JP5899961B2 - Insulation inspection device and insulation inspection method - Google Patents

Insulation inspection device and insulation inspection method Download PDF

Info

Publication number
JP5899961B2
JP5899961B2 JP2012012167A JP2012012167A JP5899961B2 JP 5899961 B2 JP5899961 B2 JP 5899961B2 JP 2012012167 A JP2012012167 A JP 2012012167A JP 2012012167 A JP2012012167 A JP 2012012167A JP 5899961 B2 JP5899961 B2 JP 5899961B2
Authority
JP
Japan
Prior art keywords
wiring
wirings
power
insulation
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012012167A
Other languages
Japanese (ja)
Other versions
JP2013152109A (en
Inventor
笠井 淳
淳 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Read Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2012012167A priority Critical patent/JP5899961B2/en
Priority to KR1020130001953A priority patent/KR101430040B1/en
Priority to CN201310020507.9A priority patent/CN103217611B/en
Publication of JP2013152109A publication Critical patent/JP2013152109A/en
Application granted granted Critical
Publication of JP5899961B2 publication Critical patent/JP5899961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、タッチパネルのような検査物の表面に形成される複数の配線間の絶縁検査を行う絶縁検査装置及びこの絶縁検査方法に関し、より詳しくは、非接触の供給電極及び検出電極を用いることにより検査物を傷つけることなく、検査物上に形成される配線間の絶縁検査を行うことのできる絶縁検査装置及びその方法に関する。   The present invention relates to an insulation inspection apparatus for performing an insulation inspection between a plurality of wirings formed on the surface of an inspection object such as a touch panel, and this insulation inspection method, and more particularly, to use a non-contact supply electrode and a detection electrode. It is related with the insulation test | inspection apparatus which can perform the insulation test between the wiring formed on a test | inspection object, and its method, without damaging a test | inspection object.

従来、タッチパネル(又は、タッチスクリーンやタッチ画面)と呼ばれるITO膜上に形成されるx軸方向及びy軸方向に形成されるマトリクス状に配置される配線を有する検査対象物は、x軸方向とy軸方向に配置される夫々の配線に夫々接触子(針状の導通プローブ)を接触させて、各配線の導通と隣接する配線との短絡の検査が実施されていた。   Conventionally, an inspection object having wirings arranged in a matrix formed in an x-axis direction and a y-axis direction formed on an ITO film called a touch panel (or touch screen or touch screen) is an x-axis direction. A contact (needle-like conduction probe) is brought into contact with each of the wirings arranged in the y-axis direction, and inspection of a short circuit between each wiring and the adjacent wiring is performed.

しかしながら、このように接触子を各配線に接触させて検査を実施する方法では、ITO膜に形成される配線と接触子に安定性がなく、酸化膜による接触抵抗の不安定性から電気的特性が正確に測定できない問題を有していた。また、接触子が検査対象の配線と圧接されることになるため、配線に接触子が触れることによる打痕が形成される問題を有していた。   However, in the method in which the contact is in contact with each wiring as described above, the wiring formed on the ITO film and the contact are not stable, and the electrical characteristics are unstable due to the instability of the contact resistance due to the oxide film. It had a problem that could not be measured accurately. Further, since the contact is brought into pressure contact with the wiring to be inspected, there is a problem that a dent is formed by the contact of the contact with the wiring.

このような問題を解決するために、特許文献1に開示されるような非接触式の検査方法が提案されている。この特許文献1に開示される技術では、検査物を載置する載置部に配置するベース電極を準備し、このベース電極と検査対象の配線との静電容量と、ベース電極と検査対象以外の配線との静電容量とを利用して、検査対象の配線の絶縁の検査を実施している。   In order to solve such a problem, a non-contact type inspection method as disclosed in Patent Document 1 has been proposed. In the technique disclosed in Patent Document 1, a base electrode is prepared to be placed on a placement portion on which an inspection object is placed, and the capacitance between the base electrode and a wiring to be inspected, other than the base electrode and the inspection subject The insulation of the wiring to be inspected is inspected using the capacitance with the other wiring.

この特許文献1に開示される技術では、検査物を配置するベース電極との静電容量を検査しなければならないため、配線の大きさに応じたベース電極やこのベース電極との静電容量を検出しなければならない構成を具備させなければならず、装置の簡素化や簡略化を図ることができなかった。   In the technique disclosed in Patent Document 1, since the capacitance with the base electrode on which the inspection object is arranged must be inspected, the base electrode corresponding to the size of the wiring and the capacitance with the base electrode are set. A configuration that must be detected must be provided, and the device cannot be simplified or simplified.

また、特許文献1にも記載されているが、配線間の絶縁検査では、検査対象となる配線同士が高抵抗値(例えば、数MΩの抵抗値)を有する絶縁不良が生じている場合には、この絶縁不良を検出することができないという問題がある。これは、配線間の電気容量が極めて小さい静電容量値(例えば、数pFの静電容量値)であるため、絶縁不良箇所のインピーダンスが測定誤差にしか検出できないという問題である。   In addition, as described in Patent Document 1, in the insulation inspection between wirings, when there is an insulation failure in which wirings to be inspected have a high resistance value (for example, a resistance value of several MΩ). There is a problem that this insulation failure cannot be detected. This is a problem that since the capacitance between the wirings is a very small capacitance value (for example, a capacitance value of several pF), the impedance of the insulation failure location can be detected only by a measurement error.

