JP5934658B2 - IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION - Google Patents

IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION Download PDF

Info

Publication number
JP5934658B2
JP5934658B2 JP2013014180A JP2013014180A JP5934658B2 JP 5934658 B2 JP5934658 B2 JP 5934658B2 JP 2013014180 A JP2013014180 A JP 2013014180A JP 2013014180 A JP2013014180 A JP 2013014180A JP 5934658 B2 JP5934658 B2 JP 5934658B2
Authority
JP
Japan
Prior art keywords
imide
general formula
represented
monoisocyanate
urea compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013014180A
Other languages
Japanese (ja)
Other versions
JP2014144925A (en
Inventor
健太郎 山口
健太郎 山口
実希 藤原
実希 藤原
龍一 上野
龍一 上野
設楽 裕治
裕治 設楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013014180A priority Critical patent/JP5934658B2/en
Publication of JP2014144925A publication Critical patent/JP2014144925A/en
Application granted granted Critical
Publication of JP5934658B2 publication Critical patent/JP5934658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Lubricants (AREA)

Description

本発明は、イミド−ウレア化合物及びその製造方法、グリース用増ちょう剤並びにグリース組成物に関する。   The present invention relates to an imide-urea compound and a method for producing the same, a thickener for grease, and a grease composition.

機械システムの高性能化、高出力化、高効率化、小型化にともない、軸受、歯車などの機械要素の使用環境が厳しくなり、これらに使用されるグリースにはより耐熱性の高いものが求められるようになっている。たとえば自動車においては、小型軽量化を目的としたFF(前輪駆動)化や車内の居住空間の拡大要望により、エンジンルーム空間の減少が進んでいる。エンジンルーム空間の減少には、エンジンルーム内の各部品の小型軽量化が必要とされ、上記の電装部品・エンジン補機においても一層の小型軽量化が進められている。一方、電装部品・エンジン補機にも高性能・高出力化が求められている。しかし、小型化による出力の低下は避けられないため、例えばオルタネータやカーエアコン用電磁クラッチでは高速化することにより出力の低下分を補っているが、これに伴いアイドラプーリも同様に高速化することになり、潤滑箇所で発熱が助長される。また、エンジン稼働時の静粛化を図るべくエンジンルームの密閉化が進められているが、この場合もエンジンルーム内の高温化が促進されることとなる。   As machine systems become more sophisticated, more powerful, more efficient, and smaller, the use environment of machine elements such as bearings and gears becomes severe, and the grease used in these needs to have higher heat resistance. It is supposed to be. For example, in an automobile, the engine room space is decreasing due to the demand for FF (front wheel drive) for the purpose of reducing the size and weight and the demand for expanding the living space in the vehicle. In order to reduce the engine room space, it is necessary to reduce the size and weight of each component in the engine room, and further reduction in size and weight is being promoted in the above-described electrical components and engine auxiliary machines. On the other hand, high performance and high output are also required for electrical components and engine accessories. However, output reduction due to miniaturization is inevitable, so for example, alternators and car air conditioner electromagnetic clutches compensate for the reduction in output by increasing the speed, but with this, the idler pulley is also increased in speed. And heat generation is promoted at the lubrication point. In addition, the engine room is being sealed in order to achieve quietness during engine operation, but in this case as well, the temperature increase in the engine room is promoted.

さらに、コンプレッサー用プーリ、カーエアコン電磁クラッチ用軸受では、主に、複列アンギュラ玉軸受が使用されていたが、近時、プーリや電磁クラッチの軽量化や低コスト化のため、単列軸受を使用する傾向にある。複列アンギュラ玉軸受と使用条件を同じにして使用される単列玉軸受では、軸受の負荷容量の限界を表すPV値(軸受面圧Pとすべり速度Vとの積)が大きくなること、軸受空間容積が小さいことなどから、グリース封入量が少なく、グリースの発熱量が多い条件で使用される傾向にある。   Furthermore, double-row angular contact ball bearings were mainly used for compressor pulleys and car air conditioner electromagnetic clutch bearings. Recently, single-row bearings have been used to reduce the weight and cost of pulleys and electromagnetic clutches. Tend to use. In a single row ball bearing used under the same operating conditions as a double row angular contact ball bearing, the PV value (the product of the bearing surface pressure P and the sliding speed V) representing the limit of the load capacity of the bearing is increased. Due to its small space volume, it tends to be used under conditions where the amount of grease filled is small and the amount of heat generated by the grease is large.

このように、電装部品やエンジン補機の使用条件は益々苛酷となっているため、これらの転がり軸受に適用されるグリースには、特に高温下での耐久性向上が必要となってきている。さらに近年では、より安価なコストパフォーマンスに優れるグリースが望まれている。   As described above, since the use conditions of the electrical parts and the engine accessory are becoming severer, the grease applied to these rolling bearings is required to be improved in durability particularly at high temperatures. Furthermore, in recent years, greases that are more inexpensive and excellent in cost performance have been desired.

従来のグリースとして、特許文献1〜5にはウレア系増ちょう剤を用いたグリース組成物が開示されている。これらウレア系グリースの耐熱温度は180℃程度であり、これより高温域に耐えうるグリースとしては、フッ素系グリースが知られている。フッ素系グリースは、パーフルオロポリエーテルを基油とし、四フッ化エチレンを増ちょう剤として配合したグリース組成物であるが、特殊な化学合成基油を用いていることから非常に高価であり、より安価な耐熱グリースが求められている。   As conventional greases, Patent Documents 1 to 5 disclose grease compositions using urea-based thickeners. The heat resistant temperature of these urea greases is about 180 ° C., and fluorine greases are known as greases that can withstand higher temperatures. Fluorine grease is a grease composition containing perfluoropolyether as a base oil and ethylene tetrafluoride as a thickener, but it is very expensive because it uses a special chemically synthesized base oil. A cheaper heat resistant grease is required.

また、特許文献6〜7には、耐熱性の高いグリースの一例として、イミド系増ちょう剤を用いたグリース組成物が開示されている。   Patent Documents 6 to 7 disclose grease compositions using an imide thickener as an example of grease having high heat resistance.

特開2004−359809号公報JP 2004-359809 A 特開2003−342593号公報JP 2003-342593 A 特開2010−077320号公報JP 2010-073320 A 特開2009−197162号公報JP 2009-197162 A 特開2008−231310号公報JP 2008-231310 A 特開昭54−113605号公報JP 54-113605 A 特開昭57−109896号公報Japanese Patent Laid-Open No. 57-109896

本発明の目的は、新規なイミド−ウレア化合物及びその製造方法を提供すること、特にグリースの増ちょう剤として用いられたときに、高温下における耐久性に優れるイミド−ウレア化合物およびその製造方法を提供することにある。また、本発明の他の目的は、そのイミド−ウレア化合物を用いたグリース用増ちょう剤及びグリース組成物を提供することにある。   An object of the present invention is to provide a novel imide-urea compound and a method for producing the same, and particularly to provide an imide-urea compound excellent in durability at high temperatures and a method for producing the same when used as a thickener for grease. It is to provide. Another object of the present invention is to provide a thickener for grease and a grease composition using the imide-urea compound.

本発明は、下記一般式(1)で表されるイミド−ウレア化合物を提供する。

Figure 0005934658

[式中、R及びXはそれぞれ1価の有機基を示す。] The present invention provides an imide-urea compound represented by the following general formula (1).
Figure 0005934658

[Wherein, R and X each represent a monovalent organic group. ]

本発明のイミド−ウレア化合物は、下記一般式(2)又は(3)で表される構造を有することが好ましい。

Figure 0005934658

Figure 0005934658

[式中、Xはモノイソシアネートからイソシアネート基を除いた残基を示し、Xは2価の有機基を示し、R及びRは1価の有機基を示し、R及びRは同一でも異なっていてもよい。] The imide-urea compound of the present invention preferably has a structure represented by the following general formula (2) or (3).
Figure 0005934658

Figure 0005934658

[Wherein, X 1 represents a residue obtained by removing an isocyanate group from monoisocyanate, X 2 represents a divalent organic group, R 1 and R 2 represent a monovalent organic group, and R 1 and R 2 May be the same or different. ]

また、本発明は、下記一般式(4)で表されるニトロフタル酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるニトロフタル酸無水物イミド誘導体を得、前記ニトロフタル酸無水物の水素化還元により下記一般式(7)で表されるアミノフタル酸無水物イミド誘導体を得る第1の工程と、
前記アミノフタル酸無水物イミド誘導体と下記一般式(8)で表されるイソシアネートとを反応させて上記一般式(1)で表されるイミド−ウレア化合物を得る第2の工程と、を備えるイミド−ウレア化合物の製造方法を提供する。

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[式中、R及びXはそれぞれ1価の有機基を示す。] The present invention also provides a nitrophthalic anhydride represented by the following general formula (6) by reacting a nitrophthalic anhydride represented by the following general formula (4) with a monoamine represented by the following general formula (5). A first step of obtaining a product imide derivative and obtaining an aminophthalic anhydride imide derivative represented by the following general formula (7) by hydrogenation reduction of the nitrophthalic anhydride,
A second step of reacting the aminophthalic anhydride imide derivative with an isocyanate represented by the following general formula (8) to obtain an imide-urea compound represented by the general formula (1): A method for producing a urea compound is provided.
Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[Wherein, R and X each represent a monovalent organic group. ]

また、本発明は、上記本発明のイミド−ウレア化合物を含有するグリース用増ちょう剤を提供する。   The present invention also provides a thickener for grease containing the imide-urea compound of the present invention.

また、本発明は、潤滑油基油と、上記本発明のイミド−ウレア化合物とを含有するグリース組成物を提供する。   The present invention also provides a grease composition containing a lubricating base oil and the imide-urea compound of the present invention.

なお、本発明者らの検討によれば、上記特許文献1〜7に開示されるようなウレア系増ちょう剤を用いたグリース組成物の場合、高温下で使用した場合など、使用環境によっては十分な耐久性が得られないことが判明した。これに対して、本発明のイミド−ウレア化合物、グリース用増ちょう剤及びグリース組成物は、高温下で使用した場合にも十分な耐久性を発揮できるものであることを本発明者らは確認している。   In addition, according to the study by the present inventors, in the case of a grease composition using a urea-based thickener as disclosed in the above Patent Documents 1 to 7, depending on the use environment, such as when used at a high temperature. It was found that sufficient durability could not be obtained. In contrast, the present inventors have confirmed that the imide-urea compound, the thickener for grease and the grease composition of the present invention can exhibit sufficient durability even when used at high temperatures. doing.

