JP5933273B2 - Measuring method of surface shape of sample by scanning white interferometer - Google Patents

Measuring method of surface shape of sample by scanning white interferometer Download PDF

Info

Publication number
JP5933273B2
JP5933273B2 JP2012010899A JP2012010899A JP5933273B2 JP 5933273 B2 JP5933273 B2 JP 5933273B2 JP 2012010899 A JP2012010899 A JP 2012010899A JP 2012010899 A JP2012010899 A JP 2012010899A JP 5933273 B2 JP5933273 B2 JP 5933273B2
Authority
JP
Japan
Prior art keywords
phase
envelope
sample
peak position
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010899A
Other languages
Japanese (ja)
Other versions
JP2013148533A (en
Inventor
直樹 水谷
直樹 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012010899A priority Critical patent/JP5933273B2/en
Publication of JP2013148533A publication Critical patent/JP2013148533A/en
Application granted granted Critical
Publication of JP5933273B2 publication Critical patent/JP5933273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、走査型白色干渉計を用いて、誘電体や金属の混在した試料の表面形状を測定する方法に関するものであり、特に、誘電体や金属の混在した試料の表面形状を測定する際の走査型白色干渉計における反射光の位相変化補正方法に関する。   The present invention relates to a method for measuring the surface shape of a sample mixed with a dielectric or metal using a scanning white interferometer, and in particular, when measuring the surface shape of a sample mixed with a dielectric or metal. The present invention relates to a method for correcting a phase change of reflected light in a scanning white light interferometer.

本明細書において、用語“試料の表面形状”は試料の高さ、段差、膜厚、表面粗さの概念を包含して意味するものとする。   In this specification, the term “surface shape of the sample” is meant to include the concept of the height, level difference, film thickness, and surface roughness of the sample.

走査型白色干渉計は、可干渉性の少ない白色光を光源として用い、マイケルソン型や、ミラウ型などの等光路干渉計を利用して試料の表面形状を非接触三次元測定できる装置であり、ウエハなどの表面形状の測定に用いられる。走査型白色干渉計の原理を添付図面の図1に示し、1は光源であり、高輝度白色光源から成っている。2は光源1からの白色光に対するフィルターであり、3はビームスプリッター、4はマイケルソン型干渉計である。マイケルソン型干渉計4は対物レンズ4aとビームスプリッター4bとミラー4cを備えている。マイケルソン型干渉計4には、マイケルソン型干渉計4を垂直走査するピエゾアクチュエーター5が設けられている。また図1において6は受光素子を成すCCDカメラ、7は試料8を支持する試料ホルダーである。   A scanning white light interferometer is a device that uses non-coherent white light as a light source and can measure the surface shape of a sample in a non-contact manner using a Michelson-type or Mirau-type iso-optical path interferometer. Used for measuring the surface shape of a wafer or the like. The principle of the scanning white interferometer is shown in FIG. 1 of the accompanying drawings. Reference numeral 1 denotes a light source, which is a high-intensity white light source. 2 is a filter for white light from the light source 1, 3 is a beam splitter, and 4 is a Michelson interferometer. The Michelson interferometer 4 includes an objective lens 4a, a beam splitter 4b, and a mirror 4c. The Michelson interferometer 4 is provided with a piezo actuator 5 that vertically scans the Michelson interferometer 4. In FIG. 1, reference numeral 6 denotes a CCD camera that forms a light receiving element, and reference numeral 7 denotes a sample holder that supports a sample 8.

図1に示す装置構成において、光学顕微鏡の対物レンズ4aの下に干渉計が構成され、対物レンズ4a又はミラー4cを走査することにより干渉波形が得られる。すなわち、対物レンズ4aを走査しながら光の強度をCCDカメラ6で動画として撮影することで、CCDカメラ6の各画素での干渉波形が得られる。得られた干渉波形のピークの位置は試料の表面の高さに対応するので、各画素でそのピーク位置を求めれば、撮影した領域で表面高さが得られる。   In the apparatus configuration shown in FIG. 1, an interferometer is formed under the objective lens 4a of the optical microscope, and an interference waveform is obtained by scanning the objective lens 4a or the mirror 4c. That is, an interference waveform at each pixel of the CCD camera 6 can be obtained by photographing the intensity of light as a moving image with the CCD camera 6 while scanning the objective lens 4a. Since the peak position of the obtained interference waveform corresponds to the height of the surface of the sample, the surface height can be obtained in the photographed area by obtaining the peak position for each pixel.

干渉する2つの光路で反射による位相変化がなければ、光路差0で光は強め合い、干渉波形のピークとなる。しかし、試料表面だけでなく、ミラーでの反射時の位相変化もあり、一般的には光路差0で干渉波形が最大になるとは限らない(包絡線は最大になる)。反射時の位相変化があっても、試料が単一の物質なら、位相変化量は試料全面に渡って一定なので、面内での相対高さ関係には影響がなく、干渉波形の位相から表面高さを算出しても問題ない。干渉波形の位相を利用する方法は、複数の複素屈折率の異なる物質から成る試料で問題となる(非特許文献1、2参照)。   If there is no phase change due to reflection in the two interfering optical paths, the lights strengthen each other with an optical path difference of 0, resulting in the peak of the interference waveform. However, there is not only the sample surface but also a phase change at the time of reflection by a mirror, and in general, the interference waveform is not always maximized when the optical path difference is 0 (the envelope is maximized). Even if there is a phase change at the time of reflection, if the sample is a single substance, the amount of phase change is constant over the entire surface of the sample, so there is no effect on the relative height relationship within the surface, and the phase from the interference waveform is changed to the surface. There is no problem even if the height is calculated. The method using the phase of the interference waveform causes a problem with a plurality of samples made of substances having different complex refractive indexes (see Non-Patent Documents 1 and 2).

干渉波形の包絡線は反射光の位相変化の影響を受けず、光路差0で最大になるので、「包絡線のピーク位置」から表面高さを求めればよい。「包絡線のピーク位置」を利用することは、複数の複素屈折率の異なる物質から成る試料では有効である。しかし、包絡線は干渉波形の複数の山の頂点付近をつないだようなものなので、その広がりの幅が広いため、そのピーク位置の算出の精度は低くなる。つまり、包絡線を利用する方法は干渉波形の位相を利用する方法よりも、表面高さの算出精度は低い。そこで、本発明者は先にそれら2つの方法を結びつけて互いを補う方法を提案した(特許文献1参照)。   Since the envelope of the interference waveform is not affected by the phase change of the reflected light and becomes maximum when the optical path difference is 0, the surface height may be obtained from the “peak position of the envelope”. The use of “the peak position of the envelope” is effective for a sample made of a plurality of substances having different complex refractive indexes. However, since the envelope is like connecting the apexes of a plurality of peaks in the interference waveform, the width of the spread is wide, so the accuracy of calculating the peak position is low. That is, the method of using the envelope curve is less accurate in calculating the surface height than the method of using the phase of the interference waveform. Therefore, the present inventor previously proposed a method of connecting these two methods to complement each other (see Patent Document 1).

