enhanced and smooth grinding is performed, the shaft member 101 is unlikely to be broken or broken. As a result, it is possible to prevent the occurrence of grinding failure and to prevent the yield from decreasing. Moreover, as in this example, when the shaft member is broken as described above after firing and the cross-sectional shape thereof is irregular, the load applied to the grinding wheel 10 is extremely severe, When grinding is performed under the conditions, the burden of the grinding liquid can be reduced by the smooth distribution of the grinding liquid in the groove 18 to the surface of the grindstone layer 15. Therefore, in the conventional grinding, the generated noise has been very large, but the noise can be reduced.

さらに、本例のような、脆性なセラミック材からなる軸部材のセンタレス研削では、その研削過程で、折れ、割れ等が不可避的に発生しやすく、その切断片が、その溝18に嵌り込む形で、食い付いて嵌合してしまうこともあるところ、上記本参考例では、その溝18の幅Wを、軸部材101の外径(φ3.5mm)より、十分小さく、1mm(又は2mm)としている。このため、こうした不具合の発生を略確実に防止できる。これにより、嵌り込んだ切断片による研削不具合や、その除去のための研削作業の中断も回避することができる。なお、溝18の深さDは、研削液の流れ性の確保のためからは深い方が良い。一方で、破断片の嵌り込み防止のため、溝18の幅Wは、ワークである軸部材101の外径よりも、できるだけ小さくするのが好ましい。 Further, in the centerless grinding of a shaft member made of a brittle ceramic material as in this example, bending, cracking, etc. are inevitably generated in the grinding process, and the cut piece is fitted into the groove 18. In this reference example , the width W of the groove 18 is sufficiently smaller than the outer diameter (φ3.5 mm) of the shaft member 101 and 1 mm (or 2 mm). It is said. For this reason, the occurrence of such a problem can be prevented almost certainly. As a result, it is possible to avoid grinding problems caused by the inserted cut pieces and interruption of the grinding work for removing them. The depth D of the groove 18 is preferably deeper in order to ensure the flowability of the grinding fluid. On the other hand, it is preferable to make the width W of the groove 18 as small as possible as compared with the outer diameter of the shaft member 101 which is a workpiece in order to prevent the broken pieces from being inserted.

上記本参考例では、砥石車10の外周面16に設けた溝18を、円周をなす独立した溝18とし、これを複数有するものとして具体化したが、本発明の実施形態例に用いられる砥石車10おいては、螺旋状の溝として、図4に示した別例のように、溝18Sを、砥石層15の外周面16に、回転軸方向に螺旋状に連続して延びるものとして形成してもよい。このような螺旋状の溝18Sとする場合には、砥石車10の外周面16の幅方向において、その溝18Sを連続して存在させることができる。このため、研削部位におけるその幅方向に、研削液を一層、広く回り込ませることができる。これにより、このような螺旋状の溝18Sによれば、研削液による研削部位の冷却性、及び研削の円滑性が一層高められる。図4に示した本発明の実施形態例に用いられる砥石車10の例では、溝18Sを螺旋状とした点にのみが、前記例と異なるのみであるため、同一部位には同一の符号を付すに止める。なお、溝を、上記参考例におけるように円周をなす独立した溝18とする場合、その溝18は、回転軸に垂直な1仮想平面を通るように設けるのが基本であるが、この1仮想平面を通らない状態で設けることもできる。 In the above reference example , the groove 18 provided on the outer peripheral surface 16 of the grinding wheel 10 is embodied as a plurality of independent grooves 18 having a circumference, but is used in the embodiment of the present invention. In the grinding wheel 10, as a spiral groove, as in another example shown in FIG. 4, the groove 18 </ b> S is continuously extended spirally in the rotation axis direction on the outer peripheral surface 16 of the grinding wheel layer 15. It may be formed. When such a spiral groove 18S is used, the groove 18S can be continuously present in the width direction of the outer peripheral surface 16 of the grinding wheel 10. For this reason, a grinding liquid can be made to wrap around more widely in the width direction in a grinding part. Thereby, according to such a helical groove | channel 18S, the cooling property of the grinding | polishing site | part by a grinding fluid and the smoothness of grinding are improved further. In the example of the grinding wheel 10 used in the embodiment of the present invention shown in FIG. 4, only the point that the groove 18S is spiral is different from the above example. Stop it. When the groove is an independent groove 18 having a circumference as in the above reference example , the groove 18 is basically provided so as to pass through one virtual plane perpendicular to the rotation axis. It can also be provided without passing through a virtual plane.

