JP5871642B2 - Coherent transmission system and method - Google Patents

Coherent transmission system and method Download PDF

Info

Publication number
JP5871642B2
JP5871642B2 JP2012019551A JP2012019551A JP5871642B2 JP 5871642 B2 JP5871642 B2 JP 5871642B2 JP 2012019551 A JP2012019551 A JP 2012019551A JP 2012019551 A JP2012019551 A JP 2012019551A JP 5871642 B2 JP5871642 B2 JP 5871642B2
Authority
JP
Japan
Prior art keywords
optical transmission
channel
dispersion
unit
coherent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012019551A
Other languages
Japanese (ja)
Other versions
JP2013162136A (en
Inventor
哲郎 小向
哲郎 小向
武司 河合
武司 河合
陽平 坂巻
陽平 坂巻
片岡 智由
智由 片岡
光師 福徳
光師 福徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012019551A priority Critical patent/JP5871642B2/en
Publication of JP2013162136A publication Critical patent/JP2013162136A/en
Application granted granted Critical
Publication of JP5871642B2 publication Critical patent/JP5871642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、コヒーレント光通信を行うコヒーレント伝送システム及び方法に関し、特に良好な受信特性を有するコヒーレント伝送システム及び方法に関する。   The present invention relates to a coherent transmission system and method for performing coherent optical communication, and more particularly to a coherent transmission system and method having good reception characteristics.

近年、コヒーレント伝送方式にデジタル信号処理技術を適用したデジタルコヒーレントファイバ伝送システムの研究開発が進み、一部導入が始まっている。現在の光通信システムは、波長多重伝送方式が前提になっており、コヒーレント伝送方式も波長多重伝送が前提となっているが、所望の信号光の選択において、従来の直接検波方式と比べて大きな利点がある。   In recent years, research and development of a digital coherent fiber transmission system in which a digital signal processing technique is applied to a coherent transmission method has progressed, and a part of the system has been introduced. The current optical communication system is premised on the wavelength multiplexing transmission system, and the coherent transmission system is also premised on the wavelength multiplexing transmission. However, in selecting the desired signal light, it is larger than the conventional direct detection system. There are advantages.

元々、コヒーレント検波方式は、受信部にて、同時に受信する多数の光信号の中から、所望の光信号のキャリア周波数とごく近い周波数のレーザ光を合波し、フォトダイオードで受光して電気信号に変換し、それらのビート信号を抽出して電気的に信号を復調するものであり、直接検波方式と異なり、所望の光信号だけを取り出すための波長選択用の光部品が原理的には不要となる[非特許文献1]。   Originally, the coherent detection method combines a laser beam having a frequency very close to the carrier frequency of a desired optical signal from among a large number of optical signals simultaneously received by a receiving unit, and receives the electrical signal by a photodiode. In contrast to the direct detection method, optical components for wavelength selection for extracting only the desired optical signal are not required in principle. [Non-Patent Document 1].

そこで、例えば、デジタルコヒーレント方式をROADM(Reconfigurable Optical Add Drop Multiplexer)システムに導入すれば、ROADMノードにおいて、光信号を分波する際に、WSS(Wavelength Selective Switch)やAWG(Arrayed Waveguide Grating)、波長可変フィルタなどの装置が不要になり、コストの低減化が実現すると考えられる。また、直接検波方式の場合、このような波長選択部品の性能が不十分であると、非選択波長(チャネル)によるクロストークが原因の雑音が生じる恐れがあるが、コヒーレント伝送方式においてはその懸念はない。ただし、受信機の帯域がチャネル間隔(典型的には50GHz)より十分小さいと想定している。   Therefore, for example, if a digital coherent method is introduced into a ROADM (Reconfigurable Optical Drop Drop Multiplexer) system, a WADM (Wavelength Selective Switch) or an AWG (Wavelength Selective Wave) or AWG (Wavelength Selective Wave) or AWG (Wavelength Selective Wave) or AWG (Wavelength Selective Wave) It is considered that a device such as a variable filter becomes unnecessary, and cost reduction is realized. In the case of the direct detection method, if the performance of such wavelength selection components is insufficient, noise due to crosstalk due to non-selected wavelengths (channels) may occur. There is no. However, it is assumed that the receiver band is sufficiently smaller than the channel spacing (typically 50 GHz).

このようにコヒーレント伝送方式では、光フィルタ等を前置することなく、全チャネルの光を一括して受信することが原理的には可能である。   As described above, in the coherent transmission method, it is possible in principle to receive light of all channels at once without using an optical filter or the like.

S.Ryu,“Coherent Lightwave Communication Systems”,Artech House,1995,pp.1−4.S. Ryu, “Coherent Lightwave Communication Systems”, Arttech House, 1995, pp. 1-4. S.Ryu,“Coherent Lightwave Communication Systems”,Artech House,1995,pp.117−122.S. Ryu, “Coherent Lightwave Communication Systems”, Arttech House, 1995, pp. 117-122. M.Seimetz,“High−Order Modulation for Optical Fiber Transmission,” Springer,2009,pp.79−84.M.M. Seimetz, “High-Order Modulation for Optical Fiber Transmission,” Springer, 2009, pp. 79-84. Optical Internetworking Forum,Implementation Agreement for Integrated Dual Polarization Intradyne Coherent Receivers,IA#OIF−DPC−RX−01.0.Optical Internetworking Forum, Implementation Agreement for Integrated Dual Polarization Intradyne Coherent Receivers, IA # OIF-DPC-RX-01.0. 菊池、“コヒーレント光ファイバー通信の新展開、”応用物理、第78巻、第9号、pp.856−861、2009年。Kikuchi, “New development of coherent optical fiber communication,” Applied Physics, Vol. 78, No. 9, pp. 856-861, 2009. 尾中、“位相変調方式の最新技術動向、”FOE−3、ファイバーオプティクスEXPO専門技術セミナー、第9回光通信技術展(FOE)、2009年1月23日。Onaka, “Latest Technical Trends of Phase Modulation,” FOE-3, Fiber Optics EXPO Technical Seminar, 9th Optical Communication Technology Exhibition (FOE), January 23, 2009. 妹尾、他、“広透過帯域な50GHz間隔88チャネル個別補償可変分散補償器、”信学技報、OPE2011−82(20011−08)。Senoo, et al., “A Wide Dispersion Band 50 GHz Spacing 88 Channel Individual Compensation Variable Dispersion Compensator,” IEICE Technical Report, OPE 2011-82 (2011-08). K.S.Kim and M.E.Lines,“Temperature dependence of chromatic dispersion in dispersion−shifted fibers:Experiment and analysis,”Journal of Applied Physics,vol.73,no.5,pp.2069−2074,1993.K. S. Kim and M.M. E. Lines, “Temperature dependency of chromatographic dispersion in dispersion-shifted fibers: Expert and Applied Physics, Vol. 73, no. 5, pp. 2069-2074, 1993.