以上の通り、本発明によれば、新規なイミド−ウレア化合物、特にグリースの増ちょう剤として用いられたときに、高温下における耐久性に優れるイミド−ウレア化合物及びその製造方法を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a novel imide-urea compound, particularly an imide-urea compound excellent in durability at high temperatures when used as a thickener for grease, and a method for producing the same. It becomes possible.

また、本発明によれば、高温下で使用した場合にも十分な耐久性を発揮できるグリース用増ちょう剤及びグリース組成物を提供することが可能となる。   Further, according to the present invention, it is possible to provide a thickener for grease and a grease composition that can exhibit sufficient durability even when used at high temperatures.

実施例1で得られたイミド−ウレア化合物の赤外吸収スペクトルを示す図である。1 is an infrared absorption spectrum of the imide-urea compound obtained in Example 1. FIG.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

[第1実施形態:イミド−ウレア化合物]
本発明の第1実施形態に係るイミド−ウレア化合物は、下記一般式(1)で表される構造を有する。

Figure 0005934658

[式中、R及びXはそれぞれ1価の有機基を示す。] [First Embodiment: Imide-Urea Compound]
The imide-urea compound according to the first embodiment of the present invention has a structure represented by the following general formula (1).
Figure 0005934658

[Wherein, R and X each represent a monovalent organic group. ]

本実施形態に係るイミド−ウレア化合物の好ましい例としては、下記一般式(2)又は一般式(3)で表されるイミド−ウレア化合物が挙げられる。一般式(2)で表されるイミド−ウレア化合物はイミド基を1個有し、ウレア基を1個有する。また、一般式(3)で表されるイミド−ウレア化合物はイミド基を2個有し、ウレア基を2個有する。

Figure 0005934658

Figure 0005934658

[式中、Xは1価の有機基を示し、Xは2価の有機基を示し、R及びRは1価の有機基を示し、R及びRは同一でも異なっていてもよい。] Preferable examples of the imide-urea compound according to this embodiment include imide-urea compounds represented by the following general formula (2) or general formula (3). The imide-urea compound represented by the general formula (2) has one imide group and one urea group. Moreover, the imide-urea compound represented by General formula (3) has two imide groups, and has two urea groups.
Figure 0005934658

Figure 0005934658

[Wherein, X 1 represents a monovalent organic group, X 2 represents a divalent organic group, R 1 and R 2 represent a monovalent organic group, and R 1 and R 2 are the same or different. May be. ]

はモノイソシアネートから1つのイソシアネート基を除いた1価の残基である。モノイソシアネートは、脂肪族、芳香族炭化水素または複素環化合物、若しくはこれらの誘導体に1つのイソシアネート基が付加された化合物として定義される。Xなる構造の元となるモノイソシアネートモノマーの中には次のもの又はそれらの混合物があるが、これらに限定されるものではない。 X 1 is a monovalent residue obtained by removing one isocyanate group from monoisocyanate. Monoisocyanates are defined as compounds in which one isocyanate group is added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or derivatives thereof. Among the monoisocyanate monomers from which the structure X 1 is derived, there are the following or a mixture thereof, but the invention is not limited to these.

脂肪族モノイソシアネートとしては、例えば、直鎖又は分岐の脂肪族モノイソシアネート、脂環式モノイソシアネート、又は芳香族モノイソシアネートが例示でき、炭素数6〜20、好ましくは8〜18の炭化水素残基を有し、直鎖状又は分枝状のアルキルモノイソシアネート、直鎖状又は分枝状のアルケニルモノイソシアネート、シクロアルキルモノイソシアネート、アルキルシクロアルキルモノイソシアネート、アリールモノイソシアネート、アルキルアリールモノイソシアネート、アリールアルキルモノイソシアネート等が挙げられる。具体例としてはヘキシルモノイソシアネート、ヘプチルモノイソシアネート、オクチルモノイソシアネート、ノニルモノイソシアネート、デシルモノイソシアネート、ウンデシルモノイソシアネート、ドデシルモノイソシアネート、トリデシルモノイソシアネート、テトラデシルモノイソシアネート、ペンタデシルモノイソシアネート、ヘキサデシルモノイソシアネート、ヘプタデシルモノイソシアネート、オクタデシルモノイソシアネート、ノナデシルモノイソシアネート、エイコシルモノイソシアネート等の直鎖状又は分枝状のアルキルモノイソシアネート;シクロヘキシルモノイソシアネート;メチルシクロヘキシルモノイソシアネート、ジメチルシクロヘキシルモノイソシアネート、エチルシクロヘキシルモノイソシアネート、ジエチルシクロヘキシルモノイソシアネート、プロピルシクロヘキシルモノイソシアネート、イソプロピルシクロヘキシルモノイソシアネート、1−メチル−3−プロピルシクロヘキシルモノイソシアネート、ブチルシクロヘキシルモノイソシアネート、アミルシクロヘキシルモノイソシアネート、アミルメチルシクロヘキシルモノイソシアネート、ヘキシルシクロヘキシルモノイソシアネート、ヘプチルシクロヘキシルモノイソシアネート、オクチルシクロヘキシルモノイソシアネート、ノニルシクロヘキシルモノイソシアネート、デシルシクロヘキシルモノイソシアネート、ウンデシルシクロヘキシルモノイソシアネート、ドデシルシクロヘキシルモノイソシアネート、トリデシルシクロヘキシルモノイソシアネート、テトラデシルシクロヘキシルモノイソシアネート等のアルキルシクロアルキルモノイソシアネート;フェニルモノイソシアネート、ナフチルモノイソシアネート等のアリールモノイソシアネート;トルイルモノイソシアネート、エチルフェニルモノイソシアネート、キシリルモノイソシアネート、プロピルフェニルモノイソシアネート、クメニルモノイソシアネート、メチルナフチルモノイソシアネート、エチルナフチルモノイソシアネート、ジメチルナフチルモノイソシアネート、プロピルナフチルモノイソシアネート等のアルキルアリールモノイソシアネート;ベンジルモノイソシアネート、メチルベンジルモノイソシアネート、エチルベンジルモノイソシアネート等のアリールアルキルモノイソシアネート等を挙げることができる。   Examples of the aliphatic monoisocyanate include linear or branched aliphatic monoisocyanates, alicyclic monoisocyanates, or aromatic monoisocyanates, and hydrocarbon residues having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms. Linear or branched alkyl monoisocyanate, linear or branched alkenyl monoisocyanate, cycloalkyl monoisocyanate, alkylcycloalkyl monoisocyanate, aryl monoisocyanate, alkylaryl monoisocyanate, arylalkyl A monoisocyanate etc. are mentioned. Specific examples include hexyl monoisocyanate, heptyl monoisocyanate, octyl monoisocyanate, nonyl monoisocyanate, decyl monoisocyanate, undecyl monoisocyanate, dodecyl monoisocyanate, tridecyl monoisocyanate, tetradecyl monoisocyanate, pentadecyl monoisocyanate, hexadecyl. Linear or branched alkyl monoisocyanates such as monoisocyanate, heptadecyl monoisocyanate, octadecyl monoisocyanate, nonadecyl monoisocyanate, eicosyl monoisocyanate; cyclohexyl monoisocyanate; methylcyclohexyl monoisocyanate, dimethylcyclohexyl monoisocyanate, ethyl Cyclohexyl monoisocyanate, die Rucyclohexyl monoisocyanate, propylcyclohexyl monoisocyanate, isopropylcyclohexyl monoisocyanate, 1-methyl-3-propylcyclohexyl monoisocyanate, butylcyclohexyl monoisocyanate, amylcyclohexyl monoisocyanate, amylmethylcyclohexyl monoisocyanate, hexylcyclohexyl monoisocyanate, heptylcyclohexyl monoisocyanate Isocyanates, octyl cyclohexyl monoisocyanate, nonyl cyclohexyl monoisocyanate, decyl cyclohexyl monoisocyanate, undecyl cyclohexyl monoisocyanate, dodecyl cyclohexyl monoisocyanate, tridecyl cyclohexyl monoisocyanate, tetradecyl cyclohexyl Alkyl cycloalkyl monoisocyanates such as sil monoisocyanate; aryl monoisocyanates such as phenyl monoisocyanate and naphthyl monoisocyanate; toluyl monoisocyanate, ethylphenyl monoisocyanate, xylyl monoisocyanate, propylphenyl monoisocyanate, cumenyl monoisocyanate, methylnaphthyl monoisocyanate Examples thereof include alkyl aryl monoisocyanates such as isocyanate, ethyl naphthyl monoisocyanate, dimethyl naphthyl monoisocyanate and propyl naphthyl monoisocyanate; arylalkyl monoisocyanates such as benzyl monoisocyanate, methylbenzyl monoisocyanate and ethylbenzyl monoisocyanate.

なる構造の元となるモノイソシアネートモノマーとしては、潤滑性及びグリース性能の点からは、直鎖又は分岐の脂肪族モノイソシアネートが好ましい。直鎖又は分岐の脂肪族モノイソシアネートの炭素数は、好ましくは4〜20、より好ましくは8〜20である。また、脂肪族モノイソシアネートは直鎖又は分岐の飽和脂肪族モノイソシアネート又は不飽和脂肪族モノイソシアネートのいずれであってもよいが、酸化安定性に優れることから、直鎖又は分岐の飽和脂肪族モノイソシアネートが好ましい。 As the monoisocyanate monomer which is the base of the X 1 structure, a linear or branched aliphatic monoisocyanate is preferable from the viewpoint of lubricity and grease performance. Carbon number of linear or branched aliphatic monoisocyanate becomes like this. Preferably it is 4-20, More preferably, it is 8-20. The aliphatic monoisocyanate may be either a linear or branched saturated aliphatic monoisocyanate or an unsaturated aliphatic monoisocyanate. However, since the aliphatic monoisocyanate is excellent in oxidative stability, the linear or branched saturated aliphatic monoisocyanate. Isocyanates are preferred.