特開2000−338168号公報JP 2000-338168 A

本発明は、このような実情に鑑みてなされたもので、簡略化した構成を有するとともに、高抵抗値の絶縁不良であっても絶縁不良を検出することができる絶縁検査装置及びその方法を提案するものである。   The present invention has been made in view of such circumstances, and proposes an insulation inspection apparatus and method that have a simplified configuration and can detect an insulation failure even with a high-resistance insulation failure. To do.

請求項1記載の発明は、検査物に形成される複数の配線同士の絶縁検査を行う絶縁検査装置であって、検査対象となる配線間の絶縁検査を行うために、所定周波数の電力を印加する電源手段と、前記配線間に前記電力を供給するために、該配線間の一方の配線に非接触で配置される第一給電部と、前記配線間に前記電力を供給するために、該配線間の他方の配線に非接触で配置される第二給電部と、前記一方の配線又は前記他方の配線の電気信号を検出するために、該一方の配線又は該他方の配線に非接触で配置される測定電極部と、前記測定電極部からの電気信号を基に、前記配線間のインピーダンスを算出する算出手段と、前記電源手段へ所定周波数の電力を供給するよう促すとともに、前記算出手段へ前記所定周波数の電力が印加された際のインピーダンスを算出するよう促す制御手段と、前記制御手段へ少なくとも二つ以上の異なる所定周波数の電力を供給した際のインピーダンスを算出するよう促すとともに、前記二つ以上の算出されるインピーダンスにおける静電容量の容量成分および抵抗成分に基づいて前記配線間の絶縁状態の良否を判定する判定手段を備えることを特徴とする絶縁検査装置を提供する。
請求項2記載の発明は、前記判定手段は、二以上の算出されるインピーダンスの前記周波数に応じる変位量を算出し、当該変位量に応じて良否を判定することを特徴とする請求項1記載の絶縁検査装置を提供する。
請求項3記載の発明は、検査物に形成される複数の配線同士の絶縁検査を行う絶縁検査方法であって、検査対象の配線間を形成する一方の配線と他方の配線に、電力を供給するための給電板を非接触で夫々配置するとともに、該一方の配線の電気信号を検出するための測定板を非接触で配置し、二以上の異なる周波数の電力を供給するとともに、夫々の周波数での配線間のインピーダンスを算出し、前記二以上の算出されるインピーダンスにおける静電容量の容量成分および抵抗成分に基づいて、前記配線間の絶縁状態の良否を判定する絶縁検査方法を提供する。
これらの発明を提供することによって、上記課題を悉く解決する。
The invention according to claim 1 is an insulation inspection apparatus that performs an insulation inspection between a plurality of wirings formed on an inspection object, and applies power at a predetermined frequency in order to perform an insulation inspection between the wirings to be inspected. Power supply means, a first power supply unit disposed in a non-contact manner on one of the wires to supply the power between the wires, and the power supply between the wires, A second power feeding unit disposed in a non-contact manner on the other wiring between the wirings, and a contact with the one wiring or the other wiring in order to detect an electrical signal of the one wiring or the other wiring; Based on the measurement electrode unit to be arranged, the calculation means for calculating the impedance between the wires based on the electrical signal from the measurement electrode unit, and prompting the power supply means to supply power of a predetermined frequency, the calculation unit The power of the predetermined frequency is applied to Encourages to calculating and control means is prompted to calculate the impedance when the impedance at the time of supplying the power of at least two or more different predetermined frequency to said control unit, static in the two or more impedance calculated There is provided an insulation inspection apparatus comprising: a determination unit that determines the quality of an insulation state between the wirings based on a capacitance component and a resistance component of a capacitance .
The invention according to claim 2 is characterized in that the determination means calculates a displacement amount corresponding to the frequency of two or more calculated impedances, and determines pass / fail according to the displacement amount. An insulation inspection apparatus is provided.
The invention according to claim 3 is an insulation inspection method for performing an insulation inspection between a plurality of wirings formed on an inspection object, and supplies power to one wiring and the other wiring forming the wiring to be inspected. A power supply plate is arranged in a non-contact manner, and a measurement plate for detecting an electric signal of the one wiring is arranged in a non-contact manner to supply power of two or more different frequencies, and each frequency An insulation inspection method is provided for calculating the impedance between the wirings at the two and determining the quality of the insulation state between the wirings based on the capacitance component and the resistance component of the capacitance at the two or more calculated impedances.
By providing these inventions, the above problems can be solved.

請求項1又は3記載の発明によれば、複数の周波数の電力を用いてインピーダンスを算出し、これらインピーダンスを基に絶縁検査を実施することによって、絶縁異常である短絡が高抵抗値であっても正確に検出することができるとともに、複雑な機器を使用することなく、廉価な装置構成で検出を可能にする。
請求項2記載の発明によれば、インピーダンスの変位量を利用して絶縁状態を判定するので、複数のインピーダンスを用いることにより、より高精度な絶縁検査を実施することができる。
According to the invention of claim 1 or 3, by calculating the impedance using power of a plurality of frequencies and performing an insulation test based on these impedances, the short circuit that is an insulation abnormality has a high resistance value. Can be detected accurately, and can be detected with an inexpensive apparatus configuration without using complicated equipment.
According to the second aspect of the invention, since the insulation state is determined using the amount of impedance displacement, a more accurate insulation test can be performed by using a plurality of impedances.