上記のようにコヒーレント伝送方式では、一般に非選択波長、すなわち異波長によるクロストークは、本来考えられていなかった。しかしながら、このような認識は光増幅器の使用を前提としていない場合であり、現状の光ファイバ伝送システムにおいては、光信号は光増幅器を通過するため、光増幅器から発生するASE(Amplified Spontaneous Emission)が混入してくることになる。このため、選択、非選択にかかわらず、受信する光信号にはすべてASEが含まれており、非選択光信号とそれに含まれるASE信号とのビート周波数のうち、受信機の帯域に納まるものは、雑音となる(ビート雑音)。したがって、コヒーレント受信であっても現実には、非選択光信号による影響が問題となり、非選択光信号のパワーやチャネル数が増えるほど雑音は大きくなると考えられるので、見かけ上、異波長によるクロストークが生じる。また非選択光信号に強度揺らぎがあれば、それによる強度雑音も生じうる。   As described above, in the coherent transmission system, in general, crosstalk due to a non-selected wavelength, that is, a different wavelength has not been originally considered. However, such recognition is not based on the premise of using an optical amplifier. In an existing optical fiber transmission system, an optical signal passes through the optical amplifier, so that ASE (Amplified Spontaneous Emission) generated from the optical amplifier is reduced. It will mix. For this reason, ASE is included in all received optical signals regardless of selection or non-selection, and the beat frequencies of the non-selection optical signal and the ASE signal included therein fall within the band of the receiver. , It becomes noise (beat noise). Therefore, even in the case of coherent reception, in reality, the effect of the non-selected optical signal becomes a problem, and the noise increases as the power of the non-selected optical signal and the number of channels increase. Occurs. Further, if there is intensity fluctuation in the non-selected optical signal, intensity noise due to the intensity fluctuation may also occur.

一方、局発光による強度雑音をキャンセルするために提案されたバランス型フォトダイオードを用いたコヒーレント受信機を用いれば、非選択光信号の強度雑音のみならず、非選択光信号とそれに含まれるASEによって生じるビート雑音の影響もキャンセルすることが可能となるが、実際の受信機は、CMRR(Common Mode Rejection Ratio)で規定される不完全性を有しており[非特許文献2]、強度雑音やビート雑音の影響を完全にキャンセルすることは困難であると考えられる。   On the other hand, if the coherent receiver using the balanced photodiode proposed for canceling the intensity noise due to local light is used, not only the intensity noise of the non-selected optical signal but also the non-selected optical signal and the ASE included therein. Although it is possible to cancel the influence of the generated beat noise, an actual receiver has imperfections defined by CMRR (Common Mode Rejection Ratio) [Non-Patent Document 2], and intensity noise or It is considered difficult to completely cancel the influence of beat noise.

上記について具体的な例として偏波多重QPSK変調方式の受信系の場合を取り上げて説明する。以下、電界等の表示は[非特許文献3]を参考にしている。図1に受信系のモデル図を示す。選択光信号の電界をE(t)とし、非選択である他チャネルの信号光電界をE(t)とする。これらは光増幅器、例えばEDFA(Erbium−Doped Fiber Amplifier)を通過するために最終的に雑音としてのn(t)、ni(t)のASE電界が付加されている。ここで、n(t)が選択光信号周波数でのASE電界、n(t)が非選択チャネル周波数におけるASE電界である。各信号はPBS(Polarization Beam Splitter)により、X偏波とY偏波に分けられ、2×4 90度ハイブリッドに入射する。以降の説明は偏波に直接関係しないので、X偏波にのみ注目する。90度ハイブリッドへの入力と出力の関係は式(1)〜(4)で表される。

Figure 0005871642
The above will be described by taking the case of a reception system of the polarization multiplexing QPSK modulation method as a specific example. Hereinafter, the display of the electric field or the like is referred to [Non-Patent Document 3]. FIG. 1 shows a model diagram of the receiving system. Let E s (t) be the electric field of the selected optical signal, and let E i (t) be the signal optical field of the other channel that is not selected. Since these pass through an optical amplifier, for example, an EDFA (Erbium-Doped Fiber Amplifier), an ASE electric field of n s (t) and ni (t) is finally added as noise. Here, n s (t) is the ASE electric field at the selected optical signal frequency, and n i (t) is the ASE electric field at the non-selected channel frequency. Each signal is divided into an X polarization and a Y polarization by a PBS (Polarization Beam Splitter) and is incident on a 2 × 4 90 degree hybrid. Since the following description is not directly related to polarization, attention is paid only to X polarization. The relationship between input and output to the 90-degree hybrid is expressed by equations (1) to (4).
Figure 0005871642

ここでE(t)、Elo(t)は、それぞれ、信号電界と局発光電界である。Eout1(t)とEout3(t)は、I相成分の電界であり、Eout2(t)とEout4(t)は、Q相成分の電界となる。各係数は理想的には1/2であるが、実際は1/2からはわずかにずれているため、厳密には(1)〜(4)のように係数as1〜as4、al1〜al4を用いて表される。以下、多波長の光信号を一括受信することを前提とするのでE(t)は式(5)のように置き換えられる。

Figure 0005871642
式(5)の第2項は、選択光信号に付随するASE成分であり、第3項は、非選択チャネル信号および非選択チャネル周波数におけるASE成分の和である。 Here, E s (t) and E lo (t) are a signal electric field and a local light emission electric field, respectively. E out1 (t) and E out3 (t) are I-phase component electric fields, and E out2 (t) and E out4 (t) are Q-phase component electric fields. Each coefficient is ideally ½, but actually deviates slightly from ½, so strictly speaking, the coefficients a s1 to a s4 , a l1 to, as in (1) to (4). a 14 is used. Hereinafter, E s (t) is replaced as shown in Equation (5) because it is assumed that multi-wavelength optical signals are collectively received.
Figure 0005871642
The second term of equation (5) is the ASE component associated with the selected optical signal, and the third term is the sum of the unselected channel signal and the ASE component at the unselected channel frequency.