対物レンズ又はミラーを走査しながらデータを収集する際の間隔は、通常は干渉周期の1/5以下である。干渉周期の1/2をナイキスト間隔というが、その0.4倍以下である。収集間隔が狭くてデータ数が多いほど表面高さの算出精度は向上するが、収集時間が長くなるという問題があるので、収集間隔を広げて表面高さを求める試みがなされている。   The interval at which data is collected while scanning the objective lens or mirror is usually 1/5 or less of the interference period. One half of the interference period is called the Nyquist interval, which is 0.4 times or less. As the collection interval is narrower and the number of data is larger, the calculation accuracy of the surface height is improved. However, since there is a problem that the collection time becomes longer, an attempt has been made to obtain the surface height by increasing the collection interval.

収集間隔をナイキスト間隔よりも広くすると元の干渉波形は得られないので、通常の方法では表面高さを算出できないが、それを克服する方法がいくつか考案されている(特許文献2、非特許文献1参照)。そして本発明者も先にヒルベルト変換を用いて収集波形の位相と包絡線を算出し、それらから表面高さを求める方法を提案した(特許文献3、4参照)。   Since the original interference waveform cannot be obtained if the collection interval is wider than the Nyquist interval, the surface height cannot be calculated by a normal method, but several methods for overcoming it have been devised (Patent Document 2, Non-Patent Document). Reference 1). The present inventor also previously proposed a method of calculating the phase and envelope of the collected waveform using the Hilbert transform and obtaining the surface height therefrom (see Patent Documents 3 and 4).

この収集間隔をナイキスト間隔よりも広げたとき得られる波形(以後、収集波形と呼ぶ)は干渉波形とは異なるが、その包絡線と位相はヒルベルト変換を用いて算出でき、その包絡線は元の干渉波形のそれに高精度で一致し、その位相は包絡線とある一定の関係で結ばれており、元々位相は高精度に算出できるので、収集波形の位相から表面高さを高精度に求めることができる。   The waveform obtained when this collection interval is expanded beyond the Nyquist interval (hereinafter referred to as the acquisition waveform) is different from the interference waveform, but its envelope and phase can be calculated using the Hilbert transform, and the envelope is It matches the interference waveform with high accuracy, and its phase is connected to the envelope with a certain relationship, and the phase can be calculated with high accuracy from the beginning, so the surface height can be determined with high accuracy from the phase of the acquired waveform. Can do.

その収集間隔がナイキスト間隔よりも広い収集波形の位相も、通常の干渉波形の場合と同様に、試料表面での反射光の位相変化の影響を受ける。通常の干渉波形では、その「位相が0になる走査位置=干渉波形の山の頂点の位置」と「包絡線のピーク位置」との差は、試料表面物質が同一なら、表面高さが変化しても一定であり、異なる表面物質ではその差が異なるだけの単純な関係なので、測定した「位相が0になる走査位置」から表面物質ごとに表面高さ(=「包絡線のピーク位置」)を算出することは困難ではなかった。   The phase of the collected waveform whose collection interval is wider than the Nyquist interval is also affected by the phase change of the reflected light on the sample surface, as in the case of the normal interference waveform. In a normal interference waveform, the difference between the “scan position where the phase is 0 = the peak position of the peak of the interference waveform” and the “peak position of the envelope” is the same as the surface height of the sample if the sample surface material is the same. However, since the difference is different for different surface materials, the surface height (= “envelope peak position”) for each surface material from the measured “scanning position where the phase is 0”. ) Was not difficult to calculate.

しかし、収集間隔がナイキスト間隔よりも広い場合の収集波形では、「位相が0になる走査位置」と「包絡線のピーク位置」との差は一定値ではなく、試料表面高さに依存して変化するので、「位相が0になる走査位置」から表面反射での位相変化分を補正して表面高さを算出することは困難である。   However, in the collected waveform when the collection interval is wider than the Nyquist interval, the difference between the “scan position where the phase is 0” and the “peak position of the envelope” is not a constant value, but depends on the sample surface height. Therefore, it is difficult to calculate the surface height by correcting the phase change due to the surface reflection from the “scanning position where the phase becomes 0”.

特願2011−153435Japanese Patent Application No. 2011-153435 特許第2679876号Japanese Patent No. 2679876 特願2011−152999Japanese Patent Application No. 2011-152999 特願2011−153264Japanese Patent Application No. 2011-153264

吉澤徹、「最新光三次元計測」、2006年、朝倉書店 第5章2 光干渉法、p.71Toru Yoshizawa, “Latest optical 3D measurement”, 2006, Asakura Shoten, Chapter 5, 2 Optical Interferometry, p. 71 土井琢磨他、光学、20(9)603 − 606、1991.Takuma Doi et al., Optics, 20 (9) 603-606, 1991.

上述のように白色干渉計において収集した波形の位相を用いることにより試料表面高さの算出精度は向上するが、表面に金属があると反射光の位相が変化して、異種物質が混在する試料では表面形状を正しく算出できないという問題がある。   As described above, the calculation accuracy of the sample surface height is improved by using the phase of the waveform collected in the white interferometer. However, if there is a metal on the surface, the phase of the reflected light will change and the sample will be mixed with different substances However, there is a problem that the surface shape cannot be calculated correctly.

そこで、本発明は、かかる問題を解決し、データ収集時間を短縮するために収集間隔をナイキスト間隔よりも広くした場合に伴う問題を解決した走査型白色干渉計による試料の表面形状の測定方法を提供することを目的としている。   Therefore, the present invention provides a method for measuring the surface shape of a sample with a scanning white interferometer that solves such problems and solves the problems associated with making the collection interval wider than the Nyquist interval in order to shorten the data collection time. It is intended to provide.

上記の目的を達成するために、本発明によれば、対物レンズの下にビームスプリッター及びミラーを配し、試料表面を含めて、マイケルソン型などの干渉計を構成し、試料までの距離又はミラーまでの距離をピエゾアクチュエーターで走査し、それによりできる干渉波形をCCDカメラで撮影して動画ファイルデータとして記録し、該動画ファイルデータに基き、試料の表面形状を測定する、走査型白色干渉計による試料の表面形状の測定方法において、
CCDカメラを用いてデータ収集間隔をナイキスト間隔(干渉周期の半分)よりも広くして多数の動画ファイルデータを測定し、
こうして測定して収集した波形からヒルベルト変換を用いて算出した収集波形の「包絡線のピーク位置」と「位相が0の走査位置」との間の直線関係の傾きをaとして、
式(「位相が0の走査位置」−「包絡線のピーク位置」)/(−a + 1) +「包絡線のピーク位置」を、収集データ配列の指標を単位として表し、これを試料の表面上に対応する各画素で求めて、相互に比較することにより各画素の試料表面が他の画素の試料表面と同種であるか異種であるかを判定し、
「包絡線のピーク位置」対「位相が0の走査位置」の関係を表わす直線と、「位相が0の走査位置」=「包絡線のピーク位置」の直線とが上記式の小数部で交わり、該小数部を同一物質の多数の画素に渡って平均値を求め、上記の傾きaについても多数のデータから平均値を求め、
「位相が0の走査位置」の測定値から、反射光の位相変化に依存せず正しい試料表面高さを表わす「包絡線のピーク位置」を求めることにより試料の表面形状を測定すること
を特徴としている。
In order to achieve the above object, according to the present invention, a beam splitter and a mirror are arranged under the objective lens, and a Michelson type interferometer including the sample surface is constructed, and the distance to the sample or Scanning white interferometer that scans the distance to the mirror with a piezo actuator, records the resulting interference waveform with a CCD camera, records it as movie file data, and measures the surface shape of the sample based on the movie file data In the method of measuring the surface shape of the sample by
Using a CCD camera, the data collection interval is wider than the Nyquist interval (half the interference period), and a large number of video file data is measured.
The slope of the linear relationship between the “envelope peak position” and the “scan position where the phase is 0” of the collected waveform calculated using the Hilbert transform from the waveform thus measured and collected is defined as a.
The expression (“scan position with phase 0” − “envelope peak position”) / (− a + 1) + “envelope peak position” is expressed in units of the collected data array index, which is expressed as By determining each corresponding pixel on the surface and comparing each other, determine whether the sample surface of each pixel is the same type or different from the sample surface of other pixels,
A straight line representing the relationship between “envelope peak position” vs. “scanning position with phase 0” and a straight line “scanning position with phase 0” = “peak position of envelope” intersect at the decimal part of the above formula. In addition, the average value is calculated over a large number of pixels of the same substance for the decimal part, and the average value is determined from a large number of data for the slope a.
The surface shape of the sample is measured by determining the “peak position of the envelope” representing the correct sample surface height from the measured value of “scanning position where the phase is 0” without depending on the phase change of the reflected light. It is said.