また、耐熱性の点からは、脂環式モノイソシアネートが好ましい。脂環式モノイソシアネートの炭素数は、好ましくは4〜20、より好ましくは4〜10である。また、脂環族モノイソシアネートは飽和脂環式モノイソシアネート又は不飽和脂環式モノイソシアネートのいずれであってもよいが、酸化安定性に優れることから、飽和脂環式モノイソシアネートが好ましい。   From the viewpoint of heat resistance, alicyclic monoisocyanate is preferred. Carbon number of alicyclic monoisocyanate becomes like this. Preferably it is 4-20, More preferably, it is 4-10. The alicyclic monoisocyanate may be either a saturated alicyclic monoisocyanate or an unsaturated alicyclic monoisocyanate, but a saturated alicyclic monoisocyanate is preferred because of excellent oxidation stability.

さらに潤滑性及び耐熱性の点からは、芳香族モノイソシアネートが好ましい。芳香族モノイソシアネートの炭素数は、好ましくは6〜20、より好ましくは8〜20である。   Furthermore, aromatic monoisocyanate is preferable from the viewpoint of lubricity and heat resistance. The carbon number of the aromatic monoisocyanate is preferably 6 to 20, more preferably 8 to 20.

は2価の有機基を示し、好ましくはジイソシアネートから2つのイソシアネート基を除いた2価の残基を示す。ジイソシアネートは、脂肪族、芳香族炭化水素または複素環化合物、若しくはこれらの誘導体に2つのイソシアネート基が付加された化合物として定義される。Xなる構造の元となるジイソシアネートモノマーの中には次のもの又はそれらの混合物があるが、これらに限定されるものではない。 X 2 represents a divalent organic group, preferably a divalent residue obtained by removing two isocyanate groups from diisocyanate. Diisocyanate is defined as a compound in which two isocyanate groups are added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or a derivative thereof. Among the diisocyanate monomers that form the structure of X 2 , there are the following or a mixture thereof, but the present invention is not limited to these.

脂肪族ジイソシアネートとしては、例えば飽和および又は不飽和の直鎖状、分岐鎖、又は脂環式の炭化水素基を有するジイソシアネートが挙げられる。具体的にはメチレンジイソシアネート、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,5−ジメチルヘキサメチレンジイソシアネート、3−メトキシヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、2,5−ジメチルヘプタメチレンジイソシアネート、3−メチルヘプタメチレンジイソシアネート、4,4−ジメチルヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、5−メチルノナメチレンジイソシアネート、デカメチレンジイソシアネート、1,4−ジイソシアナトシクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、4,4’−メチレンビス(シクロヘキシルイソシアネート)、4,4'−メチレンビス(2−メチルシクロヘキシルイソシアネート)、ビス(イソシアナトメチル)ノルボルナン、1,3−ジイソシアナトアダマンタン、イソホロンジイソシアネート、1,8−ジイソシアナトp−メンタンなどを挙げることができる。   Examples of the aliphatic diisocyanate include diisocyanates having saturated and / or unsaturated linear, branched, or alicyclic hydrocarbon groups. Specifically, methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,5-dimethylhexamethylene diisocyanate, 3-methoxyhexamethylene diisocyanate, heptamethylene diisocyanate, 2,5- Dimethylheptamethylene diisocyanate, 3-methylheptamethylene diisocyanate, 4,4-dimethylheptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 5-methylnonamethylene diisocyanate, decamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1 , 3-Bis (isocyanatomethyl) cyclohexa 1,4-bis (isocyanatomethyl) cyclohexane, 4,4′-methylenebis (cyclohexyl isocyanate), 4,4′-methylenebis (2-methylcyclohexyl isocyanate), bis (isocyanatomethyl) norbornane, 1,3- Diisocyanatoadamantane, isophorone diisocyanate, 1,8-diisocyanato p-menthane and the like can be mentioned.

芳香族ジイソシアネートとしては、o−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、o−キシリレンジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、1,4−ジイソシアナトナフタレン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,6−ジイソシアナトナフタレン、2,7−ジイソシアナトナフタレン、1,8−ジイソシアナトアントラセン、2,6−ジイソシアナトアントラセン、2,7−ジイソシアナトアントラセン、2,4−ジイソシアナトトルエン、2,6−ジイソシアナトトルエン、2,4−ジイソシアナト(m−キシレン)、2,5−ジイソシアナト(m−キシレン)、1,1−ビス(3−イソシアナトフェニル)エタン、1,1−ビス(4−イソシアナトフェニル)エタン、2,2−ビス(3−イソシアナトフェニル)プロパン、2,2−ビス(4−イソシアナトフェニル)プロパン、2,2−ビス(4−イソシアナト3,5−ジメチルフェニル)プロパン、2,5−ジイソシアナトピリジン、2,6−ジイソシアナトピリジン、3,5−ジイソシアナトピリジン、2,4−ジイソシアナトトルエンベンジジン、3,3’−ジイソシアナトビフェニル、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジイソシアナトベンゾフェノン、4,4’−ジイソシアナトベンゾフェノン、3,3’−ジイソシアナトジフェニルエーテル、4,4’−ジイソシアナトジフェニルエーテル、3,3’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト3,3’,5,5’−テトラメチルジフェニルメタン、3,3’−ジイソシアナトジフェニルスルホン、4,4’−ジイソシアナトジフェニルスルホン、3,3’−ジイソシアナトジフェニルスルフィド、4,4’−ジイソシアナトジフェニルスルフィド、4,4’−ジイソシアナトジフェニルチオエーテル、4,4’−ジイソシアナト3,3’,5,5’−テトラメチルジフェニルエーテル、4,4’−ジイソシアナト3,3’,5,5’−テトラエチルジフェニルエーテル、1,3−ビス(3−イソシアナトフェノキシ)ベンゼン、1,3−ビス(4−イソシアナトフェノキシ)ベンゼン、1,4−ビス(3−イソシアナトフェノキシ)ベンゼン、1,4−ビス(4−イソシアナトフェノキシ)ベンゼン、2,6−ビス(3−イソシアナトフェノキシ)ピリジン、1,4−ビス(3−イソシアナトフェニルスルホニル)ベンゼン、1,4−ビス(4−イソシアナトフェニルスルホニル)ベンゼン、1,4−ビス(3−イソシアナトフェニルチオエーテル)ベンゼン、1,4−ビス(4−イソシアナトフェニルチオエーテル)ベンゼン、4,4’−ビス(3−イソシアナトフェノキシ)ジフェニルスルホン、4,4’−ビス(4−イソシアナトフェノキシ)ジフェニルスルホン、4,4’−ビス(4−イソシアナトフェノキシ)ビフェニル、ビス[4−(3−イソシアナトフェノキシ)フェニル]スルホン、ビス[4−(4−イソシアナトフェノキシ)フェニル]スルホン、ビス[4−(4−イソシアナトフェノキシ)フェニル]エーテル、ビス[4−(4−イソシアナトフェノキシ)フェニル]メタン、ビス[3−メチル−4−(4−イソシアナトフェノキシ)フェニル]メタン、ビス[3−クロロ−4−(4−イソシアナトフェノキシ)フェニル]メタン、ビス[3,5−ジメチル−4−(4−イソシアナトフェノキシ)フェニル]メタン、1,1−ビス[4−(4−イソシアナトフェノキシ)フェニル]エタン、1,1−ビス[3−メチル−4−(4−イソシアナトフェノキシ)フェニル]エタン、1,1−ビス[3−クロロ−4−(4−イソシアナトフェノキシ)フェニル]エタン、1,1−ビス[3,5−ジメチル−4−(4−イソシアナトフェノキシ)フェニル]エタン、2,2−ビス[4−(4−イソシアナトフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−イソシアナトフェノキシ)フェニル]プロパン、2,2−ビス[3−クロロ−4−(4−イソシアナトフェノキシ)フェニル]プロパン、2,2−ビス[3,5−ジメチル−4−(4−イソシアナトフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−イソシアナトフェノキシ)フェニル]ブタン、2,2−ビス[3−メチル−4−(4−イソシアナトフェノキシ)フェニル]ブタン、2,2−ビス[3,5−ジメチル−4−(4−イソシアナトフェノキシ)フェニル]ブタン、2,2−ビス[3,5−ジブロモ−4−(4−イソシアナトフェノキシ)フェニル]ブタン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(4−イソシアナトフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス[3−メチル−4−(4−イソシアナトフェノキシ)フェニル]プロパン、ビス(3−イソシアナトフェニル)テトラメチルジシラン、ビス(4−イソシアナトフェニル)テトラメチルジシラン、ビス(3−メチル−4−イソシアナトフェニル)テトラメチルジシラン、ビス(3−イソシアナトフェノキシ)テトラメチルジシラン、ビス(4−イソシアナトフェノキシ)テトラメチルジシラン、ビス(3−イソシアナトフェノキシ)−1,1,3,3−テトラメチルジシロキサン、ビス(4−イソシアナトフェノキシ)−1,1,3,3−テトラメチルジシロキサン等が例示できる。   Aromatic diisocyanates include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, 1,4-diisocyanatonaphthalene, 1, 5-diisocyanatonaphthalene, 1,8-diisocyanatonaphthalene, 2,6-diisocyanatonaphthalene, 2,7-diisocyanatonaphthalene, 1,8-diisocyanatoanthracene, 2,6-diisocyanato Anthracene, 2,7-diisocyanatoanthracene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 2,4-diisocyanato (m-xylene), 2,5-diisocyanato (m-xylene) 1,1-bis (3-i Cyanatophenyl) ethane, 1,1-bis (4-isocyanatophenyl) ethane, 2,2-bis (3-isocyanatophenyl) propane, 2,2-bis (4-isocyanatophenyl) propane, 2, 2-bis (4-isocyanato 3,5-dimethylphenyl) propane, 2,5-diisocyanatopyridine, 2,6-diisocyanatopyridine, 3,5-diisocyanatopyridine, 2,4-diisocyanato Toluenebenzidine, 3,3'-diisocyanatobiphenyl, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-diisocyanatobenzophenone, 4,4 '-Diisocyanatobenzophenone, 3,3'-Diisocyanatodiphenyl ether, 4,4'-Diisocyanatodiphenyl Ether, 3,3′-diisocyanatodiphenylmethane, 4,4′-diisocyanatodiphenylmethane, 4,4′-diisocyanato 3,3 ′, 5,5′-tetramethyldiphenylmethane, 3,3′-diisocyanato Diphenylsulfone, 4,4′-diisocyanatodiphenylsulfone, 3,3′-diisocyanatodiphenylsulfide, 4,4′-diisocyanatodiphenylsulfide, 4,4′-diisocyanatodiphenylthioether, 4,4 '-Diisocyanato 3,3', 5,5'-tetramethyldiphenyl ether, 4,4'-diisocyanato 3,3 ', 5,5'-tetraethyl diphenyl ether, 1,3-bis (3-isocyanatophenoxy) benzene, 1,3-bis (4-isocyanatophenoxy) benzene, 1,4-bis (3 -Isocyanatophenoxy) benzene, 1,4-bis (4-isocyanatophenoxy) benzene, 2,6-bis (3-isocyanatophenoxy) pyridine, 1,4-bis (3-isocyanatophenylsulfonyl) benzene, 1,4-bis (4-isocyanatophenylsulfonyl) benzene, 1,4-bis (3-isocyanatophenylthioether) benzene, 1,4-bis (4-isocyanatophenylthioether) benzene, 4,4′- Bis (3-isocyanatophenoxy) diphenylsulfone, 4,4′-bis (4-isocyanatophenoxy) diphenylsulfone, 4,4′-bis (4-isocyanatophenoxy) biphenyl, bis [4- (3-isocyanate) Natophenoxy) phenyl] sulfone, bis [4- (4-isocyanatophenoxy) Phenyl] sulfone, bis [4- (4-isocyanatophenoxy) phenyl] ether, bis [4- (4-isocyanatophenoxy) phenyl] methane, bis [3-methyl-4- (4-isocyanatophenoxy) phenyl ] Methane, bis [3-chloro-4- (4-isocyanatophenoxy) phenyl] methane, bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] methane, 1,1-bis [4 -(4-isocyanatophenoxy) phenyl] ethane, 1,1-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] ethane, 1,1-bis [3-chloro-4- (4- Isocyanatophenoxy) phenyl] ethane, 1,1-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] ethane, 2, -Bis [4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3-chloro-4 -(4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [4- (4-isocyanato) Phenoxy) phenyl] butane, 2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] butane, 2,2-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) Phenyl] butane, 2,2-bis [3,5-dibromo-4- (4-isocyanatophenoxy) phenyl] butane, 1,1,1,3,3,3-hexafluoro-2,2 -Bis (4-isocyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] propane, bis (3-isocyanatophenyl) tetramethyldisilane, bis (4-isocyanatophenyl) tetramethyldisilane, bis (3-methyl-4-isocyanatophenyl) tetramethyldisilane, bis (3-isocyanatophenoxy) tetramethyldisilane Bis (4-isocyanatophenoxy) tetramethyldisilane, bis (3-isocyanatophenoxy) -1,1,3,3-tetramethyldisiloxane, bis (4-isocyanatophenoxy) -1,1,3 Examples thereof include 3-tetramethyldisiloxane.