本発明に係る絶縁検査装置の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the insulation test | inspection apparatus which concerns on this invention. 絶縁状態が良好な場合と絶縁状態が不良な場合を示した場合のグラフを示す。横軸は、周波数の対数表示を示しており、縦軸は、インピーダンス出力(容量成分と抵抗成分の比)を示している。The graph in the case where the case where an insulation state is favorable and the case where an insulation state is bad is shown is shown. The horizontal axis indicates the logarithmic display of the frequency, and the vertical axis indicates the impedance output (ratio of the capacitance component and the resistance component). 本発明に係る絶縁検査装置の検査状態を示す概略図である。It is the schematic which shows the test | inspection state of the insulation test | inspection apparatus which concerns on this invention. 本発明に係る絶縁検査方法のフローチャートを示す。2 shows a flowchart of an insulation inspection method according to the present invention.

本発明を実施するための最良の形態を説明する。
本発明の絶縁検査装置や絶縁検査方法にて検査される検査物では、その検査物の表面に複数の配線が形成されている。この配線の形状は特に限定されないが、隣接する配線同士の配線間の絶縁状態を本発明では好適に検査することができる。
The best mode for carrying out the present invention will be described.
In the inspection object to be inspected by the insulation inspection apparatus or the insulation inspection method of the present invention, a plurality of wirings are formed on the surface of the inspection object. The shape of the wiring is not particularly limited, but the insulation state between adjacent wirings can be suitably inspected in the present invention.

本発明の絶縁検査装置1について説明する。本絶縁検査装置1は、図1で示される如く、電源手段2、第一給電部3、第二給電部4、測定電極部5、算出手段6、制御手段7、判定手段8を備えてなる。なお、検査対象となる配線間とは、二つの配線が選択され、これらの二本の配線間が絶縁検査の対象となる。   The insulation inspection apparatus 1 of the present invention will be described. As shown in FIG. 1, the insulation inspection apparatus 1 includes a power supply unit 2, a first power supply unit 3, a second power supply unit 4, a measurement electrode unit 5, a calculation unit 6, a control unit 7, and a determination unit 8. . In addition, between the wirings to be inspected, two wirings are selected, and the insulation between these two wirings is the target of the insulation inspection.

電源手段2は、検査対象となる配線間の絶縁検査を行うために、所定周波数の電力を印加する。この電源手段2は、後述する制御手段7からの電気信号に応じて周波数を変更した交流電圧を供給する。この電源手段2は、周波数の変更することができる交流電源を利用することができる。なお、この電源手段2は、制御手段7が要求する周波数の交流電圧を、制御手段7からの指令に応じて適宜変更することができる。   The power supply means 2 applies power of a predetermined frequency in order to perform an insulation test between wirings to be tested. The power supply means 2 supplies an alternating voltage whose frequency is changed in accordance with an electric signal from the control means 7 described later. The power supply means 2 can use an AC power supply that can change the frequency. The power supply means 2 can appropriately change the AC voltage of the frequency required by the control means 7 in accordance with a command from the control means 7.

第一給電部3は、配線間に電源手段2からの電力を供給するために、この配線間の一方の配線TAに非接触で配置される。この第一給電部3は、一方の配線TAにのみ電力を供給することができるように、一方の配線TAとの幅と同じ又はより小さい幅の形状の導電性の板状部材にて形成される。この第一給電部3は、一方の配線TAに対して、一定の距離を有し且つ対向して配置される。このように第一給電部3が配置されることにより、第一給電部3と一方の配線TAが静電容量結合されることになる。   The first power feeding unit 3 is arranged in a non-contact manner on one wiring TA between the wirings in order to supply power from the power supply means 2 between the wirings. The first power feeding unit 3 is formed of a conductive plate-like member having a shape that is the same as or smaller than the width of one wiring TA so that power can be supplied only to one wiring TA. The The first power feeding unit 3 is disposed opposite to the one wiring TA with a certain distance. By arranging the first power feeding unit 3 in this way, the first power feeding unit 3 and one wiring TA are capacitively coupled.

第二給電部4は、配線間に電源手段2からの電力を供給するために、この配線間の他方の配線TBに非接触で配置される。この第二給電部4は、他方の配線TBにのみ電力を供給することができるように、他方の配線TBとの幅と同じ又はより小さい幅の形状の導電性の板状部材にて形成される。この第二給電部4は、他方の配線TBに対して、一定の距離を有し且つ対向して配置される。このように第二給電部4が配置されることにより、第二給電部4と他方の配線TBが静電容量結合されることになる。   The second power feeding section 4 is disposed in a non-contact manner on the other wiring TB between the wirings in order to supply power from the power supply means 2 between the wirings. The second power feeding section 4 is formed of a conductive plate-like member having a shape equal to or smaller than the width of the other wiring TB so that power can be supplied only to the other wiring TB. The The second power feeding unit 4 is disposed to face the other wiring TB with a certain distance. By arranging the second power feeding unit 4 in this way, the second power feeding unit 4 and the other wiring TB are capacitively coupled.