データ収集間隔がナイキスト間隔よりも広くなると、収集した波形は干渉波形とは異なり、本明細書において「収集波形」と記載する。収集波形の位相も表面反射での位相変化に影響されるので、試料表面高さの算出値に影響が出る。本発明は、その位相変化に影響されず正しい表面高さを算出する方法に関する。   When the data collection interval becomes wider than the Nyquist interval, the collected waveform is different from the interference waveform and is referred to as “collected waveform” in this specification. Since the phase of the collected waveform is also affected by the phase change due to the surface reflection, the calculated value of the sample surface height is affected. The present invention relates to a method for calculating a correct surface height without being affected by the phase change.

収集波形からヒルベルト変換を用いて求めた包絡線は、本来の干渉波形の包絡線に高い精度で一致するので、そのピーク位置を基準として用いる。その「包絡線のピーク位置」が試料表面高さに対応する。
収集波形の位相もヒルベルト変換を用いて算出し、その位相が0になる走査位置を求める。試料表面物質の複素屈折率が異なると、反射での位相変化量が異なり、干渉波形の位相がその分だけ異なり、それにより収集波形の位相も異なり、「収集波形の位相が0になる走査位置」も異なる。
Since the envelope obtained from the acquired waveform using the Hilbert transform matches the envelope of the original interference waveform with high accuracy, the peak position is used as a reference. The “peak position of the envelope” corresponds to the sample surface height.
The phase of the acquired waveform is also calculated using the Hilbert transform, and the scanning position where the phase becomes 0 is obtained. If the complex refractive index of the sample surface material is different, the amount of phase change due to reflection is different, the phase of the interference waveform is different accordingly, and the phase of the collected waveform is also different. Is also different.

試料表面での反射時の位相変化量の違いにより、干渉波形にある位相変化があると、収集波形では、その定数倍の位相変化が表れる。そして収集波形において、「包絡線のピーク位置」対「位相が0の走査位置」の関係図を、収集データ配列の指標を単位(データ収集時の走査位置は1、 2、 3、 … nと表わされる)として表わすと、その小数部が試料表面での反射による位相変化量に依存して異なる。従って、これを試料表面上に対応する各画素で求めて、互いを比較すれば各画素での物質が同種か異種かを判定できる。   If there is a phase change in the interference waveform due to a difference in phase change amount at the time of reflection on the sample surface, a phase change of a constant multiple appears in the collected waveform. Then, in the acquired waveform, a relational diagram of “envelope peak position” vs. “scan position where phase is 0” is shown, and an index of the acquired data array is a unit (the scan position at the time of data acquisition is 1, 2, 3,... N When expressed as), the decimal part differs depending on the amount of phase change due to reflection on the sample surface. Therefore, if this is obtained for each pixel corresponding to the sample surface and compared with each other, it can be determined whether the substance in each pixel is the same or different.

収集波形に関する「包絡線のピーク位置」対「位相が0の走査位置」の関係図では、干渉波形の位相変化(つまり試料表面反射での位相変化量の違い)の影響は傾きaには現れず、縦軸方向の一定量のシフトとして現れる。その関係図において、「包絡線のピーク位置」対「位相が0の走査位置」の関係を表わす直線と、「位相が0の走査位置」=「包絡線のピーク位置」の直線は、上記式の小数部で交わる。 従って、その小数部を同一物質の多数の画素に渡って平均値を求め、上記の傾きaについても多数のデータから平均値を求めて、それらを用いれば、「包絡線のピーク位置」対「位相が0の走査位置」の関係図が精度よく決まり(つまり、1次式の傾きaとy切片が精度よく決まり)、「位相が0の走査位置」の測定値から、その関係を用いて「包絡線のピーク位置」、つまり正しい試料表面高さを高精度に算出できる。   In the relational diagram of “envelope peak position” vs. “scanning position where phase is 0” regarding the collected waveform, the influence of the phase change of the interference waveform (that is, the difference in the phase change amount due to the sample surface reflection) appears in the slope a. It appears as a certain amount of shift in the vertical axis direction. In the relationship diagram, the straight line representing the relationship between “peak position of envelope” vs. “scanning position with phase 0” and the straight line “scanning position with phase 0” = “peak position of envelope” It intersects with the decimal part. Therefore, an average value is obtained over a large number of pixels of the same substance for the decimal part, and an average value is obtained from a large number of data for the above-mentioned slope a, and using them, the “peak position of the envelope” vs. “ The relationship diagram of “scanning position with phase 0” is accurately determined (that is, the slope a and y intercept of the linear equation are accurately determined), and the relationship is used from the measured value of “scanning position with phase 0”. The "peak position of the envelope", that is, the correct sample surface height can be calculated with high accuracy.

従って、元々高精度に算出できる「位相が0の走査位置」から、上記関係を用いれば、反射光の位相変化に依存せず正しい試料表面高さを表わす「包絡線のピーク位置」を求められるので、反射での位相変化量が異なる物質が混在する試料表面でも正しい表面形状を高精度に求めることができる。   Therefore, from the “scanning position where the phase is 0” which can be calculated with high accuracy, the “envelope peak position” representing the correct sample surface height can be obtained without depending on the phase change of the reflected light. Therefore, the correct surface shape can be obtained with high accuracy even on the surface of a sample in which substances having different amounts of phase change due to reflection are mixed.