なる構造の元となるジイソシアネートモノマーとしては、芳香族炭化水素に2つのイソシアネート基が結合した化合物が、特には(a)ジイソシアナトトルエン又はその誘導体及び(b)ジイソシアナトジフェニルメタンまたはその誘導体が好ましい。 Examples of the diisocyanate monomer that forms the structure of X 2 include compounds in which two isocyanate groups are bonded to an aromatic hydrocarbon, particularly (a) diisocyanatotoluene or a derivative thereof and (b) diisocyanatodiphenylmethane or a compound thereof. Derivatives are preferred.

及びRは1価の有機基を示し、好ましくは脂肪族モノアミン、脂環式モノアミン又は芳香族モノアミンから1つのアミノ基を除いた1価の残基を示す。R及びRなる構造の元となるモノアミンとしては以下に示すモノアミン又はそれらの混合物が挙げられるが、これらに限定されるものではない。 R 1 and R 2 each represent a monovalent organic group, preferably a monovalent residue obtained by removing one amino group from an aliphatic monoamine, alicyclic monoamine or aromatic monoamine. Examples of the monoamine that is the base of the structure of R 1 and R 2 include, but are not limited to, the following monoamines or mixtures thereof.

モノアミンとしては、脂肪族アミン、脂環式アミン、又は芳香族アミンが例示でき、炭素数6〜20、好ましくは8〜18の炭化水素残基を有し、直鎖状又は分枝状のアルキルアミン、直鎖状又は分枝状のアルケニルアミン、シクロアルキルアミン、アルキルシクロアルキルアミン、アリールアミン、アルキルアリールアミン、アリールアルキルアミン等が挙げられる。具体例としてはヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン等の直鎖状又は分枝状のアルキルアミン;シクロヘキシルアミン;メチルシクロヘキシルアミン、ジメチルシクロヘキシルアミン、エチルシクロヘキシルアミン、ジエチルシクロヘキシルアミン、プロピルシクロヘキシルアミン、イソプロピルシクロヘキシルアミン、1−メチル−3−プロピルシクロヘキシルアミン、ブチルシクロヘキシルアミン、アミルシクロヘキシルアミン、アミルメチルシクロヘキシルアミン、ヘキシルシクロヘキシルアミン、ヘプチルシクロヘキシルアミン、オクチルシクロヘキシルアミン、ノニルシクロヘキシルアミン、デシルシクロヘキシルアミン、ウンデシルシクロヘキシルアミン、ドデシルシクロヘキシルアミン、トリデシルシクロヘキシルアミン、テトラデシルシクロヘキシルアミン等のアルキルシクロアルキルアミン;フェニルアミン、ナフチルアミン等のアリールアミン;トルイルアミン、エチルフェニルアミン、キシリルアミン、プロピルフェニルアミン、クメニルアミン、メチルナフチルアミン、エチルナフチルアミン、ジメチルナフチルアミン、プロピルナフチルアミン等のアルキルアリールアミン;ベンジルアミン、メチルベンジルアミン、エチルベンジルアミン等のアリールアルキルアミン等を挙げることができる。   Examples of monoamines include aliphatic amines, alicyclic amines, and aromatic amines, which have a hydrocarbon residue having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms, and are linear or branched alkyls. Examples include amines, linear or branched alkenylamines, cycloalkylamines, alkylcycloalkylamines, arylamines, alkylarylamines, arylalkylamines, and the like. Specific examples include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, eico Linear or branched alkylamine such as silamine; cyclohexylamine; methylcyclohexylamine, dimethylcyclohexylamine, ethylcyclohexylamine, diethylcyclohexylamine, propylcyclohexylamine, isopropylcyclohexylamine, 1-methyl-3-propylcyclohexyl Amine, butylcyclohexylamine, amylcyclohexylamine, amylmethylcyclohexylamine, hexylcyclo Alkylcycloalkylamines such as xylamine, heptylcyclohexylamine, octylcyclohexylamine, nonylcyclohexylamine, decylcyclohexylamine, undecylcyclohexylamine, dodecylcyclohexylamine, tridecylcyclohexylamine, tetradecylcyclohexylamine; aryls such as phenylamine and naphthylamine Amine; alkylarylamines such as toluylamine, ethylphenylamine, xylylamine, propylphenylamine, cumenylamine, methylnaphthylamine, ethylnaphthylamine, dimethylnaphthylamine, propylnaphthylamine; arylalkylamines such as benzylamine, methylbenzylamine, ethylbenzylamine, etc. Can be mentioned.

及びRなる構造の元となるモノアミンのうち、潤滑性及びグリース性能の点からは、直鎖又は分岐の脂肪族モノアミンが好ましい。直鎖又は分岐の脂肪族モノアミンの炭素数は、好ましくは4〜20、より好ましくは8〜20である。また、脂肪族モノアミンは飽和脂肪族モノアミン又は不飽和脂肪族モノアミンのいずれであってもよいが、酸化安定性に優れることから、飽和脂肪族アミンが好ましい。 Of the monoamines based on the structure of R 1 and R 2 , linear or branched aliphatic monoamines are preferable from the viewpoint of lubricity and grease performance. The carbon number of the linear or branched aliphatic monoamine is preferably 4 to 20, and more preferably 8 to 20. The aliphatic monoamine may be either a saturated aliphatic monoamine or an unsaturated aliphatic monoamine, but is preferably a saturated aliphatic amine because of excellent oxidation stability.

また、耐熱性の点からは、脂環式モノアミンが好ましい。脂環式モノアミンの炭素数は、好ましくは4〜20、より好ましくは4〜10である。また、脂環族モノアミンは飽和脂環式モノアミン又は不飽和脂環式モノアミンのいずれであってもよいが、酸化安定性に優れることから、飽和脂環式モノアミンが好ましい。   From the viewpoint of heat resistance, alicyclic monoamines are preferred. Carbon number of alicyclic monoamine becomes like this. Preferably it is 4-20, More preferably, it is 4-10. The alicyclic monoamine may be either a saturated alicyclic monoamine or an unsaturated alicyclic monoamine, but is preferably a saturated alicyclic monoamine because of excellent oxidation stability.

特に、耐熱性及びグリース性能の点からは、脂肪族鎖式モノアミンと脂環式モノアミン、及び芳香族モノアミンの混合が好ましい。   In particular, from the viewpoint of heat resistance and grease performance, a mixture of an aliphatic chain monoamine, an alicyclic monoamine, and an aromatic monoamine is preferable.

