JP5842429B2 - Polyimide precursor and polyimide - Google Patents

Polyimide precursor and polyimide Download PDF

Info

Publication number
JP5842429B2
JP5842429B2 JP2011159904A JP2011159904A JP5842429B2 JP 5842429 B2 JP5842429 B2 JP 5842429B2 JP 2011159904 A JP2011159904 A JP 2011159904A JP 2011159904 A JP2011159904 A JP 2011159904A JP 5842429 B2 JP5842429 B2 JP 5842429B2
Authority
JP
Japan
Prior art keywords
polyimide
polyimide precursor
general formula
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011159904A
Other languages
Japanese (ja)
Other versions
JP2012041531A (en
Inventor
亮一 高澤
亮一 高澤
卓也 岡
卓也 岡
幸徳 小濱
幸徳 小濱
美晴 中川
美晴 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011159904A priority Critical patent/JP5842429B2/en
Publication of JP2012041531A publication Critical patent/JP2012041531A/en
Application granted granted Critical
Publication of JP5842429B2 publication Critical patent/JP5842429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、高透明性、高耐熱性、低線熱膨張係数を併せ持つポリイミド前駆体及びポリイミドに関する。   The present invention relates to a polyimide precursor and a polyimide having both high transparency, high heat resistance, and low linear thermal expansion coefficient.

近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいるが、さらに、特に表示装置分野で、ガラス基板代替として軽量でフレキシブル性に優れたプラスチック基板の検討が行なわれたり、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われているため、その様な用途に用いることができる、より高性能の光学材料が求められている。   In recent years, with the advent of the advanced information society, development of optical materials such as liquid crystal alignment films and protective films for color filters in the field of display devices such as optical fibers and optical waveguides in the field of optical communication has been progressing. In the field of equipment, plastic substrates that are lightweight and have excellent flexibility as glass substrate substitutes are being studied, and displays that can be bent and rolled are being actively developed. There is a need for higher performance optical materials that can be used.

一般に、ポリイミドは分子内共役や電荷移動錯体の形成により本質的に黄褐色に着色する。その解決策として、例えばフッ素を導入したり、主鎖に屈曲性を与えたり、嵩高い側鎖を導入するなどして電荷移動錯体の形成阻害し透明性を発現させる方法が提案されている(非特許文献1)。また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミド樹脂を用いることにより透明性を発現させる方法も提案されている(特許文献1〜3、非特許文献2)。   In general, polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. As a solution for this, for example, a method for inhibiting the formation of a charge transfer complex and expressing transparency by introducing fluorine, imparting flexibility to the main chain, or introducing a bulky side chain has been proposed ( Non-patent document 1). In addition, a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide resin that does not form a charge transfer complex in principle has been proposed (Patent Documents 1 to 3, Non-Patent Document 2).

しかしながら、従来の解決策である、主鎖に屈曲性を与えたり、嵩高い側鎖を導入する場合では、線熱膨張係数が非常に大きく、また脂環式ポリイミド(特に全脂環式)を用いる場合では、芳香族ポリイミドに比べ、耐熱性が低下するといった問題があった。このため、従来のポリイミドにおいては、優れた透明性と、低熱線膨張係数と高耐熱性を両立することは難しく、ポリイミドをフレキシブルディスプレイ用や、太陽電池用、タッチパネル用の透明基材として用いるため、これらの特性を両立することが強く求められていた。   However, when the main solution is to bend the main chain or introduce a bulky side chain, the linear thermal expansion coefficient is very large, and alicyclic polyimide (particularly all alicyclic) is used. When used, there is a problem that heat resistance is reduced as compared with aromatic polyimide. For this reason, in conventional polyimide, it is difficult to achieve both excellent transparency, low thermal expansion coefficient and high heat resistance, and polyimide is used as a transparent substrate for flexible displays, solar cells, and touch panels. Therefore, it has been strongly demanded to satisfy both of these characteristics.

特開2002−348374号公報JP 2002-348374 A 特開2005−15629号公報JP 2005-15629 A 特開2002−161136号公報JP 2002-161136 A

Polymer,47,2337(2006)Polymer, 47, 2337 (2006) High Perform.Polym,13,S93(2001)High Perform. Polym, 13, S93 (2001)

本発明の目的は、フレキシブルディスプレイ用や、太陽電池用、タッチパネル用の透明基材に適した優れた透明性と低熱線膨張係数、高耐熱性を併せ持つポリイミド及びそのポリイミド前駆体を提供することである。   An object of the present invention is to provide a polyimide having excellent transparency, low thermal expansion coefficient, and high heat resistance suitable for transparent substrates, solar cells, and touch panels, and a polyimide precursor thereof. is there.

本発明は、以下の各項に関する。
(1) 下記一般式(1)で表される単位構造を有するポリイミド前駆体。
The present invention relates to the following items.
(1) A polyimide precursor having a unit structure represented by the following general formula (1).

Figure 0005842429
〔一般式(1)中、R、Rはいずれも独立に、水素原子、炭素数1〜6のアルキル基、又は炭素数3〜9のアルキルシリル基であり、Arは2価の芳香族基であり、Xは下記一般式(2)で表される4価の芳香族基である。)
Figure 0005842429
[In General Formula (1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms, and Ar is a divalent aromatic. X is a tetravalent aromatic group represented by the following general formula (2). )

Figure 0005842429
Figure 0005842429

(2) 前記一般式(1)のArが下記一般式(3)で表される2価の芳香族基、より好ましくは1,4−フェニレン又は1,3−フェニレン基であることを特徴とする前記項1に記載のポリイミド前駆体。 (2) The Ar in the general formula (1) is a divalent aromatic group represented by the following general formula (3), more preferably 1,4-phenylene or 1,3-phenylene group. Item 2. The polyimide precursor according to Item 1.

Figure 0005842429
〔一般式(3)中、Rは水素原子、炭素数1〜6のアルキル基、又はアルコキシ基を表す。〕
Figure 0005842429
[In General Formula (3), R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group. ]

(3) ポリイミド前駆体の対数粘度(温度:30℃、濃度:0.5g/dL、溶媒:N,N−ジメチルアセトアミド溶液における)が0.2dL/g以上であることを特徴とする前項1または2に記載のポリイミド前駆体。 (3) The above item 1 characterized in that the logarithmic viscosity of the polyimide precursor (temperature: 30 ° C., concentration: 0.5 g / dL, solvent: in N, N-dimethylacetamide solution) is 0.2 dL / g or more. Or the polyimide precursor of 2.