90度ハイブリッドからの出力は各フォトダイオードによって受光されるが、その際、フォトダイオードに流れる電流は、(6)〜(9)で与えられる。ここでR〜Rは、各フォトダイオードの感度である。またish1、ish2、ish3、ish4はショット雑音電流である。

Figure 0005871642
The output from the 90-degree hybrid is received by each photodiode. At this time, the current flowing through the photodiode is given by (6) to (9). Here, R 1 to R 4 are the sensitivity of each photodiode. Also i sh1, i sh2, i sh3 , i sh4 is the shot noise current.
Figure 0005871642

次にCMRRをI相とQ相、それぞれに対して信号光と局発光に関して(10)〜(13)のように定義する。ここでこれらの絶対値をとったものが通常のCMRRの定義[非特許文献4]に相当するが、本質は変わらない。

Figure 0005871642
Next, CMRR is defined as (10) to (13) with respect to the signal light and the local light for the I phase and the Q phase, respectively. Here, the absolute values of these values correspond to the usual definition of CMRR [Non-Patent Document 4], but the essence is not changed.
Figure 0005871642

以上により、バランス型フォトダイオードの出力は、I相並びにQ相に関して、(14)及び(15)のように表される。ただし、レーザ光の位相揺らぎやショット雑音は無視した。

Figure 0005871642
ここで、
Figure 0005871642
は、それぞれ選択光信号とASEとのビート成分(雑音)、非選択光信号とASEとのビート成分(雑音)、選択光信号と局発光とのビート成分(信号成分)、局発光とASEとのビート成分(雑音)である。 As described above, the output of the balanced photodiode is expressed as (14) and (15) with respect to the I phase and the Q phase. However, the phase fluctuation of the laser beam and shot noise were ignored.
Figure 0005871642
here,
Figure 0005871642
Are the beat component (noise) of the selected light signal and ASE, the beat component (noise) of the unselected light signal and ASE, the beat component (signal component) of the selected light signal and local light, and the local light and ASE, respectively. Beat component (noise).

一方、理想的な受信系の場合、各CMRRは0であり、(16)及び(17)のように表される。第一項は選択信号光と局発光とのビート信号であり、第二項は局発光とASE光とのビート雑音である。

Figure 0005871642
On the other hand, in the case of an ideal receiving system, each CMRR is 0 and is expressed as (16) and (17). The first term is the beat signal between the selection signal light and the local light, and the second term is the beat noise between the local light and the ASE light.
Figure 0005871642

CMRRが0の場合、信号対雑音比は第二項にのみ依存するが、バランス型フォトダイオードを用いたコヒーレント受信機の製造誤差による不完全性によりCMRRが無視できない場合、様々な雑音電流が存在し、信号対雑音比が劣化することになる。しかしながら、実際の受信機の製造においては、誤差が入るのは避けられずCMRRは何らかの値を持つため、様々な雑音電流を完全にキャンセルすることは困難である。   When CMRR is 0, the signal-to-noise ratio depends only on the second term, but when CMRR cannot be ignored due to imperfections due to manufacturing errors in coherent receivers using balanced photodiodes, various noise currents exist As a result, the signal-to-noise ratio is degraded. However, in the actual manufacture of the receiver, it is inevitable that an error occurs, and CMRR has some value, so that it is difficult to completely cancel various noise currents.

(14)、(15)をみると、様々な雑音電流の中でも他チャネルの光信号の電界がもたらす雑音電流が大きな割合を占めるが、コヒーレント通信においては一般に光信号は位相変調されており、強度的な変化はほとんどない。したがって本来は、雑音電流は大半が直流成分と考えられ、その影響は電気的に排除しやすいと考えられる。しかしながら、実際は、光信号は分散媒質である光ファイバを伝搬しているため、位相変調された光信号は強度変調光に変換され、結局、他チャネルの光信号による雑音は強度雑音となり、選択した光信号への影響は排除が困難となる。図2に、非選択信号の影響によるペナルティが単一モードファイバでの伝搬距離、すなわち光信号が被る波長分散量により変化することを示す実験結果を示す。   Looking at (14) and (15), the noise current caused by the electric field of the optical signal of the other channel occupies a large proportion among various noise currents. However, in coherent communication, the optical signal is generally phase-modulated, There is little change. Therefore, the noise current is essentially considered to be a direct current component, and its influence is considered to be easily excluded electrically. However, in reality, since the optical signal propagates through the optical fiber that is the dispersion medium, the phase-modulated optical signal is converted into intensity-modulated light. Eventually, the noise due to the optical signal of the other channel becomes intensity noise and is selected. The influence on the optical signal is difficult to eliminate. FIG. 2 shows an experimental result showing that the penalty due to the influence of the non-selection signal varies depending on the propagation distance in the single mode fiber, that is, the amount of chromatic dispersion experienced by the optical signal.

本発明は、かかる課題を解決したものであり、バランス型フォトダイオードの使用の有無にかかわらず、光伝送路の波長分散の影響を低減化し、良好な一括受信特性を有するコヒーレント光伝送システムを提供することを目的とする。   The present invention solves such a problem, and provides a coherent optical transmission system having a good collective reception characteristic by reducing the influence of wavelength dispersion on an optical transmission line regardless of the use of a balanced photodiode. The purpose is to do.