[第2実施形態:イミド−ウレア化合物の製造方法]
本発明の第2実施形態に係るイミド−ウレア化合物の製造方法は、下記一般式(4)で表されるニトロフタル酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるニトロフタル酸無水物イミド誘導体を得、前記ニトロフタル酸無水物の水素化還元により下記一般式(7)で表されるアミノフタル酸無水物イミド誘導体を得る第1の工程と、前記アミノフタル酸無水物イミド誘導体と下記一般式(8)で表されるイソシアネートとを反応させて上記一般式(1)で表されるイミド−ウレア化合物を得る第2の工程と、を備える。

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[式中、R及びXはそれぞれ1価の有機基を示す。] [Second Embodiment: Method for Producing Imido-Urea Compound]
The method for producing an imide-urea compound according to the second embodiment of the present invention is the following by reacting a nitrophthalic anhydride represented by the following general formula (4) with a monoamine represented by the following general formula (5). First step of obtaining a nitrophthalic anhydride imide derivative represented by the general formula (6) and obtaining an aminophthalic anhydride imide derivative represented by the following general formula (7) by hydrogenation reduction of the nitrophthalic anhydride And a second step of reacting the aminophthalic anhydride imide derivative with an isocyanate represented by the following general formula (8) to obtain an imide-urea compound represented by the above general formula (1). .
Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[Wherein, R and X each represent a monovalent organic group. ]

また、本実施形態における第2の工程は、好ましくは、上記一般式(7)で表わされるアミノフタル酸無水物イミド誘導体と下記一般式(9)で表されるモノイソシアネート又は下記一般式(10)で表されるジイソシアネートとを反応させて上記一般式(2)又は上記一般式(3)で表されるイミド−ウレア化合物を得る工程である。

Figure 0005934658

Figure 0005934658

[式中、Xはモノイソシアネートから1つのイソシアネート基を除いた1価の残基を示し、Xは2価の有機基を示し、R及びRは1価の有機基を示し、R及びRは同一でも異なっていてもよい。] The second step in the present embodiment is preferably an aminophthalic anhydride imide derivative represented by the general formula (7) and a monoisocyanate represented by the following general formula (9) or the following general formula (10). And a diisocyanate represented by the general formula (2) or the general formula (3) to obtain an imide-urea compound.
Figure 0005934658

Figure 0005934658

Wherein, X 1 is a monovalent residue obtained by removing one of the isocyanate groups from a monoisocyanate, X 2 represents a divalent organic group, R 1 and R 2 is a monovalent organic group, R 1 and R 2 may be the same or different. ]

一般式(10)で表されるジイソシアネートを用いた場合、主として一般式(3)で表されるイミド−ウレア化合物が生成する。なお、この場合、副生成物として一般式(7)で表されるアミノフタル酸無水物イミド誘導体と、ジイソシアネートの2個のイソシアネート基のうち一方のみが反応した化合物(すなわち一般式(2)で表されるイミド−ウレア化合物)が生成し得る。後述するグリース用増ちょう剤及びグリース組成物においては、一般式(2)で表されるイミド−ウレア化合物と一般式(3)で表されるイミド−ウレア化合物との混合物のまま用いてもよく、混合物から副生成物を単離して得られる一般式(3)で表されるイミド−ウレア化合物を用いてもよい。   When the diisocyanate represented by the general formula (10) is used, an imide-urea compound mainly represented by the general formula (3) is generated. In this case, an aminophthalic anhydride imide derivative represented by the general formula (7) as a by-product and a compound obtained by reacting only one of the two isocyanate groups of diisocyanate (that is, represented by the general formula (2)). Imide-urea compound) can be produced. In the thickener for grease and grease composition described later, a mixture of the imide-urea compound represented by the general formula (2) and the imide-urea compound represented by the general formula (3) may be used as it is. An imide-urea compound represented by the general formula (3) obtained by isolating a by-product from the mixture may be used.

一方、一般式(9)で表されるモノイソシアネートを用いた場合、一般式(2)で表されるイミド−ウレア化合物が生成する。   On the other hand, when the monoisocyanate represented by the general formula (9) is used, an imide-urea compound represented by the general formula (2) is generated.

一般式(9)で表されるモノイソシアネートの具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるモノイソシアネートの具体例及び好ましい例と同様である。また、一般式(10)で表されるジイソシアネートの具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるジイソシアネートの具体例及び好ましい例と同様である。さらに、一般式(5)で表されるモノアミン(一般式(2)中のR並びに一般式(3)中のR及びRなる構造の元となるモノアミンを含む)の具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるジイソシアネートの具体例及び好ましい例と同様である。 Specific examples and preferred examples of the monoisocyanate represented by the general formula (9) are the same as the specific examples and preferred examples of the monoisocyanate which is the base of the structure X 1 in the first embodiment. Further, specific examples and preferred examples of diisocyanates of the general formula (10) are the same as the specific examples and preferred examples of the underlying diisocyanates X 2 becomes the structure of the first embodiment. Furthermore, specific examples and preferred examples of monoamines represented by the general formula (5) (including R 1 in the general formula (2) and the monoamines that form the structures R 1 and R 2 in the general formula (3)) Examples are the same as the specific examples and preferred examples of the diisocyanate that is the base of the structure X 1 in the first embodiment.

第1の工程において、一般式(4)で表されるニトロフタル酸無水物と一般式(5)で表されるモノアミンとの仕込み比は、一般式(4)で表されるニトロフタル酸無水物1モルに対して、一般式(5)で示されるモノアミンが0.8〜1.2モル、特には1.0〜1.1モルとすることが好ましい。また、反応温度は100〜250℃、特には130〜200℃とすることが好ましい。このような温度で反応させることで、脱水環化により一般式(6)で示される反応中間体を高い収率で得ることができる。反応は、当初0℃〜100℃で反応させた後、100〜250℃、特には130〜200℃とすることが好ましい。反応時間は、1〜24時間、特には2〜12時間とすることが好ましい。   In the first step, the charging ratio between the nitrophthalic anhydride represented by the general formula (4) and the monoamine represented by the general formula (5) is the nitrophthalic anhydride 1 represented by the general formula (4). It is preferable that the monoamine represented by the general formula (5) is 0.8 to 1.2 mol, particularly 1.0 to 1.1 mol with respect to mol. The reaction temperature is preferably 100 to 250 ° C, particularly 130 to 200 ° C. By reacting at such a temperature, the reaction intermediate represented by the general formula (6) can be obtained in high yield by dehydration cyclization. The reaction is preferably carried out at 0 to 100 ° C. and then 100 to 250 ° C., particularly 130 to 200 ° C. The reaction time is preferably 1 to 24 hours, particularly 2 to 12 hours.

第1の工程における一般式(4)で表されるニトロフタル酸無水物と一般式(5)で表されるモノアミンとの反応は、無溶媒、溶媒中又は後に述べる潤滑油基油中で行うことができる。溶媒としては、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、トルエン等の有機溶媒、あるいはこれらの2種以上の混合溶媒を用いることができる。   The reaction of the nitrophthalic anhydride represented by the general formula (4) and the monoamine represented by the general formula (5) in the first step should be performed in the absence of a solvent, a solvent, or a lubricating base oil described later. Can do. As the solvent, organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran and toluene, or a mixed solvent of two or more of these can be used.

第1の工程における一般式(6)で表わされるニトロフタル酸無水物イミド誘導体のニトロ基の還元は、接触水素化、金属ヒドリドを用いた還元、酸性雰囲気下の亜鉛、鉄、スズを用いた還元等、一般的なニトロ基の手法であれば特に限定されるものではないが、接触水素化が好ましい。例えば、触媒にPd、Pt、Rh、Ru担持炭素を用いることで行い、特にPd、Ptが好ましい。反応溶媒は、無溶媒、エステル、エーテル、アルコールなど基質を溶解するものであれば特に限定されないが溶解性等から酢酸エチル、酢酸ブチル等のエステルが好ましく、反応温度は10〜200℃、特には25〜100℃が好ましい。水素圧力は大気圧〜10MPaが好ましく、特に1〜5MPaが好ましい。   Reduction of the nitro group of the nitrophthalic anhydride imide derivative represented by the general formula (6) in the first step is catalytic hydrogenation, reduction using a metal hydride, reduction using zinc, iron or tin in an acidic atmosphere. Although it is not particularly limited as long as it is a general nitro group technique, catalytic hydrogenation is preferred. For example, Pd, Pt, Rh, Ru-supported carbon is used as the catalyst, and Pd and Pt are particularly preferable. The reaction solvent is not particularly limited as long as it dissolves the substrate such as no solvent, ester, ether, alcohol, etc., but esters such as ethyl acetate and butyl acetate are preferable from the viewpoint of solubility, and the reaction temperature is 10 to 200 ° C., especially 25-100 degreeC is preferable. The hydrogen pressure is preferably atmospheric pressure to 10 MPa, particularly 1 to 5 MPa.

第2の工程における一般式(7)で表されるアミノフタル酸無水物イミド誘導体と一般式(9)で表されるモノイソシアネート又は一般式(10)で表されるジイソシアネートとの反応は、溶媒中で行うことができる。溶媒としては、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、トルエン等の有機溶媒、あるいはこれらの2種以上の混合溶媒を用いることができる。なお、潤滑油基油中で行った場合、そのままグリース組成物として使用することもできる。   In the second step, the reaction between the aminophthalic anhydride imide derivative represented by the general formula (7) and the monoisocyanate represented by the general formula (9) or the diisocyanate represented by the general formula (10) is carried out in a solvent. Can be done. As the solvent, organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran and toluene, or a mixed solvent of two or more of these can be used. In addition, when performed in a lubricating base oil, it can be used as it is as a grease composition.

第2の工程における一般式(9)で表されるモノイソシアネートの使用量は特に制限されないが、一般式(7)で表されるアミノフタル酸無水物イミド誘導体1モルに対して一般式(9)で表されるモノイソシアネート0.8〜1.2モル、特には0.9〜1.1モル、さらには0.95〜1.05モルを用いることが好ましい。また、反応温度は80〜200℃、特には130〜180℃とすることが好ましい。反応時間は、0.5〜10時間、特には1〜4時間とすることが好ましい。   The amount of the monoisocyanate represented by the general formula (9) in the second step is not particularly limited, but the general formula (9) is used with respect to 1 mol of the aminophthalic anhydride imide derivative represented by the general formula (7). It is preferable to use 0.8 to 1.2 mol, particularly 0.9 to 1.1 mol, and more preferably 0.95 to 1.05 mol of the monoisocyanate represented by the formula. The reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C. The reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.

第2の工程における一般式(10)で表されるジイソシアネートの使用量は特に制限されないが、一般式(7)で表されるアミノフタル酸無水物イミド誘導体1モルに対して一般式(8)で表されるジイソシアネート0.3〜0.7モル、特には0.4〜0.6モル、さらには0.45〜0.55モルを用いることが好ましい。また、反応温度は80〜200℃、特には130〜180℃とすることが好ましい。反応時間は、0.5〜10時間、特には1〜4時間とすることが好ましい。   Although the usage-amount of the diisocyanate represented by General formula (10) in a 2nd process in particular is not restrict | limited, General formula (8) with respect to 1 mol of aminophthalic anhydride imide derivatives represented by General formula (7). It is preferable to use 0.3 to 0.7 mol, particularly 0.4 to 0.6 mol, more preferably 0.45 to 0.55 mol of the diisocyanate represented. The reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C. The reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.

