JP5830172B1 - Electromagnetic induction current stripping device for pipe inner surface adhesion products - Google Patents

Electromagnetic induction current stripping device for pipe inner surface adhesion products Download PDF

Info

Publication number
JP5830172B1
JP5830172B1 JP2014534839A JP2014534839A JP5830172B1 JP 5830172 B1 JP5830172 B1 JP 5830172B1 JP 2014534839 A JP2014534839 A JP 2014534839A JP 2014534839 A JP2014534839 A JP 2014534839A JP 5830172 B1 JP5830172 B1 JP 5830172B1
Authority
JP
Japan
Prior art keywords
pipe
lead wire
piping
electromagnetic induction
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014534839A
Other languages
Japanese (ja)
Other versions
JPWO2015132870A1 (en
Inventor
新一郎 石橋
新一郎 石橋
益徳 蜂須賀
益徳 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COMATSU CO., LTD.
Original Assignee
COMATSU CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54054711&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5830172(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by COMATSU CO., LTD. filed Critical COMATSU CO., LTD.
Application granted granted Critical
Publication of JP5830172B1 publication Critical patent/JP5830172B1/en
Publication of JPWO2015132870A1 publication Critical patent/JPWO2015132870A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/24Preventing accumulation of dirt or other matter in the pipes, e.g. by traps, by strainers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • General Induction Heating (AREA)

Abstract

配管の損傷、薬剤の外部への排出がなく、2m超の配管に対しても配管内面付着生成物の除去、予防ができ、施設を停止することなく、保守、点検の費用及び時間の低減を図ることのできる配管内面付着生成物の電磁誘導電流剥離装置を提供することを課題としている。配管最先端近傍の外周にコイル状に巻く配管最先端側リード線と、配管最終端近傍の外周にコイル状に巻く配管最終端側リード線と、配管最終端側リード線に接続するアースと、正電圧を配管最先端側リード線の最先端部に印加し、負電圧を配管最先端側リード線の最終端部に印加する定電圧電源とを備え、配管最先端側リード線及び配管最終端側リード線は、配管が誘電体である場合には配管の外周面にコイル状に巻き、配管が導電体である場合には配管の外周面に誘電体シートを巻いてその上からコイル状に巻くように構成している。There is no damage to the pipes and no chemicals are discharged to the outside, and it is possible to remove and prevent the products attached to the inner face of pipes longer than 2 meters, reducing maintenance and inspection costs and time without shutting down the facilities. It is an object of the present invention to provide an electromagnetic induction current peeling device for a pipe inner surface adhesion product that can be achieved. The most advanced piping lead wire wound around the outer periphery in the vicinity of the most distal end of the piping, the most recent piping end lead wire wound around the outer periphery in the vicinity of the final piping, and the ground connected to the final piping end side lead wire, A constant voltage power source that applies a positive voltage to the most advanced part of the lead wire on the most advanced side of the pipe and a negative voltage to the last part of the lead wire on the most advanced side of the pipe. When the pipe is a dielectric, the side lead wire is coiled around the outer peripheral surface of the pipe, and when the pipe is a conductor, the dielectric sheet is wound around the outer peripheral surface of the pipe and then coiled from there. It is configured to wind.

Description

本発明は、例えばビルやマンションの配管、通常の温泉や循環温泉の配管、ボイラー内の配管及びそれにつながる外部の配管、クーリングタワーの冷房配管等に流れる水溶液によって、これらの配管の内面に生じる付着生成物の予防及び除去を図ることが可能な配管内面付着生成物の電磁誘導電流剥離装置に関する。   The present invention, for example, building and condominium piping, ordinary hot spring and circulating hot spring piping, piping in boilers and external piping connected to it, aqueous solution flowing in the cooling piping of the cooling tower, etc. The present invention relates to an electromagnetic induction current peeling device for a product adhered to an inner surface of a pipe capable of preventing and removing an object.

この種の配管内面付着生成物としては、水アカや、Ca2+、Mg2+、Fe2+などのスケール成分が認められる。また、例えば循環温泉では入浴によるアカ等や、このアカ等を餌として繁殖したレジオネラ属菌や大腸菌などによる生物膜も配管内面付着生成物として認められる。このような配管内面付着生成物は、当該配管の流路断面積を狭め水溶液の流れを阻害することになるばかりでなく、健康に害を及ぼすおそれもあることから、定期的に除去することが必要である。 As this kind of pipe inner surface adhesion product, scale components such as water red, Ca 2+ , Mg 2+ and Fe 2+ are recognized. In addition, for example, in a circulating hot spring, red squirts by bathing, and biofilms by Legionella spp. Such a product adhered to the inner surface of the pipe not only narrows the cross-sectional area of the pipe and impedes the flow of the aqueous solution, but also has a risk of harming the health. is necessary.

配管内面付着生成物を除去する方法としては、単にブラシ等による機械的な方法で剥離除去する方法や、薬剤を用いて化学的に除去する方法等があるが、ブラシ等により機械的に除去する方法では配管を傷め、また薬剤を用いる方法ではその薬剤の流出により環境に悪影響を与えるなどの副作用を生じるおそれがある。   As a method for removing the product adhered to the inner surface of the pipe, there are a method of simply peeling and removing by a mechanical method with a brush, a method of chemically removing with a chemical agent, etc., but it is mechanically removed with a brush or the like. In the method, piping may be damaged, and in the method using a chemical, side effects such as adverse effects on the environment may occur due to the outflow of the chemical.

例えば、配管内面付着生成物を除去する第1の従来例としては、比重が水に近い性質のペレットを作製し、このペレットを循環水の中に混入して配管内面に付着したスケールを剥離する方法がある。また、第2の従来例としては、ペレットや薬品などを用いずに、循環水の温度や流速を変化させ、配管と、この内面に付着したスケールとの膨張係数の差を利用しながら配管内面に付着したスケールを剥離する方法がある(例えば、特許文献1)。更に、第3の従来例としては、腐食抑制剤を添加した酸性の液体で洗浄しながら配管内面に付着したスケールを剥離する方法がある(例えば、特許文献2、3、4)。そして、第4の従来例としては、ボイラーにつながる配管の外周に磁場を印加して、磁気作用で循環水を軟水化し、また循環水中に含まれるCaC0の結晶構造をアルゴナイトからカルサイトに変化させることにより、ボイラー内外の配管内面に付着したスケールを微細化して剥離する方法がある(例えば、特許文献5)。 For example, as a first conventional example for removing a product adhered to the inner surface of a pipe, a pellet having a specific gravity close to that of water is prepared, and the pellet adhering to the circulating water is peeled off the scale attached to the inner surface of the pipe. There is a way. Further, as a second conventional example, the temperature and flow rate of circulating water are changed without using pellets or chemicals, and the inner surface of the pipe is utilized while utilizing the difference in expansion coefficient between the pipe and the scale attached to the inner surface. There is a method of peeling the scale attached to the surface (for example, Patent Document 1). Furthermore, as a third conventional example, there is a method of peeling the scale attached to the inner surface of the pipe while washing with an acidic liquid to which a corrosion inhibitor is added (for example, Patent Documents 2, 3, and 4). Then, as the fourth conventional example, by applying a magnetic field to the outer periphery of the pipe leading to the boiler, and softening the circulating water in magnetic action, also a CAC0 3 of a crystal structure of the circulating water from Argo night calcite There is a method in which the scale attached to the inner surface of the pipe inside and outside the boiler is made finer and peeled by changing (for example, Patent Document 5).

更に、第5の従来例としては、ボイラーなどの配管外周に永久磁石を装着して配管内に漏洩磁界を発生させる事により、配管内に流れる水溶液が漏洩磁界から発生する磁力線を切ると、電磁界の作用によりローレンツ力が発生し、このローレンツ力が配管内面付着生成物に作用して当該付着生成物を剥離するものがある(例えば、特許文献6)。この第5の従来例においては、配管内面付着生成物が剥離し、その配管内面付着生成物が水溶液中に存在すると、当該水溶液がアルカリ性の電解質となり、HO→H+OHと電離するので、このHと配管内面付着生成物とのイオン化傾向の差による電流が配管の延在する方向へ向かい、配管の内面に沿って流れることで配管内面付着生成物に電気分解を起こさせて当該配管内面付着生成物を剥離することにもなる。即ち、ローレンツ力と、水溶液のイオン化傾向の差から生じる電流による電気分解との相乗作用により配管内面付着生成物を剥離することができる。しかし、一般に永久磁石を配管の外周に装着した場合、永久磁石から発生する漏洩磁界の範囲はその永久磁石の前後約1メートル程度(即ち、配管の長手方向に約2メートル程度)と短い。このため、この漏洩磁界から放出する磁力線の範囲も狭くなり、この磁力線から誘起するローレンツ力の範囲も短くなるので、ローレンツ力により配管内面付着生成物を剥離する配管の長さも短くなる。更に、イオン化傾向の差から生じる電流による電気分解とローレンツ力との相乗作用による剥離効果の範囲も短くなる。そのため、配管が長くなると永久磁石の数が多くなりコストが高くなる。 Furthermore, as a fifth conventional example, when a permanent magnet is attached to the outer periphery of a pipe such as a boiler to generate a leakage magnetic field in the pipe, the aqueous solution flowing in the pipe cuts off the lines of magnetic force generated from the leakage magnetic field. There is a Lorentz force generated by the action of a field, and this Lorentz force acts on a pipe inner surface adhesion product to separate the adhesion product (for example, Patent Document 6). In the fifth conventional example, when the product adhered to the inner surface of the pipe is peeled off and the product adhered to the inner surface of the pipe is present in the aqueous solution, the aqueous solution becomes an alkaline electrolyte and ionizes with H 2 O → H + + OH . Therefore, the current due to the difference in ionization tendency between the H + and the product adhered to the inner surface of the pipe is directed in the direction in which the pipe extends and flows along the inner surface of the pipe to cause electrolysis of the product adhered to the inner surface of the pipe. The product adhered to the inner surface of the pipe will also be peeled off. That is, the product adhered to the inner surface of the pipe can be peeled off by a synergistic effect of Lorentz force and electrolysis by current generated from the difference in ionization tendency of the aqueous solution. However, in general, when a permanent magnet is mounted on the outer periphery of a pipe, the range of the leakage magnetic field generated from the permanent magnet is as short as about 1 meter before and after the permanent magnet (that is, about 2 meters in the longitudinal direction of the pipe). For this reason, the range of the lines of magnetic force emitted from the leakage magnetic field is also narrowed, and the range of the Lorentz force induced from the lines of magnetic force is also shortened. Furthermore, the range of the peeling effect due to the synergistic action of the electrolysis due to the current resulting from the difference in ionization tendency and the Lorentz force is shortened. Therefore, when the piping is long, the number of permanent magnets is increased and the cost is increased.

