JP5857441B2 - Wafer holder - Google Patents

Wafer holder Download PDF

Info

Publication number
JP5857441B2
JP5857441B2 JP2011106970A JP2011106970A JP5857441B2 JP 5857441 B2 JP5857441 B2 JP 5857441B2 JP 2011106970 A JP2011106970 A JP 2011106970A JP 2011106970 A JP2011106970 A JP 2011106970A JP 5857441 B2 JP5857441 B2 JP 5857441B2
Authority
JP
Japan
Prior art keywords
wafer holder
electrode
insulating pipe
electrode lead
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106970A
Other languages
Japanese (ja)
Other versions
JP2012238730A (en
Inventor
木村 功一
功一 木村
仲田 博彦
博彦 仲田
晃 三雲
晃 三雲
大介 島尾
大介 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011106970A priority Critical patent/JP5857441B2/en
Publication of JP2012238730A publication Critical patent/JP2012238730A/en
Application granted granted Critical
Publication of JP5857441B2 publication Critical patent/JP5857441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、プラズマCVD、減圧CVD、メタルCVDなどの半導体ウェハに所定の処理を行うための半導体製造装置に用いられるウェハ保持体に関する。   The present invention relates to a wafer holder used in a semiconductor manufacturing apparatus for performing predetermined processing on a semiconductor wafer such as plasma CVD, low pressure CVD, and metal CVD.

半導体の製造工程では、被処理物である半導体ウェハに対して成膜処理やエッチング処理など様々な処理が行われる。このような半導体ウェハに対する処理を行う処理装置では、半導体ウェハを保持するためのウェハ保持体が用いられている。   In a semiconductor manufacturing process, various processes such as a film forming process and an etching process are performed on a semiconductor wafer which is an object to be processed. In a processing apparatus for processing such a semiconductor wafer, a wafer holder for holding the semiconductor wafer is used.

このような従来のウェハ保持体は、近年窒化アルミニウム等のセラミックスを用いたものが実用化されている。これらのセラミックス製ウェハ保持体では、セラミックスの内部もしくは表面に、RF電極や静電チャック用電極や抵抗発熱体回路などの導電体が形成されている。これらの導電体へ給電するために、各種の電極が提案されている。   As such a conventional wafer holder, those using ceramics such as aluminum nitride have been put into practical use in recent years. In these ceramic wafer holders, conductors such as an RF electrode, an electrostatic chuck electrode, and a resistance heating element circuit are formed inside or on the surface of the ceramic. Various electrodes have been proposed to supply power to these conductors.

特許文献1には、セラミックスヒータ部と、このセラミックスヒータ部を保持するために反応容器内に設置された保持部材と、ヒータ端子に連結されたリードとを有する半導体ウェハ加熱装置であって、リードの少なくとも1つを無機質絶縁材料からなる筒状体によって包囲し、この筒状体の一端をセラミックスヒータに対して気密に接合し、且つ筒状体の他端を反応容器に設けられた貫通孔に挿通して気密にシールしている。   Patent Document 1 discloses a semiconductor wafer heating apparatus having a ceramic heater portion, a holding member installed in a reaction vessel to hold the ceramic heater portion, and a lead connected to a heater terminal, At least one of the cylindrical body is surrounded by a cylindrical body made of an inorganic insulating material, one end of the cylindrical body is hermetically bonded to the ceramic heater, and the other end of the cylindrical body is a through hole provided in the reaction vessel. It is inserted through and sealed airtight.

特許文献1の構造においては、リードを収納した筒状体はセラミックスヒータ部に接合され且つ反応容器を挿通して容器と気密に封止されているため、必然的に筒状体内部は大気圧となる。このため、セラミックスヒータ部に給電するためのリードは、大気雰囲気に曝されると共に、セラミックスヒータ部の加熱によってリードのセラミックスヒータ部側の温度が高温になる。このため、高温になったリード部が、空気中の酸素の影響で腐蝕されやすいという問題があった。   In the structure of Patent Document 1, since the cylindrical body containing the lead is joined to the ceramic heater part and inserted through the reaction container and hermetically sealed with the container, the inside of the cylindrical body is inevitably atmospheric pressure. It becomes. For this reason, the lead for supplying power to the ceramic heater part is exposed to the air atmosphere and the temperature of the lead on the ceramic heater part side becomes high due to the heating of the ceramic heater part. For this reason, there was a problem that the lead part which became high temperature was easily corroded by the influence of oxygen in the air.