本発明に係るコヒーレント光伝送システムは、送信部から送信した複数チャネルの信号光を、バランス型フォトダイオードを用いたコヒーレント受信部で一括受信するコヒーレント光伝送システムであって、前記送信部から前記受信部までの光伝送路の波長分散によって位相変調信号から強度変調信号に変換された強度変調成分による波形歪チャネルごとに補償することによって、前記光伝送路において生じた強度変調成分を含まない信号光を前記受信部受信させる。 The coherent optical transmission system according to the present invention is a coherent optical transmission system that collectively receives signal light of a plurality of channels transmitted from a transmission unit by a coherent reception unit using a balanced photodiode, and receives the signal from the transmission unit. by compensating for by that waveform distortion of the converted intensity modulation component into an intensity-modulated signal from the phase modulation signal I by the chromatic dispersion of the optical transmission path to parts per channel, the intensity modulation produced in the optical transmission line the signal light does not contain a component Ru is received by the receiving unit.

本発明に係るコヒーレント光伝送システムでは、前記光伝送路の長さを用いて前記光伝送路の分散値をチャネルごとに決定する分散値算出部をさらに備え、前記送信部は、全チャネルが合波された信号光が入力され、前記分散値算出部の決定した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えてもよい。   The coherent optical transmission system according to the present invention further includes a dispersion value calculation unit that determines a dispersion value of the optical transmission path for each channel using the length of the optical transmission path, and the transmission unit includes all channels. A multi-channel individual variable dispersion compensator that receives wave signal light and compensates waveform distortion due to wavelength dispersion for each channel using the dispersion value of the optical transmission line determined by the dispersion value calculation unit; Also good.

本発明に係るコヒーレント光伝送システムでは、前記受信部の受信した各チャネルの信号光を用いて前記光伝送路の波長分散推定値をチャネルごとに算出する分散値推定部をさらに備え、前記送信部は、全チャネルが合波された信号光が入力され、前記分散値推定部の算出した前記光伝送路の波長分散推定値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えてもよい。   The coherent optical transmission system according to the present invention further includes a dispersion value estimation unit that calculates a wavelength dispersion estimation value of the optical transmission path for each channel using the signal light of each channel received by the reception unit, and the transmission unit Is a multi-channel in which signal light combined with all channels is input, and waveform distortion compensation due to chromatic dispersion is compensated for each channel using the chromatic dispersion estimated value of the optical transmission path calculated by the dispersion value estimating unit An individual variable dispersion compensator may be provided.

本発明に係るコヒーレント光伝送システムでは、前記光伝送路の長さを用いて前記光伝送路の分散値をチャネルごとに決定する分散値算出部をさらに備え、前記受信部は、前記送信部から送信した複数チャネルの信号光が入力され、前記分散値算出部の決定した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えてもよい。   The coherent optical transmission system according to the present invention further includes a dispersion value calculation unit that determines a dispersion value of the optical transmission path for each channel using the length of the optical transmission path, and the reception unit includes: A multi-channel individual tunable dispersion compensator that performs waveform distortion compensation for each channel by using the dispersion value of the optical transmission line determined by the dispersion value calculation unit, which is input with transmitted signal light of a plurality of channels. You may prepare.

本発明に係るコヒーレント光伝送システムでは、前記受信部の受信した各チャネルの信号光を用いて前記光伝送路の波長分散推定値をチャネルごとに算出する分散値推定部をさらに備え、前記受信部は、前記送信部から送信した複数チャネルの信号光が入力され、前記分散値推定部の算出した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えてもよい。   The coherent optical transmission system according to the present invention further includes a dispersion value estimation unit that calculates a wavelength dispersion estimation value of the optical transmission path for each channel using the signal light of each channel received by the reception unit, and the reception unit Is a multi-channel that receives a plurality of channels of signal light transmitted from the transmitter and compensates for waveform distortion due to wavelength dispersion for each channel using the dispersion value of the optical transmission path calculated by the dispersion value estimator. An individual variable dispersion compensator may be provided.

本発明に係るコヒーレント光伝送方法は、送信部から送信した複数チャネルの信号光を、バランス型フォトダイオードを用いたコヒーレント受信部で一括受信するコヒーレント光伝送方法であって、前記送信部から前記受信部までの光伝送路の波長分散によって位相変調信号から強度変調信号に変換された強度変調成分による波形歪チャネルごとに補償することによって、前記光伝送路において生じた強度変調成分を含まない信号光を前記受信部受信させる受信手順を有する。 The coherent optical transmission method according to the present invention is a coherent optical transmission method in which a plurality of channels of signal light transmitted from a transmission unit are collectively received by a coherent reception unit using a balanced photodiode, wherein the reception light is transmitted from the transmission unit. by compensating for by that waveform distortion of the converted intensity modulation component into an intensity-modulated signal from the phase modulation signal I by the chromatic dispersion of the optical transmission path to parts per channel, the intensity modulation produced in the optical transmission line a receiving procedure Ru is receiving the signal light does not contain a component in the receiving unit.

本発明によれば、バランス型フォトダイオードを用いたコヒーレント受信機において、CMRRが大きくても、あるいは、バランス型フォトダイオードを用いないコヒーレント受信機であっても波長多重信号を一括で受信する際、光伝送路の波長分散により生じる強度雑音の影響が低減化でき、良好な受信特性を有するコヒーレント光伝送システムが実現できる。   According to the present invention, in a coherent receiver using a balanced photodiode, even when the CMRR is large or a coherent receiver that does not use a balanced photodiode, The influence of intensity noise caused by chromatic dispersion in the optical transmission line can be reduced, and a coherent optical transmission system having good reception characteristics can be realized.