本発明によれば、次のような効果が得られる。
・ナイキスト間隔よりも広い間隔で収集した波形において、ヒルベルト変換を用いて算出した「包絡線のピーク位置」と「位相が0の走査位置」の直線関係の傾きをaとして

(「位相が0の走査位置」−「包絡線のピーク位置」)/(−a + 1)
+「包絡線のピーク位置」

を、配列指標を単位に表わすと、その小数部が試料表面での反射光の位相変化量に対応しているので、その値からその画素の物質が特定できる(実施例ではシリコンか銅かが特定できる)。
・「包絡線のピーク位置」と「位相が0の走査位置」の間の直線関係(傾きaと上記小数部で決まるy切片)を多数の測定データから求めておき、測定値「位相が0の走査位置」からその直線関係を用いて計算値「包絡線のピーク位置」(試料表面高さに対応)を求め、そして、測定値「位相が0の走査位置」は測定値「包絡線のピーク位置」より元々測定精度が高いので、試料表面高さが高精度に求まる。
・物質によって異なる上記小数部を採用して、その値で決まるy切片の上記直線関係を用いるので、試料表面での反射光の位相変化量の違いを取り除いた正しい試料表面高さが求まる。
・表面反射光の位相変化の影響を受けないためには、従来は包絡線から表面高さを求める必要があったが、本発明では収集波形の位相から求めるので、測定精度が1桁以上向上する。
According to the present invention, the following effects can be obtained.
In a waveform collected at intervals wider than the Nyquist interval, a is the slope of the linear relationship between the “peak position of the envelope” and the “scanning position where the phase is 0” calculated using the Hilbert transform.

("Scanning position where phase is 0"-"peak position of envelope") / (-a + 1)
+ “Peak position of envelope”

When the array index is expressed in units, the fractional part corresponds to the phase change amount of the reflected light on the sample surface, so that the substance of the pixel can be specified from the value (in the embodiment, whether it is silicon or copper). Can be identified).
A linear relationship between the “peak position of the envelope” and the “scanning position where the phase is 0” (y intercept determined by the inclination a and the decimal part) is obtained from a large number of measurement data, and the measured value “phase is 0 The calculated value “envelope peak position” (corresponding to the height of the sample surface) is obtained from the linear relationship from the “scanning position”, and the measured value “scanning position with phase 0” is the measured value “envelope Since the measurement accuracy is originally higher than the “peak position”, the sample surface height can be obtained with high accuracy.
Since the above-described linear relationship of the y-intercept determined by the value is adopted by using the fractional part that differs depending on the substance, the correct sample surface height can be obtained by removing the difference in the phase change amount of the reflected light on the sample surface.
-In order to avoid the influence of the phase change of the surface reflected light, it was necessary to obtain the surface height from the envelope in the past. However, in the present invention, the measurement accuracy is improved by one digit or more because it is obtained from the phase of the collected waveform To do.

本発明を実施する際に使用され得る走査型白色干渉計の構成例を示す概略図。Schematic which shows the structural example of the scanning-type white interferometer which can be used when implementing this invention. 光路差0での干渉する2つの光の位相差φ=0.45π、試料の表面高さh=0の場合における干渉波形と収集波形の計算例を示すグラフ。The graph which shows the example of calculation of the interference waveform and collection waveform in case the phase difference (phi) = 0.45 (pi) of the light which interferes in optical path difference 0, and the surface height h = 0 of a sample. 図2のグラフにおける収集波形から求めた包絡線と位相を示すグラフ。The graph which shows the envelope and phase which were calculated | required from the collection waveform in the graph of FIG. 収集波形の測定例とそのヒルベルト変換(○)及び包絡線を示すグラフ。The graph which shows the measurement example of the collected waveform, its Hilbert transformation ((circle)), and an envelope. 図4の収集波形とそのヒルベルト変換から算出した収集波形の位相を示すグラフ。The graph which shows the phase of the collection waveform computed from the collection waveform of FIG. 4, and its Hilbert transform. 「包絡線のピーク位置」と「位相が0の走査位置」の測定例を示すグラフ。The graph which shows the example of a measurement of "the peak position of an envelope" and "the scanning position where a phase is 0". 図6のデータを「包絡線のピーク位置」対「位相が0の走査位置」でプロットしたグラフ。The graph which plotted the data of FIG. 6 by "the peak position of an envelope" versus "the scanning position where a phase is 0". 図6のデータから(「位相が0の走査位置」−「包絡線のピーク位置」)/9 +「包絡線のピーク位置」を算出してx(画素)に対してプロットした例を示すグラフ。Graph showing an example in which ("scanning position where phase is 0"-"peak position of envelope") / 9 + "peak position of envelope" is calculated from the data of Fig. 6 and plotted against x (pixel) . 図8のデータの小数部をプロットしたグラフ。The graph which plotted the decimal part of the data of FIG. 図9のデータを移動平均したものを示すグラフ。The graph which shows what carried out the moving average of the data of FIG. 図7を拡大して「位相が0の走査位置」の測定値から、それに対応する「包絡線のピーク位置」を高精度に求める方法を示すための図。FIG. 8 is a diagram for enlarging FIG. 7 to show a method for obtaining a “envelope peak position” corresponding to the measurement value of “scanning position with phase 0” with high accuracy. 本発明の方法で求めた試料の表面の高さの例を示すグラフ。The graph which shows the example of the height of the surface of the sample calculated | required with the method of this invention. 図12のシリコン領域を拡大して示す図。The figure which expands and shows the silicon | silicone area | region of FIG.

以下添付図面を参照して本発明を説明する。
白色干渉計での干渉波形は、図1の装置においてミラー4c又は対物レンズ4aの走査位置s、試料8の表面高さh、波長λi、光路差0での干渉する2つの光の位相差をφとすると下記の式(1)で表わされる。
Σ[1+cos{2π(s−h)/(λi/2)+φ}]/N (1)
λi
波長λiを変えて総和し、その総数Nで割っている。試料8の表面高さh=0で光路差0になる走査位置をsの0点にしている。
The present invention will be described below with reference to the accompanying drawings.
The interference waveform in the white interferometer is the phase difference between two interfering lights at the scanning position s of the mirror 4c or the objective lens 4a, the surface height h of the sample 8, the wavelength λi, and the optical path difference 0 in the apparatus of FIG. If φ, it is expressed by the following formula (1).
Σ [1 + cos {2π (s−h) / (λi / 2) + φ}] / N (1)
λi
The total is obtained by changing the wavelength λi, and the total is divided by N. The scanning position where the optical path difference is 0 at the surface height h = 0 of the sample 8 is set to 0 of s.

中心波長550nm、帯域幅80nmとして、波長λiを510nmから590nmまで0.1nmずつ変えて総和し、総数N=800で割り、干渉波形を算出した例を図2に点線グラフで示す。φ=0.45π、h=0としている。走査位置については1nmごとの波形データである。φ=0、h=0の場合は干渉波形の最大の山が走査位置0に来るが、φが異なると干渉波形の位相も異なり、干渉波形の山の位置がずれる。しかし、包絡線自体の位置は変化しない(特許文献1参照)。つまり、干渉波形の位相は、試料8の表面での反射光の位相変化の影響を受けるが、包絡線はその影響を受けない。 FIG. 2 is a dotted line graph showing an example in which the center wavelength is 550 nm, the bandwidth is 80 nm, the wavelength λi is changed by 0.1 nm from 510 nm to 590 nm, summed, and divided by the total number N = 800 to calculate the interference waveform. φ = 0.45π and h = 0. The scanning position is waveform data every 1 nm. When φ = 0 and h = 0, the maximum peak of the interference waveform comes to the scanning position 0. However, when φ is different, the phase of the interference waveform is different and the peak of the interference waveform is shifted. However, the position of the envelope itself does not change (see Patent Document 1). That is, the phase of the interference waveform is affected by the phase change of the reflected light on the surface of the sample 8, but the envelope is not affected.