また、リードは棒状の金属で構成されており、容器などに固定されていないが、リードを容器からの取り出し口付近で、容器に固定した場合、セラミックスヒータの加熱と冷却によって、リードが熱膨張と熱収縮を繰り返すことになる。リードが熱膨張と熱収縮を繰り返すと、抵抗発熱体との接合部分が外れたり、あるいはセラミックスヒータ部を破損させるといった問題があった。   The lead is made of rod-shaped metal and is not fixed to the container. However, when the lead is fixed to the container near the outlet from the container, the lead is thermally expanded by heating and cooling of the ceramic heater. Repeated heat shrinkage. When the lead repeatedly expands and contracts, there is a problem that the joint portion with the resistance heating element is detached or the ceramic heater portion is damaged.

特開平05−009740号公報JP 05-009740 A

本発明は、上記問題点を解決するためになされたものである。すなわち、本発明は、セラミックス基体中に埋設された導電体に給電するための電極リードの腐蝕をなくし、長期に使用しても信頼性の高いウェハ保持体を提供することを目的とする。   The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a highly reliable wafer holder even when used for a long period of time by eliminating the corrosion of electrode leads for supplying power to a conductor embedded in a ceramic substrate.

上記課題を解決するために、発明者らは、セラミックス基体中に埋設された導電体に給電するための電極リードを分割し、分割された電極リードを電気的に接続する接続部品を有し、該接続部品は一方端部に筒状部を有する柱状部品とし、この筒状部に電極リードの一方を挿入し、導電体との接続部から容器までの間の接続部品を含む電極リードを、例えば筒状セラミックス部材などの絶縁パイプで包囲し、絶縁パイプとセラミックス基体を接続すると共に、絶縁パイプの他端を封止すれば、電極リードの腐蝕を完全に防止することができ、長期に使用してもセラミックス基体の破損などが発生せず、信頼性の高いウェハ保持体とすることができることを見出した。   In order to solve the above problems, the inventors have electrode parts for supplying power to a conductor embedded in a ceramic substrate, and have a connection component that electrically connects the divided electrode leads, The connecting part is a columnar part having a cylindrical part at one end, and one of the electrode leads is inserted into the cylindrical part, and the electrode lead including the connecting part between the connecting part with the conductor and the container is provided. For example, by enclosing with an insulating pipe such as a cylindrical ceramic member, connecting the insulating pipe and the ceramic base, and sealing the other end of the insulating pipe, the corrosion of the electrode lead can be completely prevented and used for a long time. However, it was found that the ceramic substrate is not damaged and can be a highly reliable wafer holder.

すなわち、本発明のウェハ保持体は、被処理物保持面を有するセラミックス基体中に導電体が埋設されたウェハ保持体であって、被処理物保持面以外の面に露出し前記導電体に接続された導電端子と、該導電端子に接続された電極リードとを有し、該電極リードは、両端が気密に封止された絶縁パイプに覆われており、前記電極リードは前記絶縁パイプ内で分割され、分割された電極リードを電気的に接続する接続部品を有しており、該接続部品は、少なくとも一方端部に筒状部を有する柱状部品であり、該筒状部に前記分割された電極リードの一方が挿入されていることを特徴とする。   That is, the wafer holder of the present invention is a wafer holder in which a conductor is embedded in a ceramic substrate having a workpiece holding surface, and is exposed to a surface other than the workpiece holding surface and connected to the conductor. A conductive terminal and an electrode lead connected to the conductive terminal, the electrode lead being covered with an insulating pipe hermetically sealed at both ends, and the electrode lead is disposed within the insulating pipe. A connecting part for electrically connecting the divided electrode leads, and the connecting part is a columnar part having a cylindrical part at least at one end, and is divided into the cylindrical parts; One of the electrode leads is inserted.

また、前記筒状部には、スリットを有することが好ましく、このスリットの一部が、内径側に向かって変形していることが好ましい。   The cylindrical part preferably has a slit, and a part of the slit is preferably deformed toward the inner diameter side.

本発明によれば、セラミックス基体中に埋設された導電体に給電するための電極リードの腐蝕をなくし、長期に使用しても信頼性の高いウェハ保持体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion of the electrode lead for supplying electric power to the conductor embed | buried in the ceramic base | substrate is eliminated, and a highly reliable wafer holder can be provided even if it uses for a long period of time.

本発明のウェハ保持体の断面構造の模式図を示す。The schematic diagram of the cross-section of the wafer holder of this invention is shown. 本発明の接続部品の他の形態を示す。The other form of the connection component of this invention is shown. 本発明の接続部品のさらに別な形態を示す。The further another form of the connection component of this invention is shown.