バランス型フォトダイオードを用いた、偏波多重QPSK変調方式のコヒーレント受信系のモデルの説明図である。It is explanatory drawing of the model of the coherent receiving system of a polarization multiplexing QPSK modulation system using a balance type photodiode. 1.3μm零分散単一モードファイバを伝搬する際のQ値のファイバ長(波長分散量)依存性である。This is the fiber length (chromatic dispersion amount) dependence of the Q value when propagating through a 1.3 μm zero-dispersion single mode fiber. 従来のコヒーレント伝送システムの構成例の説明図である。It is explanatory drawing of the structural example of the conventional coherent transmission system. 偏波多重QPSK変調方式の受信機の構成の説明図である。It is explanatory drawing of a structure of the receiver of a polarization multiplexing QPSK modulation system. 送信部に多チャネル個別可変分散補償器を配置したコヒーレント伝送システムの構成例の説明図である。It is explanatory drawing of the structural example of the coherent transmission system which has arrange | positioned the multichannel separate variable dispersion compensator in the transmission part. 受信部に多チャネル個別可変分散補償器を配置したコヒーレント伝送システムの構成例の説明図である。It is explanatory drawing of the structural example of the coherent transmission system which has arrange | positioned the multi-channel individual variable dispersion compensator in the receiving part. ネットワーク管理システムの構成例の説明図である。It is explanatory drawing of the structural example of a network management system.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

従来のコヒーレント光伝送システムの例を図3に示す。コヒーレント光伝送システムは、送信部1と受信部2とが光伝送路3で接続され、コヒーレント伝送方式を用いて送信部1から送信した複数チャネルの光信号を受信部2で一括受信する。   An example of a conventional coherent optical transmission system is shown in FIG. In the coherent optical transmission system, a transmission unit 1 and a reception unit 2 are connected by an optical transmission path 3, and a plurality of channels of optical signals transmitted from the transmission unit 1 are received by the reception unit 2 using a coherent transmission method.

送信部1は、複数のPDM−QPSK(Polarization Division Multiplexed Quadrature Phase Shift Keying)送信機11と、合波器12と、WSS(Wavelength Selective Switch)13と、EDFA(Erbium Doped Fiber Amplifier)14と、を備える。PDM−QPSK送信機11は、PDM−QPSK符号を用いて各チャネルの光信号を生成する。合波器12は、すべてのPDM−QPSK送信機11からの光信号を合波する。WSS13は、合波器12を含む複数の合波器(不図示)からの光信号が入力され、少なくとも1つの合波器からの光信号を選択して出力する。EDFA14は、WSS13からの光信号を増幅する。   The transmission unit 1 includes a plurality of PDM-QPSK (Polarization Division Multiplexed Quadrature Phase Shift Keying) transmitters 11, a multiplexer 12, a WSS (Wavelength Select Switch) 13, an ed i Prepare. The PDM-QPSK transmitter 11 generates an optical signal for each channel using a PDM-QPSK code. The multiplexer 12 multiplexes the optical signals from all the PDM-QPSK transmitters 11. The WSS 13 receives optical signals from a plurality of multiplexers (not shown) including the multiplexer 12, and selects and outputs the optical signals from at least one multiplexer. The EDFA 14 amplifies the optical signal from the WSS 13.

受信部2は、EDFA21と、カプラ22と、PDM−QPSK受信機23と、を備える。EDFA21は、光伝送路3からの光信号を増幅する。カプラ22は、EDFA21の増幅した光信号を分岐する。PDM−QPSK受信機23は、カプラ22の分岐した各チャネルの光信号を、偏波多重QPSK変調方式を用いて受信する。   The receiving unit 2 includes an EDFA 21, a coupler 22, and a PDM-QPSK receiver 23. The EDFA 21 amplifies the optical signal from the optical transmission path 3. The coupler 22 branches the optical signal amplified by the EDFA 21. The PDM-QPSK receiver 23 receives the optical signal of each channel branched by the coupler 22 using the polarization multiplexing QPSK modulation method.

図4に、PDM−QPSK受信機23の構成の模式図を示す。PDM−QPSK受信機は、受光回路231及び信号処理部232を備える。受光回路231は、信号光と局発光をミキシングして、信号光と局発光の位相差が0°の混合光、90°の混合光、180°の混合光、270°の混合光をX偏波とY偏波ごとに分離して受光する。信号処理部232は、受光回路231からの信号を用いて、各チャネルの光信号を復調し、送信データを再生する。   FIG. 4 shows a schematic diagram of the configuration of the PDM-QPSK receiver 23. The PDM-QPSK receiver includes a light receiving circuit 231 and a signal processing unit 232. The light receiving circuit 231 mixes the signal light and the local light, and converts the mixed light whose phase difference between the signal light and the local light is 0 °, 90 ° mixed light, 180 ° mixed light, and 270 ° mixed light to the X-polarized light. The light is separated for each wave and Y polarization. The signal processing unit 232 demodulates the optical signal of each channel using the signal from the light receiving circuit 231 and reproduces transmission data.

本来、コヒーレント光伝送システムにおいては、波長分散は、受信部2内でデジタル信号処理により補償され、波長分散補償手段は不要であるが[非特許文献5][非特許文献6]、バランス型フォトダイオードの使用の有無にかかわらず、光伝送路の波長分散の影響を低減化し、良好な一括受信特性を有するためには、各チャネルの光信号の光パスの光伝送路の波長分散を補償すればよい。そこで、本実施形態に係るコヒーレント光伝送システム及びコヒーレント光伝送方法は、受信部2に入力される光信号が強度変調成分を含まないように、受信部2において受光する前段に分散補償器を配置するか、光伝送路3に入力する信号を予等化する分散補償器を配置する。   Originally, in the coherent optical transmission system, chromatic dispersion is compensated by digital signal processing in the receiving unit 2 and chromatic dispersion compensation means is unnecessary [Non-Patent Document 5] [Non-Patent Document 6], but balanced photo Regardless of whether or not diodes are used, in order to reduce the effects of chromatic dispersion on the optical transmission line and to have good collective reception characteristics, the chromatic dispersion of the optical transmission line in the optical path of the optical signal of each channel must be compensated. That's fine. Therefore, in the coherent optical transmission system and the coherent optical transmission method according to the present embodiment, a dispersion compensator is disposed in the previous stage of receiving light in the receiving unit 2 so that the optical signal input to the receiving unit 2 does not include an intensity modulation component. Alternatively, a dispersion compensator for pre-equalizing the signal input to the optical transmission line 3 is arranged.