(4) 前記項1〜3のいずれかに記載のポリイミド前駆体と有機溶媒からなるポリイミド前駆体溶液であって、テトラカルボン酸二無水物とジアミンからなるモノマー成分の濃度が、溶媒とモノマー成分の合計量に対して10質量%以上であることを特徴とするポリイミド前駆体溶液組成物。 (4) A polyimide precursor solution comprising the polyimide precursor according to any one of Items 1 to 3 and an organic solvent, wherein the concentration of the monomer component comprising tetracarboxylic dianhydride and diamine is the solvent and the monomer component. It is 10 mass% or more with respect to the total amount of the polyimide precursor solution composition characterized by the above-mentioned.


(5) 下記一般式(4)で表される単位構造を有するポリイミド。

(5) A polyimide having a unit structure represented by the following general formula (4).

Figure 0005842429
〔一般式(4)中、Xは前記一般式(2)で表される4価の芳香族基であり、Arは2価の芳香族基である。〕
Figure 0005842429
[In General Formula (4), X is a tetravalent aromatic group represented by General Formula (2), and Ar is a divalent aromatic group. ]

(6) フィルムにしたときの400nmの光透過性が50%以上であることを特徴とする透明性に優れる前記項5に記載のポリイミド。 (6) The polyimide as described in (5) above, which is excellent in transparency, having a light transmittance of 400 nm or more when formed into a film of 50% or more.

(7) フィルムにしたときの50℃〜200℃における平均熱線膨張係数が50ppm/K以下であることを特徴とする前記項5〜6のいずれかに記載のポリイミド。 (7) The polyimide according to any one of Items 5 to 6, wherein the film has an average coefficient of linear thermal expansion at 50 ° C to 200 ° C of 50 ppm / K or less.

(8) 前記項5に記載のポリイミドによって形成された厚さ1μm〜200μmのポリイミドフィルム。 (8) A polyimide film having a thickness of 1 μm to 200 μm formed of the polyimide according to item 5 above.

(9) ディスプレイ用基材用、タッチパネル用基材用、又は太陽電池用基材用に用いられる前記項8に記載のポリイミドフィルム。 (9) The polyimide film according to Item 8, which is used for a display substrate, a touch panel substrate, or a solar cell substrate.

本発明によって、フレキシブルディスプレイ用や、太陽電池用、タッチパネル用の透明基材に適した優れた透明性と低熱線膨張係数、高耐熱性を併せ持つポリイミド及びそのポリイミド前駆体を提供することができる。   According to the present invention, it is possible to provide a polyimide having excellent transparency, low thermal expansion coefficient, and high heat resistance suitable for a transparent substrate, a solar cell, and a touch panel, and a polyimide precursor thereof.

本発明のポリイミド前駆体は、前記一般式(1)で表される単位構造を有する。本発明のポリイミド前駆体の対数粘度は、特に限定されないが、温度:30℃、濃度:0.5g/dL、溶媒:N,N−ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、好ましくは0.5dL/g以上である。0.2dL/g以上では、ポリイミド前駆体の分子量が高いため、得られるポリイミド膜の機械強度が向上する。また、本発明のポリイミド前駆体の対数粘度は、特に限定されないが、好ましくは2.5dL/g以下、より好ましくは2.0dL/g以下である。対数粘度が低い場合、ポリイミド前駆体ワニスの粘度が低くなり、製膜工程のハンドリング性が良好である。   The polyimide precursor of the present invention has a unit structure represented by the general formula (1). Although the logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, the logarithmic viscosity in a temperature: 30 ° C., concentration: 0.5 g / dL, solvent: N, N-dimethylacetamide solution is preferably 0.2 dL / g or more, preferably Is 0.5 dL / g or more. At 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, so the mechanical strength of the resulting polyimide film is improved. The logarithmic viscosity of the polyimide precursor of the present invention is not particularly limited, but is preferably 2.5 dL / g or less, more preferably 2.0 dL / g or less. When the logarithmic viscosity is low, the viscosity of the polyimide precursor varnish is low, and the handleability of the film forming process is good.

前記一般式(1)のR、Rは、特に限定されないが、水素原子、或いは、炭素数1〜6のアルキル基の場合、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基等、炭素数3〜9のアルキルシリル基の場合、トリメチルシリル基、ジメチルイソプロピルシリル基、tert−ブチルジメチルシリル基、トリイソプロピルシリル基等が好ましい。特に経済性からは、アルキルシリル基の場合はトリメチルシリル基がより好ましい。 R 1 and R 2 in the general formula (1) are not particularly limited, but in the case of a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n In the case of an alkylsilyl group having 3 to 9 carbon atoms such as -butyl group, iso-butyl group, sec-butyl group, etc., trimethylsilyl group, dimethylisopropylsilyl group, tert-butyldimethylsilyl group, triisopropylsilyl group and the like are preferable. In particular, from the viewpoint of economy, in the case of an alkylsilyl group, a trimethylsilyl group is more preferable.

本発明のポリイミド前駆体は、1)ポリアミド酸、2)ポリアミド酸エステル、3)ポリアミド酸シリルエステルに分類され、それぞれ以下の3つの製造方法により製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるわけではない。   The polyimide precursor of the present invention is classified into 1) polyamic acid, 2) polyamic acid ester, and 3) polyamic acid silyl ester, and each can be produced by the following three production methods. However, the manufacturing method of the polyimide precursor of this invention is not necessarily limited to the following manufacturing methods.

1)ポリアミド酸
有機溶剤にジアミンを溶解し、この溶液に攪拌しながらテトラカルボン酸二無水物を徐々に添加し、0〜100℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。
1) Polyamide acid A diamine is dissolved in an organic solvent, tetracarboxylic dianhydride is gradually added to this solution while stirring, and the polyimide precursor is obtained by stirring for 1 to 72 hours in the range of 0 to 100 ° C. can get.