図1を参照して、本発明のウェハ保持体は、被処理物保持面2を有するセラミックス基体1中に導電体3が埋設されている。導電体は、抵抗発熱体、プラズマ発生用電極、静電チャック用電極の少なくとも1つである。   Referring to FIG. 1, in a wafer holder of the present invention, a conductor 3 is embedded in a ceramic substrate 1 having a workpiece holding surface 2. The conductor is at least one of a resistance heating element, a plasma generating electrode, and an electrostatic chuck electrode.

導電体には、被処理物保持面以外の面に露出した前記導電体に接続された導電端子4と、導電端子4に接続された電極リード5とを有しており、該電極リードは、両端が気密に封止された絶縁パイプ7に覆われており、電極リードは絶縁パイプ7内で分割され、分割された電極リード5−1、5−2を電気的に接続する接続部品6を有しており、この接続部品は、少なくとも一方端部に筒状部を有する柱状部品であり、この筒状部に前記分割された電極リードの一方が挿入されている。   The conductor has a conductive terminal 4 connected to the conductor exposed on a surface other than the workpiece holding surface, and an electrode lead 5 connected to the conductive terminal 4, Both ends are covered with an insulating pipe 7 hermetically sealed, and the electrode lead is divided in the insulating pipe 7, and the connecting component 6 that electrically connects the divided electrode leads 5-1 and 5-2 is provided. The connecting part is a columnar part having a cylindrical part at least at one end, and one of the divided electrode leads is inserted into the cylindrical part.

接続部品の筒状部に電極リードを挿入する構造とする。筒状部の深さを挿入する長さより深くすることにより、電極リードが熱膨張しても応力が発生することを抑えることができる。   The electrode lead is inserted into the cylindrical part of the connection part. By making the depth of the cylindrical portion deeper than the insertion length, it is possible to suppress the generation of stress even if the electrode lead is thermally expanded.

また、挿入する長さすなわち電極リードと接続部品の接触長さは、例えばプラズマ発生用電極の場合、出力が高く電流量が多い場合は接触長さを長くし、出力が少なく電流量が少ない場合には接触長さを短くすることができる。   The length of insertion, that is, the contact length between the electrode lead and the connection component, for example, in the case of an electrode for plasma generation, if the output is high and the amount of current is large, the contact length is long, and the output is small and the amount of current is small The contact length can be shortened.

いずれの場合でも、接続部品の筒状部の底に電極リードがない空間部分を形成することによって、電極リードの熱膨張量を吸収し、熱膨張係数差による応力の発生を回避することができる。なお、図1では、導電体と電極リードはそれぞれ1つしか示していないが、実際には必要な数だけ設置する。   In any case, by forming a space portion without the electrode lead at the bottom of the cylindrical portion of the connecting part, it is possible to absorb the amount of thermal expansion of the electrode lead and avoid the generation of stress due to the difference in thermal expansion coefficient. . In FIG. 1, only one conductor and one electrode lead are shown, but as many as required are actually installed.

接続部品の筒状部は、図1に示すように両側に設けて電極リード5−1と5−2の両方を挿入するようにしてもよい。また、図2に示すように、接続部品の片側だけに筒状部を設けることでもよい。この場合、電極リード5−2接続部品6とは、溶接やネジ止め等の方法により接続することができる。更に、図3に示すように、接続部品の長さを長くして電極リード5−2に代える構造とすることもできる。   As shown in FIG. 1, the cylindrical part of the connection part may be provided on both sides and both the electrode leads 5-1 and 5-2 may be inserted. Moreover, as shown in FIG. 2, you may provide a cylindrical part only in the one side of a connection component. In this case, the electrode lead 5-2 connecting component 6 can be connected by a method such as welding or screwing. Furthermore, as shown in FIG. 3, the length of the connection component can be increased to replace the electrode lead 5-2.

接続部品の筒状部にスリット8を形成することができる。スリットを設けることにより、筒状部にバネ性を付与することができ、電極リードと接続部品の電気的接触をより確かなものにすることができる。   The slit 8 can be formed in the cylindrical part of the connection part. By providing the slit, it is possible to impart springiness to the cylindrical portion, and it is possible to make the electrical contact between the electrode lead and the connecting component more reliable.