さらに、各チャネルの光信号は様々な光パスを経ており、補償すべき分散量がチャネルごとに異なる。また障害等が発生すれば、直ちに、運用中の光パスを削除し、新たな光パスを設定する必要があり、補償すべき分散量が変化することになる。そこで、分散補償を個別にかつ動的に行うために、送信部1において全チャネルの合波直後に多チャネル個別可変分散補償器を配置するか、受信部2において受信機直前に多チャネル個別可変分散補償器を配置すればよい。すなわち、送信部1が複数チャネルの信号光を送信する送信手順か、或いは、受信部2が複数チャネルの信号光を受信する受信手順において、光伝送路3の波長分散による波形歪をチャネルごとに補償すればよい。   Furthermore, the optical signal of each channel passes through various optical paths, and the amount of dispersion to be compensated differs for each channel. If a failure or the like occurs, it is necessary to immediately delete the operating optical path and set a new optical path, and the amount of dispersion to be compensated changes. Therefore, in order to perform dispersion compensation individually and dynamically, a multi-channel individual variable dispersion compensator is arranged immediately after the multiplexing of all channels in the transmission unit 1 or a multi-channel individual variable in the reception unit 2 immediately before the receiver. A dispersion compensator may be disposed. That is, in a transmission procedure in which the transmission unit 1 transmits signal light of a plurality of channels or a reception procedure in which the reception unit 2 receives signal light of a plurality of channels, waveform distortion due to wavelength dispersion of the optical transmission path 3 is determined for each channel. Compensation is sufficient.

図5に、本実施形態に係るコヒーレント光伝送システムの一例を示す。送信部1において、多チャネル個別可変分散補償器(図中ではTDC(Tunable Dispersion Compensator)と表記)50が合波器12とWSS13の間に接続され、全チャネルの合波直後に多チャネル個別可変分散補償器50を配置している。多チャネル個別可変分散補償器50は、波長分散による波形歪の補償をチャネルごとに行う。多チャネル個別可変分散補償器50としては、周回性AWG(Arrayed Waveguide Grating)、バルク回折格子、LCOS(Liquid Crystal On Silicon)を組み合わせたものがある[非特許文献7]。   FIG. 5 shows an example of a coherent optical transmission system according to the present embodiment. In the transmission unit 1, a multi-channel individual variable dispersion compensator (indicated as TDC (Tunable Dispersion Compensator) in the figure) 50 is connected between the multiplexer 12 and the WSS 13, and the multi-channel individual variable dispersion compensator is immediately after combining all the channels. A dispersion compensator 50 is provided. The multi-channel individual tunable dispersion compensator 50 performs waveform distortion compensation due to chromatic dispersion for each channel. As the multi-channel individual variable dispersion compensator 50, there is a combination of circular AWG (Arrayed Waveguide Grating), a bulk diffraction grating, and LCOS (Liquid Crystal On Silicon) [Non-Patent Document 7].

図6に、多チャネル個別可変分散補償器50をPDM−QPSK受信機23の直前に配置した場合を示す。多チャネル個別可変分散補償器50は、カプラ22からの光信号が入力され、波長分散による波形歪の補償をチャネルごとに行い、PDM−QPSK受信機23へ出力する。   FIG. 6 shows a case where the multi-channel individual variable dispersion compensator 50 is arranged immediately before the PDM-QPSK receiver 23. The multi-channel individual tunable dispersion compensator 50 receives the optical signal from the coupler 22, performs waveform distortion compensation due to chromatic dispersion for each channel, and outputs it to the PDM-QPSK receiver 23.

多チャネル個別可変分散補償器50において各チャネルの分散値の設定の際に、光伝送路3の分散値の情報が必要であるが、これはいくつか方法がある。第1の方法は、光パスの長さから光伝送路3の分散値を決定してその決定値を多チャネル個別可変分散補償器50の分散設定値に反映させる方法であり、第2の方法はデジタル信号処理による分散推定値を多チャネル個別可変分散補償器50の分散推定値に反映させる方法である。   When setting the dispersion value of each channel in the multi-channel individual variable dispersion compensator 50, information on the dispersion value of the optical transmission line 3 is necessary. There are several methods. The first method is a method of determining the dispersion value of the optical transmission line 3 from the length of the optical path and reflecting the determined value in the dispersion setting value of the multi-channel individual variable dispersion compensator 50. Is a method of reflecting the dispersion estimated value obtained by digital signal processing in the dispersion estimated value of the multi-channel individual variable dispersion compensator 50.

第1の方法の場合、例えば、図7に示すネットワーク管理システムを用いる。図7に示すネットワーク管理システムは、ネットワークを構成する各ノード41と接続されたネットワーク管理部42を備え、ネットワーク管理部42が、各ノード41の装置構成やリンク情報などともに、リンクを形成するノード41間の光伝送路3の長さを管理する。ノード41は、本実施形態に係る送信部1及び受信部2の機能を有する。ネットワーク管理部42が、各ノード41における光パス設定時に、送信部1もしくは受信部2の多チャネル個別可変分散補償器50に光伝送路3の長さを通知するコマンドを送って設定する。この場合、送信部1もしくは受信部2に備わる分散値算出部(不図示)が、ネットワーク管理システムから受信した光伝送路3の長さを用いて光伝送路3の波長分散値をチャネルごとに決定し、各チャネルの分散値を多チャネル個別可変分散補償器50に設定する。   In the case of the first method, for example, a network management system shown in FIG. 7 is used. The network management system shown in FIG. 7 includes a network management unit 42 connected to each node 41 constituting the network, and the network management unit 42 forms a link together with the device configuration and link information of each node 41. The length of the optical transmission line 3 between 41 is managed. The node 41 has the functions of the transmission unit 1 and the reception unit 2 according to this embodiment. The network management unit 42 sets the optical path in each node 41 by sending a command for notifying the length of the optical transmission line 3 to the multi-channel individual variable dispersion compensator 50 of the transmission unit 1 or the reception unit 2. In this case, a dispersion value calculation unit (not shown) provided in the transmission unit 1 or the reception unit 2 uses the length of the optical transmission line 3 received from the network management system to calculate the chromatic dispersion value of the optical transmission line 3 for each channel. The dispersion value of each channel is set in the multi-channel individual variable dispersion compensator 50.