第一給電部3と第二給電部4が上記のように配置されることにより、これらの給電部と配線間により電気的な閉ループを形成するように構成されることになる。   By arranging the first power feeding unit 3 and the second power feeding unit 4 as described above, an electrical closed loop is formed between the power feeding unit and the wiring.

測定電極部5は、一方の配線TAの電気信号を検出するために、一方の配線TAに非接触で配置される。この測定電極部5は、一方の配線TAからの電気信号を検出することができるように、一方の配線TAとの幅と同じ又はより小さい幅の形状の導電性の板状部材にて形成されることが好ましい。この測定電極部5は、一方の配線TAに対して、一定の距離を有し且つ対向して配置される。このように測定電極部5が配置されることにより、測定電極部5と一方の配線TAが静電容量結合されることになる。なお、この測定電極部5は、上記の説明では一方の配線TAに非接触配置される場合を説明したが、他方の配線TBに非接触配置されても良く、この場合には一方の配線TAの代わりに他方の配線TBと上記の条件が合うように調整されれば良い。   The measurement electrode unit 5 is disposed in a non-contact manner on one wiring TA in order to detect an electrical signal of the one wiring TA. The measurement electrode portion 5 is formed of a conductive plate-like member having a shape that is the same as or smaller than the width of one wiring TA so that an electric signal from one wiring TA can be detected. It is preferable. The measurement electrode unit 5 is disposed opposite to the one wiring TA with a certain distance. By arranging the measurement electrode unit 5 in this way, the measurement electrode unit 5 and one wiring TA are capacitively coupled. In the above description, the measurement electrode unit 5 has been described as being disposed in a non-contact manner on one wiring TA. However, the measurement electrode portion 5 may be disposed in a non-contact manner on the other wiring TB. Instead of this, the other wiring TB may be adjusted so as to meet the above conditions.

第一給電部3と第二給電部4は、夫々一方の配線TAと他方の配線TBの一方端に配置され、測定電極部5は、一方の配線TA又は他方の配線TBの他方端に配置されることが好ましい。このように配置されることによって、配線間全体での絶縁状態を検出することができる。   The first power feeding unit 3 and the second power feeding unit 4 are disposed at one end of one wiring TA and the other wiring TB, respectively, and the measurement electrode unit 5 is disposed at the other end of one wiring TA or the other wiring TB. It is preferred that By arranging in this way, it is possible to detect the insulation state between the entire wirings.

算出手段6は、測定電極部5からの電気信号を基に、配線間のインピーダンスを算出する。この算出手段6は、測定電極部5と電気的に接続されており、測定電極部5からの電気信号を受け取ると、この電気信号の情報と、電源手段2が供給する電力情報(周波数値情報や交流電圧値情報)を基に算出される。この算出手段6が算出した算出結果は、配線間の情報と合わせて、後述する判定手段8へ送信されることになる。この算出手段6は、電気信号情報や電力情報を収集して、算出することのできる演算処理装置などを利用することができる。   The calculation means 6 calculates the impedance between the wirings based on the electrical signal from the measurement electrode unit 5. The calculation means 6 is electrically connected to the measurement electrode section 5 and receives an electric signal from the measurement electrode section 5 and information on the electric signal and power information (frequency value information) supplied by the power supply means 2. And AC voltage value information). The calculation result calculated by the calculation unit 6 is transmitted to the determination unit 8 described later together with the information between the wirings. The calculation means 6 can use an arithmetic processing unit that can collect and calculate electrical signal information and power information.

制御手段7は、電源手段2へ所定周波数の電力を供給するよう促すとともに、算出手段6へ所定周波数の電力が印加された際のインピーダンスを算出するよう促す。この制御手段7は、電源手段2へ印加される電力を制御するとともに、この電力が印加された場合の配線間のインピーダンスを算出するよう制御することになる。   The control means 7 urges the power supply means 2 to supply power of a predetermined frequency and prompts the calculation means 6 to calculate the impedance when the power of the predetermined frequency is applied. The control means 7 controls the power applied to the power supply means 2 and controls the impedance between the wirings when this power is applied.

判定手段8は、制御手段7へ少なくとも二つ以上の異なる所定周波数の電力を供給した際のインピーダンスを算出するよう促すとともに、二つ以上の算出されるインピーダンスから配線間の絶縁の良否を判定する。この判定手段8は、制御手段7へ二つ以上の異なる周波数の電力を供給させ、二つ以上のインピーダンスを算出させる。そして、判定手段8は、算出された二つ以上のインピーダンスを利用して配線間の絶縁状態の良否を判定する。   The determination means 8 prompts the control means 7 to calculate the impedance when supplying power of at least two or more different predetermined frequencies, and determines the quality of insulation between the wirings from the two or more calculated impedances. . The determination unit 8 supplies power of two or more different frequencies to the control unit 7 and calculates two or more impedances. And the determination means 8 determines the quality of the insulation state between wiring using two or more calculated impedance.