スリットの形状は、各種形状を採用することができ、当業者がその使用形態において適宜設計することができる。例えば、スリットの長さに応じて電極リードと接触する密着性が向上するため、電流量が多ければスリットを長くし、電流量が少なければスリットの長さを短くすることができる。また、スリットは筒状部の縦方向に形成することが好ましい。横方向にスリットを形成することも可能であるが、電流の流れを阻害することがあるので、注意を要する。また、スリットは筒状部の端部にまで達しないようにすることが好ましい。スリットが筒状部の端部にまで形成されると、筒状部の端部がヒートサイクルによって開いてくるので、電気的接続の信頼性が低下することがある。   Various shapes can be adopted as the shape of the slit, and those skilled in the art can appropriately design in the usage form. For example, since the adhesion with the electrode lead is improved according to the length of the slit, the slit can be lengthened if the amount of current is large, and the length of the slit can be shortened if the amount of current is small. The slit is preferably formed in the longitudinal direction of the cylindrical portion. Although it is possible to form slits in the lateral direction, care must be taken because current flow may be hindered. Further, it is preferable that the slit does not reach the end of the cylindrical portion. If the slit is formed up to the end of the cylindrical portion, the end of the cylindrical portion is opened by a heat cycle, which may reduce the reliability of electrical connection.

また、スリットを形成した部分の筒状部を内径側に変形させることが好ましい。内径側に変形させることにより、電極リードと接続部品の密着性が向上する。スリットの幅は特に制約はないが、0.1mm以上の幅であることが好ましい。   Moreover, it is preferable to deform | transform the cylindrical part of the part which formed the slit to an internal-diameter side. By deforming to the inner diameter side, the adhesion between the electrode lead and the connecting component is improved. The width of the slit is not particularly limited, but is preferably 0.1 mm or more.

絶縁パイプ7は、セラミックス基体1に接合して気密にシールする。接合は、ガラスや窒化アルミニウムを主成分とするペーストを用いることができる。また、ガラスとしては硼珪酸ガラス、亜鉛硼珪酸ガラス等を用いることができる。   The insulating pipe 7 is joined to the ceramic substrate 1 and hermetically sealed. For the bonding, a paste mainly composed of glass or aluminum nitride can be used. As the glass, borosilicate glass, zinc borosilicate glass, or the like can be used.

絶縁パイプのセラミックス基体とは反対側の他端側も気密に封止する。この他端側は、絶縁パイプが開口しているので、電極リード5−2が貫通するリング状部材9を用いることが好ましい。リング状部材と絶縁パイプを硼珪酸ガラスあるいは亜鉛硼珪酸ガラス等を用いて気密に接合する。リング状部材と絶縁パイプとは、ネジ止め等の方法により予め接続しておき、前記ガラス等で気密にシールすることもできる。   The other end of the insulating pipe opposite to the ceramic base is also hermetically sealed. Since the insulating pipe is opened on the other end side, it is preferable to use the ring-shaped member 9 through which the electrode lead 5-2 passes. The ring-shaped member and the insulating pipe are hermetically joined using borosilicate glass or zinc borosilicate glass. The ring-shaped member and the insulating pipe can be connected in advance by a method such as screwing, and hermetically sealed with the glass or the like.

気密にシールした絶縁パイプ内は、窒素やアルゴン等の不活性ガス雰囲気あるいは真空雰囲気とすることが好ましい。特に、絶縁パイプをガラスで封止する場合は、不活性ガス雰囲気にすることが必要である。なぜなら、大気中で封止した場合は、封止中に電極リードなどが酸化するし、使用中に酸化がある程度進行するからである。但し、絶縁パイプ内の体積が小さい場合は、大気中で封止しても問題が発生しない場合もある。   The inside of the hermetically sealed insulating pipe is preferably an inert gas atmosphere such as nitrogen or argon or a vacuum atmosphere. In particular, when the insulating pipe is sealed with glass, it is necessary to create an inert gas atmosphere. This is because when sealed in the atmosphere, electrode leads and the like are oxidized during sealing, and oxidation proceeds to some extent during use. However, when the volume in the insulating pipe is small, there may be no problem even if sealing is performed in the atmosphere.