2)ポリアミド酸エステル
テトラカルボン酸二無水物を任意のアルコールで反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを反応させることで、ポリイミド前駆体が得られる。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。また、このポリイミド前駆体は、安定なため水やアルコールなどの溶剤を加え再沈殿などの精製をおこなうこともできる。
2) Polyamic acid ester After reacting tetracarboxylic dianhydride with an arbitrary alcohol to obtain a diester dicarboxylic acid, it is reacted with a chlorinating reagent (thionyl chloride, oxalyl chloride, etc.) to obtain a diester dicarboxylic acid chloride. A polyimide precursor is obtained by reacting the diester dicarboxylic acid chloride and diamine. Alternatively, a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent. Further, since this polyimide precursor is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.

3)ポリアミド酸シリルエステル
あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得え(必要に応じて、蒸留等によりシリル化されたジアミンの精製をおこなう。)、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0〜100℃の範囲で1〜72時間攪拌することで、ポリイミド前駆体が得られる。ここで用いるシリル化剤として、特に限定されないが、塩素を含有しないシリル化剤を用いることで、シリル化されたジアミンを精製しないでも使用できるため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが好ましい。また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
3) Polyamide acid silyl ester A diamine and a silylating agent are reacted in advance to obtain a silylated diamine (if necessary, the silylated diamine is purified by distillation or the like) and dehydrated solvent. The silylated diamine is dissolved therein, while stirring, the tetracarboxylic dianhydride is gradually added, and the polyimide precursor is obtained by stirring in the range of 0 to 100 ° C. for 1 to 72 hours. It is done. Although it does not specifically limit as a silylating agent used here, Since it can be used without refine | purifying silylated diamine, it is suitable by using the silylating agent which does not contain chlorine. Examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane. N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are preferred because they do not contain fluorine atoms and are low in cost. In addition, amine-based catalysts such as pyridine, piperidine and triethylamine can be used in the silylation reaction of diamine in order to accelerate the reaction. This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.

前記のポリイミド前駆体に用いるテトラカルボン酸二無水物とジアミンのモル比[テトラカルボン酸二無水物/ジアミン]は、必要とするポリイミド前駆体の粘度により任意に設定できるが、好ましくは0.90〜1.10、より好ましくは0.95〜1.05である。   The tetracarboxylic dianhydride and diamine molar ratio [tetracarboxylic dianhydride / diamine] used in the polyimide precursor can be arbitrarily set depending on the required viscosity of the polyimide precursor, preferably 0.90. ˜1.10, more preferably 0.95 to 1.05.

また、本発明のポリイミド前駆体は、前記一般式(1)以外の構造単位を、本発明の効果の範囲内で含むことができる。その際の割合としては、通常は30モル%以下、好ましくは25モル%以下、特に20モル%以下である。そ前記一般式(1)以外の構造単位は、テトラカルボン酸成分を代えてもよく、ジアミン成分を代えてもよく、両成分とも変えてもよいが、好ましくは、一般式(1)のジアミン成分のみを代えた構造単位を導入するのがよい。ジアミン成分を代えるときには、特に脂環式ジアミンに変えるのが好ましい。   Moreover, the polyimide precursor of this invention can contain structural units other than the said General formula (1) within the range of the effect of this invention. In this case, the proportion is usually 30 mol% or less, preferably 25 mol% or less, particularly 20 mol% or less. In the structural unit other than the general formula (1), the tetracarboxylic acid component may be replaced, the diamine component may be replaced, or both components may be changed, but preferably the diamine of the general formula (1) It is preferable to introduce structural units in which only the components are replaced. When replacing the diamine component, it is particularly preferable to change to an alicyclic diamine.

ポリイミド前駆体溶液組成物の製造には、有機溶媒を使用することができる。具体的にはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリイミド前駆体が溶解すれば問題はなく、特にその構造には限定されない。N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、0−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、プチルセロソルブ、2−メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。最終的に得られるポリイミド前駆体溶液(ワニス)として、テトラカルボン酸誘導体、ジアミンモノマーの濃度は5重量%以上であり、好ましくは15〜50重量%である。   An organic solvent can be used for manufacture of the polyimide precursor solution composition. Specifically, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide are preferable, but the raw material monomer and the polyimide precursor to be formed are dissolved. There is no problem, and the structure is not particularly limited. Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ -Cyclic ester solvents such as butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenol solvents such as m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol, Acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed. In addition, other common organic solvents such as phenol, 0-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, ptyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, Tetrahydrofuran, dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can also be used. As a polyimide precursor solution (varnish) finally obtained, the concentration of the tetracarboxylic acid derivative and the diamine monomer is 5% by weight or more, preferably 15 to 50% by weight.

ポリイミド前駆体溶液組成物の製造で、用いる有機溶媒は、ガスクロマトグラフィー分析で求められる純度が、99.9%以上が好ましく、99.95%以上であることがより好ましい。用いる有機溶媒の純度が低い場合、ポリイミドの光透過率が低下することがある。また、重金属成分が少ないこと及び、溶剤の光透過率(主に可視光域)が高いことが更に好ましい。   In the production of the polyimide precursor solution composition, the organic solvent to be used has a purity required by gas chromatography analysis of preferably 99.9% or more, and more preferably 99.95% or more. When the purity of the organic solvent used is low, the light transmittance of the polyimide may be lowered. Further, it is more preferable that the heavy metal component is small and the light transmittance of the solvent (mainly visible light region) is high.

本発明のポリイミド前駆体溶液組成物(ワニス)は、主としてポリイミド前駆体と溶媒からなるポリイミド前駆体溶液組成物であり、テトラカルボン酸二無水物とジアミンからなるモノマー成分の濃度は、前記モノマー成分と溶媒との合計量に対して10重量%以上であり、より好ましくは15重量%〜50重量%である。モノマー濃度が10重量%以下の場合、得られるポリイミド膜の膜厚の制御が難しい。本発明のポリイミド前駆体は、溶解性が高いため、比較的高濃度のポリイミド前駆体溶液組成物を得ることができる。   The polyimide precursor solution composition (varnish) of the present invention is a polyimide precursor solution composition mainly composed of a polyimide precursor and a solvent, and the concentration of the monomer component composed of tetracarboxylic dianhydride and diamine is the above monomer component. And 10% by weight or more based on the total amount of the solvent and more preferably 15% by weight to 50% by weight. When the monomer concentration is 10% by weight or less, it is difficult to control the thickness of the resulting polyimide film. Since the polyimide precursor of the present invention has high solubility, a relatively high concentration polyimide precursor solution composition can be obtained.