特開昭54−5104号公報JP 54-5104 A 特開昭52−82639号公報JP 52-82639 A 特開昭54−117327号公報JP 54-117327 A 特開昭56−2897号公報JP-A-56-2897 特許1215830号公報Japanese Patent No. 1215830 特許3004918号公報Japanese Patent No. 3004918

上記第1〜第3の従来例では、ボイラーやクーリングタワー等の配管から配管内面付着生成物を剥離する際や、循環温泉における配管から生物膜を含む配管内面付着生成物を除去する際に、それらの配管における水溶液の流れを停止する必要があるので、その間、それらの施設を使用することができず、多くの損失が生じることになるという問題がある。更に、上記第1〜第3の従来例の何れについても洗浄によって生じたスケールを外部に取り出して排出する必要があるので、保守に多大な費用と時間が掛るという問題がある。   In the above first to third conventional examples, when peeling the pipe inner surface adhesion products from the piping such as boilers and cooling towers, or when removing the pipe inner surface adhesion products including the biofilm from the piping in the circulating hot spring, Since it is necessary to stop the flow of the aqueous solution in the pipes, the facilities cannot be used during that time, and there is a problem that many losses occur. Further, in any of the above first to third conventional examples, it is necessary to take out and discharge the scale generated by the cleaning to the outside.

更に、第5の従来例では、永久磁石を設置した部分から約1メートルを超えるような部分では配管内面付着生成物の剥離効果が低くなり、2メートルを超えるような配管の場合には高価な永久磁石を多く設置することが必要になる。このため、その設置費用が高額になると共に、永久磁石設置に対する保守や点検などに要する時間も多く掛るという問題がある。   Further, in the fifth conventional example, the peeling effect of the product adhered to the inner surface of the pipe is lowered at a portion exceeding about 1 meter from the portion where the permanent magnet is installed, and it is expensive in the case of a piping exceeding 2 meters. It is necessary to install many permanent magnets. For this reason, there is a problem that the installation cost becomes high and a lot of time is required for maintenance and inspection for the permanent magnet installation.

本発明は、上記事情に鑑みてなされたものであり、配管を傷めたり薬剤が外部に排出されたりすることがなく、かつ2メートルを超える長さの配管に対しても配管内面付着生成物の除去やその発生の予防をすることができ、しかもその除去や予防を施設の機能を停止することなく自動的に行うことができ、保守、点検の費用及び時間の低減を図ることのできる配管内面付着生成物の電磁誘導電流剥離装置を提供することを課題としている。   The present invention has been made in view of the above circumstances, and does not damage the pipe or discharge the medicine to the outside. The inner surface of the pipe can be removed and prevented from occurring, and the removal and prevention can be performed automatically without stopping the facility functions, reducing maintenance and inspection costs and time. It is an object of the present invention to provide an electromagnetic induction current peeling device for an adhesion product.

上記課題を解決するために、請求項1に記載の発明は、定電圧電源と、水溶液を通す配管における当該水溶液の流れ方向の上流側に位置する配管最先端近傍の外周にコイル状に巻き、上記定電圧電源からの電気の供給を受ける配管最先端側リード線と、上記配管における上記水溶液の流れ方向の下流側に位置する配管最終端近傍の外周にコイル状に巻き、上記定電圧電源からの電気の供給を受けない配管最終端側リード線と、上記配管最終端側リード線に接続され、当該配管最終端側リード線の近傍の土壌に設置されるアースとを備えてなり上記定電圧電源は、正電圧を上記配管最先端側リード線における上記上流側に位置する最先端部に印加すると共に、負電圧を上記配管最先端側リード線における上記下流側に位置する最終端部に印加する状態を配管内面付着生成物の剥離に際して連続して維持するようになっており、上記配管最先端側リード線及び上記配管最終端側リード線は、上記配管が誘電体である場合には当該配管の外周面にコイル状に巻き、上記配管が導電体である場合には当該配管の外周面に誘電体シートを巻いた上で、その誘電体シートの上からコイル状に巻くようになっていることを特徴としている。
In order to solve the above problems, a first aspect of the present invention, winding-out coiled on the outer periphery of the pipe cutting edge near which is located upstream of the constant-voltage power supply and the flow direction of the aqueous solution in the pipe through which the aqueous solution the piping leading edge side lead wire supplied with electricity from the constant-voltage power supply,-out wound into a coil on the outer circumference of the pipe endmost vicinity located downstream of the flow direction of the aqueous solution in the pipe, the constant voltage piping final end side lead wire is not supplied with electricity from a power source, is connected to the pipe terminating end side lead wire, it and a ground installed in the soil in the vicinity of the pipe end-end side lead wire, The constant voltage power source applies a positive voltage to the most upstream portion located on the upstream side of the pipe leading end side lead wire, and a negative voltage is applied to the final end located on the downstream side of the pipe leading end side lead wire. Applied to the part That state is adapted to continuously maintained upon separation of the inner face of the pipe attached product, the pipe-leading side lead wire and the pipe terminating end side lead wire, if the pipe is a dielectric is the When a pipe is wound around the outer peripheral surface of the pipe and the pipe is a conductor, a dielectric sheet is wound around the outer peripheral surface of the pipe, and then the coil is wound around the dielectric sheet. It is characterized by being.

請求項2に記載の発明は、請求項1に記載の配管内面付着生成物の電磁誘導電流剥離装置において、上記配管は下流側に向けて分岐されたものとなっており、上記配管最先端側リード線は、分岐前の配管における上記配管最先端近傍の外周にコイル状に巻くようになっており、上記配管最終端側リード線は、分岐後の配管における上記配管最終端近傍の外周にコイル状に巻くようになっていることを特徴としている。 Invention of Claim 2 is the electromagnetic induction current peeling apparatus of the pipe inner surface adhesion product according to Claim 1, wherein the pipe is branched toward the downstream side, and the pipe is on the most distal side. lead is adapted to coiling the outer circumference of the pipe cutting edge vicinity of the pipe before the branch, the pipe terminating end side lead wire, the upper Symbol pipe endmost near that put the pipe after branching It is characterized by being coiled around the outer periphery.

請求項1に記載の発明によれば、後述する実施例1〜実施例3に示すように、配管最先端側から、配管最終端近傍までの、配管内面付着生成物を配管内面から除去することができるので、配管を傷めたり薬剤が外部に排出されたりすることがなく、かつ配管内面付着生成物が配管内面から除去された後は、当該配管内面付着生成物が配管内面に再び付着するのを防止することができる。また、配管から除去された配管内面付着生成物を外部に取り出して排出する必要もない。しかも、配管最先端側リード線と配管最終端側リード線との間隔を広げることにより、2メートルを超える長尺の配管に対しても配管内面付着生成物の除去及び予防を行うことができる。即ち、長尺の配管の場合でも設置費用が高額になるのを避けることができる。また、配管最先端側リード線に定電圧装置から電力を供給するだけでよいので、施設を停止することなく、配管内面付着生成物の除去及び予防を自動で行うことができる。従って、保守、点検の費用及び時間を大幅に低減することができる。 According to the invention described in claim 1, as shown in Examples 1 to 3 that will be described later, from the pipe leading edge side, is removed until the pipe end near edge, the inner face of the pipe attached product from distribution tube surface Therefore, after the pipe inner surface adhered product is removed from the pipe inner surface, the pipe inner surface adhered product adheres to the pipe inner surface again without damaging the pipe or discharging the medicine to the outside. Can be prevented. Further, it is not necessary to take out and discharge the product adhered to the inner surface of the pipe removed from the pipe. In addition, by increasing the distance between the pipe leading end side lead wire and the pipe final end side lead wire, the pipe inner surface adhered product can be removed and prevented even for a long pipe exceeding 2 meters. That is, even in the case of a long pipe, it can be avoided that the installation cost is high. Moreover, since it is only necessary to supply electric power from the constant voltage device to the lead wire on the most advanced side of the pipe, it is possible to automatically remove and prevent the pipe inner surface adhered product without stopping the facility. Therefore, maintenance and inspection costs and time can be greatly reduced.

請求項に記載の発明によれば、配管が下流に向かって分岐している場合でも、分岐前の配管に配管最先端側リード線を設置し、分岐後の配管に配管最終端側リード線を設置することにより、本流から支流に至る配管から配管内面付着生成物を除去することができると共に、当該各配管に配管内面付着生成物が付着するのを予防することができる。なお、分岐後の配管は複数あってもよい。即ち、複数の各分岐配管のそれぞれに配管最終端側リード線を設置し、アースに接続することにより、各分岐配管における配管内面付着生成物の除去及び予防も行うことができる。 According to the invention described in claim 2 , even when the pipe branches downstream, the pipe leading end side lead wire is installed in the pipe before branching, and the pipe final end side lead wire is installed in the pipe after branching. By installing the pipe, it is possible to remove the pipe inner surface adhering product from the pipe from the main flow to the tributary, and to prevent the pipe inner surface adhering product from adhering to each pipe. There may be a plurality of pipes after branching. That is, by installing a pipe final end side lead wire in each of a plurality of branch pipes and connecting them to the ground, it is possible to remove and prevent pipe inner surface adhered products in each branch pipe.