セラミックス基体1の材質は、窒化アルミニウム、窒化ケイ素、炭化ケイ素、シリコンと炭化ケイ素の複合体、アルミニウムと炭化ケイ素の複合体などを用いることができる。熱伝導がよいことの観点からは、窒化アルミニウム、シリコンと炭化ケイ素の複合体、アルミニウムと炭化ケイ素の複合体が好ましい。剛性が高いことの観点からは、窒化ケイ素、炭化ケイ素、シリコンと炭化ケイ素の複合体が好ましい。   As the material of the ceramic substrate 1, aluminum nitride, silicon nitride, silicon carbide, a composite of silicon and silicon carbide, a composite of aluminum and silicon carbide, or the like can be used. From the viewpoint of good heat conduction, aluminum nitride, a composite of silicon and silicon carbide, and a composite of aluminum and silicon carbide are preferable. From the viewpoint of high rigidity, silicon nitride, silicon carbide, and a composite of silicon and silicon carbide are preferable.

導電体3は、ステンレス、ニッケルクロム合金、インコネル、モリブデン、タングステンなどの金属箔あるいは、それらの金属の線材(コイル)であってもよい。また、モリブデン、タングステン、タンタルなどの金属粉末にバインダーと溶剤を混合した導電性ペーストをスクリーン印刷によって塗布し、焼成することにより形成してもよい。   The conductor 3 may be a metal foil such as stainless steel, nickel chrome alloy, inconel, molybdenum, tungsten, or a wire (coil) of those metals. Alternatively, a conductive paste obtained by mixing a metal powder such as molybdenum, tungsten, or tantalum with a binder and a solvent may be applied by screen printing and fired.

電極端子4は、モリブデンあるいはタングステンであることが好ましい。導電体3と電極端子4とは、ネジ止め、カシメ、メタライズ、ロウ付けなど公知の方法で接続することができる。   The electrode terminal 4 is preferably molybdenum or tungsten. The conductor 3 and the electrode terminal 4 can be connected by a known method such as screwing, caulking, metallization, or brazing.

電極リード5は、モリブデン、タングステン、ニッケル等の耐熱金属であることが好ましい。これらの材質にニッケルあるいは金をメッキしておくこともできる。接続部品6は、ニッケルやニッケル合金等が好ましい。   The electrode lead 5 is preferably a heat-resistant metal such as molybdenum, tungsten, or nickel. These materials can be plated with nickel or gold. The connection component 6 is preferably nickel or nickel alloy.

絶縁パイプ7の材質は、無機質のセラミックスであれば、特に制約はないが、セラミックス基体と接続するので、熱膨張係数がセラミックス基体に近いものが好ましく、セラミックス基体の材質と同一であることがより好ましい。   The material of the insulating pipe 7 is not particularly limited as long as it is an inorganic ceramic. However, since it is connected to the ceramic substrate, the thermal expansion coefficient is preferably close to that of the ceramic substrate, and more preferably the same as the material of the ceramic substrate. preferable.

リング状部材9の材質は、絶縁パイプの熱膨張係数と近似の熱膨張係数を有する材質を用いることが好ましく、絶縁パイプと同じセラミックスとすることができる。また、タングステンもセラミックスの熱膨張係数に近い熱膨張係数であるので、用いることができる。タングステンの場合は、セラミックスより加工が容易なので、ネジ止め等の方法で絶縁パイプと接続しておくことができる。   The material of the ring-shaped member 9 is preferably a material having a thermal expansion coefficient approximate to that of the insulating pipe, and can be the same ceramic as the insulating pipe. Tungsten can also be used because it has a thermal expansion coefficient close to that of ceramics. In the case of tungsten, since it is easier to process than ceramics, it can be connected to the insulating pipe by a method such as screwing.

窒化アルミニウム(AlN)粉末99.5重量部に、酸化イットリウム(Y)を、0.5重量部添加し、アクリルバインダー、有機溶剤を加え、ボールミルにて24時間混合して、AlNスラリーを作製した。このスラリーを、スプレードライにて顆粒を作製し、プレス成形した後、700℃、窒素雰囲気中で脱脂し、1850℃、窒素雰囲気中で焼結し、窒化アルミニウム(AlN)焼結体を複数作製した。このAlN焼結体を機械加工して、直径330mm、厚さ9mmとした。このAlN焼結体の上下面の表面粗さはRa0.8μm、平面度は50μmであった。 0.5 part by weight of yttrium oxide (Y 2 O 3 ) is added to 99.5 parts by weight of aluminum nitride (AlN) powder, an acrylic binder and an organic solvent are added, and they are mixed for 24 hours in a ball mill to obtain an AlN slurry. Was made. The slurry is spray-dried to produce granules, press-molded, degreased in a nitrogen atmosphere at 700 ° C., and sintered in a nitrogen atmosphere at 1850 ° C. to produce a plurality of aluminum nitride (AlN) sintered bodies. did. This AlN sintered body was machined to have a diameter of 330 mm and a thickness of 9 mm. The surface roughness of the upper and lower surfaces of this AlN sintered body was Ra 0.8 μm, and the flatness was 50 μm.