本発明のポリイミド前駆体溶液組成物において、ポリイミド前駆体のテトラカルボン酸二無水物とジアミンのモル比がジアミン過剰の場合、必要に応じて、溶液組成物中に過剰ジアミン分のテトラ酸誘導体や酸無水物を添加し、ポリイミド前駆体溶液組成物を得ることができる。添加するテトラ酸誘導体としては、1,2,3,4−ブタンテトラカルボン酸、ベンゼン−1,2,4,5−テトラカルボン酸、ビフェニルテトラカルボン酸、酸無水物としては、無水フタル酸、テトラハイドロ無水フタル酸、シス−ノルボルネン−エンド−2,3−ジカルボン酸無水物、シクロヘキサンジカルボン酸無水物、無水コハク酸、無水マレイン酸等を挙げることができる。テトラ酸誘導体や酸無水物を用いることで、加熱時の熱着色、熱劣化をより防止することができる。   In the polyimide precursor solution composition of the present invention, when the molar ratio between the tetracarboxylic dianhydride of the polyimide precursor and the diamine is excessive diamine, if necessary, the tetraacid derivative of excess diamine in the solution composition or An acid anhydride can be added to obtain a polyimide precursor solution composition. Examples of tetraacid derivatives to be added include 1,2,3,4-butanetetracarboxylic acid, benzene-1,2,4,5-tetracarboxylic acid, biphenyltetracarboxylic acid, and acid anhydrides such as phthalic anhydride, Examples thereof include tetrahydrophthalic anhydride, cis-norbornene-endo-2,3-dicarboxylic anhydride, cyclohexanedicarboxylic anhydride, succinic anhydride, maleic anhydride and the like. By using a tetraacid derivative or an acid anhydride, thermal coloring and thermal deterioration during heating can be further prevented.

本発明のポリイミド前駆体溶液組成物は、必要に応じて、溶剤、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー、染料、無機顔料、シランカップリング剤、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などが添加することができる。   The polyimide precursor solution composition of the present invention comprises a solvent, a chemical imidizing agent (an acid anhydride such as acetic anhydride, an amine compound such as pyridine and isoquinoline), an antioxidant, a filler, a dye, and an inorganic as necessary. Pigments, silane coupling agents, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like can be added.

本発明のポリイミドは、本発明のポリイミド前駆体を閉環イミド化することによって得られるものであり、前記一般式(4)で表される単位構造を有するものである。イミド化の方法は、特に限定されず、従来公知の熱イミド化、化学イミド化方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミド積層体、粉末、ビーズ、成型体、発泡体およびワニスなどを挙げることができる。   The polyimide of the present invention is obtained by ring-closing imidization of the polyimide precursor of the present invention, and has a unit structure represented by the general formula (4). The imidization method is not particularly limited, and conventionally known thermal imidization and chemical imidization methods can be suitably applied. Examples of the form of polyimide obtained include films, polyimide laminates, powders, beads, molded articles, foams, and varnishes.

次に、本発明のポリイミド前駆体を好適に用いることができる、ポリイミドフィルム及びポリイミド/基板積層体、及びポリイミド膜を製造する方法について説明する。なお、ポリイミド前駆体の用途は以下の用途に限定されるものではない。
まず、セラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基板に、ポリイミド前駆体溶液(組成物)を流延し、真空中、窒素等の不活性ガス中、あるいは空気中で、熱風もしくは赤外線を用い、20〜180℃、好ましくは20〜150℃で乾燥する。次に得られた大部分の溶媒が除去されて自己支持性を有するポリイミド前駆体からなるフィルムを、基板と積層されたままで、或いは基板からポリイミド前駆体からなるフィルムを剥離し、例えばフィルム端部を固定した状態で、真空中、窒素等の不活性ガス中、又は空気中で、熱風もしくは赤外線を用い、200〜500℃、より好ましくは250〜450℃で加熱することでポリイミド膜、ポリイミド膜/基板積層体を製造することができる。得られるポリイミドへ酸化劣化を防ぐため、イミド化は真空中あるいは不活性ガス中で行うことが望ましいが、イミド化温度が高すぎなければ空気中でイミド化を行っても差し支えない。
Next, a method for producing a polyimide film and a polyimide / substrate laminate, and a polyimide film that can suitably use the polyimide precursor of the present invention will be described. In addition, the use of a polyimide precursor is not limited to the following uses.
First, a polyimide precursor solution (composition) is cast on a substrate made of ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), etc. Drying is performed at 20 to 180 ° C., preferably 20 to 150 ° C. using hot air or infrared rays in an inert gas or air. Next, a film made of a polyimide precursor having a self-supporting property with most of the obtained solvent removed is left laminated with the substrate, or the film made of the polyimide precursor is peeled off from the substrate, for example, at the end of the film In a vacuum, in an inert gas such as nitrogen, or in the air, using hot air or infrared rays, and heating at 200 to 500 ° C., more preferably 250 to 450 ° C., polyimide film, polyimide film / A board | substrate laminated body can be manufactured. In order to prevent oxidative degradation of the resulting polyimide, it is desirable to perform imidization in a vacuum or in an inert gas. However, if the imidization temperature is not too high, imidation may be performed in air.

またイミド化反応は、上記のような熱処理に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬することによって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体溶液(組成物)中に投入・攪拌し、それを上記基板上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に上記のように熱処理することでポリイミドが得られる。   The imidation reaction may be carried out by immersing the polyimide precursor in a solution containing a dehydrating cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine instead of the heat treatment as described above. Is possible. In addition, these dehydration cyclization reagents are charged and stirred in advance in a polyimide precursor solution (composition), which is cast and dried on the substrate to obtain a partially imidized polyimide precursor. A polyimide can be obtained by further heat-treating it as described above.