本発明の実施形態1として示した配管内面付着生成物の電磁誘導電流剥離装置において、誘電体からなる配管の外周面に配管最先端側リード線をコイル状に巻き、その配管最先端側リード線に電圧を印加する前の配管断面における電荷の状態をモデル化して示した図であり、電荷が不規則に現れた状態を示す説明図である。In the electromagnetic induction current peeling apparatus for pipe inner surface adhered product shown as Embodiment 1 of the present invention, a pipe leading end side lead wire is coiled around the outer peripheral surface of a pipe made of a dielectric, and the pipe leading end side lead wire It is the figure which modeled and showed the state of the electric charge in the pipe cross section before applying a voltage, and is explanatory drawing which shows the state where the electric charge appeared irregularly. 同配管内面付着生成物の電磁誘導電流剥離装置において、誘電体からなる配管の外周面に配管最先端側リード線をコイル状に巻き、その配管最先端側リード線に電圧を印加した後の配管断面における電荷の状態をモデル化して示した図であり、電荷が整列して配管内面及び外面に正(+)電荷及び負(−)電荷が規則的に現れた状態を示す理論面からの説明を試みた説明図である。In the electromagnetic induction current stripping device for the product attached to the inner surface of the pipe, the pipe after winding the lead wire on the leading edge of the pipe around the outer peripheral surface of the dielectric pipe and applying voltage to the lead wire on the pipe It is the figure which modeled and showed the state of the electric charge in a section, and explanation from the theoretical side which shows the state where electric charge aligned and positive (+) electric charge and negative (-) electric charge appeared regularly on the inner surface and the outer surface of piping It is explanatory drawing which tried . 同配管内面付着生成物の電磁誘導電流剥離装置における定電圧装置を示す正面図である。It is a front view which shows the constant voltage apparatus in the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product. 同配管内面付着生成物の電磁誘導電流剥離装置を示す図であって、誘電体の配管に対して配管最先端近傍の外周面に配管最先端側リード線をコイル状に巻き、配管最終端近傍の外周面に配管最終端側リード線をコイル状に巻き、配管最先端側リード線の最先端部に定電圧装置の正(+)電圧を印加し、同配管最先端側リード線の最終端部に定電圧装置の負(−)電圧を印加し、配管最終端側リード線にアース棒を接続した状態を示す説明図である。It is a figure which shows the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product, Comprising coil outer periphery side lead wire in the shape of a coil on the outer peripheral surface in the vicinity of the piping nearest to dielectric piping, and the vicinity of the last end of the piping Winding the lead end side lead wire in a coil around the outer peripheral surface of the pipe, applying the positive (+) voltage of the constant voltage device to the tip end portion of the pipe leading end side lead wire, It is explanatory drawing which shows the state which applied the negative (-) voltage of the constant voltage apparatus to the part, and connected the earthing | grounding rod to the piping final end side lead wire. 同配管内面付着生成物の電磁誘導電流剥離装置を示す図であって、図4の断面図によって示した理論面からの説明を試みた説明図である。It is a figure which shows the electromagnetic induction current peeling apparatus of the same pipe inner surface adhesion product, Comprising: It is explanatory drawing which tried the description from the theoretical surface shown by sectional drawing of FIG. この発明の実施形態2として示した配管内面付着生成物の電磁誘導電流剥離装置の図であって、導電体の配管に対して配管最先端近傍の外周面に誘電体のゴムシートを巻いた上で、その上から配管最先端側リード線をコイル状に巻き、配管最終端近傍の外周面に誘電体のゴムシートを巻いた上で、その上から配管最終端側リード線をコイル状に巻き、配管最先端側リード線の最先端部に定電圧装置の正(+)電圧を印加し、同配管最先端側リード線の最終端部に定電圧装置の負(−)電圧を印加し、配管最終端側リード線にアース棒を接続した状態を示す説明図である。It is a figure of the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown as Embodiment 2 of this invention, Comprising: After winding the dielectric rubber sheet on the outer peripheral surface of piping vicinity in the vicinity of conductor piping Then, the lead wire on the most advanced side of the pipe is coiled from above, a dielectric rubber sheet is wound on the outer peripheral surface near the final end of the pipe, and the lead wire on the final end of the pipe is then coiled from above. Apply positive (+) voltage of the constant voltage device to the most advanced part of the lead wire on the most advanced side of the pipe, and apply negative (-) voltage of the constant voltage device to the final end of the lead wire on the most advanced side of the pipe, It is explanatory drawing which shows the state which connected the earthing | grounding rod to the piping final end side lead wire. 同配管内面付着生成物の電磁誘導電流剥離装置を示す図であって、図6の断面図によって示した理論面からの説明を試みた説明図である。It is a figure which shows the electromagnetic induction current peeling apparatus of the same pipe inner surface adhesion product, Comprising: It is explanatory drawing which tried the description from the theoretical surface shown by sectional drawing of FIG. この発明の実施形態3として示した配管内面付着生成物の電磁誘導電流剥離装置の図であって、誘電体からなる配管であって下流側に向かって分岐する配管を用い、配管最先端側リード線は分岐前の本流配管最先端近傍の外周面にコイル状に巻き、配管最終端側リード線は分岐後の分岐配管最終端近傍の外周面にコイル状に巻き、配管最先端側リード線の最先端部に定電圧装置の正(+)電圧を印加し、同配管最先端側リード線の最終端部に定電圧装置の負(−)電圧を印加し、配管最終端側リード線にアース棒を接続した状態を断面図によって示した理論面からの説明を試みた説明図である。It is a figure of the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown as Embodiment 3 of this invention, Comprising: It is piping which is a piping which consists of dielectrics, and branches to the downstream side. The wire is wound in a coil around the outer peripheral surface near the leading edge of the main pipe before branching, and the lead wire at the end of the pipe is coiled around the outer peripheral surface near the final end of the branch pipe after branching. Apply the positive (+) voltage of the constant voltage device to the most advanced part, apply the negative (-) voltage of the constant voltage device to the final end of the lead end of the pipe, and ground the lead end of the pipe It is explanatory drawing which tried the description from the theoretical surface which showed the state which connected the bar | burr with sectional drawing. この発明の実施形態4として示した配管内面付着生成物の電磁誘導電流剥離装置の図であって、導電体からなる配管であって下流側に向かって分岐する配管を用い、配管最先端側リード線は分岐前の本流配管最先端近傍の外周面に誘電体のゴムシートを巻いた上で、その上からコイル状に巻き、配管最終端側リード線は分岐後の分岐配管最終端近傍の外周面に誘電体のゴムシートを巻いた上で、その上からコイル状に巻き、配管最先端側リード線の最先端部に定電圧装置の正(+)電圧を印加し、同配管最先端側リード線の最終端部に定電圧装置の負(−)電圧を印加し、配管最終端側リード線にアース棒を接続した状態を断面図で示した理論面からの説明を試みた説明図である。It is a figure of the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown as Embodiment 4 of this invention, Comprising: It is piping which consists of conductors, and piping which branches toward the downstream side, and is the piping most advanced side lead The wire is wound around the outer peripheral surface near the forefront of the mainstream pipe before branching and then coiled from above, and the lead wire on the end of the pipe is the outer periphery near the end of the branch pipe after branching. Winding a dielectric rubber sheet on the surface, winding it in a coil shape from above, applying the positive (+) voltage of the constant voltage device to the most advanced part of the lead wire on the most advanced side of the pipe, and It is an explanatory diagram that tried to explain from the theoretical side , showing the state where a negative (-) voltage of a constant voltage device was applied to the final end of the lead wire and the grounding rod was connected to the lead wire on the final end side of the pipe in a sectional view is there. 実施形態1から4における説明で示した右ネジの法則の概略図である。It is the schematic of the rule of the right-hand thread shown by description in Embodiment 1-4. 実施形態1から4における説明で示したフレミングの左手の法則の概略図である。FIG. 6 is a schematic diagram of Fleming's left-hand rule shown in the description of the first to fourth embodiments. 実施形態1及び3として示した配管内面付着生成物の電磁誘導電流剥離装置の回路について等価的に表現した理論面からの説明を試みた回路図である。It is the circuit diagram which tried to explain from the theoretical surface equivalently expressed about the circuit of the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown as Embodiment 1 and 3. FIG. 実施形態2及び4として示した配管内面付着生成物の電磁誘導電流剥離装置の回路について等価的に表現した理論面からの説明を試みた回路図である。It is the circuit diagram which tried to explain from the theoretical surface equivalently expressed about the circuit of the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown as Embodiment 2 and 4. この発明の第1の実験例として示した実施例1であって、伊香保温泉(甲)旅館の実験現場を示す写真である。It is Example 1 shown as a 1st experiment example of this invention, Comprising: It is a photograph which shows the experiment site of Ikaho Onsen (Kou) inn. 同実施例1における実験結果を示す写真であって、(a)は実施形態1で示した配管内面付着生成物の電磁誘導電流剥離装置に相当する実験装置を用いた場合の温泉水を流してから2ヶ月経過後の配管内を示す写真であり、(b)は当該実験装置を用いていない場合の温泉水を流してから2ヶ月経過後の配管内を示す写真である。It is a photograph which shows the experimental result in the Example 1, Comprising: (a) flows hot spring water at the time of using the experimental apparatus equivalent to the electromagnetic induction current peeling apparatus of the piping inner surface adhesion product shown in Embodiment 1. 2B is a photograph showing the inside of the pipe after two months have elapsed, and (b) is a photograph showing the inside of the pipe after two months have passed since the hot spring water was passed when the experimental apparatus was not used. この発明の第2の実験例として示した実施例2であって、長野県松代温泉(乙)荘の実験現場を示す写真であり、(a)は実施形態1で示した配管内面付着生成物の電磁誘導電流剥離装置に相当する実験装置を源泉部に設置した状態を示す写真であり、(b)は源泉から約200先の貯水槽に位置する配管の様子を示す写真である。It is Example 2 shown as the 2nd experiment example of this invention, Comprising: It is a photograph which shows the experiment site of Matsushiro Onsen (Otoso) in Nagano Prefecture, (a) is the piping inner surface adhesion product shown in Embodiment 1. It is a photograph which shows the state which installed the experimental apparatus equivalent to the electromagnetic induction current peeling apparatus of No. 1 in a source part, (b) is a photograph which shows the mode of the piping located in the water tank about 200 ahead from a source. 同実施例2における実験結果を示す写真であって、(a)は本実験装置を使用する直前の配管内を示す写真であり、(b)は当該実験装置を使用してから5ヶ月後の配管内を示す写真である。It is the photograph which shows the experimental result in the Example 2, Comprising: (a) is a photograph which shows the inside of piping just before using this experimental apparatus, (b) is 5 months after using the said experimental apparatus. It is a photograph which shows the inside of piping. この発明の第3の実験例として示した実施例3であって、有馬温泉源泉の実験現場を示す写真であり、(a)は実施形態2で示した配管内面付着生成物の電磁誘導電流剥離装置に相当する実験装置を源泉部に設置した状態を示す写真であり、(b)は(a)におけるA部を拡大写真である。It is Example 3 shown as the 3rd experiment example of this invention, Comprising: It is a photograph which shows the experiment site of Arima hot spring source, (a) is the electromagnetic induction current peeling of the piping inner surface adhesion product shown in Embodiment 2. It is a photograph which shows the state which installed the experimental apparatus equivalent to an apparatus in the source part, (b) is an enlarged photograph of the A section in (a). 同実施例3おける実験結果を示す写真であって、(a)は本実験装置の使用開始時の配管内を示す写真であり、(b)は当該実験装置を(a)の状態から使用を開始して5日間経過後の配管内を示す写真である。It is a photograph which shows the experimental result in the Example 3, Comprising: (a) is a photograph which shows the inside of piping at the time of the start of use of this experimental apparatus, (b) uses the said experimental apparatus from the state of (a). It is the photograph which shows the inside of piping after progress for five days after starting.