平均粒径が2.0μmのタングステン(W)粉末を100重量部として、Yを1重量部と、5重量部のバインダーであるエチルセルロースと、溶剤としてブチルカルビトールを混合してWペーストを作製した。このWペーストをスクリーン印刷で、前記AlN焼結体の一方の面に抵抗発熱体回路を、他方の面に高周波電極回路(プラズマ発生用電極)を形成した。これを窒素雰囲気中700℃で脱脂した後、窒素雰囲気中1830℃で6時間焼成し、AlN焼結体の片方の面に抵抗発熱体、他方の面に高周波電極回路を作製した。 W paste with 100 parts by weight of tungsten (W) powder having an average particle size of 2.0 μm, 1 part by weight of Y 2 O 3 , 5 parts by weight of ethyl cellulose as a binder, and butyl carbitol as a solvent. Was made. This W paste was screen-printed to form a resistance heating element circuit on one surface of the AlN sintered body and a high-frequency electrode circuit (plasma generating electrode) on the other surface. This was degreased at 700 ° C. in a nitrogen atmosphere, and then fired at 1830 ° C. in a nitrogen atmosphere for 6 hours to produce a resistance heating element on one side of the AlN sintered body and a high-frequency electrode circuit on the other side.

窒化アルミニウムを主成分とするセラミックスペースとを作製した。このセラミックスペーストを、前記AlN焼結体の抵抗発熱体及び高周波電極回路が形成された上下面全面に、スクリーン印刷にて塗布し、乾燥後窒素雰囲気中700℃で脱脂した。   A ceramic space mainly composed of aluminum nitride was produced. This ceramic paste was applied to the entire upper and lower surfaces on which the resistance heating element and the high-frequency electrode circuit of the AlN sintered body were formed by screen printing, dried, and degreased at 700 ° C. in a nitrogen atmosphere.

脱脂後、別途作製した厚み3mmのAlN焼結体を高周波電極回路側に、厚み9mmのAlN焼結体を抵抗発熱体側に重ね合わせ、2MPaの圧力で、窒素雰囲気中1800℃、2時間ホットプレスを行い、ウェハ保持体を作製した。   After degreasing, a separately manufactured AlN sintered body with a thickness of 3 mm is superimposed on the high-frequency electrode circuit side, and an AlN sintered body with a thickness of 9 mm is superimposed on the resistance heating element side, and hot pressing is performed at 1800 ° C. for 2 hours in a nitrogen atmosphere at a pressure of 2 MPa. A wafer holder was produced.

このウェハ保持体の抵抗発熱体側の面から、抵抗発熱体と高周波電極回路が露出するようにザグリ加工を行った。露出した抵抗発熱体及び高周波電極回路にそれぞれニッケルメッキを施したW製の導電端子4を接続した。さらに図1に示すように、導電端子に直径4mmのニッケル製電極リード5−1を接続した。ニッケル製電極リードの導電端子とは反対側にニッケル製の接続部品6を接続し、さらにニッケル製電極リード5−2を接続した。接続部品は、スリット有となしを用いた。また、比較のために接続部品の無いものも作製した。   Counterboring was performed so that the resistance heating element and the high-frequency electrode circuit were exposed from the surface of the wafer holder on the resistance heating element side. Conductive terminals 4 made of W plated with nickel were connected to the exposed resistance heating element and high-frequency electrode circuit, respectively. Further, as shown in FIG. 1, a nickel electrode lead 5-1 having a diameter of 4 mm was connected to the conductive terminal. A nickel connecting component 6 was connected to the opposite side of the nickel electrode lead from the conductive terminal, and a nickel electrode lead 5-2 was further connected. The connecting parts used were those with and without slits. For comparison, a device without connecting parts was also produced.

これらの導電端子と電極リードを覆うように、ムライトとアルミナの複合体からなる絶縁パイプを設置し、亜鉛硼珪酸ガラスを用いて、絶縁パイプとウェハ保持体を接合した。接合は、窒素雰囲気中800℃、1時間絶縁パイプの端部に重しを載せて行った。   An insulating pipe made of a composite of mullite and alumina was installed so as to cover these conductive terminals and electrode leads, and the insulating pipe and the wafer holder were joined using zinc borosilicate glass. The joining was performed by placing a weight on the end of the insulating pipe in a nitrogen atmosphere at 800 ° C. for 1 hour.