本発明のポリイミドは、用途により異なるためその限りではないが、厚さ10μmのフィルムにしたときの400nmにおける光透過率が50%以上であり、好ましくは、60%以上である。   The polyimide of the present invention is not limited because it varies depending on the application, but the light transmittance at 400 nm when the film is 10 μm thick is 50% or more, preferably 60% or more.

本発明のポリイミドは、用途により異なるためその限りではないが、厚さ10μmのフィルムにしたときの50℃〜200℃における平均熱線膨張係数が50ppm/K以下であり、好ましくは30ppm/Kである。   The polyimide of the present invention is not limited because it varies depending on the application, but the average coefficient of thermal expansion at 50 ° C. to 200 ° C. when the film is 10 μm thick is 50 ppm / K or less, preferably 30 ppm / K. .

本発明のポリイミドは、特に限定されないが、優れた透明性と低熱線膨張係数を有する特性から、このポリイミドを主たる基材とするディスプレイ用透明基材、タッチパネル用透明基材、太陽電池用基材が好適に得ることができる。   Although the polyimide of this invention is not specifically limited, From the characteristic which has the outstanding transparency and a low thermal expansion coefficient, the transparent base material for displays which uses this polyimide as the main base material, the transparent base material for touch panels, the base material for solar cells Can be suitably obtained.

本発明のポリイミドフィルムは、用途により異なるためその限りではないが、フィルムの厚みとしては1μm〜200μm程度が好ましく、さらには1μm〜100μm程度が好ましい。   The polyimide film of the present invention is not limited because it varies depending on the application, but the thickness of the film is preferably about 1 μm to 200 μm, more preferably about 1 μm to 100 μm.

さらに、本発明のポリイミド前駆体と用いたポリイミド積層体に関しては、前記のとおり、ポリイミド前駆体溶液組成物を、セラミック基板、金属基板、耐熱性プラスチック基板へ塗布し、真空中、窒素もしくは空気中で、200〜500℃まで加熱しイミド化し、ポリイミド/基板積層体を製造する工程に続いて、基板からポリイミドを剥離せずに、セラミック薄膜もしくは金属薄膜を積層体のポリイミドの表面上に形成させ、薄膜/ポリイミド/基板積層体を製造する工程、その後、基板よりポリイミドを剥離する工程を好適におこなうことができる。この様に、基板よりポリイミドを剥離せずに、ポリイミド/基板積層体の状態で、スパッタ蒸着などの処理をするなど、直接その後の加工処理を行なうことができるので、搬送性や寸法安定性に優れている。特にディスプレイ用、タッチパネル用、太陽電池用のガラス代替基材として用いる場合、ガラス上にポリイミド基材が形成されているため、既存のガラス基板用プロセスの搬送設備がそのまま使用できるため、好適である。   Furthermore, regarding the polyimide laminate used with the polyimide precursor of the present invention, as described above, the polyimide precursor solution composition is applied to a ceramic substrate, a metal substrate, and a heat-resistant plastic substrate, and in vacuum, nitrogen or air Then, following the process of heating to 200 to 500 ° C. to imidize and producing a polyimide / substrate laminate, a ceramic thin film or a metal thin film is formed on the polyimide surface of the laminate without peeling the polyimide from the substrate. The step of producing a thin film / polyimide / substrate laminate, and then the step of peeling the polyimide from the substrate can be suitably performed. In this way, since subsequent processing such as sputter deposition can be performed directly in the polyimide / substrate laminate state without peeling the polyimide from the substrate, the transportability and dimensional stability are improved. Are better. Especially when used as an alternative glass substrate for displays, touch panels, and solar cells, a polyimide substrate is formed on the glass, which is suitable because the existing transport equipment for glass substrate processes can be used as it is. .

以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples. In addition, this invention is not limited to a following example.

以下の各例において評価は次の方法で行った。
[対数粘度]
0.5g/dL N,N−ジメチルアセトアミドのポリイミド前駆体溶液を、ウベローデ粘度計を用いて、30℃で測定した。
[光透過率]
大塚電子製MCPD−300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率を測定した。
[弾性率]
膜厚約10μmのポリイミド膜をIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間 30mm、引張速度 2mm/minで、初期の弾性率、破断伸度を測定した。
[熱膨張係数(CTE)]
膜厚約10μmのポリイミド膜を幅4mmの短冊状に切り取って試験片とし、島津製作所製TMA−50を用い、チャック間長15mm、荷重2g、昇温速度20℃/minで300℃まで昇温した。得られたTMA曲線から、50℃から200℃までの平均熱膨張係数を求めた。
[5%重量減少温度]
膜厚約10μmのポリイミドフィルムを試験片とし、エスアイアイ・ナノテクノロジー製 示差熱熱重量同時測定装置(TG/DTA6300)を用い、窒素気流中、昇温速度10℃/minで25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
In each of the following examples, the evaluation was performed by the following method.
[Logarithmic viscosity]
A polyimide precursor solution of 0.5 g / dL N, N-dimethylacetamide was measured at 30 ° C. using an Ubbelohde viscometer.
[Light transmittance]
The light transmittance at 400 nm of a polyimide film having a film thickness of about 10 μm was measured using MCPD-300 manufactured by Otsuka Electronics.
[Elastic modulus]
A polyimide film having a film thickness of about 10 μm was punched into a IEC450 standard dumbbell shape as a test piece, and the initial elastic modulus and elongation at break were measured at 30 mm between chucks and a tensile speed of 2 mm / min using a TENILON manufactured by ORIENTEC. .
[Coefficient of thermal expansion (CTE)]
A polyimide film having a thickness of about 10 μm is cut into a strip having a width of 4 mm to form a test piece, and the temperature is raised to 300 ° C. using a TMA-50 manufactured by Shimadzu Corporation with a length between chucks of 15 mm, a load of 2 g, and a heating rate of 20 ° C./min did. From the obtained TMA curve, the average coefficient of thermal expansion from 50 ° C. to 200 ° C. was determined.
[5% weight loss temperature]
A polyimide film having a thickness of about 10 μm was used as a test piece, and a simultaneous differential thermothermal gravimetric measurement device (TG / DTA6300) manufactured by SII NanoTechnology was used. The temperature was raised to. From the obtained weight curve, a 5% weight loss temperature was determined.