上記の干渉波形を240nm間隔で収集した例を図2の■で示した。収集間隔はナイキスト間隔の1.75倍である。収集されたデータは一種の波形を形成する。それにヒルベルト変換を施して、その収集波形の包絡線と位相を算出できる。図2の■で示す波形から求めた包絡線(○)と収集波形の位相(□の中に×)を図3に示す。収集波形の包絡線は元の干渉波形の包絡線に精度よく一致し、「包絡線のピーク位置」が試料8の表面高さhに対応する。「位相が0になる走査位置」は「包絡線のピーク位置」との間に近似的に1次式の関係が成り立ち、「位相が0になる走査位置」から表面高さhを算出できる。「位相が0になる走査位置」は「包絡線のピーク位置」よりも高精度に算出できるので、それから求めた表面高さhもより高精度に算出される(特許文献4参照)。   An example in which the above interference waveform is collected at intervals of 240 nm is shown by ▪ in FIG. The collection interval is 1.75 times the Nyquist interval. The collected data forms a kind of waveform. It can be subjected to Hilbert transform to calculate the envelope and phase of the collected waveform. FIG. 3 shows the envelope (◯) obtained from the waveform indicated by ■ in FIG. 2 and the phase of the collected waveform (× in □). The envelope of the collected waveform matches the envelope of the original interference waveform with high accuracy, and the “peak position of the envelope” corresponds to the surface height h of the sample 8. The relationship between the “scanning position where the phase is 0” and the “peak position of the envelope” are approximately linear, and the surface height h can be calculated from the “scanning position where the phase is 0”. Since the “scanning position where the phase is 0” can be calculated with higher accuracy than the “peak position of the envelope”, the surface height h obtained therefrom is also calculated with higher accuracy (see Patent Document 4).

図2から分かるように干渉波形の位相が変化すると、収集波形も変化し、その位相も変化する。しかし、収集波形の包絡線は変化しない。収集波形の位相の変化量は、干渉波形の位相の変化量に比べて、ある一定倍だけ大きい。このことは式(1)を用いて、その結果を図2及び図3に示したような計算を、パラメーターを変えて行うと確認できる。このことは以下に示す実験結果からも確認できる。このため、試料8の表面反射光の、ある一定の位相変化は、干渉波形の位相を変え、収集波形の位相をある値だけ変化させる。従って、表面物質の複素屈折率の値に応じて、収集波形の位相の変化分も決まる。このような収集波形の位相の変化分を各画素で求めると、その値の大きさから各画素の物質が同種か異種かの判定ができる。   As can be seen from FIG. 2, when the phase of the interference waveform changes, the acquired waveform also changes, and the phase also changes. However, the envelope of the collected waveform does not change. The amount of change in the phase of the collected waveform is larger by a certain factor than the amount of change in the phase of the interference waveform. This can be confirmed by using the formula (1) and calculating the results shown in FIGS. 2 and 3 while changing the parameters. This can be confirmed from the experimental results shown below. For this reason, a certain phase change of the surface reflected light of the sample 8 changes the phase of the interference waveform and changes the phase of the collected waveform by a certain value. Accordingly, the amount of change in the phase of the collected waveform is also determined according to the value of the complex refractive index of the surface material. When such a change in the phase of the collected waveform is obtained for each pixel, it can be determined whether the material of each pixel is the same or different from the magnitude of the value.

試料8の表面での反射時の位相変化量の違いにより、干渉波形にある位相変化があると、収集波形では、その定数倍の位相変化が表れる。そして収集波形において、「包絡線のピーク位置」対「位相が0の走査位置」の関係図における傾きをaとして
(「位相が0の走査位置」−「包絡線のピーク位置」)/(−a + 1)
+「包絡線のピーク位置」 (2)

を、収集データ配列の指標を単位(データ収集時の走査位置が1、 2、 3、 … nと表わされる)として表わすと、その小数部が試料表面での反射による位相変化量に依存して異なる。従って、これを試料8の表面上に対応する各画素で求めて、互いを比較すれば各画素での物質が同種か異種かを判定できる。
If there is a phase change in the interference waveform due to a difference in phase change amount at the time of reflection on the surface of the sample 8, a phase change of a constant multiple appears in the collected waveform. In the acquired waveform, the slope in the relationship diagram of “envelope peak position” vs. “scan position with phase 0” is a (“scan position with phase 0” − “peak position of envelope”) / (− a + 1)
+ “Peak position of envelope” (2)

Is expressed as a unit of the collected data array index (the scanning position at the time of data collection is expressed as 1, 2, 3,... N), the decimal part depends on the amount of phase change due to reflection on the sample surface. Different. Therefore, if this is calculated | required in each pixel corresponding on the surface of the sample 8, and it mutually compares, it can be determined whether the substance in each pixel is the same kind or a different kind.

以下に測定結果の例を示しながら説明する。
図4には、収集波形の測定結果(●)と、それにヒルベルト変換を施した結果(○)とそれらから算出した包絡線(□の中に+)とを示し、図5には位相を示した。用いた光学フィルター2は中心波長550nm、通過帯域幅80nmであり、干渉周期が275nm、ナイキスト間隔が137.5nmである。データの収集間隔は247.5nmであり、ナイキスト間隔の1.8倍である。収集データにはカメラ6の雑音等が乗っているので、包絡線のデータにも雑音が含まれている。包絡線のデータに移動平均処理等を行い平滑化して、そのピーク位置を算出する。位相は、包絡線のピーク位置から大きく離れなければ直線的に変化する。図5のデータは2pごとに変化するが、位相接続すれば直線状につながり、それを1次式でフィッティングして、位相が0になる走査位置を算出する。「位相が0の走査位置」は複数存在するが、「包絡線のピーク位置」に近いものを採用する。「位相が0の走査位置」は「包絡線のピーク位置」より高精度に算出できる。
This will be described below with examples of measurement results.
Fig. 4 shows the measurement result of the collected waveform (●), the result of applying Hilbert transform to it (○), and the envelope calculated from them (+ in □), and Fig. 5 shows the phase. It was. The optical filter 2 used has a center wavelength of 550 nm, a passband width of 80 nm, an interference period of 275 nm, and a Nyquist interval of 137.5 nm. The data collection interval is 247.5 nm, which is 1.8 times the Nyquist interval. Since the collected data includes noise of the camera 6 and the like, the envelope data also includes noise. The envelope data is smoothed by moving average processing or the like, and the peak position is calculated. The phase changes linearly unless it is far from the peak position of the envelope. The data in FIG. 5 changes every 2p, but if connected in phase, it is connected in a straight line, and is fitted with a linear expression to calculate the scanning position where the phase is zero. There are a plurality of “scanning positions with a phase of 0”, but those close to the “peak position of the envelope” are adopted. The “scan position with phase 0” can be calculated with higher accuracy than the “peak position of the envelope”.

収集データは配列として扱っており、収集するフレーム数をn個とすると、下記のようにx,yの各画素で走査位置(時間にも対応)について1からnまでの指標で表わされる。

D(1,x,y), D(2,x,y), ・・・ , D(i,x,y), D(i+1,x,y),・・・ D(n,x,y)
Collected data is handled as an array, and when the number of frames to be collected is n, the scanning position (corresponding to time) is represented by an index from 1 to n for each pixel of x and y as follows.