この判定手段8が行う絶縁状態の判定方法を説明する。上記の説明の如く、算出されるインピーダンス情報は、二つ以上算出されるが、ここでの説明では二つのインピーダンス情報を利用する場合を説明する。判定手段8が取得するインピーダンス情報は、周波数情報と合わせて取得される。このため、判定手段8は、このインピーダンス情報を周波数が変更された場合の変位値として扱うことができ、このインピーダンスの変位に応じて、絶縁状態の良否を判定する。   An insulation state determination method performed by the determination unit 8 will be described. As described above, two or more pieces of impedance information are calculated. In the description here, a case where two pieces of impedance information are used will be described. The impedance information acquired by the determination unit 8 is acquired together with the frequency information. For this reason, the determination means 8 can handle this impedance information as a displacement value when the frequency is changed, and determines the quality of the insulation state according to the displacement of the impedance.

上記の如き判定手段8が周波数の変位によるインピーダンスの変位量による判定は、配線間の絶縁状態が良好な場合には、配線間の静電容量のみの影響を受けた電気信号が検出され、配線間の絶縁状態が不良な場合には、配線間の静電容量の影響と抵抗(短絡状態)の影響を受けた電気信号が検出されることから、二つの(複数の)異なる周波数によるインピーダンス値を算出することで、静電容量の影響や抵抗の影響を受けているかどうかを検出して実施されることになる。   The determination by the determination means 8 as described above is based on the amount of impedance displacement due to frequency displacement. When the insulation state between the wirings is good, an electrical signal affected only by the capacitance between the wirings is detected. If the insulation state between the two is poor, the electrical signal affected by the capacitance between the wires and the resistance (short circuit) is detected, so the impedance values at two (multiple) different frequencies By calculating, it is carried out by detecting whether it is affected by capacitance or resistance.

具体的には、配線間の絶縁状態が良好な場合には、異なる周波数のインピーダンスを算出しても、配線間の静電容量に起因する影響のみが算出されることになる。つまり、周波数を変更しても、抵抗成分が検出されることはなく、配線間の静電容量の容量成分のみが算出されることになる。
また、配線間の絶縁状態が不良な場合には、配線間の静電容量の影響と短絡の影響が算出されることになる。つまり、周波数の低域領域では抵抗成分の影響が大きく反映される一方、周波数の高域領域では容量成分の影響が大きく反映されることになる。
Specifically, when the insulation state between the wirings is good, even if impedances of different frequencies are calculated, only the influence due to the capacitance between the wirings is calculated. That is, even if the frequency is changed, the resistance component is not detected, and only the capacitance component of the capacitance between the wirings is calculated.
Further, when the insulation state between the wirings is poor, the influence of the capacitance between the wirings and the influence of the short circuit are calculated. That is, the influence of the resistance component is largely reflected in the low frequency region, while the influence of the capacitance component is largely reflected in the high frequency region.

上記の説明の如く、このように周波数を変更することにより、抵抗成分の影響を検出して、絶縁状態を判定する。なお、図2では、上記の如く、絶縁状態が良好な場合と絶縁状態が不良な場合を示した場合のグラフを示す。   As described above, by changing the frequency in this way, the influence of the resistance component is detected to determine the insulation state. In addition, in FIG. 2, the graph in the case where the case where an insulation state is favorable as shown above and the case where an insulation state is bad is shown.

上記の如く、二つの周波数と夫々のインピーダンスの特性が算出されることにより、判定手段8は、算出されたインピーダンスを基に、周波数の変位に伴う変位量を算出して、その変位量が所定範囲であれば、絶縁状態が良好又は不良であることを判定することができる。また、予め絶縁状態の良好な場合の変位量を基準値として設定し、この基準値との乖離に応じて判定することもできる。なお、この判定手段8には、演算処理装置や記憶装置を設けることで対応することができる。   As described above, by calculating the characteristics of the two frequencies and the respective impedances, the determination means 8 calculates a displacement amount associated with the frequency displacement based on the calculated impedance, and the displacement amount is predetermined. If it is within the range, it can be determined that the insulation state is good or bad. Further, it is also possible to set a displacement amount when the insulation state is good as a reference value in advance and determine according to a deviation from the reference value. The determination means 8 can be dealt with by providing an arithmetic processing device or a storage device.

上記説明では、二つの周波数の異なる場合について説明し、この二つの異なる周波数を低域と高域の二つに分けて説明したが、周波数自体を低域の周波数(例えば、10〜1000Hz)と高域の周波数(例えば、1MHz〜100MHz)という領域の周波数を用いることもできるし、一の周波数を特定周波数とし、他の周波数をこの特定周波数よりの100倍又は1000倍というような周波数を用いることもできる。
なお、異なる周波数は二つに限定されず、二つ以上用いることができ、三つ以上用いることにより、周波数によるインピーダンスの変位量を精度良く検出することができるようになり、検査精度を向上させることができる。
In the above description, the case where the two frequencies are different from each other is described, and the two different frequencies are divided into two, a low frequency and a high frequency, but the frequency itself is defined as a low frequency (for example, 10 to 1000 Hz). A frequency in a high frequency range (for example, 1 MHz to 100 MHz) can be used, one frequency is a specific frequency, and the other frequency is a frequency that is 100 times or 1000 times the specific frequency. You can also.
Note that the number of different frequencies is not limited to two, and two or more can be used. By using three or more, it becomes possible to accurately detect the amount of impedance displacement due to the frequency, thereby improving the inspection accuracy. be able to.