〔実施例1〕 ポリイミド前駆体(ポリアミック酸)の製造
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン (BABB) 3.484g(0.01モル)、モレキュラーシーブを用い脱水したN,N−ジメチルホルムアミド(DMF) 37.31gを加え、室温(25℃)、窒素気流下で溶解した。この溶液に3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物(ODPA)3.102g(0.01モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Example 1] Production of polyimide precursor (polyamic acid) 1.484 g (0.01 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB) in a reaction vessel, dehydrated using molecular sieve N , N-dimethylformamide (DMF) 37.31 g was added and dissolved under a nitrogen stream at room temperature (25 ° C.). To this solution, 3.102 g (0.01 mol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA) was gradually added and stirred at room temperature (about 25 ° C.) for 12 hours. A uniform and viscous polyimide precursor solution (varnish) was obtained.

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

〔実施例2〕ポリイミド前駆体(ポリアミック酸シリルエステル)の製造
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン (BABB)1.742g(0.005モル)、モレキュラーシーブを用い脱水した純度99.99%のN,N−ジメチルアセトアミド(DMAc) 18.65gを加え、室温(25℃)、窒素気流下で溶解した。その溶液にN,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA) 2.70g(0.0105モル)、ピリジン 0.79g(0.01モル)を加え、2時間攪拌してシリル化を行った。さらに、この溶液に3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物(ODPA)1.551g(0.005モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Example 2] Production of polyimide precursor (polyamic acid silyl ester) 1.742 g (0.005 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB) in a reaction vessel and dehydration using molecular sieve 18.65 g of N, N-dimethylacetamide (DMAc) having a purity of 99.99% was added and dissolved under a nitrogen stream at room temperature (25 ° C.). To the solution, 2.70 g (0.0105 mol) of N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and 0.79 g (0.01 mol) of pyridine were added and stirred for 2 hours for silylation. . Further, 1.551 g (0.005 mol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA) was gradually added to this solution and stirred at room temperature (about 25 ° C.) for 12 hours. Thus, a uniform and viscous polyimide precursor solution (varnish) was obtained.

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

〔実施例3〕ポリイミド前駆体(ポリアミック酸シリルエステル)の製造
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン (BABB)2.787g(0.008モル)と、1,3−ビス(4−アミノベンゾイルオキシ)ベンゼン (13p−BABB)0.697g(0.002モル)、モレキュラーシーブを用い脱水したN,N−ジメチルアセトアミド(DMAc) 37.30gを加え、室温(25℃)、窒素気流下で溶解した。その溶液にN,O-ビス(トリメチルシリル)アセトアミド(BSA) 4.27g(0.021モル)、ピリジン 1.58g(0.02モル)を加え、2時間攪拌してシリル化を行った。さらに、この溶液に3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物(ODPA)3.103g(0.01モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Example 3] Production of polyimide precursor (polyamic acid silyl ester) In a reaction vessel, 2,787 g (0.008 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB), Bis (4-aminobenzoyloxy) benzene (13p-BABB) 0.697 g (0.002 mol), 37,30 g of N, N-dimethylacetamide (DMAc) dehydrated using molecular sieves were added, and room temperature (25 ° C.) was added. And dissolved under a nitrogen stream. To the solution, 4.27 g (0.021 mol) of N, O-bis (trimethylsilyl) acetamide (BSA) and 1.58 g (0.02 mol) of pyridine were added and stirred for 2 hours for silylation. Further, 3.103 g (0.01 mol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA) was gradually added to this solution and stirred at room temperature (about 25 ° C.) for 12 hours. Thus, a uniform and viscous polyimide precursor solution (varnish) was obtained.

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

〔実施例4〕 ポリイミド前駆体(ポリアミック酸)の製造
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン(BABB) 2.787g(0.008モル)と、トランス−1,4−ジアミノシクロヘキサン(t−DACH) 0.228g(0.002モル)、モレキュラーシーブを用い脱水したN,N−ジメチルホルムアミド(DMF) 34.57gを加え、室温(25℃)、窒素気流下で溶解した。この溶液に3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物(ODPA)3.102g(0.01モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Example 4] Production of polyimide precursor (polyamic acid) In a reaction vessel, 2,787 g (0.008 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB) and trans-1,4- 0.228 g (0.002 mol) of diaminocyclohexane (t-DACH) and 34.57 g of N, N-dimethylformamide (DMF) dehydrated using a molecular sieve were added, and the mixture was dissolved at room temperature (25 ° C.) under a nitrogen stream. . To this solution, 3.102 g (0.01 mol) of 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (ODPA) was gradually added and stirred at room temperature (about 25 ° C.) for 12 hours. A uniform and viscous polyimide precursor solution (varnish) was obtained.

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

〔実施例5〕ポリイミド前駆体(ポリアミック酸シリルエステル)の製造
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン (BABB)1.742g(0.005モル)、モレキュラーシーブを用い脱水したN,N−ジメチルアセトアミド(DMAc) 22.44gを加え、室温(25℃)、窒素気流下で溶解した。その溶液にN,O-ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA) 2.70g(0.0105モル)、ピリジン 0.79g(0.01モル)を加え、2時間攪拌してシリル化を行った。さらに、この溶液に4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)2.223g(0.005モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Example 5] Production of polyimide precursor (polyamic acid silyl ester) 1.742 g (0.005 mol) of 1,4-bis (4-aminobenzoyloxy) benzene (BABB) in a reaction vessel and dehydration using molecular sieve 22.44 g of N, N-dimethylacetamide (DMAc) was added and dissolved under a nitrogen stream at room temperature (25 ° C.). To the solution, 2.70 g (0.0105 mol) of N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and 0.79 g (0.01 mol) of pyridine were added and stirred for 2 hours for silylation. . Further, 2.223 g (0.005 mol) of 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride (6FDA) was gradually added to this solution, and the solution was added at room temperature (about 25 ° C.) at 12 ° C. The mixture was stirred for a time to obtain a uniform and viscous polyimide precursor solution (varnish).