D (1, x, y), D (2, x, y), ..., D (i, x, y), D (i + 1, x, y), ... D (n, x, y) )

図4及び図5の横軸はこの配列の走査位置の指標であり、この1の間隔は収集間隔247.5nmに相当する。   The horizontal axis in FIGS. 4 and 5 is an index of the scanning position of this array, and the interval of 1 corresponds to the collection interval of 247.5 nm.

各画素で算出した「包絡線のピーク位置」と「位相が0の走査位置」の例を図6に示す。あるyの画素の行でのx方向での値を示している。試料8は図12のような形状であり、シリコン基板上に銅薄膜を成膜したもので、x=365辺りが銅薄膜の端で、そこからxが増すと膜厚が増している。走査方向の関係で図6では図12と縦軸の方向が逆になっている。「位相が0の走査位置」は「包絡線のピーク位置」より高精度に算出できていることが分かる。
図6では試料8の傾きにより、シリコン領域ではxに対して直線的に「包絡線のピーク位置」が増している。そして「位相が0の走査位置」も傾きは負だが直線的に変化していることが分かる。「位相が0の走査位置」の傾きの絶対値は「包絡線のピーク位置」のそれより大きく、試料8の表面高さhの変化に対して感度が大きいと言える。高精度に算出できることと、表面高さへ感度が大きいことが、「位相が0の走査位置」を用いることの利点である。
FIG. 6 shows an example of “envelope peak position” and “phase 0 scan position” calculated for each pixel. A value in the x direction in a row of a pixel of y is shown. Sample 8 has a shape as shown in FIG. 12 and is obtained by forming a copper thin film on a silicon substrate. The area around x = 365 is the end of the copper thin film, and the film thickness increases as x increases from there. In FIG. 6, the direction of the vertical axis is opposite to that in FIG. It can be seen that the “scan position with phase 0” can be calculated with higher accuracy than the “peak position of the envelope”.
In FIG. 6, the “peak position of the envelope” increases linearly with respect to x in the silicon region due to the inclination of the sample 8. It can also be seen that the “scanning position where the phase is 0” also changes linearly with a negative slope. It can be said that the absolute value of the inclination of the “scanning position where the phase is 0” is larger than that of the “peak position of the envelope”, and the sensitivity to the change in the surface height h of the sample 8 is high. The fact that it can be calculated with high accuracy and that the sensitivity to the surface height is large is an advantage of using the “scanning position with phase 0”.

図7には、図6のデータを「包絡線のピーク位置」対「位相が0の走査位置」としてプロットして示している。「包絡線のピーク位置」が精度よく算出できないためにデータは横軸方向にばらついている。しかし、「位相が0の走査位置」と「包絡線のピーク位置」の間の直線的な関係が見て取れる(測定データに合わせて図7の中に引いた傾きが負の多数の直線)。シリコン領域と銅領域のそれぞれで、「包絡線のピーク位置」(配列指標が単位)に対して1ずつずれた繰り返しの直線関係が並ぶ(特許文献4参照)。なお、この例では、これら直線の傾きは −8.0である。そして、シリコン領域と銅領域では、その直線関係が互いにシフトしていることが分かる。このことは、シリコンと銅での反射光の位相変化量の違いを表わしている。   FIG. 7 shows the data of FIG. 6 plotted as “envelope peak position” vs. “phase zero scan position”. Since the “peak position of the envelope” cannot be calculated with high accuracy, the data varies in the horizontal axis direction. However, a linear relationship between the “scan position where the phase is 0” and the “peak position of the envelope” can be seen (many straight lines with negative slopes drawn in FIG. 7 according to the measurement data). In each of the silicon region and the copper region, a repetitive linear relationship shifted by 1 with respect to the “peak position of the envelope” (the array index is a unit) is arranged (see Patent Document 4). In this example, the slope of these straight lines is −8.0. It can be seen that the linear relationship is shifted between the silicon region and the copper region. This represents the difference in the amount of phase change of reflected light between silicon and copper.

図8には、図6のデータから、式(1)で傾きaを-8.0としたもの、つまり式(3)を縦軸にしてプロットしたものである。

(「位相が0の走査位置」−「包絡線のピーク位置」)/9
+「包絡線のピーク位置」 (3)


こうすると縦軸での1ずつの飛びはあるが、それ以外は横軸への依存性はなくなる。
FIG. 8 is a plot from the data of FIG. 6 in which the slope a is −8.0 in equation (1), that is, the equation (3) is plotted on the vertical axis.

("Scanning position where phase is 0"-"peak position of envelope") / 9
+ “Peak position of envelope” (3)


In this way, there is one jump on the vertical axis, but otherwise there is no dependency on the horizontal axis.

図9には、図8のデータの小数部をプロットして示している。図8の銅領域での小数部が0.9などのデータは図9では−0.1などとして表わしている。シリコンと銅での縦軸の値の違いが明らかに分かる。縦軸の値のばらつきは「包絡線のピーク位置」の算出精度が低いことによる。   In FIG. 9, the decimal part of the data of FIG. 8 is plotted. Data in which the decimal part is 0.9 in the copper region in FIG. 8 is represented as −0.1 in FIG. The difference in the vertical axis values between silicon and copper can be clearly seen. The variation in the value on the vertical axis is due to the low calculation accuracy of the “peak position of the envelope”.

図10には、図9のデータを移動平均処理したものが示されている。各画素で縦軸の値が例えば0.27より大きければシリコン、小さければ銅と判定できる(異種か同種か判定できる)。図10のシリコン領域での縦軸の値の平均値は0.43であり、銅の領域では0.097である。これらの値は図7の直線の交点の小数部に対応する。   FIG. 10 shows a result of moving average processing of the data of FIG. For each pixel, if the value on the vertical axis is greater than 0.27, for example, silicon can be determined, and if it is smaller, it can be determined that the pixel is different (similar or similar). The average value on the vertical axis in the silicon region of FIG. 10 is 0.43, and in the copper region is 0.097. These values correspond to the decimal part of the intersection of the straight lines in FIG.

図11には、図7のシリコン領域の一部を拡大した例を示している。図11の直線A、 B、 Cの傾きaは前述のように−8.0とした。これは多数のデータの平均値から決定できる。「位相が0の走査位置」=「包絡線のピーク位置」の直線と、直線A、 B、 Cとの交点の小数部が前述のように0.43である。   FIG. 11 shows an example in which a part of the silicon region in FIG. 7 is enlarged. The inclination a of the straight lines A, B, and C in FIG. 11 was set to −8.0 as described above. This can be determined from the average value of a large number of data. As described above, the decimal part of the intersection of the straight line “scanning position where phase is 0” = “peak position of envelope” and straight lines A, B, C is 0.43.

各画素での測定値「包絡線のピーク位置」と測定値「位相が0の走査位置」から、その画素が図11の例えば直線A、 B、 Cのどれに対応するかを特定する。そして、その特定した直線の関係を用いて、その画素での測定値「位相が0の走査位置」から計算値「包絡線のピーク位置」を計算で求める。その直線の関係を用いることで、測定値「包絡線のピーク位置」のばらつきが取り除かれる。計算値「包絡線のピーク位置」が試料8の表面の高さhに対応する。
銅と判定されたら、傾きはシリコンと同じ−8.0だが上記交点の小数部が0.097の直線を用いて、前述と同様にして試料8の表面の高さhが算出される。
From the measurement value “envelope peak position” and the measurement value “scan position where phase is 0” at each pixel, it is specified which of the straight lines A, B, and C in FIG. Then, using the relationship of the identified straight line, the calculated value “peak position of the envelope” is obtained by calculation from the measured value “scanning position where phase is 0” at the pixel. By using the straight line relationship, the variation of the measurement value “peak position of the envelope” is removed. The calculated value “peak position of the envelope” corresponds to the height h of the surface of the sample 8.
If it is determined to be copper, the height h of the surface of the sample 8 is calculated in the same manner as described above using a straight line whose inclination is −8.0, which is the same as that of silicon, but whose decimal part is 0.097.