ところで、上記参考例及び図4において使用した砥石車10は、金属製の1つの砥石車本体13の外周面に、その幅方向に間隔をおいて、周方向に沿って延びる溝18(円周溝18)が複数、又は螺旋状の溝18sが存在するように、ダイヤモンドからなる砥石層15が形成されているものとしている。しかし、本発明においてこのような砥石車10は、図5−Aに示したように、幅の狭い(厚みの薄い)複数の砥石車(分割砥石車)50bに分割しておき、これを、図5−Bに示したように、その回転軸11方向に重ねて固定してなる組合せ体からなる砥石車10として具体化することとしてもよい。なお、固定手段は図示しないが、後述するようにボルト締めなどで行えばよい。このものでは、分割砥石車50bに、金属製の分割車本体53とその外周面においてその幅(分割車本体53の厚み)より狭く形成された砥石層15とを有する分割砥石車を、複数用いている。しかして、このような分割砥石車50bを同図に示したように、一定向きで重なり合うようにして組み立てることで、重なって隣合う分割砥石車50bの砥石層15相互の間に、溝18が形成される。このものでは、砥石車10自体の幅を、分割砥石車の数次第で、容易に変更、ないし選択できるし、部分的な交換もできるので便利である。なお、図5においては、左端の分割砥石車は、その幅全体に砥石層15が形成されている。なお、この分割砥石車からなる組立て式の砥石車の改良例としては、図6に示したものが例示される。 By the way, the grinding wheel 10 used in the above reference example and FIG. 4 is a groove 18 (circumferential) extending along the circumferential direction at an interval in the width direction on the outer peripheral surface of one metallic grinding wheel main body 13. It is assumed that the grindstone layer 15 made of diamond is formed so that there are a plurality of grooves 18) or a spiral groove 18s. However, in the present invention, such a grinding wheel 10 is divided into a plurality of narrow (thin) grinding wheels (divided grinding wheels) 50b as shown in FIG. As shown in FIG. 5B, it may be embodied as a grinding wheel 10 made of a combination formed by overlapping and fixing in the direction of the rotation axis 11. In addition, although a fixing means is not shown in figure, what is necessary is just to perform by bolting etc. so that it may mention later. In this, a plurality of divided grinding wheels having a divided wheel main body 53 made of metal and a grinding wheel layer 15 formed narrower than the width (thickness of the divided wheel main body 53) on the outer peripheral surface thereof are used for the divided grinding wheel 50b. ing. Thus, as shown in the figure, by assembling such a divided grinding wheel 50b so as to overlap in a fixed direction, a groove 18 is formed between the grinding wheel layers 15 of the adjacent divided grinding wheels 50b. It is formed. This is convenient because the width of the grinding wheel 10 itself can be easily changed or selected depending on the number of divided grinding wheels, and can be partially replaced. In FIG. 5, the grindstone layer 15 is formed over the entire width of the leftmost divided grinding wheel. In addition, what was shown in FIG. 6 is illustrated as an example of improvement of the assembly type grinding wheel which consists of this division grinding wheel.