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、無色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a colorless and transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

〔実施例6〜8〕 ポリイミド前駆体(ポリアミック酸)の製造
酸成分として、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,2,3’,3’−ビフェニルテトラカルボン酸二無水物(i−BPDA)、4,4’−(ジメチルシラジイル)ジフタル酸二無水物(DPSDA)溶剤として、モレキュラーシーブを用い脱水したN,N−ジメチルアセトアミド(DMAc)を用いた以外は、実施例1と同様にして、ポリイミド前駆体溶液(ワニス)を得た。
[Examples 6 to 8] Production of polyimide precursor (polyamic acid) As an acid component, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride (a-BPDA), 2,2,3', 3'-biphenyltetracarboxylic dianhydride (i-BPDA), 4,4 '-(dimethylsiladiyl) diphthalic dianhydride (DPSDA) as solvent, dehydrated N, N-dimethylacetamide (using molecular sieve) A polyimide precursor solution (varnish) was obtained in the same manner as in Example 1 except that DMAc) was used.

得られたポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)そのまま基板上で、120℃で1時間、150℃で30分、200℃で30分、次いで350℃で3分、熱処理して熱的にイミド化を行なって、無色透明な共重合ポリイミド/ガラス積層体を得た。次いで、得られた共重合ポリイミド/ガラス積層体を水に浸漬した後剥離し、膜厚が約10μmの共重合ポリイミドフィルムを得た。このフィルムの特性を測定した結果を表1に示す。   The obtained polyimide precursor solution was applied to a glass substrate, and the substrate was kept under nitrogen atmosphere (oxygen concentration of 200 ppm or less) as it was at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and then at 350 ° C. Heat treatment was performed for 3 minutes to thermally imidize, and a colorless transparent copolymer polyimide / glass laminate was obtained. Next, the obtained copolymerized polyimide / glass laminate was immersed in water and then peeled to obtain a copolymerized polyimide film having a thickness of about 10 μm. The results of measuring the properties of this film are shown in Table 1.

〔比較例1〕
反応容器に1,4−ビス(4−アミノベンゾイルオキシ)ベンゼン (BABB) 3.484g(0.01モル)、モレキュラーシーブを用い脱水したN,N−ジメチルホルムアミド(DMF) 36.38gを加え、室温(25℃)、窒素気流下で溶解した。この溶液に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、(s−BPDA)2.942g(0.01モル)を徐々に加え、室温(約25℃)で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液(ワニス)を得た。
[Comparative Example 1]
1.4-bis (4-aminobenzoyloxy) benzene (BABB) 3.484 g (0.01 mol) and 36.38 g of N, N-dimethylformamide (DMF) dehydrated using a molecular sieve were added to the reaction vessel, It melt | dissolved under room temperature (25 degreeC) and nitrogen stream. To this solution, 2.942 g (0.01 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) was gradually added and stirred at room temperature (about 25 ° C.) for 12 hours. Thus, a uniform and viscous polyimide precursor solution (varnish) was obtained.

得られたポリイミド前駆体ワニスをガラス基板に塗布し、そのまま基板上で100℃ 15分、200℃ 60分、300℃ 10分 熱的にイミド化を行い、黄色透明なポリイミド/ガラス積層体を得た。さらにポリイミド/ガラス積層体を、水に浸漬した後剥離し、膜厚約10μmのフィルムを得、そのフィルムの特性を測定した。
結果を表に1に示した。
The obtained polyimide precursor varnish was applied to a glass substrate, and directly imidized on the substrate at 100 ° C. for 15 minutes, 200 ° C. for 60 minutes, 300 ° C. for 10 minutes to obtain a yellow transparent polyimide / glass laminate. It was. Further, the polyimide / glass laminate was immersed in water and then peeled to obtain a film having a thickness of about 10 μm, and the characteristics of the film were measured.
The results are shown in Table 1.

Figure 0005842429
Figure 0005842429

表1に示した結果から分かるとおり、本発明のポリイミド前駆体から得られたポリイミドは、優れた光透過性、低い線熱膨張係数を両立しており、比較例に示した従来のポリイミドに比べ、大幅に改良されたものである。   As can be seen from the results shown in Table 1, the polyimide obtained from the polyimide precursor of the present invention has both excellent light transmittance and low linear thermal expansion coefficient, compared with the conventional polyimide shown in the comparative example. This is a significant improvement.

本発明によって、得られるポリイミドは、優れた光透過性、低い線熱膨張係数を兼ね備えることから、特に液晶ディスプレイ、ELディスプレイ、電子ペーパーなどのディスプレイ用のガラス基板代替基板や、タッチパネル用基板、太陽電池用基板として好適に利用できる。   The polyimide obtained according to the present invention has excellent light transmittance and a low coefficient of linear thermal expansion. Therefore, in particular, glass substrate substitute substrates for displays such as liquid crystal displays, EL displays and electronic paper, touch panel substrates, solar It can be suitably used as a battery substrate.

Claims (7)