以下、試料8の表面高さhの算出の方法を図11のシリコンの例で具体的に示す。「包絡線のピーク位置」の測定値をxm、「位相が0の走査位置」の測定値をymとして、「xmの整数部+0.43」で基準値xmsを作る。0.43は前述のようにシリコンでの式(3)の小数部である。以下のようにして、図11のどの直線を使うかを決める。直線の傾きはこの例では前述のように−8.0である。その直線を用いて「位相が0の走査位置」の測定値ymに対応する「包絡線のピーク位置」xcを計算で求める。

(1) ym > −8(xm−xms)+xms +4.5 なら
y = −8{xc −(xms+1)} + (xms+1) の直線を用いて
xc = {ym −(xms+1)}/(−8) + (xms+1) 「包絡線のピーク位置」を求める。
上記を42 ≦ xm < 43 の例で表わすと、ymが図11の点線「B+4.5」より上なら 直線Cを用いてymからxcを求める。

(2)−8(xm−xms)+xms −4.5 < ym < −8(xm−xms)+xms +4.5 なら
y = −8(xc −xms) + xms の直線を用いて
xc = (ym −xms)/(−8) + xms 「包絡線のピーク位置」を求める。
上記を42 ≦ xm < 43 の例で表わすと、ymが図11の点線「B−4.5」より上で点線「B+4.5」より下なら直線Bを用いてymからxcを求める。

(3)ym < −8(xm−xms)+xms −4.5 なら
y = −8{xc −(xms−1)} + (xms−1) の直線を用いて
xc = {ym −(xms−1)}/(−8) + (xms−1) 「包絡線のピーク位置」を求める。
上記を42 ≦ xm < 43 の例で表わすと、ymが図11の点線「B−4.5」より下なら直線Aを用いてymからxcを求める。
Hereinafter, a method of calculating the surface height h of the sample 8 will be specifically described with an example of silicon in FIG. The measurement value of “envelope peak position” is xm, the measurement value of “scanning position where phase is 0” is ym, and a reference value xms is created by “integer part of xm + 0.43”. 0.43 is the decimal part of the equation (3) in silicon as described above. The straight line in FIG. 11 is determined as follows. In this example, the slope of the straight line is −8.0 as described above. Using this straight line, the “peak position of the envelope” xc corresponding to the measured value ym of “scanning position with phase 0” is obtained by calculation.

(1) If ym> −8 (xm−xms) + xms + 4.5, use y = −8 {xc− (xms + 1)} + (xms + 1) straight line
xc = {ym− (xms + 1)} / (− 8) + (xms + 1) “Envelope peak position” is obtained.
Expressing the above in the example of 42 ≦ xm <43, if ym is above the dotted line “B + 4.5” in FIG. 11, the straight line C is used to obtain xc from ym.

(2) If −8 (xm−xms) + xms−4.5 <ym <−8 (xm−xms) + xms + 4.5, use y = −8 (xc−xms) + xms straight line
xc = (ym−xms) / (− 8) + xms “peak position of envelope” is obtained.
Expressing the above in the example of 42 ≦ xm <43, if ym is above the dotted line “B−4.5” and below the dotted line “B + 4.5” in FIG. 11, xc is obtained from ym using straight line B.

(3) If ym <−8 (xm−xms) + xms−4.5, use the straight line y = −8 {xc− (xms−1)} + (xms−1)
xc = {ym− (xms−1)} / (− 8) + (xms−1) “Peak position of envelope” is obtained.
Expressing the above in the example of 42 ≦ xm <43, if ym is below the dotted line “B-4.5” in FIG. 11, xc is obtained from ym using straight line A.

求めたxcが試料8の表面の高さhに対応する。「包絡線のピーク位置」の測定値のばらつきが大きいので上記のような場合分けが必要になる。試料8の表面が銅の場合には、前述の銅での式(3)の小数部の0.097を用いて、「xmの整数部+0.097」で基準値xmsを作ればよい。後の表面高さの求め方はシリコンの場合と同様である。   The obtained xc corresponds to the height h of the surface of the sample 8. Since the measurement value of the “envelope peak position” varies greatly, the above-described case classification is required. In the case where the surface of the sample 8 is copper, the reference value xms may be made by “integer part of xm + 0.097” using 0.097 of the decimal part of the above-described formula (3) with copper. The method for obtaining the surface height later is the same as in the case of silicon.

このようにして求めた試料8の表面高さhの例を図12に示す。既に説明したようにシリコン基板上に銅薄膜を付けたもので、x=365付近が銅薄膜の端であり、その端に近づくにつれ、膜厚は薄くなっている。あるyでのx方向のデータである。用いたカメラの走査方式がインターレース方式のため、y方向のデータが、1行おきに収集時刻がずれてy方向に不連続なので、最終的な試料8の表面高さhの算出データをy方向に2個ずつ移動平均してその不連続を消している。横軸は640画素で900μmに相当する。「包絡線ピーク位置」を基準にして表面高さを算出しているので、表面反射光の位相変化の影響を受けず、銅の段差は正しく算出されている。   An example of the surface height h of the sample 8 thus obtained is shown in FIG. As described above, a copper thin film is attached on a silicon substrate, and the vicinity of x = 365 is the end of the copper thin film, and the film thickness becomes thinner as it approaches the end. Data in the x direction at a certain y. Since the scanning method of the camera used is an interlace method, the data in the y direction is discontinuous in the y direction with the collection time being shifted every other line, so the final calculation data of the surface height h of the sample 8 is the y direction. The discontinuities are eliminated by moving averages two by two. The horizontal axis is 640 pixels and corresponds to 900 μm. Since the surface height is calculated based on the “envelope peak position”, the copper step is correctly calculated without being affected by the phase change of the surface reflected light.

図13には図12のシリコン領域を拡大して示している。ナイキスト間隔の1.8倍の広いデータ収集間隔にも関わらす、雑音のピーク対ピークが数nmと高精度に試料表面高さが算出できている。表面反射光の位相変化の影響を受けないためには、従来は包絡線から表面高さを求める必要があったが、本発明では収集波形の位相から計算で求めるので、測定精度が1桁以上向上する。   FIG. 13 shows an enlarged view of the silicon region of FIG. The sample surface height can be calculated with high accuracy with a noise peak-to-peak of several nanometers, even though the data collection interval is 1.8 times the Nyquist interval. In order to avoid the influence of the phase change of the surface reflected light, it has been conventionally necessary to obtain the surface height from the envelope. However, in the present invention, the calculation accuracy is obtained by calculating from the phase of the collected waveform. improves.