図6に示した砥石車50は、同一の複数の分割砥石車50bの集合体からなり、各分割砥石車50bは、それぞれ分割車本体53と、その外周面54aに形成された砥石層15とから形成されている。このうち、分割車本体53は、一定厚さの金属製の円板本体53aにおいて、同心異径をなすように、その一端面側が、その円板本体53aの外径より小さい(一回り小さく)外径で、一定の高さで隆起する形の凸円部53bを備えている。これにより、この分割車本体53は径の異なる2つの円筒をなす外周面54a,54bを有している。そして、砥石層15は、この分割車本体53の凸円部53bより大径の円板本体53aの外周面54aの幅全体に、所定の厚みで、ダイヤモンド(砥粒)からなる砥石層15が形成されている。他方、円板本体53aにおけるその他端面側には、この凸円部53bが嵌合可能の、一定の内径寸法で、かつ、その凸円部53bの隆起高さ(突出量)より浅く(小さく)、一定の深さで陥没する凹円部53cを同心で備えている。   The grinding wheel 50 shown in FIG. 6 is composed of an assembly of the same plurality of divided grinding wheels 50b. Each of the divided grinding wheels 50b includes a divided wheel main body 53 and a grinding wheel layer 15 formed on the outer peripheral surface 54a. Formed from. Among these, the split vehicle main body 53 is smaller than the outer diameter of the disk main body 53a so that the split disk main body 53 has a concentric and different diameter in the metal disk main body 53a having a constant thickness. A convex circular portion 53b having an outer diameter and protruding at a certain height is provided. Thus, the divided vehicle main body 53 has outer peripheral surfaces 54a and 54b that form two cylinders having different diameters. The grindstone layer 15 has a predetermined thickness over the entire width of the outer peripheral surface 54a of the disc body 53a having a larger diameter than the convex circle portion 53b of the divided wheel main body 53, and the grindstone layer 15 made of diamond (abrasive grains). Is formed. On the other hand, on the other end face side of the disc main body 53a, the convex circular portion 53b can be fitted, and has a constant inner diameter dimension, and is shallower (smaller) than the protruding height (projection amount) of the convex circular portion 53b. Concentric concave portions 53c that are depressed at a certain depth are provided.

なお、分割車本体53の中心には、これらを組立てて構成される砥石車50の回転軸を取り付けるための軸穴51が設けられている。また、分割車本体53には、分割砥石車50bを、複数、その軸方向に重ねて固定するためのボルト穴52が、その軸穴51と同心円上において等角度間隔で、例えば8箇所設けられている。   In the center of the divided wheel main body 53, a shaft hole 51 is provided for mounting a rotating shaft of a grinding wheel 50 constituted by assembling them. Also, the divided wheel main body 53 is provided with, for example, eight bolt holes 52 for fixing a plurality of divided grinding wheels 50b in the axial direction at equal angular intervals on the concentric circle with the shaft hole 51. ing.

しかして、本例の砥石車50は、上記した分割砥石車50bを複数、用意し、隣り合う分割砥石車50bの一方の凹円部53cに、他方の凸円部53bを嵌合させてこれらを重ね、かつ、ボルト穴52を一致させる。そして、このボルト穴52にボルト60を通して、ナット62締めして固定することで組立てられる。このようにして組立てられてなる砥石車50は、凹円部53cの深さが、凸円部53bの隆起高さより浅いため、その差分が、砥石層15における溝18(溝18の幅)となる。このものは、分割車本体53を重ねる際、上記嵌合構造をなしているため、その固定における安定性が高いし、溝18が砥石層15の厚みより大きくされているため、研削液の流路断面が大きく確保される。そして、このものでも、ワークの長さに応じて、重ねる分割砥石車50bの数を調整することで、その砥石車50、すなわち、砥石層15の全体の幅を調整できる。   Thus, the grinding wheel 50 of this example prepares a plurality of the above-described divided grinding wheels 50b, and fits the other convex circle portion 53b to one concave circle portion 53c of the adjacent divided grinding wheel 50b. And the bolt holes 52 are matched. The bolt hole 52 is assembled by passing the bolt 60 and tightening and fixing the nut 62. In the grinding wheel 50 assembled in this way, the depth of the concave circle portion 53c is shallower than the raised height of the convex circle portion 53b, so that the difference is the groove 18 (width of the groove 18) in the grinding wheel layer 15. Become. Since this structure has the above-mentioned fitting structure when the divided wheel main body 53 is stacked, the stability of the fixing is high, and the groove 18 is made larger than the thickness of the grindstone layer 15, so that the flow of the grinding fluid is increased. A large road cross section is secured. And also in this thing, the width | variety of the whole grinding wheel 50, ie, the grinding wheel layer 15, can be adjusted by adjusting the number of the division grinding wheels 50b to pile up according to the length of a workpiece | work.