[第3実施形態:グリース用増ちょう剤]
本発明の第3実施形態に係るグリース用増ちょう剤は、上記一般式(1)で表されるイミド−ウレア化合物を含有する。なお、一般式(1)で表されるイミド−ウレア化合物の具体例及び好ましい例は第1実施形態に係るイミド−ウレア化合物の具体例及び好ましい例と同様である。
[Third embodiment: thickener for grease]
The thickener for grease according to the third embodiment of the present invention contains an imide-urea compound represented by the general formula (1). Specific examples and preferred examples of the imide-urea compound represented by the general formula (1) are the same as the specific examples and preferred examples of the imide-urea compound according to the first embodiment.

本実施形態に係るグリース用増ちょう剤は、イミド−ウレア化合物以外の増ちょう剤成分を含有してもよい。かかる増ちょう剤成分としては、金属石けん、複合金属石けん等の石けん系増ちょう剤成分;ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等の非石けん系増ちょう剤成分等、あらゆる増ちょう剤成分が使用可能である。前記石けん系増ちょう剤成分としては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また前記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。   The thickener for grease according to the present embodiment may contain a thickener component other than the imide-urea compound. Such thickener components include soap-type thickener components such as metal soaps and composite metal soaps; non-soap-type thickener components such as benton, silica gel, urea compounds, urea / urethane compounds, urethane compounds, imide compounds, etc. Any thickener component can be used. Examples of the soap-based thickener component include sodium soap, calcium soap, aluminum soap, lithium soap and the like. Examples of the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.

第1実施形態に係るイミド−ウレア化合物及び第3実施形態に係るグリース用増ちょう剤は、耐熱性に優れることから、高温下で使用される等速ギヤ用、変速ギヤ用、製鉄設備用、玉軸受、ころ軸受等のグリースの増ちょう剤として特に好ましく使用される。これらの用途における使用温度は、好ましくは−40℃〜300℃、より好ましくは−40℃〜250℃である。   The imide-urea compound according to the first embodiment and the thickener for grease according to the third embodiment are excellent in heat resistance, so that they are for constant speed gears used at high temperatures, for transmission gears, for steel manufacturing facilities, It is particularly preferably used as a grease thickener for ball bearings and roller bearings. The use temperature in these applications is preferably -40 ° C to 300 ° C, more preferably -40 ° C to 250 ° C.

[第4実施形態:グリース組成物]
本発明の第4実施形態に係るグリース組成物は、潤滑油基油と、上記一般式(1)で表されるイミド−ウレア化合物とを含有し、該イミド−ウレア化合物の含有量がグリース組成物全量基準で2〜50質量%のものである。
[Fourth embodiment: grease composition]
A grease composition according to a fourth embodiment of the present invention includes a lubricating base oil and an imide-urea compound represented by the above general formula (1), and the content of the imide-urea compound is a grease composition. It is a thing of 2-50 mass% on the basis of the total amount of things.

本実施形態に係るグリース組成物において、一般式(1)で表されるイミド−ウレア化合物の含有量は、グリース組成物全量を基準として2質量%以上、好ましくは5質量%以上であり、また、50質量%以下、好ましくは40質量%以下である。イミド−ウレア化合物の含有量が2質量%に満たない場合は増ちょう剤としての効果が少ないため十分なグリース状とはならず、また50質量%を越えるとグリースとして硬くなりすぎて十分な潤滑性能を発揮することができないため、それぞれ好ましくない。   In the grease composition according to this embodiment, the content of the imide-urea compound represented by the general formula (1) is 2% by mass or more, preferably 5% by mass or more based on the total amount of the grease composition. , 50% by mass or less, preferably 40% by mass or less. If the content of the imide-urea compound is less than 2% by mass, the effect as a thickener is small, so that it does not become a sufficient grease, and if it exceeds 50% by mass, it becomes too hard as a grease and sufficient lubrication Since performance cannot be demonstrated, it is not preferable respectively.

本実施形態に係るグリース組成物の潤滑油基油としては、鉱油および/又は合成油を挙げられる。   Examples of the lubricating base oil of the grease composition according to the present embodiment include mineral oil and / or synthetic oil.

鉱油としては、石油精製業の潤滑油製造プロセスで通常行われている方法により得られる、たとえば、原油を常圧蒸留および減圧蒸留して得られた潤滑油留分を溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理などの処理を1つ以上行って精製したものが挙げられる。   Mineral oil can be obtained by a method commonly used in the oil refining industry's lubricating oil production process. For example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation can be desolvated, solvent extracted, Examples include those purified by one or more treatments such as hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment.

また、合成油の具体例としてはポリブテン、1−オクテンオリゴマー、1−デセンオリゴマー等のポリα−オレフィン又はこれらの水素化物;ジトリデシルグルタレート、ジ2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ3−エチルヘキシルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネートなどのポリオールエステル;アルキルナフタレン;アルキルベンゼン、ポリオキシアルキレングリコール;ポリフェニルエーテル;ジアルキルジフェニルエーテル;シリコーン油;又はこれらの混合物が挙げられる。   Specific examples of synthetic oils include poly-α-olefins such as polybutene, 1-octene oligomer, 1-decene oligomer or hydrides thereof; ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, Diesters such as di3-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate; alkylnaphthalenes; alkylbenzenes, polyoxyalkylene glycols; Polyphenyl ethers; dialkyl diphenyl ethers; silicone oils; or mixtures thereof.

高温での耐久性の観点から、合成油が好ましく、ポリオールエステル、ポリフェニルエーテル、アルキルジフェニルエーテル、アルキルナフタレンがより好ましい。   From the viewpoint of durability at high temperatures, synthetic oils are preferable, and polyol esters, polyphenyl ethers, alkyl diphenyl ethers, and alkyl naphthalenes are more preferable.

潤滑油基油の100℃での動粘度は、好ましくは2〜40mm/s、より好ましくは3〜20mm/sである。また、潤滑油基油の粘度指数は、好ましくは90以上、より好ましくは100以上である。 Kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 2 to 40 mm 2 / s, more preferably 3 to 20 mm 2 / s. The viscosity index of the lubricating base oil is preferably 90 or higher, more preferably 100 or higher.

なお、本実施形態に係るグリ−ス組成物は、その性質を損ねることがない限り、さらに性能を向上させるために必要に応じて、上記一般式(1)で表されるイミド−ウレア化合物以外の増ちょう剤、固体潤滑剤、極圧剤、酸化防止剤、油性剤、さび止め剤、粘度指数向上剤、清浄分散剤などを含有することができる。   In addition, as long as the grease composition which concerns on this embodiment does not impair the property, it is other than the imide-urea compound represented by the said General formula (1) as needed in order to improve a performance further. Thickeners, solid lubricants, extreme pressure agents, antioxidants, oily agents, rust inhibitors, viscosity index improvers, detergent dispersants and the like.

上記一般式(1)で表されるイミド−ウレア化合物以外の増ちょう剤としては、金属石けん、複合金属石けん等の石けん系増ちょう剤、;ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等の非石けん系増ちょう剤等、あらゆる増ちょう剤が使用可能である。前記石けん系増ちょう剤としては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また前記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。さらに、上記一般式(1)で表されるイミド−ウレア化合物以外のイミド−ウレア化合物を含有してもよい。   Examples of the thickener other than the imide-urea compound represented by the general formula (1) include soap thickeners such as metal soap and composite metal soap; Benton, silica gel, urea compound, urea / urethane compound, urethane Any thickeners such as non-soap thickeners such as compounds and imide compounds can be used. Examples of the soap-based thickener include sodium soap, calcium soap, aluminum soap, lithium soap and the like. Examples of the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof. Furthermore, you may contain imide-urea compounds other than the imide-urea compound represented by the said General formula (1).

固体潤滑剤としては具体的には例えば、黒鉛、カーボンブラック、フッ化黒鉛、ポリテトラフロロエチレン、二硫化モリブデン、硫化アンチモン、アルカリ(土類)金属ほう酸塩などが挙げられる。   Specific examples of the solid lubricant include graphite, carbon black, fluorinated graphite, polytetrafluoroethylene, molybdenum disulfide, antimony sulfide, and alkali (earth) metal borate.

極圧剤としては具体的には、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛等の有機亜鉛化合物;ジハイドロカルビルポリサルファイド、硫化エステル、チアゾール化合物、チアジアゾール化合物等の硫黄含有化合物;ホスフェート、ホスファイト類などが挙げられる。   Specific examples of the extreme pressure agent include organic zinc compounds such as zinc dialkyldithiophosphate and zinc diaryldithiophosphate; sulfur-containing compounds such as dihydrocarbyl polysulfide, sulfide ester, thiazole compound and thiadiazole compound; phosphates and phosphites Etc.

酸化防止剤としては具体的には、2、6−ジ−t−ブチルフェノール、2、6−ジ−t−ブチル−p−クレゾールなどのフエノール系化合物;ジアルキルジフェニルアミン、フェニル−α−ナフチルアミン、p−アルキルフェニル−α−ナフチルアミンなどのアミン系化合物;硫黄系化合物;フェノチアジン系化合物などが挙げられる。   Specific examples of the antioxidant include phenol compounds such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-p-cresol; dialkyldiphenylamine, phenyl-α-naphthylamine, p- Amine compounds such as alkylphenyl-α-naphthylamine; sulfur compounds; phenothiazine compounds.

油性剤としては具体的には、ラウリルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミン、オレイルアミンなどのアミン類;ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコールなどの高級アルコール類;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸などの高級脂肪酸類;ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、オレイン酸メチルなどの脂肪酸エステル類;ラウリルアミド、ミリスチルアミド、パルミチルアミド、ステアリルアミド、オレイルアミドなどのアミド類;油脂などが挙げられる。   Specific examples of oily agents include amines such as laurylamine, myristylamine, palmitylamine, stearylamine, oleylamine; higher alcohols such as lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol; laurin Higher fatty acids such as acid, myristic acid, palmitic acid, stearic acid, oleic acid; fatty acid esters such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate; laurylamide, myristylamide, Amides such as palmitylamide, stearylamide, oleylamide; oils and fats.