下記一般式(1)で表される単位構造を有するポリイミド前駆体。
Figure 0005842429
〔一般式(1)中、R、Rはいずれも独立に、水素原子、炭素数1〜6のアルキル基、又は炭素数3〜9のアルキルシリル基であり、Arは下記一般式(3)で表される2価の芳香族基であり、Xは下記一般式(2)で表される4価の芳香族基である。)
Figure 0005842429
Figure 0005842429
〔一般式(3)中、R は水素原子、炭素数1〜6のアルキル基、又はアルコキシ基を表す。〕
A polyimide precursor having a unit structure represented by the following general formula (1).
Figure 0005842429
[In General Formula (1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms, and Ar is represented by the following general formula ( 3) is a divalent aromatic group represented by 3), and X is a tetravalent aromatic group represented by the following general formula (2). )
Figure 0005842429
Figure 0005842429
[In General Formula (3), R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group. ]
ポリイミド前駆体の対数粘度(温度:30℃、濃度:0.5g/dL、溶媒:N,N−ジメチルアセトアミド溶液における)が0.2dL/g以上であることを特徴とする請求項1に記載のポリイミド前駆体。 Logarithmic viscosity of the polyimide precursor (temperature: 30 ° C., concentration: 0.5 g / dL, solvent: N, N-in-dimethylacetamide solution) according to claim 1, characterized in that 0.2 dL / g or more Polyimide precursor. 下記一般式(4)で表される単位構造を有するポリイミド。
Figure 0005842429
〔一般式(4)中、Xは前記一般式(2)で表される4価の芳香族基であり、Arは前記一般式(3)で表される2価の芳香族基である。〕
A polyimide having a unit structure represented by the following general formula (4).
Figure 0005842429
[In General Formula (4), X is a tetravalent aromatic group represented by General Formula (2), and Ar is a divalent aromatic group represented by General Formula (3) . ]
膜厚10μmのフィルムにしたときの400nmの光透過性が50%以上であることを特徴とする透明性に優れる請求項に記載のポリイミド。 4. The polyimide according to claim 3 , wherein the film has a transparency of 400 nm when the film has a thickness of 10 μm and has a light transmittance of 50% or more. 5. 膜厚10μmのフィルムにしたときの50℃〜200℃における平均熱線膨張係数が50ppm/K以下であることを特徴とする請求項のいずれかに記載のポリイミド。 Polyimide according to any one of claims 3-4 in which the average linear thermal expansion coefficient at 50 ° C. to 200 DEG ° C. when formed into a film having a thickness of 10μm is equal to or less than 50 ppm / K. 請求項に記載のポリイミドによって形成された厚さ1μm〜200μmのポリイミドフィルム。 A polyimide film having a thickness of 1 μm to 200 μm formed of the polyimide according to claim 3 . ディスプレイ用基材、タッチパネル用基材、又は太陽電池用基材用に用いられる請求項に記載のポリイミドフィルム。 The polyimide film according to claim 6 , which is used for a display substrate, a touch panel substrate, or a solar cell substrate.
JP2011159904A 2010-07-22 2011-07-21 Polyimide precursor and polyimide Active JP5842429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159904A JP5842429B2 (en) 2010-07-22 2011-07-21 Polyimide precursor and polyimide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010165369 2010-07-22
JP2010165369 2010-07-22
JP2011159904A JP5842429B2 (en) 2010-07-22 2011-07-21 Polyimide precursor and polyimide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015222563A Division JP2016035073A (en) 2010-07-22 2015-11-13 Polyimide precursor and polyimide

Publications (2)

Publication Number Publication Date
JP2012041531A JP2012041531A (en) 2012-03-01
JP5842429B2 true JP5842429B2 (en) 2016-01-13

Family

ID=45898186

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011159904A Active JP5842429B2 (en) 2010-07-22 2011-07-21 Polyimide precursor and polyimide
JP2015222563A Pending JP2016035073A (en) 2010-07-22 2015-11-13 Polyimide precursor and polyimide

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015222563A Pending JP2016035073A (en) 2010-07-22 2015-11-13 Polyimide precursor and polyimide

Country Status (1)

Country Link
JP (2) JP5842429B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842429B2 (en) * 2010-07-22 2016-01-13 宇部興産株式会社 Polyimide precursor and polyimide
JP5962141B2 (en) * 2012-03-30 2016-08-03 東洋紡株式会社 Transparent polyimide film
JP6635506B2 (en) * 2015-03-24 2020-01-29 田岡化学工業株式会社 Diamine having fluorene skeleton, polyamic acid, and polyimide
JP6070884B2 (en) * 2016-04-05 2017-02-01 東洋紡株式会社 Transparent polyimide film roll
JP6164330B2 (en) * 2016-04-05 2017-07-19 東洋紡株式会社 Production method of transparent polyimide film
JP6069720B2 (en) * 2016-04-05 2017-02-01 東洋紡株式会社 Fine particle-containing polymer solution
CN107987277B (en) * 2017-11-27 2020-06-16 长沙新材料产业研究院有限公司 X-ray luminescent polyimide composite material and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276410B2 (en) * 1992-08-12 2002-04-22 三井化学株式会社 Polyimide and method for producing the same
JP3226615B2 (en) * 1992-08-12 2001-11-05 三井化学株式会社 Polyimide and method for producing the same
JPH06239998A (en) * 1992-12-25 1994-08-30 Kanegafuchi Chem Ind Co Ltd Thermoplastic polyimide and polyamic acid
JPH0848773A (en) * 1994-08-05 1996-02-20 Shin Etsu Chem Co Ltd Polyamic acid, polyimide and their production
JP3339205B2 (en) * 1994-09-14 2002-10-28 信越化学工業株式会社 Method for producing polyimide copolymer
JPH08127655A (en) * 1994-10-27 1996-05-21 Shin Etsu Chem Co Ltd Polyimide copolymer and its production
JP3702579B2 (en) * 1997-05-09 2005-10-05 宇部興産株式会社 Colorless and transparent polyimide and method for producing the same
JP2009286854A (en) * 2008-05-27 2009-12-10 Asahi Kasei E-Materials Corp Polyesterimide precursor and polyesterimide
JP5162379B2 (en) * 2008-08-29 2013-03-13 株式会社有沢製作所 Polyamic acid and non-thermoplastic polyimide resin
JP5842429B2 (en) * 2010-07-22 2016-01-13 宇部興産株式会社 Polyimide precursor and polyimide

Also Published As

Publication number Publication date
JP2016035073A (en) 2016-03-17
JP2012041531A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6531812B2 (en) Polyimide precursor and polyimide
JP6721070B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP6123929B2 (en) Copolymer polyimide precursor and copolymer polyimide
JP6516048B2 (en) Polyimide precursor and polyimide
JP6283954B2 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
JP6607193B2 (en) Polyimide precursor, polyimide, and polyimide film
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP6060695B2 (en) Polyimide precursor and polyimide
JP5842429B2 (en) Polyimide precursor and polyimide
WO2014046064A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
JP6283953B2 (en) Polyimide precursor, polyimide, varnish, polyimide film, and substrate
WO2015080139A1 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
WO2018066522A1 (en) Polyimide, polyimide precursor resin, solution of same, method for manufacturing polyimide, and film using polyimide
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
WO2019131894A1 (en) Polyimide precursor, polyimide, polyimide film, varnish and substrate
JP6078995B2 (en) Polyimide precursor, polyimide precursor solution composition, polyimide, polyimide solution composition, polyimide film, substrate, and molded product
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
JP2012041529A (en) Polyimide precursor, method for producing the same, and polyimide
WO2015080156A1 (en) Polyimide precursor composition, polyimide manufacturing process, polyimide, polyimide film, and base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250