なお、図6の砥石車50をさらに改良した別例を図7に示す。このものは、前例において、別途、前記分割砥石車50bにおいて凹円部53cを設けない分割砥石車50bを1つと、前記分割砥石車50bにおいて凸円部53bを設けない分割砥石車50bを1つ用意し、上記組立て構造の砥石車50において、これらを各端に嵌合させて組み立てたものである。すなわち、このものでは、図7に示したように、別途用意した前者の分割砥石車50bを前記砥石車50の図示右端において、後者の分割砥石車50bをその左端において、それぞれ回転軸方向に重ねて、前例と同様に凸円部53bと凹円部53cを嵌合して固定したものである。なお、図7に示した砥石車50では、例えば、最外側の一方の分割砥石車50b(図示右端)のボルト穴52に、ざぐりを設けておき、最外側の他方の分割砥石車50b(図示左端)のボルト穴に代えて、ネジ穴52bを設けておき、図示のように六角穴付きボルト70を通して、直接ねじ込んで固定すると、両端面に凸部(突起)や凹部もなくなり、砥石車50全体しての形状のシンプル化が図られる。   FIG. 7 shows another example in which the grinding wheel 50 of FIG. 6 is further improved. In this example, in the previous example, one separate grinding wheel 50b that does not have the concave circle portion 53c in the divided grinding wheel 50b and one divided grinding wheel 50b that does not have the convex circle portion 53b in the divided grinding wheel 50b. In the grinding wheel 50 having the above-described assembly structure, these are assembled by being fitted to each end. In other words, as shown in FIG. 7, the former divided grinding wheel 50b prepared separately at the right end of the grinding wheel 50 and the latter divided grinding wheel 50b at the left end are overlapped in the direction of the rotation axis, as shown in FIG. As in the previous example, the convex circle portion 53b and the concave circle portion 53c are fitted and fixed. In the grinding wheel 50 shown in FIG. 7, for example, a counterbore is provided in the bolt hole 52 of one outermost divided grinding wheel 50b (the right end in the drawing), and the other outermost grinding wheel 50b (shown in the drawing). If a screw hole 52b is provided in place of the bolt hole at the left end and is directly screwed in and fixed through a hexagon socket bolt 70 as shown in the figure, there are no protrusions (protrusions) or recesses on both end faces, and the grinding wheel 50 The overall shape can be simplified.

本発明は、上記した各例のものに限定されるものではなく、その要旨を逸脱しない範囲で、適宜に変更して具体化できる。砥石車について上記例では、砥石層に設ける溝を、その断面が矩形(正方形、又は長方形)とした場合を例示したが、その溝の形状は、上記もしたように、研削液の流れ性(回り込み性)に支障がない限り、V形、U形など、適宜の断面形状とすることができる。また、溝の幅、深さ、溝相互間のピッチ等は、ワークの難削性、外径等に応じて設定すればよい。なお、本発明の研削方法、製造方法における軸部材(又は円軸部材)は、中実の軸部材だけでなく、中空の軸部材(筒)であってもよいことは明らかである。また、研削される軸部材、又は製造される円軸部材の研削される前の軸部材の断面は、円形の丸棒(等径丸物)であってもよい。さらに、これらワークは、窒化珪素以外のセラミック、その他の難削材(超硬合金)であってもよい。   The present invention is not limited to the examples described above, and can be embodied with appropriate modifications without departing from the scope of the invention. In the above example of the grinding wheel, the groove provided in the grinding wheel layer is exemplified by a case where the cross section is rectangular (square or rectangular). However, as described above, the shape of the groove is the flowability of the grinding fluid ( As long as there is no hindrance to the wraparound property, an appropriate cross-sectional shape such as a V shape or a U shape can be used. Further, the width and depth of the grooves, the pitch between the grooves, and the like may be set according to the difficult-to-cut property of the workpiece, the outer diameter, and the like. It is obvious that the shaft member (or the circular shaft member) in the grinding method and the manufacturing method of the present invention may be not only a solid shaft member but also a hollow shaft member (cylinder). Further, the cross-section of the shaft member to be ground or the shaft member before being ground of the manufactured circular shaft member may be a round bar (equal diameter round object). Furthermore, these workpieces may be ceramics other than silicon nitride, or other difficult-to-cut materials (cemented carbide).