絶縁パイプのウェハ保持体と接合した側と反対側の他端を封止した。具体的には、絶縁パイプの内側にW製のリングをはめ込み、電極リードを貫通させた状態で、窒素雰囲気中800℃、1時間にて結晶化ガラスを焼成することによって封止した。このように封止することによって、絶縁パイプの内部は、窒素雰囲気となった。   The other end of the insulating pipe opposite to the side bonded to the wafer holder was sealed. Specifically, a ring made of W was fitted inside the insulating pipe, and the crystallized glass was fired in a nitrogen atmosphere at 800 ° C. for 1 hour in a state where the electrode lead was penetrated. By sealing in this way, the inside of the insulating pipe became a nitrogen atmosphere.

このようにして電極等と絶縁パイプが接続されたウェハ保持体を、反応容器の中に設置し、絶縁パイプを反応容器の底部にクランプ固定し、O−リングで反応容器と絶縁パイプとを気密シールした。   The wafer holder to which the electrode and the insulating pipe are connected in this way is placed in the reaction vessel, the insulating pipe is clamped and fixed to the bottom of the reaction vessel, and the reaction vessel and the insulating pipe are hermetically sealed with an O-ring. Sealed.

反応容器内を真空にし、抵抗発熱体に電力を供給して、ウェハ保持体を所定の温度に加熱し、1時間保持してから室温まで冷却し、再び所定の温度まで昇温するヒートサイクル試験を1000回行った。また、所定の温度で保持している間、13.56MHz、1.5kWの高周波を印加、停止を100回繰り返した。その後、絶縁パイプを取り外し、内部の電極の状態を確認した。これらの結果を表1に示す。なお、表1において、電極等に変化が見られなかったものを◎、接続部品の接触抵抗が若干上昇するも使用に影響がなかったものを○、通電停止あるいはRF電極にエラーが発生して使用できなかったものを×で示す。   A heat cycle test in which the inside of the reaction vessel is evacuated, power is supplied to the resistance heating element, the wafer holder is heated to a predetermined temperature, held for 1 hour, cooled to room temperature, and then heated again to the predetermined temperature. Was performed 1000 times. Further, while holding at a predetermined temperature, high frequency of 13.56 MHz and 1.5 kW was applied and stopped 100 times. Then, the insulation pipe was removed and the state of the internal electrode was confirmed. These results are shown in Table 1. In Table 1, ◎ indicates that no change was observed in the electrode, etc., ○ indicates that the contact resistance of the connecting parts slightly increased but did not affect the use, and energization was stopped or an error occurred in the RF electrode. Those that could not be used are indicated by x.

Figure 0005857441
Figure 0005857441

抵抗発熱体をモリブデンコイルとし、高周波電極をモリブデンメッシュとしたこと以外は、実施例1と同様にしてウェハ保持体を作成し、実施例1と同様に評価した。その結果を表2に示す。   A wafer holder was prepared in the same manner as in Example 1 except that the resistance heating element was a molybdenum coil and the high-frequency electrode was a molybdenum mesh, and evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 0005857441
Figure 0005857441

接続部品の形状を図2または図3にしたこと以外は、実施例1と同様のウェハ保持体を作製し、同様に評価した。その結果を表3に示す。   A wafer holder similar to that of Example 1 was prepared and evaluated in the same manner except that the shape of the connection component was changed to that shown in FIG. The results are shown in Table 3.

Figure 0005857441
Figure 0005857441

接続部品の形状を図2または図3にしたこと以外は、実施例2と同様のウェハ保持体を作製し、同様に評価した。その結果を表3に示す。   A wafer holder similar to that of Example 2 was prepared and evaluated in the same manner except that the shape of the connection component was changed to that shown in FIG. The results are shown in Table 3.

Figure 0005857441
Figure 0005857441

本発明によれば、セラミックス基体中に埋設された導電体に給電するための電極リードの腐蝕をなくし、長期に使用しても信頼性の高いウェハ保持体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion of the electrode lead for supplying electric power to the conductor embed | buried in the ceramic base | substrate is eliminated, and a highly reliable wafer holder can be provided even if it uses for a long period of time.