さび止め剤としては具体的には、金属石けん類;ソルビタン脂肪酸エステルなどの多価アルコール部分エステル類;アミン類;リン酸;リン酸塩などが挙げられる。   Specific examples of the rust inhibitor include metal soaps; polyhydric alcohol partial esters such as sorbitan fatty acid esters; amines; phosphoric acid;

粘度指数向上剤としては具体的には、ポリメタクリレート、ポリイソブチレン、ポリスチレンなどが挙げられる。   Specific examples of the viscosity index improver include polymethacrylate, polyisobutylene, and polystyrene.

清浄分散剤としては具体的には、スルフォネート、サリシレート、フェネート等が例示される。   Specific examples of the cleaning dispersant include sulfonates, salicylates, phenates, and the like.

本実施形態に係るグリース組成物を調製するには、例えば、潤滑油基油に、一般式(1)で表されるイミド−ウレア化合物又は当該イミド−ウレア化合物を含有する増ちょう剤、さらに必要に応じてその他の添加剤を混合し、その混合物を撹拌した後、ロールミル等を通すことにより得ることができる。   In order to prepare the grease composition according to the present embodiment, for example, the lubricant base oil contains the imide-urea compound represented by the general formula (1) or a thickener containing the imide-urea compound, and further necessary. Depending on the conditions, other additives may be mixed and the mixture stirred and then passed through a roll mill or the like.

第4実施形態に係るグリース組成物は、耐熱性に優れることから、高温下で使用される等速ギヤ用、変速ギヤ用、自動車用、製鉄設備用、産業機械用、精密機械用、玉軸受、ころ軸受等のグリースとして特に好ましく使用される。これらの用途における使用温度は、好ましくは−40℃〜300℃、より好ましくは−40℃〜250℃である。   Since the grease composition according to the fourth embodiment is excellent in heat resistance, it is used for constant speed gears, transmission gears, automobiles, steelmaking equipment, industrial machinery, precision machinery, ball bearings used at high temperatures. It is particularly preferably used as grease for roller bearings and the like. The use temperature in these applications is preferably -40 ° C to 300 ° C, more preferably -40 ° C to 250 ° C.

以下、実施例および比較例に基づいて本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1]
下記式(11)で表される4−ニトロフタル酸無水物10.7gと下記式(12)で表されるドデシルアミン10.8gを混合後、室温から加熱し150℃に到達後2時間反応させた。続いて、150℃を維持したまま、0.7kPaまで徐々に減圧し、水分や未反応ドデシルアミンを除去した。2時間減圧を維持した後に冷却したところ、下記式(13)で表されるニトロ化イミド中間体を含むニトロ化イミド中間体−1を固形物として得た(収量:19.7g)。得られたニトロ化イミド中間体−1のうち10gを、酢酸エチル溶媒150mLに溶解し、パラジウム5重量%−カーボン担持触媒1gを加えて、オートクレーブを用いて水素化反応を行った。水素圧3MPaを維持し、室温から反応を行ったところ、反応熱で45℃まで液温が上昇した後、温度が徐々に低下した。3時間後には室温まで温度が低下し、水素圧の低下がなくなったので、反応を停止した。溶液から触媒をろ別し、ロータリーエバポレーターで溶媒を留去し、8.8gの下記式(14)で表されるアミノ化イミド中間体を含むアミノ化イミド中間体−1を得た。得られたアミノ化イミド中間体7.9gと下記式(15)で表される2,4−ジイソシアナトトルエン1.7gと下記式(16)で表される2,6−ジイソシアナトトルエン0.4gの混合物とを100℃動粘度が13mm/sのジフェニルエーテル基油30gに混合し、160℃で2時間反応させた。室温まで冷却後、下記式(17)と(18)を重量比で8:2で含むイミド−ウレア化合物−1を含むグリース状物質40gを得た。このグリース状物質からヘキサンにてジフェニルエーテル基油を除去し、イミド−ウレア化合物−1を得た。

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658
[Example 1]
After mixing 10.7 g of 4-nitrophthalic anhydride represented by the following formula (11) and 10.8 g of dodecylamine represented by the following formula (12), the mixture is heated from room temperature to reach 150 ° C. and reacted for 2 hours. It was. Subsequently, while maintaining 150 ° C., the pressure was gradually reduced to 0.7 kPa to remove moisture and unreacted dodecylamine. When it was cooled after maintaining the reduced pressure for 2 hours, the nitrated imide intermediate-1 containing the nitrated imide intermediate represented by the following formula (13) was obtained as a solid (yield: 19.7 g). 10 g of the obtained nitrated imide intermediate-1 was dissolved in 150 mL of ethyl acetate solvent, 1 g of palladium 5 wt% -carbon-supported catalyst was added, and a hydrogenation reaction was performed using an autoclave. When the reaction was performed from room temperature while maintaining a hydrogen pressure of 3 MPa, the temperature gradually decreased after the liquid temperature rose to 45 ° C. by reaction heat. After 3 hours, the temperature dropped to room temperature and the hydrogen pressure did not drop, so the reaction was stopped. The catalyst was filtered off from the solution, and the solvent was distilled off with a rotary evaporator to obtain 8.8 g of aminated imide intermediate-1 containing an aminated imide intermediate represented by the following formula (14). 7.9 g of the obtained aminated imide intermediate, 1.7 g of 2,4-diisocyanatotoluene represented by the following formula (15) and 2,6-diisocyanatotoluene represented by the following formula (16) 0.4 g of the mixture was mixed with 30 g of diphenyl ether base oil having a kinematic viscosity at 100 ° C. of 13 mm 2 / s and reacted at 160 ° C. for 2 hours. After cooling to room temperature, 40 g of a grease-like substance containing imide-urea compound-1 containing the following formulas (17) and (18) at a weight ratio of 8: 2 was obtained. Diphenyl ether base oil was removed from this grease-like substance with hexane to obtain imide-urea compound-1.
Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

イミド−アミド化合物−1の赤外吸収スペクトル(日本分光株式会社製、FT/IR−410)をKBr法にて測定した。その結果を図1に示す。図1に示したとおり、環状イミド基に由来する約1700cm−1および約1760cm−1の吸収、並びにウレア基に由来する約1650cm−1の吸収が確認され、反応原料のイソシアネート基に帰属される約2270cm−1の吸収等は確認されなかった。この結果から、得られた固形物がイミド−ウレア化合物であることが確認された。 The infrared absorption spectrum of imide-amide compound-1 (manufactured by JASCO Corporation, FT / IR-410) was measured by the KBr method. The result is shown in FIG. As shown in FIG. 1, absorption of about 1700 cm −1 and about 1760 cm −1 derived from the cyclic imide group and absorption of about 1650 cm −1 derived from the urea group were confirmed, and attributed to the isocyanate group of the reaction raw material. Absorption at about 2270 cm −1 was not confirmed. From this result, it was confirmed that the obtained solid was an imide-urea compound.

また、イミド−ウレア化合物−1についてFD−MS測定(日本電子株式会社製JMS−T100GC、イオン化方法:FD+、溶媒:o−n−プロピルフェノール)を実施した。一般式(14)で表されるイミド−ウレア化合物に帰属されるピークは、全イオン強度に対して97%であった。   Further, imide-urea compound-1 was subjected to FD-MS measurement (JEOL Ltd. JMS-T100GC, ionization method: FD +, solvent: on-propylphenol). The peak attributed to the imide-urea compound represented by the general formula (14) was 97% with respect to the total ionic strength.

[実施例2]
実施例2においては一般式(10)で表されるジイソシアネートとして上記式(15)、(16)から下記式(19)で表されるジイソシアネート変更し、上記式(14)で表せられるアミノ化イミド中間体−1を7.3gと下記式(19)で表せられるジイソシアネートを2.7g用いたこと以外は実施例1と同様にして、下記一般式(20)で表されるイミド−ウレア化合物−2を含むグリース状物質40gを得た。

Figure 0005934658

Figure 0005934658
[Example 2]
In Example 2, the diisocyanate represented by the following formula (19) was changed from the above formulas (15) and (16) as the diisocyanate represented by the general formula (10), and the aminated imide represented by the above formula (14) Imide-urea compound represented by the following general formula (20) in the same manner as in Example 1 except that 7.3 g of intermediate-1 and 2.7 g of diisocyanate represented by the following formula (19) were used. 40 g of a grease-like substance containing 2 was obtained.
Figure 0005934658

Figure 0005934658

実施例2で得られたイミド−ウレア化合物−2を含むグリース状物質から、実施例1と同様にして、イミド−ウレア化合物−2を取り出し、赤外吸収スペクトルを測定したところ、いずれのイミド−ウレア化合物においても環状イミド基に由来する約1700cm−1および、約1760cm−1、およびウレア基に由来する約1650cm−1の吸収が確認され、反応原料のイソシアネート基に帰属される約2270cm−1の吸収等は確認されなかった。これらの結果から、実施例2で得られた固形物がイミド−ウレア化合物であることが確かめられた。 From the grease-like substance containing the imide-urea compound-2 obtained in Example 2, the imide-urea compound-2 was taken out in the same manner as in Example 1, and the infrared absorption spectrum was measured. Also in the urea compound, absorption of about 1700 cm −1 and about 1760 cm −1 derived from the cyclic imide group and about 1650 cm −1 derived from the urea group was confirmed, and about 2270 cm −1 attributed to the isocyanate group of the reaction raw material. No absorption or the like was confirmed. From these results, it was confirmed that the solid material obtained in Example 2 was an imide-urea compound.