以下、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

〔実施形態1〕
この発明の実施形態1として示した配管内面付着生成物の電磁誘導電流剥離装置101について、図1〜5を参照して説明する。なお、この実施形態1及び後述する実施形態3においては、配管として誘電体を用いたものを示し、後述する実施形態2及び4においては、配管として導電体を用いたものを示す。このため、理論は明確ではないが、発明者が考える理論面からの技術内容の説明を試みるために使用した電磁誘導電流I、ローレンツ力F、磁界H、電界強度E、電化密度σ、イオン電流i、内部抵抗R等については、誘電体の配管を用いた実施形態1及び3では1の添え字を付けて、電磁誘導電流I1、ローレンツ力F1、磁界H1、電界強度E1、電化密度σ1、イオン電流i1、内部抵抗R1等とし、導電体の配管を用いた実施形態2及び4では2の添え字をつけて、電磁誘導電流I2、ローレンツ力F2、磁界H2、電界強度E2、電化密度σ2、イオン電流i2、内部抵抗R2等として表示する。
Embodiment 1
The electromagnetic induction current peeling apparatus 101 of the piping inner surface adhesion product shown as Embodiment 1 of this invention is demonstrated with reference to FIGS. In Embodiment 1 and Embodiment 3 described later, a pipe using a dielectric is shown, and in Embodiments 2 and 4 described below, a conductor is used as a pipe. Therefore, although the theory is not clear, the electromagnetic induction current I, the Lorentz force F, the magnetic field H, the electric field strength E, the electrification density σ, the ionic current used to try to explain the technical contents from the theoretical aspect considered by the inventors i, the internal resistance R, and the like are suffixed with 1 in the first and third embodiments using dielectric piping, and the electromagnetic induction current I1, the Lorentz force F1, the magnetic field H1, the electric field strength E1, the electrification density σ1, In Embodiments 2 and 4 using a conductor pipe, an ion current i1, an internal resistance R1, and the like are suffixed with 2, and an electromagnetic induction current I2, a Lorentz force F2, a magnetic field H2, an electric field strength E2, and an electrification density σ2 , Ion current i2, internal resistance R2, etc.

先ず、実施形態1について、配管P1内に電磁誘導電流が誘起する原理についてその原理の理論的なメカニズムは明確ではないものの、発明者が考える理論面からの説明を試みながら説明する。なお、実施形態2〜4についても、配管、本流配管、分岐配管内に電磁誘導電流が誘起する原理について発明者の考える理論面からの説明を試みながら同様に説明する。
First, the first embodiment will be described while trying to explain from the theoretical aspect considered by the inventor, although the theoretical mechanism of the principle of electromagnetic induction current in the pipe P1 is not clear . The second to fourth embodiments will be described in the same manner while trying to explain the principle of electromagnetic induction current in piping, main flow piping, and branch piping from the theoretical aspect considered by the inventors .

図1に示す配管P1は、ポリ塩化ビニル等の誘電体によって円筒状に形成されたものである。この配管P1の管壁断面内は、当該配管P1の外側から電圧が印加されていない状態では、正(十)電荷と負(一)電荷がバラバラに存在した状態を呈する。この状態の配管P1に外側から図2に示すように電圧を印加すると、正(十)電荷と負(一)電荷が所定の方向に移動し、これにより電気力線が現れることになる。このような現象は、誘電体からなる配管P1の外周にリード線Lをコイル状に巻き、そのリード線Lに図3に示す定電圧電源Xから電圧を加えることでリード線Lの抵抗に基づいて順次電位が低下することから得ることができる。なお、導電体からなる配管P2(後述する実施形態2や実施形態4で示す配管)の場合には、その配管P2の外周に誘電体であるゴムシート(誘電体シート)等を巻いた上で、その上からリード線Lをコイル状に巻き、そのリード線Lに電圧を加えることで、同様の現象を得ることができる。 The pipe P1 shown in FIG. 1 is formed in a cylindrical shape by a dielectric such as polyvinyl chloride. The inside of the pipe wall cross section of the pipe P1 exhibits a state in which positive (ten) charges and negative (one) charges exist apart when no voltage is applied from the outside of the pipe P1. When a voltage is applied to the pipe P1 in this state from the outside as shown in FIG. 2, the positive (ten) charge and the negative (one) charge move in a predetermined direction, whereby electric lines of force appear. Such a phenomenon is based on the resistance of the lead wire L by winding the lead wire L around the outer periphery of the pipe P1 made of a dielectric material and applying a voltage from the constant voltage power source X shown in FIG. Thus, the potential can be obtained from the sequential decrease . In the case of a pipe P2 made of a conductor (pipe shown in the second and fourth embodiments described later), a rubber sheet (dielectric sheet) that is a dielectric is wound around the outer circumference of the pipe P2. The same phenomenon can be obtained by winding the lead wire L in a coil shape from above and applying a voltage to the lead wire L.

そして、この実施形態1に係る配管内面付着生成物の電磁誘導電流剥離装置101は、図4及び図5に示すように、水溶液が流れる配管P1における当該水溶液の流れ方向の上流側に位置する配管最先端近傍の外周にコイル状に巻く配管最先端側リード線La1と、配管P1における水溶液の流れ方向の下流側に位置する配管最終端近傍の外周にコイル状に巻き、アース棒(アース)A1に接続する配管最終端側リード線Lb1と、正(+)電圧を配管最先端側リード線La1における上流側に位置する最先端部に印加すると共に、負(−)電圧を配管最先端側リード線La1における下流側に位置する最終端部に印加する定電圧電源Xとを備えている。定電圧電源Xの正面図は、図3に示すように、正電圧端子Xaと、負電圧端子Xbと、アース接続端子Xcと、電圧、電流等の表示画面Xdとを備えている。   And as shown in FIG.4 and FIG.5, the electromagnetic induction current peeling apparatus 101 of the piping inner surface adhesion product which concerns on this Embodiment 1 is piping located in the upstream of the flow direction of the said aqueous solution in piping P1 into which aqueous solution flows. A pipe leading end La1 wound in a coil around the outer periphery in the vicinity of the most distal end, and a coil around the outer periphery in the vicinity of the final end of the pipe located downstream in the flow direction of the aqueous solution in the pipe P1, and a grounding rod (earth) A1 Apply the positive (+) voltage to the most advanced part located upstream of the pipe leading end side lead line La1 and the negative (-) voltage to the pipe leading end side lead. And a constant voltage power source X to be applied to the final end located on the downstream side of the line La1. As shown in FIG. 3, the front view of the constant voltage power source X includes a positive voltage terminal Xa, a negative voltage terminal Xb, a ground connection terminal Xc, and a display screen Xd such as voltage and current.

ここで、配管最先端側リード線La1は、配管P1における配管最先端近傍(配管上流端近傍)の外周面に直接コイル状に巻いている。一方、配管最終端側リード線Lb1は、配管P1における配管最終端近傍(配管下流端近傍)の外周面に直接コイル状に巻いている。アース棒ET1は、配管最終端側リード線Lb1の近傍(即ち、配管P1の最終端の近傍)の土壌に打ち込むようにして設置している。この状態で、定電圧電源Xの正電圧端子Xaを配管最先端側リード線La1の最先端部に接続し、負電圧端子Xbを配管最先端側リード線La1の最終端部に接続し、アース棒ET1を配管最終端側リード線Lb1の最終端部に接続する。なお、定電圧電源Xのアース接続端子Xcも、大地に接地する。そして、定電圧電源Xから配管最先端側リード線La1に正(十)電圧及び負(一)電圧を印加すると、配管P1内に電磁誘導電流I1が発生し、この電磁誘導電流I1により配管内付着生成物Sを電気分解することになる。   Here, the pipe leading end side lead wire La1 is directly wound around the outer peripheral surface of the pipe P1 in the vicinity of the pipe leading end (near the upstream end of the pipe) in a coil shape. On the other hand, the pipe final end side lead wire Lb1 is directly wound in a coil shape on the outer peripheral surface of the pipe P1 in the vicinity of the pipe final end (near the pipe downstream end). The grounding rod ET1 is installed so as to be driven into the soil in the vicinity of the pipe final end side lead wire Lb1 (that is, in the vicinity of the final end of the pipe P1). In this state, the positive voltage terminal Xa of the constant voltage power supply X is connected to the most distal end portion of the piping leading-end side lead line La1, the negative voltage terminal Xb is connected to the final end portion of the piping leading-edge side lead wire La1, and grounding is performed. The rod ET1 is connected to the final end of the pipe final end side lead wire Lb1. The ground connection terminal Xc of the constant voltage power supply X is also grounded to the ground. Then, when a positive (ten) voltage and a negative (one) voltage are applied from the constant voltage power source X to the pipe leading end side lead line La1, an electromagnetic induction current I1 is generated in the pipe P1, and the electromagnetic induction current I1 causes the inside of the pipe. The adhered product S will be electrolyzed.