第2の方法の場合、例えば、多チャネル個別可変分散補償器50が受信部2にある場合は装置内の通信により多チャネル個別分散補償器50に分散推定値の情報を送出すればよい。多チャネル個別可変分散補償器50が送信部1にある場合は、受信部2から送信部1に分散情報を別経路で送るか、一度ネットワーク管理システムに情報を送り、ネットワーク管理システムから送信部1に分散値情報を送ればよい。これにより、送信部1は、各チャネルの分散値を多チャネル個別可変分散補償器50に設定することができる。   In the case of the second method, for example, when the multi-channel individual variable dispersion compensator 50 is in the receiving unit 2, dispersion estimation value information may be transmitted to the multi-channel individual dispersion compensator 50 through communication within the apparatus. When the multi-channel individual variable dispersion compensator 50 is in the transmission unit 1, the dispersion information is sent from the reception unit 2 to the transmission unit 1 via another path, or the information is once sent to the network management system, and the transmission unit 1 The dispersion value information may be sent to. Thereby, the transmission unit 1 can set the dispersion value of each channel in the multi-channel individual variable dispersion compensator 50.

第2の方法では、受信部2は、受信した各チャネルの光信号を用いて、光伝送路3の波長分散推定値をチャネルごとに算出する分散値推定部(不図示)を備える。分散値の推定は、例えば、予め定められた信号に、想定される波長分散特性の逆特性をチャネルごとに付与し、送信部1から送信する。受信部2の分散値推定部は、受信した信号波形と予め定められた信号波形とを比較することで、光伝送路3の波長分散値をチャネルごと推定する。   In the second method, the reception unit 2 includes a dispersion value estimation unit (not shown) that calculates the chromatic dispersion estimation value of the optical transmission path 3 for each channel using the received optical signal of each channel. For example, the dispersion value is estimated by adding a reverse characteristic of the assumed chromatic dispersion characteristic to a predetermined signal for each channel, and transmitting from the transmission unit 1. The dispersion value estimation unit of the reception unit 2 estimates the chromatic dispersion value of the optical transmission line 3 for each channel by comparing the received signal waveform with a predetermined signal waveform.

また、環境変動、特に[非特許文献8]で示されている、温度変動による光伝送路3の分散変動に対応できるように、ネットワーク管理システムから分散情報を運用時において適宜取得し、多チャネル個別可変分散補償器50の分散設定値を更新すれば、伝送品質を常に高く保持できる。   Also, in order to cope with environmental fluctuations, particularly dispersion fluctuations of the optical transmission line 3 due to temperature fluctuations shown in [Non-Patent Document 8], distributed information is appropriately acquired from the network management system during operation, and multi-channel If the dispersion setting value of the individual variable dispersion compensator 50 is updated, the transmission quality can always be kept high.

本発明は、波長多重光伝送システムに適用され、特に光分岐挿入機能を有する波長多重光ネットワークに有用である。   The present invention is applied to a wavelength division multiplexing optical transmission system, and is particularly useful for a wavelength division multiplexing optical network having an optical add / drop function.

1:送信部
2:受信部
3:光伝送路
11:PDM−QPSK送信機
12:合波器
13:WSS
14:EDFA
21:EDFA
22:カプラ
23:PDM−QPSK受信機
231:受光回路
232:信号処理部
31:ファイバ
32:EDFA
41:ノード
42:ネットワーク管理部
50:TDC
1: transmitter 2: receiver 3: optical transmission line 11: PDM-QPSK transmitter 12: multiplexer 13: WSS
14: EDFA
21: EDFA
22: Coupler 23: PDM-QPSK receiver 231: Light receiving circuit 232: Signal processing unit 31: Fiber 32: EDFA
41: Node 42: Network management unit 50: TDC

Claims (6)