[比較例1]
4,4’−ジイソシアナトジフェニルメタン55.8gに対し、シクロヘキシルアミン44.2gを100℃動粘度が13mm/sのジフェニルエーテル基油300g中にて反応させグリース状物質を得た。グリース状物質からヘキサンにてジフェニルエーテル基油を除去し、式(21)で表されるウレア化合物−1を100g得た。

Figure 0005934658
[Comparative Example 1]
45.8 g of cyclohexylamine was reacted with 55.8 g of 4,4′-diisocyanatodiphenylmethane in 300 g of diphenyl ether base oil having a kinematic viscosity at 100 ° C. of 13 mm 2 / s to obtain a grease-like substance. Diphenyl ether base oil was removed from the grease-like substance with hexane to obtain 100 g of urea compound-1 represented by the formula (21).
Figure 0005934658

[比較例2]
4,4’−ジイソシアナトジフェニルメタン31.7gに対し、オクタデシルアミン68.3gを100℃動粘度が13mm/sのジフェニルエーテル基油300g中にて反応させグリース状物質を得た。グリース状物質からヘキサンにてジフェニルエーテル基油を除去し、式(22)で表されるウレア化合物−2を100g得た。

Figure 0005934658
[Comparative Example 2]
To 31.7 g of 4,4′-diisocyanatodiphenylmethane, 68.3 g of octadecylamine was reacted in 300 g of diphenyl ether base oil having a kinematic viscosity at 100 ° C. of 13 mm 2 / s to obtain a grease-like substance. Diphenyl ether base oil was removed from the grease-like substance with hexane to obtain 100 g of urea compound-2 represented by the formula (22).
Figure 0005934658

[耐熱性評価]
実施例1、2で得られたイミド−ウレア化合物−1、2及び比較例1、2で得られたウレア化合物−1、2を、熱分析装置(島津製作所製DTG60、昇温速度:5℃/分、雰囲気ガス:窒素)にて5%分解温度を測定した。得られた結果を表1〜2に示す。表中、分解温度が高いほど耐熱性に優れることを意味する。
[Heat resistance evaluation]
The imide-urea compounds-1 and 2 obtained in Examples 1 and 2 and the urea compounds-1 and 2 obtained in Comparative Examples 1 and 2 were subjected to thermal analysis (DTG60, manufactured by Shimadzu Corporation, heating rate: 5 ° C). / Min, atmospheric gas: nitrogen), and 5% decomposition temperature was measured. The obtained result is shown to Tables 1-2. In the table, the higher the decomposition temperature, the better the heat resistance.

[増ちょう能評価]
実施例1、2で得られたイミド−ウレア化合物−1、2及び比較例1、2で得られたヘキサンにてジフェニルエーテル基油を除去する前のグリース状物質を、ロールミルを通し基油中に均一に分散し得られた物質を、JIS2220のちょう度測定法により60混和(60W)後のちょう度の測定をした。得られた結果を表1〜2に示す。
[Capacity evaluation]
The grease-like substance before removing the diphenyl ether base oil with hexane obtained in Examples 1 and 2 and hexane obtained in Comparative Examples 1 and 2 was passed through a roll mill into the base oil. The substance obtained by uniform dispersion was measured for consistency after 60 mixing (60 W) by the consistency measuring method of JIS2220. The obtained result is shown to Tables 1-2.

Figure 0005934658
Figure 0005934658

Figure 0005934658
Figure 0005934658

表1、2に示した結果から、実施例1、2で得られたイミド−ウレア化合物−1、2は、比較例1、2で得られたウレア化合物−1、2と比較して、耐熱性に優れること、また、グリースの増ちょう剤として使用可能なことがわかる。

From the results shown in Tables 1 and 2, the imide-urea compounds -1 and 2 obtained in Examples 1 and 2 were more resistant to heat than the urea compounds -1 and 2 obtained in Comparative Examples 1 and 2. It can be seen that it has excellent properties and can be used as a thickener for grease.

Claims (5)

下記一般式(3)で表されるイミド−ウレア化合物。
Figure 0005934658

[式中、X は2価の有機基を示し、R 及びR は1価の有機基を示し、R 及びR は同一でも異なっていてもよい。]
An imide-urea compound represented by the following general formula (3) .
Figure 0005934658

[ Wherein , X 2 represents a divalent organic group, R 1 and R 2 represent a monovalent organic group, and R 1 and R 2 may be the same or different. ]
X 2 が、脂肪族、芳香族炭化水素または複素環化合物、若しくはこれらの誘導体に2つのイソシアネート基が付加された化合物から2つのイソシアネート基を除いた2価の残基であり、Is a divalent residue obtained by removing two isocyanate groups from an aliphatic, aromatic hydrocarbon or heterocyclic compound, or a compound obtained by adding two isocyanate groups to a derivative thereof,
R 1 及びRAnd R 2 が、脂肪族モノアミン、脂環式モノアミン又は芳香族モノアミンから1つのアミノ基を除いた1価の残基である、請求項1に記載のイミド−ウレア化合物。The imide-urea compound according to claim 1, wherein is a monovalent residue obtained by removing one amino group from an aliphatic monoamine, alicyclic monoamine or aromatic monoamine.
下記一般式(4)で表されるニトロフタル酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるニトロフタル酸無水物イミド誘導体を得、前記ニトロフタル酸無水物の水素化還元により下記一般式(7)で表されるアミノフタル酸無水物イミド誘導体を得る第1の工程と、
前記アミノフタル酸無水物イミド誘導体と下記一般式(10)で表されるイソシアネートとを反応させて下記一般式(3)で表されるイミド−ウレア化合物を得る第2の工程と、
を備えるイミド−ウレア化合物の製造方法。
Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[式中、X は二価の有機基を示す。]
Figure 0005934658

[式中、X は2価の有機基を示し、R 及びR は1価の有機基を示し、R 及びR は同一でも異なっていてもよい。]
A nitrophthalic anhydride imide derivative represented by the following general formula (6) is obtained by reacting a nitrophthalic anhydride represented by the following general formula (4) with a monoamine represented by the following general formula (5), A first step of obtaining an aminophthalic anhydride imide derivative represented by the following general formula (7) by hydrogenation reduction of the nitrophthalic anhydride;
A second step of obtaining a urea compound, - imide and di isocyanate is reacted represented by the following general formula (3) represented by the aminophthalic anhydride imide derivatives and the following general formula (10)
A process for producing an imide-urea compound.
Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

Figure 0005934658

[Wherein, X 2 represents a divalent organic group. ]
Figure 0005934658

[ Wherein , X 2 represents a divalent organic group, R 1 and R 2 represent a monovalent organic group, and R 1 and R 2 may be the same or different. ]
請求項1又は2に記載のイミド−ウレア化合物を含有するグリース用増ちょう剤。   A thickener for grease containing the imide-urea compound according to claim 1. 潤滑油基油と、請求項1又は2に記載のイミド−ウレア化合物とを含有するグリース組成物。
A grease composition containing a lubricating base oil and the imide-urea compound according to claim 1.
JP2013014180A 2013-01-29 2013-01-29 IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION Active JP5934658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014180A JP5934658B2 (en) 2013-01-29 2013-01-29 IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014180A JP5934658B2 (en) 2013-01-29 2013-01-29 IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION

Publications (2)

Publication Number Publication Date
JP2014144925A JP2014144925A (en) 2014-08-14
JP5934658B2 true JP5934658B2 (en) 2016-06-15

Family

ID=51425487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014180A Active JP5934658B2 (en) 2013-01-29 2013-01-29 IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION

Country Status (1)

Country Link
JP (1) JP5934658B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567110B (en) * 2015-12-04 2017-01-21 張綺蘭 Resin composition, insulating matrix comprising the same and circuit board using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL259369A (en) * 1959-12-23
US3857947A (en) * 1972-08-14 1974-12-31 Stauffer Chemical Co Fungicidal active phthalimides
JPS54114506A (en) * 1978-02-28 1979-09-06 Nippon Koyu Kk Lubricating grease composition
JPS56139592A (en) * 1981-03-18 1981-10-31 Nippon Kouyu:Kk Lubricating grease composition
GB9823873D0 (en) * 1998-10-30 1998-12-30 Pharmacia & Upjohn Spa 2-ureido-thiazole derivatives,process for their preparation,and their use as antitumour agents
US6265359B1 (en) * 2000-01-19 2001-07-24 Anbanandam Parthiban Imide-Diurea and imide-urethane urea grease thickeners and organic solvent free process for preparation thereof
HN2001000008A (en) * 2000-01-21 2003-12-11 Inc Agouron Pharmaceuticals AMIDA COMPOSITE AND PHARMACEUTICAL COMPOSITIONS TO INHIBIT PROTEINKINASES, AND THE INSTRUCTIONS FOR USE
WO2002070467A1 (en) * 2001-02-26 2002-09-12 4Sc Ag Derivatives of diphenylurea, diphenyloxalic acid diamide and diphenylsulfuric acid diamide and their use as medicaments
CN1838958A (en) * 2003-08-22 2006-09-27 贝林格尔·英格海姆药物公司 Methods of treating COPD and pulmonary hypertension
US7244759B2 (en) * 2004-07-28 2007-07-17 Celgene Corporation Isoindoline compounds and methods of making and using the same
WO2009090548A2 (en) * 2008-01-17 2009-07-23 Glenmark Pharmaceuticals, S.A. 3-azabicyclo [3.1.0] hexane derivatives as vanilloid receptor ligands
EP2662378B1 (en) * 2011-01-06 2018-10-10 JX Nippon Oil & Energy Corporation Imide compound, method for producing same, thickening agent for grease, and grease composition

Also Published As

Publication number Publication date
JP2014144925A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5860818B2 (en) IMIDE COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINKING AGENT AND GREASE COMPOSITION
US9150809B2 (en) Thickener, grease, method for producing the same, and grease-packed bearing
US6667281B2 (en) Grease composition
EP2687584B1 (en) Grease composition
JP5826626B2 (en) Grease composition
JP2001342483A (en) Grease composition
KR101487032B1 (en) Grease
US6020290A (en) Grease composition for rolling bearing
US20100029526A1 (en) Urea grease composition
EP2913385A1 (en) Grease composition
EP2376611B1 (en) Friction modifiers and/or wear inhibitors derived from hydrocarbyl amines and glycerol carbonate
JPH10273690A (en) Grease composition for rolling bearing
JP6211100B2 (en) Urea grease manufacturing method
EP2873719B1 (en) Grease composition
JPH11116981A (en) Roller bearing grease composition
JP5934658B2 (en) IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION
JP5908786B2 (en) IMIDE-AMIDE COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER
WO2013017528A1 (en) Grease composition
JP4698422B2 (en) Alkyl substituted diphenyl ether compounds and compositions containing the same
JP2007332383A (en) Grease composition
JP2007332384A (en) Grease composition
JP2000087071A (en) Grease composition
JP2023152773A (en) Grease composition and method for producing grease composition
WO2015156393A1 (en) Lubricant composition
JP6887758B2 (en) Grease composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5934658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250