この制御手段7が電源手段2へ促す所定周波数を有する電力は、この制御手段7に予め複数設定しておくこともできるし、適宜使用者等によりこの制御手段7へ入力することもできる。なお、この制御手段7が制御することになる所定周波数は、配線間の間隔や、測定電極部5の形状や面積に応じて適宜変更することができる。
以上が、本発明の絶縁検査装置の構成に関する説明である。
A plurality of electric power having a predetermined frequency that the control means 7 prompts the power supply means 2 can be set in advance in the control means 7 or can be appropriately input to the control means 7 by a user or the like. Note that the predetermined frequency to be controlled by the control means 7 can be appropriately changed according to the interval between the wirings and the shape and area of the measurement electrode unit 5.
This completes the description of the configuration of the insulation inspection apparatus of the present invention.

次に、本発明の絶縁検査装置の動作について説明する。
図3は、本発明の絶縁検査方法の概略を示す平面図である。この図3では、検査対象との配線間として、一方の配線TAと他方の配線TBが示されており、この配線TAと配線TBの配線間の絶縁状態を検査することになる。図4は、本発明の絶縁検査方法の各工程を示すフローチャートである。
Next, the operation of the insulation inspection apparatus of the present invention will be described.
FIG. 3 is a plan view schematically showing the insulation inspection method of the present invention. In FIG. 3, one wiring TA and the other wiring TB are shown between the wirings to be inspected, and the insulation state between the wiring TA and the wiring TB is inspected. FIG. 4 is a flowchart showing each step of the insulation inspection method of the present invention.

絶縁検査を実施するために、第一周波数と第二周波数を設定する。このとき、例えば、第一周波数を100Hz、第二周波数を100MHzと設定しておく。また、配線間の絶縁状態を判定するために、良好な絶縁状態の場合における第一周波数の交流電圧と第二周波数の交流電圧が印加された場合のインピーダンスの変位量を判定基準値として設定しておく。このとき、例えば、この判定基準値の±10%を良好状態と判定する閾値として設定しておく。
まず、検査対象となる配線間を選択するために、第一給電部3を一方の配線TAの一端部に配置し、第二給電部4を他方の配線TBの一端部に配置し、測定電極部5を一方の配線TAの他端部に配置する(S1参照)。
In order to perform an insulation test, a first frequency and a second frequency are set. At this time, for example, the first frequency is set to 100 Hz and the second frequency is set to 100 MHz. In addition, in order to determine the insulation state between the wires, the displacement amount of the impedance when the first frequency AC voltage and the second frequency AC voltage are applied in a good insulation state is set as a determination reference value. Keep it. At this time, for example, ± 10% of the determination reference value is set as a threshold value for determining the good state.
First, in order to select between the wirings to be inspected, the first power feeding unit 3 is disposed at one end of one wiring TA, the second power feeding unit 4 is disposed at one end of the other wiring TB, and the measurement electrode The part 5 is disposed at the other end of the one wiring TA (see S1).

次に、制御手段7は、第一周波数の交流電圧を配線間に印加した場合のインピーダンス値を算出するよう電源手段2と算出手段へ信号を促す。このため、電源手段2は第一周
波数の交流電圧を第一給電部と第二給電部を介して配線間に供給する(S2参照)。
Next, the control means 7 prompts the power supply means 2 and the calculation means 6 to calculate an impedance value when an alternating voltage of the first frequency is applied between the wirings. For this reason, the power supply means 2 supplies the alternating voltage of 1st frequency between wiring via the 1st electric power feeding part 3 and the 2nd electric power feeding part 4 (refer S2).

このとき、算出手段6は測定電極部5を介して測定した電気信号に基づいて、配線間のインピーダンスを算出する(S3参照)。なお、電源手段2の印加する交流電圧の情報や算出されたインピーダンスの情報は、メモリなどの記憶手段に格納される。   At this time, the calculation means 6 calculates the impedance between the wirings based on the electrical signal measured through the measurement electrode unit 5 (see S3). Information on the alternating voltage applied by the power supply means 2 and information on the calculated impedance are stored in a storage means such as a memory.

次いで、制御手段7は、第二周波数の交流電圧を配線間に印加した場合のインピーダンス値を算出するよう電源手段2と算出手段へ信号を促す。このため、電源手段2は第二周波数の交流電圧を第一給電部と第二給電部を介して配線間に供給する(S4参照)。
Next, the control means 7 prompts the power supply means 2 and the calculation means 6 to calculate an impedance value when an alternating voltage of the second frequency is applied between the wirings. For this reason, the power supply means 2 supplies the alternating voltage of a 2nd frequency between wirings via the 1st electric power feeding part 3 and the 2nd electric power feeding part 4 (refer S4).

このとき、算出手段6は測定電極部5を介して測定した電気信号に基づいて、配線間のインピーダンスを算出する(S5参照)。なお、電源手段2の印加する交流電圧の情報や算出されたインピーダンスの情報は、メモリなどの記憶手段に格納される。   At this time, the calculation means 6 calculates the impedance between the wirings based on the electrical signal measured through the measurement electrode unit 5 (see S5). Information on the alternating voltage applied by the power supply means 2 and information on the calculated impedance are stored in a storage means such as a memory.