1 セラミックス基体
2 被処理物保持面
3 導電体
4 導電端子
5 電極リード
6 接続部品
7 絶縁パイプ
8 スリット
9 リング状部材
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Processing object holding surface 3 Conductor 4 Conductive terminal 5 Electrode lead 6 Connection component 7 Insulation pipe 8 Slit 9 Ring-shaped member

Claims (3)

被処理物保持面を有するセラミックス基体中に導電体が埋設されたウェハ保持体であって、被処理物保持面以外の面に露出し前記導電体に接続された導電端子と、該導電端子に接続された電極リードとを有し、該電極リードは、両端が気密に封止された絶縁パイプに覆われており、前記電極リードは前記絶縁パイプ内で分割され、分割された電極リードを電気的に接続する接続部品を有しており、該接続部品は、少なくとも一方端部に筒状部を有する柱状部品であり、該筒状部に前記分割された電極リードの一方が挿入されており、前記筒状部には、前記筒状部の縦方向に延在し、前記筒状部の端部にまで達していないスリットを備え、前記筒状部のスリットの一部が内径側に向かって変形されていることを特徴とするウェハ保持体。 A wafer holder in which a conductor is embedded in a ceramic substrate having a workpiece holding surface, the conductive terminal exposed to a surface other than the workpiece holding surface and connected to the conductor, and the conductive terminal The electrode lead is covered with an insulating pipe hermetically sealed at both ends, and the electrode lead is divided within the insulating pipe, and the divided electrode lead is electrically It includes a connection part that connects, the connection part is a pillar part having a cylindrical portion on at least one end, one of the divided electrode leads are inserted into the cylindrical portion The cylindrical portion includes a slit that extends in the longitudinal direction of the cylindrical portion and does not reach the end of the cylindrical portion, and a part of the slit of the cylindrical portion faces the inner diameter side. A wafer holder characterized by being deformed . 前記スリットの幅が0.1mm以上の幅であることを特徴とする請求項1に記載のウェハ保持体。 The wafer holder according to claim 1, wherein the slit has a width of 0.1 mm or more . 前記接続部品の材質がニッケルまたはニッケル合金であることを特徴とする請求項1または請求項2に記載のウェハ保持体。 The wafer holder according to claim 1, wherein a material of the connection component is nickel or a nickel alloy .
JP2011106970A 2011-05-12 2011-05-12 Wafer holder Active JP5857441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106970A JP5857441B2 (en) 2011-05-12 2011-05-12 Wafer holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106970A JP5857441B2 (en) 2011-05-12 2011-05-12 Wafer holder

Publications (2)

Publication Number Publication Date
JP2012238730A JP2012238730A (en) 2012-12-06
JP5857441B2 true JP5857441B2 (en) 2016-02-10

Family

ID=47461381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106970A Active JP5857441B2 (en) 2011-05-12 2011-05-12 Wafer holder

Country Status (1)

Country Link
JP (1) JP5857441B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398064B2 (en) * 2000-05-12 2010-01-13 日本発條株式会社 Heating device
JP2003060016A (en) * 2001-07-31 2003-02-28 Applied Materials Inc Current introducing terminal and semiconductor manufacturing apparatus
JP3802795B2 (en) * 2001-10-31 2006-07-26 アプライド マテリアルズ インコーポレイテッド Semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JP2012238730A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
KR100333785B1 (en) Joint structure of metal member and ceramic member and method of producing the same
TWI308366B (en)
KR100438881B1 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
TWI480972B (en) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus including the same
JP5896595B2 (en) Two-layer RF structure wafer holder
JP5591627B2 (en) Ceramic member and manufacturing method thereof
JPH10209255A (en) Junction structure between ceramics member and power supplying connector
JP2002293655A (en) Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP2006302887A (en) Power supply member and heating device
JP4321857B2 (en) Ceramic bonding structure
JP2006186351A (en) Semiconductor manufacturing device
JP2005197391A (en) Electrode-burying member for plasma generator
KR101397133B1 (en) Method for manufacturing electrostatic chuck
JP4258309B2 (en) Susceptor for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2013026312A (en) Electrode structure consisting of ceramics electrode and wafer holder including the same
JP5961917B2 (en) Wafer holder
JP5857441B2 (en) Wafer holder
JP2006179897A (en) Workpiece holder, susceptor for semiconductor manufacturing apparatus, and processing apparatus
JP2006313919A (en) Processed object retainer, susceptor for semiconductor manufacturing apparatus, and processor
JP2002141403A (en) Wafer supporting member
JP2005197393A (en) Electrode-burying member for plasma generator
JP2013089850A (en) Wafer holder for semiconductor manufacturing apparatus
KR102406136B1 (en) wafer holder
JP2005116608A (en) Electrode embedding member for plasma generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250