即ち、アース棒ET1の電位が配管最先端側リード線La1における最終端部の定電圧電源Xの負(一)電圧を印加した電位と同じ負(一)電位となるので、この配管P1内を水溶液が下流側に流れることで、ファラデイの電磁誘導の法則により誘電体の配管P1内に起電力V1(等価回路としての図12参照)が誘起し電磁誘導電流I1が流れる。   That is, since the potential of the ground bar ET1 becomes the same negative (one) potential as the negative (one) voltage of the constant voltage power supply X at the end of the lead wire La1 at the most distal end of the pipe, When the aqueous solution flows downstream, an electromotive force V1 (see FIG. 12 as an equivalent circuit) is induced in the dielectric pipe P1 according to Faraday's law of electromagnetic induction, and an electromagnetic induction current I1 flows.

配管P1内に起電力V1(図12参照)が誘起し電磁誘導電流I1が流れる過程を述べると、配管P1が誘電体によって形成されているので、当該配管P1に定電圧を印加することにより、配管P1内に図2と同様に正(+)と負(−)の電荷が整列した状態に現れることになり、これにより図4の配管P1内に電界E1が発生する。更に、配管P1における配管最終端近傍のアース棒ET1の電位が配管最先端側リード線La1における最終端部に定電圧電源Xの負(−)電圧を印加した電位と同じ負(−)電位となる。このため、配管P1内を水溶液が流れると、当該配管P1内にファラデイの電磁誘導の法則による起電力V1が誘起し電磁誘導電流I1が流れる。   Describing the process in which the electromotive force V1 (see FIG. 12) is induced in the pipe P1 and the electromagnetic induction current I1 flows, because the pipe P1 is formed of a dielectric, by applying a constant voltage to the pipe P1, The positive (+) and negative (-) charges appear in the pipe P1 in the same manner as in FIG. 2, and as a result, an electric field E1 is generated in the pipe P1 in FIG. Further, the potential of the grounding rod ET1 in the vicinity of the final end of the pipe P1 is the same negative (-) potential as the negative (-) voltage of the constant voltage power supply X applied to the final end of the lead end La1 of the pipe. Become. For this reason, when the aqueous solution flows in the pipe P1, an electromotive force V1 according to Faraday's law of electromagnetic induction is induced in the pipe P1, and an electromagnetic induction current I1 flows.

上記配管P1内に起電力V1(図12参照)が誘起し電磁誘導電流I1が流れる過程を断面図で説明すると、図5に示すようになる。即ち、配管P1に定電圧電源Xから電圧を印加すると、配管P1が誘電体であるので、図2と同様に配管P1内に正(+)と負(−)の電荷が存在することになり、これにより電気力線が現われ、電界E1が誘起する。   FIG. 5 is a cross-sectional view illustrating a process in which the electromotive force V1 (see FIG. 12) is induced in the pipe P1 and the electromagnetic induction current I1 flows. That is, when a voltage is applied to the pipe P1 from the constant voltage power supply X, the pipe P1 is a dielectric, so that positive (+) and negative (-) charges exist in the pipe P1 as in FIG. As a result, electric lines of force appear and an electric field E1 is induced.

図5において、配管P1内に水溶液が流れると、ファラデイの電磁誘導の法則から起電力V1(図12参照)が誘起され、電磁誘導電流I1が流れる。この電磁誘導電流I1は、配管P1における配管最先端近傍内の配管内面付着生成物Sから配管P1における配管最終端近傍内の配管内面付着生成物Sへと当該配管P1の内面及び配管内面付着生成物Sに沿って流れ、アース棒ET1から地中へと流れる。この際、電磁誘導電流I1は、配管内面付着生成物Sを電気分解し、当該配管内面付着生成物Sを配管P1から剥離することになる。
In FIG. 5, when an aqueous solution flows in the pipe P1, an electromotive force V1 (see FIG. 12) is induced from Faraday's law of electromagnetic induction, and an electromagnetic induction current I1 flows. This electromagnetic induction current I1 is generated from the pipe inner surface adhering product S in the vicinity of the pipe end in the pipe P1 to the pipe inner surface adhering product S in the vicinity of the pipe final end in the pipe P1. It is flow along object S, flows into the ground from a over scan bar ET1. At this time, the electromagnetic induction current I1 electrolyzes the pipe inner surface adhesion product S and peels the pipe inner surface adhesion product S from the pipe P1.

一方、配管P1内を流れる電磁誘導電流I1の周囲にはファラデイの電磁誘導の法則から導かれるアンペールの法則により磁界H1(図10参照)が発生する。図10は、磁界H1が発生する様子を示したものである。この図10は右ネジの法則と呼ばれ、右ネジの進む方向が電磁誘導電流I1の流れる方向で右ネジを廻す方向が磁界H1の方向となる。この磁界H1によりファラデイの電磁誘導の法則から導かれるアンペールの法則によりローレンツ力F1(図11参照)が誘起する。図11は、ローレンツ力F1と、電磁誘導電流I1及び磁界H1との関係を示すフレミングの左手の法則に関するものである。この図11において親指の方向がローレンツ力F1の方向、人差し指の方向が磁界H1の方向、中指の方向が電磁誘導電流I1の方向となる。各々の指の交わる角度は、直角(90度)である。即ち、ローレンツ力F1は、その方向が電磁誘導電流I1の流れる方向に対して直角であることから、図5における配管P1内から配管内面付着生成物Sを引き離す方向の力として作用することになる。   On the other hand, a magnetic field H1 (see FIG. 10) is generated around the electromagnetic induction current I1 flowing in the pipe P1 by Ampere's law derived from Faraday's law of electromagnetic induction. FIG. 10 shows how the magnetic field H1 is generated. This FIG. 10 is called the right-handed screw law. The direction in which the right-hand screw advances is the direction in which the electromagnetic induction current I1 flows, and the direction in which the right-hand screw is turned is the direction of the magnetic field H1. This magnetic field H1 induces Lorentz force F1 (see FIG. 11) according to Ampere's law derived from Faraday's law of electromagnetic induction. FIG. 11 relates to Fleming's left-hand rule showing the relationship between the Lorentz force F1, the electromagnetic induction current I1, and the magnetic field H1. In FIG. 11, the direction of the thumb is the direction of the Lorentz force F1, the direction of the index finger is the direction of the magnetic field H1, and the direction of the middle finger is the direction of the electromagnetic induction current I1. The angle at which each finger intersects is a right angle (90 degrees). That is, since the Lorentz force F1 is perpendicular to the direction in which the electromagnetic induction current I1 flows, the Lorentz force F1 acts as a force in a direction in which the pipe inner surface adhered product S is pulled away from the pipe P1 in FIG. .

上記配管P1内の動作の様子を等価的に示したのが図12の回路図である。図12において、V1は配管P1内に誘起する起電力であり、I1は配管P1内を流れる電磁誘導電流であり、E1は配管P1内に誘起する電界の強さであり、σ1は配管P1に誘起する電荷密度であり、σp1は特に配管P1内に誘起する電荷密度であり、Q1は配管P1内に誘起する電荷量であり、C1は配管P1内に誘起するキャパシターであり、R1は配管P1内に付着している配管内面付着生成物Sなどの内部抵抗である。また、図12において、σ1=±Q1/A1、E1=σ1/ε0であり、A1は誘電体(P1)の対向する部位の面積、ε0は誘電率である。更に、図12において、dは誘電体間の距離であり、i1は後述するイオン電流であり、h1は後述するイオン電流からの磁界であり、f1は後述するイオン電流からのローレンツ力である。   FIG. 12 is a circuit diagram equivalently showing the operation in the pipe P1. In FIG. 12, V1 is an electromotive force induced in the pipe P1, I1 is an electromagnetic induction current flowing in the pipe P1, E1 is an electric field strength induced in the pipe P1, and σ1 is in the pipe P1. Σp1 is a charge density induced in the pipe P1, Q1 is a charge amount induced in the pipe P1, C1 is a capacitor induced in the pipe P1, and R1 is a pipe P1. It is an internal resistance of the pipe inner surface adhesion product S or the like adhering to the inside. In FIG. 12, σ1 = ± Q1 / A1, E1 = σ1 / ε0, A1 is the area of the opposing portion of the dielectric (P1), and ε0 is the dielectric constant. Further, in FIG. 12, d is a distance between dielectrics, i1 is an ion current described later, h1 is a magnetic field from an ion current described later, and f1 is a Lorentz force from an ion current described later.