第一周波数の交流電圧と第二周波数の交流電圧が印加され、夫々の電圧が印加された場合のインピーダンスが測定されると、インピーダンスの変位量を算出する(S6参照)。
インピーダンスの変位量が算出されると、この算出結果と予め設定される判定基準値と比較し、判定基準値の閾値内に算出結果が存在するか判定する。このとき、算出結果が判定基準閾値内に存在すれば、検査対象の配線間の絶縁状態は良好であると判定され、算出結果が判定基準閾値内に存在しなければ、検査対象の配線間の絶縁状態は不良であると判定される(S7参照)。
When the AC voltage of the first frequency and the AC voltage of the second frequency are applied and the impedance when each voltage is applied is measured, the amount of displacement of the impedance is calculated (see S6).
When the displacement amount of the impedance is calculated, this calculation result is compared with a predetermined determination reference value, and it is determined whether the calculation result exists within the threshold value of the determination reference value. At this time, if the calculation result is within the determination reference threshold value, it is determined that the insulation state between the wirings to be inspected is good, and if the calculation result does not exist within the determination reference threshold value, it is determined between the inspection target wirings. It is determined that the insulation state is defective (see S7).

検査対象の配線間の絶縁状態が判定された後には、次の配線間の絶縁状態が判定されることになり、第一給電部3、第二給電部4と測定電極部5が検査対象となる配線間の夫々の位置に移動して配置されることになる。
なお、絶縁状態が不良と判定された場合には、この検査物の絶縁検査を終了しても良い。
以上が本発明に関する絶縁検査方法の説明である。
After the insulation state between the wirings to be inspected is determined, the insulation state between the next wirings is determined, and the first power supply unit 3, the second power supply unit 4, and the measurement electrode unit 5 are the inspection targets. It moves to each position between the wirings to be arranged.
In addition, when it is determined that the insulation state is defective, the insulation inspection of this inspection object may be terminated.
The above is the description of the insulation inspection method according to the present invention.

1・・・絶縁検査装置
2・・・電源手段
3・・・第一給電部
4・・・第二給電部
5・・・測定電極部
6・・・算出手段
7・・・制御手段
8・・・判定手段
TA・・一方の配線
TB・・他方の配線
DESCRIPTION OF SYMBOLS 1 ... Insulation inspection apparatus 2 ... Power supply means 3 ... 1st electric power feeding part 4 ... 2nd electric power feeding part 5 ... Measurement electrode part 6 ... Calculation means 7 ... Control means 8 ..Judging means TA ・ ・ One wiring TB ・ ・ The other wiring

Claims (3)

検査物に形成される複数の配線同士の絶縁検査を行う絶縁検査装置であって、
検査対象となる配線間の絶縁検査を行うために、所定周波数の電力を印加する電源手段と、
前記配線間に前記電力を供給するために、該配線間の一方の配線に非接触で配置される第一給電部と、
前記配線間に前記電力を供給するために、該配線間の他方の配線に非接触で配置される第二給電部と、
前記一方の配線又は前記他方の配線の電気信号を検出するために、該一方の配線又は該他方の配線に非接触で配置される測定電極部と、
前記測定電極部からの電気信号を基に、前記配線間のインピーダンスを算出する算出手段と、
前記電源手段へ所定周波数の電力を供給するよう促すとともに、前記算出手段へ前記所定周波数の電力が印加された際のインピーダンスを算出するよう促す制御手段と、
前記制御手段へ少なくとも二つ以上の異なる所定周波数の電力を供給した際のインピーダンスを算出するよう促すとともに、前記二つ以上の算出されるインピーダンスにおける静電容量の容量成分および抵抗成分に基づいて前記配線間の絶縁状態の良否を判定する判定手段を備えることを特徴とする絶縁検査装置。
An insulation inspection apparatus for performing an insulation inspection between a plurality of wires formed on an inspection object,
In order to perform an insulation inspection between wirings to be inspected, power supply means for applying power of a predetermined frequency,
In order to supply the electric power between the wirings, a first power feeding unit disposed in a non-contact manner on one wiring between the wirings;
A second power feeding unit disposed in a non-contact manner on the other wiring between the wirings in order to supply the power between the wirings;
In order to detect an electrical signal of the one wiring or the other wiring, the measurement electrode unit disposed in a non-contact manner on the one wiring or the other wiring;
Calculation means for calculating an impedance between the wirings based on an electrical signal from the measurement electrode unit;
Control means for urging the power supply means to supply power of a predetermined frequency, and for urging the calculation means to calculate an impedance when the power of the predetermined frequency is applied;
The controller is urged to calculate an impedance when power of at least two or more different predetermined frequencies is supplied, and based on the capacitance component and the resistance component of the capacitance at the two or more calculated impedances . An insulation inspection apparatus comprising: a determination unit that determines whether the insulation state between the wires is good or bad.
前記判定手段は、二以上の算出されるインピーダンスの前記周波数に応じる変位量を算出し、当該変位量に応じて良否を判定することを特徴とする請求項1記載の絶縁検査装置。       The insulation inspection apparatus according to claim 1, wherein the determination unit calculates a displacement amount corresponding to the frequency of two or more calculated impedances, and determines pass / fail according to the displacement amount. 検査物に形成される複数の配線同士の絶縁検査を行う絶縁検査方法であって、
検査対象の配線間を形成する一方の配線と他方の配線に、電力を供給するための給電板を非接触で夫々配置するとともに、該一方の配線の電気信号を検出するための測定板を非接触で配置し、
二以上の異なる周波数の電力を供給するとともに、夫々の周波数での配線間のインピーダンスを算出し、
前記二以上の算出されるインピーダンスにおける静電容量の容量成分および抵抗成分に基づいて前記配線間の絶縁状態の良否を判定する絶縁検査方法。
An insulation inspection method for performing an insulation inspection between a plurality of wires formed on an inspection object,
A power supply plate for supplying power is arranged in a non-contact manner on one wiring and the other wiring forming the wiring to be inspected, and a measurement plate for detecting an electric signal of the one wiring is not provided. Placed in contact,
While supplying power of two or more different frequencies, calculate the impedance between wiring at each frequency,
An insulation inspection method for determining the quality of the insulation state between the wirings based on a capacitance component and a resistance component of capacitance at the two or more calculated impedances.
JP2012012167A 2012-01-24 2012-01-24 Insulation inspection device and insulation inspection method Active JP5899961B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012012167A JP5899961B2 (en) 2012-01-24 2012-01-24 Insulation inspection device and insulation inspection method
KR1020130001953A KR101430040B1 (en) 2012-01-24 2013-01-08 Insulation inspection device and insulation inspection method
CN201310020507.9A CN103217611B (en) 2012-01-24 2013-01-21 insulation inspecting device and insulation inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012167A JP5899961B2 (en) 2012-01-24 2012-01-24 Insulation inspection device and insulation inspection method