1:光源
2:フィルター
3:ビームスプリッター
4:マイケルソン型干渉計
4a:対物レンズ
4b:ビームスプリッター
4c:ミラー
5:ピエゾアクチュエーター
6:CCDカメラ
7:試料ホルダー
8:試料
1: Light source 2: Filter 3: Beam splitter 4: Michelson interferometer 4a: Objective lens 4b: Beam splitter 4c: Mirror 5: Piezo actuator 6: CCD camera 7: Sample holder 8: Sample

Claims (1)

対物レンズの下にビームスプリッター及びミラーを配し、試料表面を含めて、マイケルソン型などの干渉計を構成し、試料までの距離又はミラーまでの距離をピエゾアクチュエーターで走査し、それによりできる干渉波形をCCDカメラで撮影して動画ファイルデータとして記録し、該動画ファイルデータに基き、試料の表面形状を測定する、走査型白色干渉計による試料の表面形状の測定方法において、
CCDカメラを用いてデータ収集間隔をナイキスト間隔(干渉周期の半分)よりも広くして多数の動画ファイルデータを測定し、
こうして測定して収集した波形からヒルベルト変換を用いて算出した収集波形の「包絡線のピーク位置」と「位相が0の走査位置」との間の直線関係の傾きをaとし、また「包絡線のピーク位置」と「位相が0の走査位置」との交点を小数部として、
式(「位相が0の走査位置」−「包絡線のピーク位置」)/(−a + 1) +「包絡線のピーク位置」を、収集データ配列の指標を単位として表し、これを試料の表面上に対応する各画素で求めて、相互に比較することにより各画素の試料表面が他の画素の試料表面と同種であるか異種であるかを判定し、
「包絡線のピーク位置」対「位相が0の走査位置」の関係を表わす直線と、「位相が0の走査位置」=「包絡線のピーク位置」の直線とが上記式の小数部で交わり、該小数部を同一物質の多数の画素に渡って平均値を求め、上記の傾きaについても多数のデータから平均値を求め、
求めた小数部及び上記の傾きaを用いて「位相が0の走査位置」の測定値から、反射光の位相変化に依存せず正しい試料表面高さを表わす「包絡線のピーク位置」を求めることにより試料の表面形状を測定すること
を特徴とする走査型白色干渉計による試料の表面形状の測定方法。
A beam splitter and mirror are placed under the objective lens, and a Michelson-type interferometer is constructed including the sample surface. The distance to the sample or the distance to the mirror is scanned with a piezo actuator, resulting in interference. In the method for measuring the surface shape of a sample with a scanning white interferometer, the waveform is photographed with a CCD camera and recorded as moving image file data, and the surface shape of the sample is measured based on the moving image file data.
Using a CCD camera, the data collection interval is wider than the Nyquist interval (half the interference period), and a large number of video file data is measured.
The slope of the linear relationship between the “envelope peak position” and the “scan position with phase 0” of the acquired waveform calculated using the Hilbert transform from the waveform thus measured and acquired is a, and “envelope” The intersection of “the peak position of” and “the scanning position where the phase is 0” is the fractional part,
The expression (“scan position with phase 0” − “envelope peak position”) / (− a + 1) + “envelope peak position” is expressed in units of the collected data array index, which is expressed as By determining each corresponding pixel on the surface and comparing each other, determine whether the sample surface of each pixel is the same type or different from the sample surface of other pixels,
A straight line representing the relationship between “envelope peak position” vs. “scanning position with phase 0” and a straight line “scanning position with phase 0” = “peak position of envelope” intersect at the decimal part of the above formula. , The average value is calculated over a large number of pixels of the same substance for the decimal part, the average value is also determined from a large number of data for the slope a,
From the measured value of the “scanning position where the phase is 0” using the obtained decimal part and the above inclination a, the “peak position of the envelope” representing the correct sample surface height is obtained without depending on the phase change of the reflected light. And measuring the surface shape of the sample with a scanning white light interferometer.
JP2012010899A 2012-01-23 2012-01-23 Measuring method of surface shape of sample by scanning white interferometer Active JP5933273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010899A JP5933273B2 (en) 2012-01-23 2012-01-23 Measuring method of surface shape of sample by scanning white interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010899A JP5933273B2 (en) 2012-01-23 2012-01-23 Measuring method of surface shape of sample by scanning white interferometer

Publications (2)

Publication Number Publication Date
JP2013148533A JP2013148533A (en) 2013-08-01
JP5933273B2 true JP5933273B2 (en) 2016-06-08

Family

ID=49046145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010899A Active JP5933273B2 (en) 2012-01-23 2012-01-23 Measuring method of surface shape of sample by scanning white interferometer

Country Status (1)

Country Link
JP (1) JP5933273B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191087A (en) * 2018-04-27 2019-10-31 株式会社日立ハイテクサイエンス Interference signal phase correction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194918A (en) * 1991-05-14 1993-03-16 The Board Of Trustees Of The Leland Stanford Junior University Method of providing images of surfaces with a correlation microscope by transforming interference signals
US5390023A (en) * 1992-06-03 1995-02-14 Zygo Corporation Interferometric method and apparatus to measure surface topography
JP5544679B2 (en) * 2007-08-20 2014-07-09 富士通株式会社 Step surface shape measuring method and measuring device
US7649634B2 (en) * 2007-10-30 2010-01-19 Mountain View Optical Consultant Corp. Methods and systems for white light interferometry and characterization of films
JP4756024B2 (en) * 2007-11-12 2011-08-24 アンリツ株式会社 3D shape measuring device

Also Published As

Publication number Publication date
JP2013148533A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
TWI759495B (en) Optical measurement apparatus and optical measurement method
US8970850B2 (en) Method and apparatus for surface profilometry
JP2679876B2 (en) Method and apparatus for measuring surface topography by spatial frequency analysis of interferograms
WO2013136620A1 (en) Phase distribution analysis method and device for fringe image using high-dimensional brightness information, and program therefor
JP6812445B2 (en) Methods and equipment for optimizing the optical performance of interferometers
JP2021515218A (en) Multi-layer stack measurement
JP2014512242A (en) Method for calibrating and correcting scanning distortion in an optical coherence tomography system
US8237933B2 (en) Method for image calibration and apparatus for image acquiring
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP5263126B2 (en) Method and apparatus for measuring optical shape of plate material
US8780334B1 (en) Topographical profiling with coherence scanning interferometry
Escamilla et al. Three-dimensional surface measurement based on the projected defocused pattern technique using imaging fiber optics
JP5740230B2 (en) Measuring method of surface shape of sample by scanning white interferometer
JP5933273B2 (en) Measuring method of surface shape of sample by scanning white interferometer
JP2013019759A (en) Method for measuring sample surface shape using scanning white light interferometer
TWI760417B (en) Three-dimensional shape measurement method using scanning white interference microscope
JP2013019752A (en) Data processing method of scanning white-light interferometer
JP2019191087A (en) Interference signal phase correction method
JP6196841B2 (en) Transmitted wavefront measuring apparatus and transmitted wavefront measuring method
CN109997010B (en) Method and apparatus for optimizing optical performance of interferometer
Hassani et al. Surface profilometry using the incoherent self-imaging technique in reflection mode
EP2884338A1 (en) Method of selecting a region of interest from interferometric measurements
Artigas Imaging confocal microscopy
JP4156133B2 (en) Specimen inspection apparatus provided with conveying fringe generating means
JP2013024737A (en) Method and device for measuring three-dimensional shape, and microscope device for three-dimensional shape measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5933273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250