送信部から送信した複数チャネルの信号光を、バランス型フォトダイオードを用いたコヒーレント受信部で一括受信するコヒーレント光伝送システムであって、
前記送信部から前記受信部までの光伝送路の波長分散によって位相変調信号から強度変調信号に変換された強度変調成分による波形歪チャネルごとに補償することによって、前記光伝送路において生じた強度変調成分を含まない信号光を前記受信部受信させることを特徴とするコヒーレント光伝送システム。
A coherent optical transmission system that collectively receives signal light of a plurality of channels transmitted from a transmitter by a coherent receiver using a balanced photodiode,
By compensating for by that waveform distortion of the converted intensity modulation component into an intensity-modulated signal from the phase modulation signal I by the chromatic dispersion of the optical transmission path from the transmitting unit to the receiving unit for each channel, the optical transmission coherent optical transmission system characterized in Rukoto is received resulting signal lights including no intensity modulation component in the road to the receiver.
前記光伝送路の長さを用いて前記光伝送路の分散値をチャネルごとに決定する分散値算出部をさらに備え、
前記送信部は、全チャネルが合波された信号光が入力され、前記分散値算出部の決定した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えることを特徴とした請求項1に記載のコヒーレント光伝送システム。
A dispersion value calculation unit that determines a dispersion value of the optical transmission line for each channel using the length of the optical transmission line;
The transmission unit receives signal light combined with all channels, and uses the dispersion value of the optical transmission path determined by the dispersion value calculation unit to perform waveform distortion compensation by wavelength dispersion for each channel. The coherent optical transmission system according to claim 1, further comprising a channel individual variable dispersion compensator.
前記受信部の受信した各チャネルの信号光を用いて前記光伝送路の波長分散推定値をチャネルごとに算出する分散値推定部をさらに備え、
前記送信部は、全チャネルが合波された信号光が入力され、前記分散値推定部の算出した前記光伝送路の波長分散推定値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えることを特徴とした請求項1に記載のコヒーレント光伝送システム。
A dispersion value estimation unit that calculates a chromatic dispersion estimation value of the optical transmission line for each channel using the signal light of each channel received by the reception unit;
The transmission unit receives signal light obtained by combining all channels, and uses the chromatic dispersion estimation value of the optical transmission path calculated by the dispersion value estimation unit to compensate for waveform distortion due to chromatic dispersion for each channel. The coherent optical transmission system according to claim 1, further comprising a multi-channel individual variable dispersion compensator for performing the operation.
前記光伝送路の長さを用いて前記光伝送路の分散値をチャネルごとに決定する分散値算出部をさらに備え、
前記受信部は、前記送信部から送信した複数チャネルの信号光が入力され、前記分散値算出部の決定した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えることを特徴とした請求項1に記載のコヒーレント光伝送システム。
A dispersion value calculation unit that determines a dispersion value of the optical transmission line for each channel using the length of the optical transmission line;
The receiving unit receives a plurality of channels of signal light transmitted from the transmitting unit, and uses the dispersion value of the optical transmission path determined by the dispersion value calculating unit to compensate for waveform distortion due to wavelength dispersion for each channel. The coherent optical transmission system according to claim 1, further comprising a multi-channel individual variable dispersion compensator for performing the operation.
前記受信部の受信した各チャネルの信号光を用いて前記光伝送路の波長分散推定値をチャネルごとに算出する分散値推定部をさらに備え、
前記受信部は、前記送信部から送信した複数チャネルの信号光が入力され、前記分散値推定部の算出した前記光伝送路の分散値を用いて、波長分散による波形歪の補償をチャネルごとに行う多チャネル個別可変分散補償器を備えることを特徴とした請求項1に記載のコヒーレント光伝送システム。
A dispersion value estimation unit that calculates a chromatic dispersion estimation value of the optical transmission line for each channel using the signal light of each channel received by the reception unit;
The reception unit receives a plurality of channels of signal light transmitted from the transmission unit, and compensates for waveform distortion due to wavelength dispersion for each channel using the dispersion value of the optical transmission path calculated by the dispersion value estimation unit. The coherent optical transmission system according to claim 1, further comprising a multi-channel individual variable dispersion compensator for performing the operation.
送信部から送信した複数チャネルの信号光を、バランス型フォトダイオードを用いたコヒーレント受信部で一括受信するコヒーレント光伝送方法であって、
前記送信部から前記受信部までの光伝送路の波長分散によって位相変調信号から強度変調信号に変換された強度変調成分による波形歪チャネルごとに補償することによって、前記光伝送路において生じた強度変調成分を含まない信号光を前記受信部受信させる受信手順を有することを特徴とするコヒーレント光伝送方法。
A coherent optical transmission method for collectively receiving signal light of a plurality of channels transmitted from a transmission unit with a coherent reception unit using a balanced photodiode,
By compensating for by that waveform distortion of the converted intensity modulation component into an intensity-modulated signal from the phase modulation signal I by the chromatic dispersion of the optical transmission path from the transmitting unit to the receiving unit for each channel, the optical transmission coherent optical transmission method characterized by having a receiving procedure signal light which does not include the resulting intensity modulation component Ru is received by the receiving unit in the road.
JP2012019551A 2012-02-01 2012-02-01 Coherent transmission system and method Active JP5871642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019551A JP5871642B2 (en) 2012-02-01 2012-02-01 Coherent transmission system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019551A JP5871642B2 (en) 2012-02-01 2012-02-01 Coherent transmission system and method

Publications (2)

Publication Number Publication Date
JP2013162136A JP2013162136A (en) 2013-08-19
JP5871642B2 true JP5871642B2 (en) 2016-03-01

Family

ID=49174088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019551A Active JP5871642B2 (en) 2012-02-01 2012-02-01 Coherent transmission system and method

Country Status (1)

Country Link
JP (1) JP5871642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188383B1 (en) * 2014-08-28 2019-06-19 Nec Corporation Polarization dispersion adder and light receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316643B2 (en) * 2009-09-02 2013-10-16 富士通株式会社 Communication system, distributed slope applicator, and communication method

Also Published As

Publication number Publication date
JP2013162136A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US8625997B2 (en) Method and apparatus for local optimization of an optical transmitter
US8831436B2 (en) Method and apparatus for local optimization of an optical transmitter
JP5557399B2 (en) Spatial division multiplexing apparatus including multi-core fiber and self-homodyne detection method
KR101522854B1 (en) Transverse-mode multiplexing for optical communication systems
CN102640433B (en) The power optimization of optical receiver
JP6458733B2 (en) Optical receiver, optical transmission system and optical receiving method
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
JP5182058B2 (en) WDM optical transmission method and WDM optical transmission system
JP2015091131A (en) System and method of monitoring polarization dependent loss
EP3349375B1 (en) A method and apparatus for automatic compensation of chromatic dispersion
JP2008521304A (en) Optical signal monitoring apparatus and method
EP2494716B1 (en) Distinct dispersion compensation for coherent channels and non-coherent channels
JP6497439B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
JP2015095902A (en) System and method for in-band frequency-modulated supervisory signaling for polarization-multiplexed system
Oliveira et al. Toward terabit autonomic optical networks based on a software defined adaptive/cognitive approach
JP5792086B2 (en) Coherent light receiving apparatus and coherent light receiving method
JP5871642B2 (en) Coherent transmission system and method
JP5909154B2 (en) Coherent light receiving circuit and coherent light receiving method
US20170126353A1 (en) Wavelength shift elimination during spectral inversion in optical networks
JP3147563B2 (en) Optical dispersion compensation method and optical dispersion compensator
WO2014119270A1 (en) Light reception apparatus, light communication system, light reception method, and light reception apparatus control program storage medium
Joo et al. 1-fiber WDM self-healing ring with bidirectional optical add/drop multiplexers
Raybon et al. 107-Gb/s transmission over 700 km and one intermediate ROADM using LambdaXtreme® transport system
WO2020040032A1 (en) Crosstalk estimation system
Lee et al. Design and analyses of BER performance in a tri-directional optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5871642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150