ビルや温泉施設などの配管のように、内部が水溶液に接触している配管P1の内面は、通常負(一)に帯電する表面電位を有しており、水溶液中の過飽和によって析出したスケールの結晶体の表面電位は正(十)に帯電しているので、電気的な引力関係によりスケールは当該配管P1の内面に吸い寄せられて付着し堆積成長して配管内面付着生成物Sとなる。この配管内面付着生成物SにはCaC0、MgC0、Fe等の成分が存在し、水溶液中に混在するので、水溶液が電界質となり、HO→H+OHと電離し、このHイオンによる電流(イオン電流i1)が正(+)の電位となる。このため、この電流(イオン電流i1)が負(−)に帯電している当該配管内面付着生成物S及び配管P1の内面に向かって流れ、当該配管内面付着生成物Sを電気分解することで、当該配管内面付着生成物Sを剥離することになる。更に、このイオン電流i1は、配管P1の内面及び配管内面付着生成物Sに沿って下流側に流れ、配管内面付着生成物Sを電気分解により剥離する。また、このイオン電流i1の周囲にはファラデイの電磁誘導の法則から磁界h1が誘起し、この磁界h1にファラデイの電磁誘導の法則から導かれるアンペールの法則によるローレンツ力f1が誘起するので、このローレンツ力f1が配管P1内の配管内面付着生成物Sに作用して当該配管内面付着生成物Sを配管P1から剥離する。 The inner surface of the pipe P1 that is in contact with the aqueous solution, such as a pipe in a building or hot spring facility, usually has a negative (one) charged surface potential, and has a scale that is deposited by supersaturation in the aqueous solution. Since the surface potential of the crystal is positively (ten) charged, the scale is sucked and adhered to the inner surface of the pipe P1 due to the electrical attraction, and grows to become a pipe inner surface adhesion product S. This pipe inner surface adhesion product S contains components such as CaC0 3 , MgC0 3 , Fe 2 0 3, etc. and is mixed in the aqueous solution, so that the aqueous solution becomes an electric field and ionizes as H 2 O → H + + OH −. The current (ion current i1) due to the H + ions becomes a positive (+) potential. For this reason, this current (ion current i1) flows toward the inner surface of the pipe inner surface adhesion product S and the pipe P1 that are negatively charged (−), and the pipe inner surface adhesion product S is electrolyzed. The pipe inner surface adhesion product S is peeled off. Further, the ion current i1 flows downstream along the inner surface of the pipe P1 and the pipe inner surface adhesion product S, and the pipe inner surface adhesion product S is peeled off by electrolysis. Further, a magnetic field h1 is induced around this ion current i1 from Faraday's law of electromagnetic induction, and a Lorentz force f1 is induced in this magnetic field h1 according to Ampere's law derived from Faraday's law of electromagnetic induction. The force f1 acts on the pipe inner surface adhesion product S in the pipe P1 to peel the pipe inner surface adhesion product S from the pipe P1.

この様に図5の配管P1内においては、電磁誘導電流I1、ローレンツ力F1、イオン電流i1、及びローレンツ力f1による4種類の剥離作用が関与し、これが互いに相乗効果を生み、機能的に作用することにより、配管P1の内面からの配管内面付着生成物Sの剥離をより一層促進することになる。また、配管内面付着生成物Sが配管P1の内面に付着するのを確実に防止することができる。これにより、配管P1内を流れる水溶液の流れを常に良好に保つことができるので、配管P1に対するメンテナンスの回数を大幅に低減することができ、その保守、点検及びこれに伴う費用及び時間の軽減を図ることができる。   As described above, in the pipe P1 of FIG. 5, four types of peeling action by the electromagnetic induction current I1, the Lorentz force F1, the ionic current i1, and the Lorentz force f1 are involved. By doing so, peeling of the pipe inner surface adhered product S from the inner surface of the pipe P1 is further promoted. Moreover, it can prevent reliably that the piping inner surface adhesion product S adheres to the inner surface of the piping P1. As a result, the flow of the aqueous solution flowing in the pipe P1 can always be kept good, so that the number of times of maintenance for the pipe P1 can be greatly reduced, and the maintenance, inspection, and associated costs and time can be reduced. Can be planned.

〔実施形態2〕
次に、この発明の実施形態2として示した配管内面付着生成物の電磁誘導電流剥離装置102について、図6及び7を参照して説明する。この実施形態2は、配管として鋳鉄等の導電体からなる配管P2を用い、この配管P2における配管最先端近傍及び配管最終端近傍のぞれぞれの外周面に誘電体であるゴムシートJを巻き、その上から配管最先端側リード線La2及び配管最終端側リード線Lb2をコイル状に巻いている点で、上述の実施形態1と異なっている。
[Embodiment 2]
Next, an electromagnetic induction current peeling apparatus 102 for a pipe inner surface adhesion product shown as Embodiment 2 of the present invention will be described with reference to FIGS. In the second embodiment, a pipe P2 made of a conductor such as cast iron is used as a pipe, and a rubber sheet J, which is a dielectric, is provided on each outer peripheral surface of the pipe P2 in the vicinity of the most distal end of the pipe and in the vicinity of the final end of the pipe. It differs from the above-mentioned Embodiment 1 by the point which winds and the pipe most end side lead wire La2 and the pipe last end side lead wire Lb2 are coiled from the top.

即ち、図3に示す定電圧電源Xの正(十)電圧を配管最先端側リード線La2の最先端部に印加し、かつ当該定電圧電源Xの負(−)電圧を当該配管最先端側リード線La2の最終端部に印加している。また、配管P2における配管最終端近傍の外周に巻いた配管最終端側リード線Lb2を、同じく配管最終端近傍に位置する土壌内に打ち込んだアース棒ET2に接続している。   That is, the positive (ten) voltage of the constant voltage power source X shown in FIG. 3 is applied to the most distal portion of the lead wire La2 on the most distal side of the pipe, and the negative (−) voltage of the constant voltage power source X is applied to the most distal side of the pipe. It is applied to the final end of the lead wire La2. Further, the pipe end end side lead wire Lb2 wound around the outer periphery of the pipe P2 in the vicinity of the pipe final end is connected to the grounding rod ET2 driven into the soil, which is also located in the vicinity of the pipe final end.

これにより、アース棒ET2の電位が配管最先端側リード線La2の最終端部に印加した定電圧電源Xによる負(−)電圧と同じ負(−)電位となる。このため、配管P2内を上流側から下流側に水溶液が流れると、配管P2内にファラデイの電磁誘導の法則により起電力V2(図13参照)が誘起し電磁誘導電流I2が流れることになる。   As a result, the potential of the ground bar ET2 becomes the same negative (−) potential as the negative (−) voltage by the constant voltage power supply X applied to the final end of the pipe leading-end side lead line La2. For this reason, when the aqueous solution flows in the pipe P2 from the upstream side to the downstream side, the electromotive force V2 (see FIG. 13) is induced in the pipe P2 by Faraday's law of electromagnetic induction, and the electromagnetic induction current I2 flows.

配管P2が導電体によって形成されている場合、この配管P2の外周面にゴムシートJを巻いて電圧を印加すると、配管P2の壁部断面内にゴムシートJ内の正(+)電荷と負(−)電荷が導電体からなる配管P2の材質に基づいて誘導され、図2と同様に正(+)電荷と負(−)電荷が整列した状態となる。即ち、図7に示す配管P2内に、図2と同様の正(+)電荷と負(−)電荷が整列した状態となって現われる。これにより、図7に示すように、配管P2内に電界E2が発生する。   In the case where the pipe P2 is formed of a conductor, when a voltage is applied by winding the rubber sheet J around the outer peripheral surface of the pipe P2, the positive (+) charge and the negative charge in the rubber sheet J are within the wall section of the pipe P2. The (−) charge is induced based on the material of the pipe P2 made of a conductor, and the positive (+) charge and the negative (−) charge are aligned as in FIG. That is, the positive (+) charge and the negative (-) charge similar to those in FIG. 2 appear in the pipe P2 shown in FIG. Thereby, as shown in FIG. 7, the electric field E2 is generated in the pipe P2.

そして、配管P2内に起電力V2(図13参照)が誘起し、電磁誘導電流I2が流れる過程を、図7の断面図で説明すると、ゴムシートJ内に存在する正(+)電荷と負(−)電荷が導電体の配管P2に誘導されて当該配管P2内に図2と同様に正(+)電荷と負(−)電荷と電気力線が現われ、これにより電界E2が発生することになる。   Then, the process in which the electromotive force V2 (see FIG. 13) is induced in the pipe P2 and the electromagnetic induction current I2 flows will be described with reference to the cross-sectional view of FIG. (−) Charge is induced in the conductor pipe P2, and positive (+) charge, negative (−) charge, and electric lines of force appear in the pipe P2 in the same manner as in FIG. 2, thereby generating an electric field E2. become.

そして、配管P2内に水溶液が流れると、ファラデイの電磁誘導の法則から起電力V2が誘起され、電磁誘導電流I2が流れる。この電磁誘導電流I2は配管P2の上流端部からその配管P2の内面及びこれに付着した配管内面付着生成物Sに沿ってアース棒ET2まで流れることで、当該配管内面付着生成物Sを電気分解し、当該配管内面付着生成物Sを配管P2から除去することになる。 When the aqueous solution flows in the pipe P2, an electromotive force V2 is induced from Faraday's law of electromagnetic induction, and an electromagnetic induction current I2 flows. The electromagnetic induction current I2 that flows along the inner surface and the pipe inner surface adhered product S attached to the pipe P2 from the upstream end portion of the pipe P2 to A over scan bar ET2, the inner face of the pipe attached product S Electrolysis is performed to remove the pipe inner surface adhesion product S from the pipe P2.

更に、配管P2内を流れる電磁誘導電流I2の周囲には、ファラデイの電磁誘導の法則により磁界H2(図13参照)が発生し、ファラデイの電磁誘導の法則から導かれるアンペールの法則によりローレンツ力F2(図13参照)が誘起する。このローレンツ力F2の向きは図10の右ネジの法則にならい右ネジの進む方向が電磁誘導電流I2の流れる方向で右ネジを廻す方向が磁界H2となる。そして、図11のフレミングの左手に法則にならうと、親指の方向がローレンツ力F2の方向、人差し指の方向が磁界H2の方向、及び中指の方向が電磁誘導電流I2となり各々の指のなす角度は直角(90度)となる。このローレンツ力F2は、電磁誘導電流I2に直角の方向に作用することから、配管P2の内面から配管内面付着生成物Sを剥離する方向に作用することにもなる。   Further, a magnetic field H2 (see FIG. 13) is generated around the electromagnetic induction current I2 flowing in the pipe P2 by Faraday's law of electromagnetic induction, and Lorentz force F2 by Ampere's law derived from Faraday's law of electromagnetic induction. (See FIG. 13) is induced. The direction of the Lorentz force F2 follows the right-handed screw rule of FIG. 10, and the direction in which the right-handed screw advances is the direction in which the electromagnetic induction current I2 flows, and the direction in which the right-handed screw is turned is the magnetic field H2. According to the left hand of Fleming in FIG. 11, the thumb direction is the Lorentz force F2, the index finger direction is the magnetic field H2, the middle finger direction is the electromagnetic induction current I2, and the angle formed by each finger is A right angle (90 degrees). Since the Lorentz force F2 acts in a direction perpendicular to the electromagnetic induction current I2, the Lorentz force F2 also acts in a direction in which the pipe inner surface adhered product S is peeled from the inner surface of the pipe P2.