10、50 砥石車
11 回転軸
15 砥石層
18,18s 溝
16 砥石層の外周面
50b 分割砥石車
53 分割車本体
54a、54b 分割車本体の外周面
101 軸部材
10, 50 Grinding wheel 11 Rotating shaft 15 Grinding wheel layer 18, 18s Groove 16 Grinding wheel outer peripheral surface 50b Divided grinding wheel 53 Divided vehicle main body 54a, 54b Divided vehicle main body outer peripheral surface 101 Shaft member

Claims (7)

砥石層がダイヤモンド砥石からなる砥石車を用いる軸部材のセンタレス研削方法であって、
この砥石車の前記砥石層の外周面に、その周方向に延びる溝、自身の回転軸方向に間隔をおいて複数、設けられるように、
前記砥石車は、回転軸方向において、複数の分割砥石車を重ねてボルト締めによって固定してなる分割可能の組立て体から構成されており、回転軸方向において重ねられて隣り合う分割砥石車相互の間に前記溝が形成されるように、前記分割砥石車に、金属製の分割車本体とその外周面においてその幅より狭く形成された前記砥石層とを有する分割砥石車を含んでいるものとしたことを特徴とする軸部材のセンタレス研削方法。
A centerless grinding method for a shaft member using a grinding wheel whose grinding wheel layer is composed of a diamond grinding wheel,
On the outer peripheral surface of the grinding wheel layer of the grinding wheel, so that the grooves extending in the circumferential direction, a plurality at intervals in the rotation axis direction of the own kicked set,
The grinding wheel is composed of a splittable assembly in which a plurality of divided grinding wheels are stacked and fixed by bolting in the direction of the rotation axis. The divided grinding wheel includes a divided grinding wheel having a metal divided wheel main body and the grinding wheel layer formed narrower than the width of the divided grinding wheel so that the groove is formed therebetween. and wherein the a, centerless grinding method of the shaft member.
砥石層がダイヤモンド砥石からなる砥石車を用いる軸部材のセンタレス研削方法であって、
この砥石車の前記砥石層の外周面に、自身の回転軸回りに螺旋状に延びる溝を設けておくことを特徴とする軸部材のセンタレス研削方法。
A centerless grinding method for a shaft member using a grinding wheel whose grinding wheel layer is composed of a diamond grinding wheel,
A centerless grinding method for a shaft member, characterized in that a groove extending spirally around its rotation axis is provided on the outer peripheral surface of the grinding wheel layer of the grinding wheel.
前記溝は、その溝の幅が研削後の前記軸部材の外径より小さいことを特徴とする、請求項1又は2に記載の軸部材のセンタレス研削方法。   The centerless grinding method for a shaft member according to claim 1, wherein the groove has a width smaller than an outer diameter of the shaft member after grinding. 前記砥石車は、回転軸方向において、複数分割砥石車を重ねて固定してなる分割可能の組立て体から構成されており、回転軸方向において重ねられて隣り合う分割砥石車相互の間に前記溝が形成されるように、前記分割砥石車に、金属製の分割車本体とその外周面においてその幅より狭く形成された前記砥石層とを有する分割砥石車を含んでいることを特徴とする、請求項2に記載の軸部材のセンタレス研削方法。 The grinding wheel is composed of a splittable assembly formed by stacking and fixing a plurality of divided grinding wheels in the rotational axis direction, and the grinding wheel is overlapped between the adjacent divided grinding wheels in the rotational axis direction. The split grinding wheel includes a split grinding wheel having a metal split wheel main body and the grinding wheel layer formed narrower than the width on the outer peripheral surface thereof so that a groove is formed. The centerless grinding method of the shaft member according to claim 2 . 請求項1〜4のいずれか1項に記載の、軸部材のセンタレス研削方法を用いた研削工程を含む、円軸部材の製造方法。   The manufacturing method of a circular shaft member including the grinding process using the centerless grinding method of a shaft member of any one of Claims 1-4. 前記軸部材の研削前における横断面の形状が多角形又は非円形であることを特徴とする、請求項5に記載の円軸部材の製造方法。   6. The method of manufacturing a circular shaft member according to claim 5, wherein a shape of a cross section of the shaft member before grinding is a polygon or a non-circular shape. 前記軸部材がセラミックを主成分とするものであることを特徴とする、請求項5又は6に記載の円軸部材の製造方法。   The method for manufacturing a circular shaft member according to claim 5, wherein the shaft member is mainly composed of ceramic.
JP2012196151A 2012-09-06 2012-09-06 Centerless grinding method for shaft member and method for manufacturing circular shaft member Active JP5946728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196151A JP5946728B2 (en) 2012-09-06 2012-09-06 Centerless grinding method for shaft member and method for manufacturing circular shaft member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196151A JP5946728B2 (en) 2012-09-06 2012-09-06 Centerless grinding method for shaft member and method for manufacturing circular shaft member