Publications (2)

Publication Number Publication Date
JP2013152109A JP2013152109A (en) 2013-08-08
JP5899961B2 true JP5899961B2 (en) 2016-04-06

Family

ID=48815571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012167A Active JP5899961B2 (en) 2012-01-24 2012-01-24 Insulation inspection device and insulation inspection method

Country Status (3)

Country Link
JP (1) JP5899961B2 (en)
KR (1) KR101430040B1 (en)
CN (1) CN103217611B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780859B2 (en) * 2017-09-25 2020-11-04 日本電産リード株式会社 Board inspection device and board inspection method
KR20210104652A (en) 2018-12-18 2021-08-25 미쓰이금속광업주식회사 Laminated sheet and method of use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077038B2 (en) * 1986-05-19 1995-01-30 株式会社リードエレクトロニクス Printed circuit board inspection equipment
JP4219489B2 (en) * 1999-05-31 2009-02-04 日置電機株式会社 Circuit board inspection equipment
JP4394980B2 (en) * 2004-01-30 2010-01-06 日本電産リード株式会社 Substrate inspection apparatus and substrate inspection method
JP2006200973A (en) * 2005-01-19 2006-08-03 Hioki Ee Corp Circuit board inspection method and its device
JP3953087B2 (en) * 2005-10-18 2007-08-01 日本電産リード株式会社 Insulation inspection device and insulation inspection method
JP4291843B2 (en) * 2006-10-19 2009-07-08 株式会社東京カソード研究所 Pattern inspection device
JP2008128678A (en) * 2006-11-16 2008-06-05 Nidec-Read Corp Insulation inspection device and insulation inspection method
JP5391819B2 (en) * 2009-05-14 2014-01-15 日本電産リード株式会社 Touch panel inspection device
JP4644745B2 (en) * 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
CN201754171U (en) * 2010-04-01 2011-03-02 苏州崴展电子科技有限公司 ITO electrical characteristics detecting system of capacitive touch screen

Also Published As

Publication number Publication date
CN103217611A (en) 2013-07-24
KR20130086303A (en) 2013-08-01
KR101430040B1 (en) 2014-08-14
CN103217611B (en) 2015-09-30
JP2013152109A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
TWI629629B (en) Inspection apparatus, calibration and inspection method of the inspection apparatus
JP4889833B2 (en) Capacitive touch panel inspection device and inspection method
KR102318031B1 (en) Substrate inspection device and substrate inspection method
JP6248406B2 (en) Inspection apparatus and inspection method
TWI436078B (en) Inspection method and inspection apparatus for circuit substrate
JP5533169B2 (en) Inspection device
JP5899961B2 (en) Insulation inspection device and insulation inspection method
TWI681199B (en) Inspection device and inspection method of single-layer inspection object
KR101296460B1 (en) Substrate inspection apparatus and substrate inspection method
CN103364678B (en) insulation inspecting device and insulation inspecting method
JP5420277B2 (en) Circuit board inspection apparatus and circuit board inspection method
KR102469505B1 (en) Connection inspecting apparatus
TWI489123B (en) Inspecting apparatus and inspecting method
TW201335605A (en) Detecting apparatus for detection lines of a touch panel and related method
JP4915776B2 (en) Substrate inspection apparatus and substrate inspection method
JP5698436B2 (en) Circuit disconnection inspection device
JP5323502B2 (en) Substrate inspection apparatus and substrate inspection method
JP2012018063A (en) Operation checking method of board wiring inspection device
JP2017101947A (en) Substrate inspection device and substrate inspection method
JP2004286605A (en) Impedance measuring instrument
JP2006113009A (en) Circuit board inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250