上記配管P2内の動作の様子を等価的に示したのが図13の回路図である。この図13において、V2は配管P2内に誘起する起電力であり、I2は配管P2内を流れる電磁誘導電流であり、E2は配管P2内に誘起する電界の強さであり、σ2は配管P2に誘起する電荷密度であり、σp2は特に配管P2内に誘起する電荷密度であり、Q2は配管P2内に誘起する電荷量であり、C2は配管P2内に誘起するキャパシターであり、R2は配管P2内に付着している配管内面付着生成物Sなどの内部抵抗である。また、図13において、σ2=±Q2/A2、E2=σ2/ε0であり、A2は誘電体(ゴムシートJ)を伴う導電体(P2)の対向する部位の面積、ε0は誘電率である。更に、図13において、dは導電体(P2)間の距離であり、i2は後述するイオン電流であり、h2は後述するイオン電流からの電界であり、f2は後述するイオン電流からのローレンツ力である。   FIG. 13 is a circuit diagram equivalently showing the operation in the pipe P2. In FIG. 13, V2 is an electromotive force induced in the pipe P2, I2 is an electromagnetic induction current flowing in the pipe P2, E2 is the strength of the electric field induced in the pipe P2, and σ2 is the pipe P2. Σp2 is a charge density induced in the pipe P2, Q2 is a charge amount induced in the pipe P2, C2 is a capacitor induced in the pipe P2, and R2 is a pipe It is an internal resistance of the pipe inner surface adhesion product S or the like adhering in P2. In FIG. 13, σ2 = ± Q2 / A2, E2 = σ2 / ε0, A2 is the area of the opposing portion of the conductor (P2) with the dielectric (rubber sheet J), and ε0 is the dielectric constant. . Further, in FIG. 13, d is a distance between the conductors (P2), i2 is an ion current described later, h2 is an electric field from the ion current described later, and f2 is a Lorentz force from the ion current described later. It is.

ビルや温泉施設などのように、内部が水溶液に接触している配管P2の内面は通常負(一)に帯電する表面電位を有しており、水溶液中の過飽和によって析出したスケールの結晶体の表面電位は正(十)に帯電しているので、電気的な引力関係によりスケールは当該配管P2の内面に吸い寄せられて付着し堆積成長して配管内面付着生成物Sとなる。この配管内面付着生成物SにはCaC0、MgC0、Fe等の成分が存在し、水溶液中に混在するので、水溶液が電界質となり、HO→H+OHと電離し、このHイオンによる電流(イオン電流i2)が正(+)の電位となる。このため、この電流(イオン電流i2)が負(−)に帯電している当該配管内面付着生成物Sと配管P2の内面に向かって流れ、当該配管内面付着生成物Sを電気分解することで、当該配管内面付着生成物Sを剥離することになる。更に、このイオン電流i2は、配管P2の内面及び配管内面付着生成物Sに沿って下流側に流れ、配管内面付着生成物Sを電気分解により剥離する。また、このイオン電流i2の周囲にはファラデイの電磁誘導の法則から磁界h2が誘起し、この磁界h2にファラデイの電磁誘導の法則から導かれるアンペールの法則によるローレンツ力f2が誘起するので、このローレンツ力f2が配管P2内の配管内面付着生成物Sに作用して当該配管内面付着生成物Sを配管P2から剥離する。 The inner surface of the pipe P2 that is in contact with the aqueous solution, such as a building or a hot spring facility, usually has a negative (one) surface potential, and the scale crystals precipitated by the supersaturation in the aqueous solution. Since the surface potential is positively (ten) charged, the scale attracts and adheres to the inner surface of the pipe P2 due to the electrical attraction, and grows and becomes a pipe inner surface adhesion product S. This pipe inner surface adhesion product S contains components such as CaC0 3 , MgC0 3 , Fe 2 0 3, etc. and is mixed in the aqueous solution, so that the aqueous solution becomes an electric field and ionizes as H 2 O → H + + OH −. The current (ion current i2) due to the H + ions becomes a positive (+) potential. For this reason, this electric current (ion current i2) flows toward the inner surface of the pipe inner surface adhesion product S and the pipe P2 that are negatively charged (−), and the pipe inner surface adhesion product S is electrolyzed. The pipe inner surface adhesion product S is peeled off. Further, the ion current i2 flows downstream along the inner surface of the pipe P2 and the pipe inner surface adhesion product S, and the pipe inner surface adhesion product S is separated by electrolysis. In addition, a magnetic field h2 is induced around the ion current i2 by Faraday's law of electromagnetic induction, and a Lorentz force f2 by Ampere's law derived from Faraday's law of electromagnetic induction is induced in this magnetic field h2. The force f2 acts on the pipe inner surface adhesion product S in the pipe P2 to peel the pipe inner surface adhesion product S from the pipe P2.

この様に図7の配管P2内においては、電磁誘導電流I2、ローレンツ力F2、イオン電流i2、及びローレンツ力f2による4種類の剥離作用が関与し、これが互いに相乗効果を生み、機能的に作用することにより、配管P2の内面からの配管内面付着生成物Sの剥離をより一層促進することになる。また、配管内面付着生成物Sが配管P2の内面に付着するのを確実に防止することができる。これにより、配管P2内を流れる水溶液の流れを常に良好に保つことができるので、配管P2に対するメンテナンスの回数を大幅に低減することができ、その保守、点検及びこれに伴う費用及び時間の軽減を図ることができる。   In this way, in the pipe P2 of FIG. 7, four types of peeling action are involved by the electromagnetic induction current I2, the Lorentz force F2, the ion current i2, and the Lorentz force f2. By doing so, peeling of the pipe inner surface adhered product S from the inner surface of the pipe P2 is further promoted. Moreover, it can prevent reliably that the piping inner surface adhesion product S adheres to the inner surface of the piping P2. As a result, the flow of the aqueous solution flowing in the pipe P2 can always be kept good, so that the number of times of maintenance for the pipe P2 can be greatly reduced, and the maintenance, inspection, and associated costs and time can be reduced. Can be planned.

〔実施形態3〕
次に、この発明の実施形態3として示した配管内面付着生成物の電磁誘導電流剥離装置103について、図8を参照して説明する。この実施形態3は、ポリ塩化ビニル等の誘電体からなる配管P1が下流側に向けて途中で分岐し、分岐前の本流配管P1aと、分岐後の分岐配管P1bとなっており、本流配管P1aにおける本流配管最先端近傍の外周面に配管最先端側リード線La1を直接コイル状に巻き、分岐配管P1bにおける分岐配管最終端近傍の外周面に配管最終端側リード線Lb1を直接コイル状に巻いている点で、上述の実施形態1と異なっている。その他は、実施形態1と同様の構成になっているので、図8において、実施形態1の図5で示した符号と同一の符号を付すことで、重複した説明を省略する。
[Embodiment 3]
Next, the electromagnetic induction current peeling apparatus 103 of the piping inner surface adhesion product shown as Embodiment 3 of the present invention will be described with reference to FIG. In the third embodiment, the pipe P1 made of a dielectric material such as polyvinyl chloride branches in the middle toward the downstream side, and becomes a main pipe P1a before branching and a branch pipe P1b after branching, and the main pipe P1a. The lead wire La1 at the foremost side of the pipe is directly wound in a coil shape on the outer peripheral surface in the vicinity of the front end of the mainstream pipe in FIG. This is different from the first embodiment described above. Since the rest of the configuration is the same as that of the first embodiment, the same reference numerals as those shown in FIG. 5 of the first embodiment are given in FIG.

なお、分岐配管P1bについては一本でも複数本でもよく、配管最終端側リード線Lb1は複数の各分岐配管P1bのそれぞれに巻くように設置してもよい。なお、この実施形態3では、一つの分岐配管P1bにおける分岐配管最終端近傍の外周面に配管最終端側リード線Lb1を巻いた例を示している。   Note that one or a plurality of branch pipes P1b may be provided, and the pipe end end side lead wire Lb1 may be installed so as to be wound around each of the plurality of branch pipes P1b. In the third embodiment, an example is shown in which the pipe final end side lead wire Lb1 is wound around the outer peripheral surface in the vicinity of the branch pipe final end in one branch pipe P1b.

上記のように構成された実施形態3に係る配管内面付着生成物の電磁誘導電流剥離装置103においては、配管最先端側リード線La1が巻かれた本流配管P1aにおける本流配管最先端近傍から配管最終端側リード線Lb1が巻かれた分岐配管P1bにおける分岐配管最終端近傍までの配管P1の内面に付着した配管内面付着生成物Sを、上述した実施形態1と同様に、電磁誘導電流I1、ローレンツ力F1、イオン電流i1、及びローレンツ力f1による4種類の剥離作用に基づいて極めて効率よく除去することができる。また、配管内面付着生成物Sが配管P1の内面に付着するのを確実に防止することができる。従って、分岐する配管P1に対してもメンテナンスの回数を大幅に低減することができ、その保守、点検及びこれに伴う費用及び時間の軽減を図ることができる。   In the electromagnetic induction current stripping device 103 for the pipe inner surface adhered product according to the third embodiment configured as described above, the pipe final from the front end of the main pipe in the main pipe P1a around which the pipe lead side La1 is wound. The pipe inner surface adhesion product S adhering to the inner surface of the pipe P1 up to the vicinity of the final end of the branch pipe in the branch pipe P1b wound with the end-side lead wire Lb1 is converted into the electromagnetic induction current I1, Lorentz as in the first embodiment. It can be removed very efficiently based on four types of peeling action by the force F1, the ionic current i1, and the Lorentz force f1. Moreover, it can prevent reliably that the piping inner surface adhesion product S adheres to the inner surface of the piping P1. Therefore, the number of maintenance operations can be greatly reduced even for the branching pipe P1, and the maintenance and inspection, and the associated costs and time can be reduced.