Publications (2)

Publication Number Publication Date
JP2014050908A JP2014050908A (en) 2014-03-20
JP5946728B2 true JP5946728B2 (en) 2016-07-06

Family

ID=50609885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196151A Active JP5946728B2 (en) 2012-09-06 2012-09-06 Centerless grinding method for shaft member and method for manufacturing circular shaft member

Country Status (1)

Country Link
JP (1) JP5946728B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180147745A1 (en) * 2016-11-28 2018-05-31 Diamond Products, Limited Blade head, blade and method for eliminating spacers in multiple blade stacks
KR102248338B1 (en) * 2019-10-01 2021-05-06 (주)앰스코 Abrasive element having fablic part to abrade prominence and depression part of object
CN111922791B (en) * 2020-08-19 2022-03-18 重庆长征重工有限责任公司 Workpiece polishing operation control method
CN113941909B (en) * 2021-11-08 2022-12-30 河北省轴承产业技术研究院 Centerless grinding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390091A (en) * 1977-01-18 1978-08-08 Daichiku Co Ltd Laminated tary grind stone for use in grinding and method of manufacturing thereof
JP2002283195A (en) * 2001-03-27 2002-10-03 Takada Seisakusho:Kk Method for manufacturing ball screw shaft
SI1681137T2 (en) * 2004-12-30 2011-03-31 Giuseppe Niesi Grinding device and use of same grinding device for rectifying cylindrical items, apparatus and method for rectifying cylindrical items
JP5155774B2 (en) * 2008-08-21 2013-03-06 株式会社ノリタケカンパニーリミテド Resinoid superabrasive wheel for plateau surface processing

Also Published As

Publication number Publication date
JP2014050908A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5946728B2 (en) Centerless grinding method for shaft member and method for manufacturing circular shaft member
JP5554224B2 (en) Full profile dressing roll for dressing multi-spindle cylindrical grinding worms
US7357705B2 (en) Diamond disk
US7824246B2 (en) Wheel spindle device for grinding machine
EP2095908B1 (en) Obliquely grooved grinding wheel and method for manufacturing the same
JP3739304B2 (en) Rotating disc grinding wheel
EP2447005B1 (en) Rotary dresser
JP7477297B2 (en) Milling head for a ball track milling machine, ball track milling machine with said milling head, method for manufacturing cutting edges for a ball track milling machine, computer program product for carrying out said method, data carrier with said computer program product and grinding machine for carrying out said method
CN109129188B (en) Grinding process
US5052154A (en) Grinding wheel having adjustable axial dimension
CN106457429A (en) Diamond plated grinding endmill for advanced hardened ceramics machining
US20150251259A1 (en) Rotary saw blade with tips of varying length
JP6554960B2 (en) Grinding wheel
KR20140002596A (en) Structured sliding surface of a bearing shell
US20200070258A1 (en) Milling head for a ball track milling cutter, ball track milling cutter having a milling head of this type, method for producing a cutting edge for a ball track milling cutter, computer program product for carrying out a method of this type, data carrier having a computer program product of this type, and grinding machine for carrying out the method
JP6061253B2 (en) Grooved grinding wheel and manufacturing method thereof
JP6627634B2 (en) Grinding equipment
JP2010023161A (en) Rotation grinding wheel for disc grinder having slit or chain line-like opening hole on cutting surface
JP2001293661A (en) Rotating disk grinding wheel
CN211029617U (en) Dressing roller
WO2023234152A1 (en) Superabrasive wheel and processing method using same
JP6203980B1 (en) Total rotary dresser and dressing method
JP2005279845A (en) Grinding wheel
KR101327907B1 (en) Processing Tip
CN114683362A (en) Milling tool and method for producing such a milling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250