〔実施形態4〕
次に、この発明の実施形態4として示した配管内面付着生成物の電磁誘導電流剥離装置104について、図9を参照して説明する。この実施形態4は、鋳鉄等の導電体からなる配管P2が下流側に向けて途中で分岐し、分岐前の本流配管P2aと、分岐後の分岐配管P2bとなっており、本流配管P2aにおける本流配管最先端近傍の外周面にゴムシートJを巻いた上で、その上から配管最先端側リード線La2をコイル状に巻き、分岐配管P2bにおける分岐配管最終端近傍の外周面にゴムシートJを巻いた上で、その上から配管最終端側リード線Lb2をコイル状に巻いている点で、上述の実施形態2と異なっている。その他は、実施形態2と同様の構成になっているので、図9において、実施形態2の図7で示した符号と同一の符号を付すことで、重複した説明を省略する。
[Embodiment 4]
Next, an electromagnetic induction current peeling apparatus 104 for a pipe inner surface attached product shown as Embodiment 4 of the present invention will be described with reference to FIG. In the fourth embodiment, the pipe P2 made of a conductor such as cast iron branches in the middle toward the downstream side, and becomes a main pipe P2a before branching and a branch pipe P2b after branching, and the main stream in the main pipe P2a The rubber sheet J is wound around the outer peripheral surface in the vicinity of the leading end of the pipe, and then the lead wire La2 on the leading end of the pipe is wound in a coil shape, and the rubber sheet J is wound on the outer peripheral surface in the vicinity of the final end of the branch pipe in the branch pipe P2b. This is different from the above-described second embodiment in that the pipe final end side lead wire Lb2 is wound in a coil shape from above. Since the rest of the configuration is the same as that of the second embodiment, the same reference numerals as those shown in FIG. 7 of the second embodiment are given in FIG.

なお、分岐配管P2bについては一本でも複数本であってもよく、配管最終端側リード線Lb2は複数の各分岐配管P2bのそれぞれに巻くように設けてもよい。なお、この実施形態4では、一つの分岐配管P2bにおける分岐配管最終端近傍の外周面に配管最終端側リード線Lb2を巻いた例を示している。   Note that one or a plurality of branch pipes P2b may be provided, and the pipe final end side lead wire Lb2 may be provided so as to be wound around each of the plurality of branch pipes P2b. In addition, in this Embodiment 4, the example which wound the piping final end side lead wire Lb2 around the outer peripheral surface of branch piping final end vicinity in one branch piping P2b is shown.

上記のように構成された実施形態4に係る配管内面付着生成物の電磁誘導電流剥離装置104においては、配管最先端側リード線La2が巻かれた本流配管P2aにおける本流配管最先端近傍から配管最終端側リード線Lb2が巻かれた分岐配管P2bにおける分岐配管最終端近傍までの配管P2の内面に付着した配管内面付着生成物Sを、上述した実施形態2と同様に、電磁誘導電流I2、ローレンツ力F2、イオン電流i2、及びローレンツ力f2による4種類の剥離作用に基づいて極めて効率よく除去することができる。また、配管内面付着生成物Sが配管P2の内面に付着するのを確実に防止することができる。従って、分岐する配管P2に対してもメンテナンスの回数を大幅に低減することができ、その保守、点検及びこれに伴う費用及び時間の軽減を図ることができる。   In the electromagnetic induction current stripping device 104 for the product adhered to the inner surface of the pipe according to the fourth embodiment configured as described above, the pipe final from the vicinity of the leading edge of the main pipe in the main pipe P2a around which the lead line La2 of the pipe is wound. The pipe inner surface adhesion product S adhering to the inner surface of the pipe P2 up to the vicinity of the final end of the branch pipe in the branch pipe P2b wound with the end-side lead wire Lb2 is converted into the electromagnetic induction current I2, Lorentz as in the second embodiment. It can be removed very efficiently based on the four types of peeling action caused by the force F2, the ionic current i2, and the Lorentz force f2. Moreover, it can prevent reliably that the piping inner surface adhesion product S adheres to the inner surface of the piping P2. Therefore, the number of maintenance operations can be greatly reduced even for the branching pipe P2, and the maintenance, inspection, and associated costs and time can be reduced.

本発明の配管内面付着生成物の電磁誘導電流剥離装置を用いた第1の実験例を実施例1として示す。この実施例1は、上述した実施形態1で示した配管内面付着生成物の電磁誘導電流剥離装置101に相当する実験装置を、伊香保温泉(甲)旅館の配管に設置することで行っている。この甲旅館の泉質は、水溶液中におけるスケール等の成分がやや多いことが特徴である。   A first experimental example using the electromagnetic induction current peeling apparatus for the pipe inner surface adhesion product of the present invention is shown as Example 1. This Example 1 is performed by installing an experimental apparatus corresponding to the electromagnetic induction current peeling apparatus 101 for the pipe inner surface adhered product shown in the first embodiment described above in the pipe of the Ikaho Onsen (Kou) inn. The hot spring quality of Ko Ryokan is characterized by a slight amount of components such as scale in the aqueous solution.

実験現場の写真を図14に示す。配管内面付着生成物を除去する配管は、塩ビ管(ポリ塩化ビニル管)である。即ち、配管は誘電体によって形成されている。また、この塩ビ管については、配管内面付着生成物の付着の度合いを目視にて判定可能にするため、所定の長さに切断した塩ビ管をテストピース管とし、このテストピース管を長手方向の中間に着脱自在に組み込んだものとなっている。この塩ビ管の径は、50mmφである。そして、塩ビ管における上流端部(配管最先端近傍)の外周面に直接配管最先端側リード線をコイル状に巻き、この配管最先端側リード線の最先端部に定電圧電源の正(+)電圧として+30Vの電圧を印加し、当該配管最先端側リード線の最終端部に定電圧電源の負(−)電圧として-30Vの電圧を印加した。また、塩ビ管における下流端部(配管最終端近傍)の外周面に直接配管最終端側リード線をコイル状に巻いて、この配管最終端側リード線にアース棒を接続した。アース棒は、配管最終端側リード線の近傍の土壌に打ち込むことで設置した。なお、配管最先端側リード線及び配管最終端側リード線は、裸の導線を用いていることから、コイル状に巻いた上からテープを巻いて絶縁保護している。   A photograph of the experiment site is shown in FIG. The pipe for removing the product adhered to the inner surface of the pipe is a polyvinyl chloride pipe (polyvinyl chloride pipe). That is, the pipe is formed of a dielectric. In addition, for this PVC pipe, in order to make it possible to visually determine the degree of adhesion of the product adhered to the inner surface of the pipe, the PVC pipe cut to a predetermined length is used as a test piece pipe, and this test piece pipe is used in the longitudinal direction. It is assembled in a removable manner in the middle. The diameter of this PVC pipe is 50 mmφ. Then, the lead wire on the leading edge of the pipe is coiled directly around the outer peripheral surface of the upstream end of the PVC pipe (near the tip of the pipe), and the positive (+ ) A voltage of + 30V was applied as the voltage, and a voltage of -30V was applied as the negative (-) voltage of the constant voltage power source to the final end of the pipe leading end side lead wire. Further, a pipe final end side lead wire was directly wound around the outer peripheral surface of the downstream end portion (near the pipe final end) of the PVC pipe in a coil shape, and a grounding rod was connected to the pipe final end side lead wire. The grounding rod was installed by driving into the soil near the lead wire at the end of the pipe. In addition, since the pipe leading end side lead wire and the pipe final end side lead wire use bare conducting wires, they are insulated and protected by winding a tape from a coiled state.

実験は、上記実験装置を使用した場合と、使用しない場合とについて、塩ビ管内に温泉水を2ヶ月間流すことによって行い、テストピース内の配管内面付着生成物の堆積状況を調査した。   The experiment was carried out by flowing hot spring water into the PVC pipe for two months with and without using the experimental apparatus, and the accumulation state of the product adhered to the inner surface of the pipe in the test piece was investigated.

この実験結果を図15に示す。図15(a)は、本実験装置を使用した場合の配管内面付着生成物の堆積状態を示す写真である。また、図15(b)は、本実験装置を使用しなかった場合の配管内面付着生成物の堆積状態を示す写真である。本実験装置を用いた場合は、テストピース管の内面に、配管内面付着生成物がほとんど付着していないことが分かるが、本実験装置を使用していない場合は、テストピース管の内面に、配管内面付着生成物が多く付着していることが確認できる。即ち、本実験装置に対応する実施形態1の配管内面付着生成物の電磁誘導電流剥離装置101は、配管の内面に配管内面付着生成物が付着するのを防止する上で有利な効果があることが確認できた。   The result of this experiment is shown in FIG. Fig.15 (a) is a photograph which shows the deposition state of the piping inner surface adhesion product at the time of using this experimental apparatus. Moreover, FIG.15 (b) is a photograph which shows the deposition state of the piping inner surface adhesion product at the time of not using this experimental apparatus. When this experimental device is used, it can be seen that the inner product of the pipe inner surface hardly adheres to the inner surface of the test piece tube, but when this experimental device is not used, the inner surface of the test piece tube It can be confirmed that many products adhered to the inner surface of the pipe are attached. That is, the electromagnetic induction current peeling apparatus 101 for the pipe inner surface adhered product of the first embodiment corresponding to this experimental apparatus has an advantageous effect in preventing the pipe inner surface adhered product from adhering to the pipe inner surface. Was confirmed.

本発明の配管内面付着生成物の電磁誘導電流剥離装置を用いた第2の実験例を実施例2として示す。この実施例2は、上述した実施形態1で示した配管内面付着生成物の電磁誘導電流剥離装置101に相当する実験装置を、長野県松代温泉の(乙)荘の配管に設置することで行っている。この乙荘の泉質は、水溶液中におけるスケール等の成分が伊香保温泉より多いことが特徴である。   A second experimental example using the electromagnetic induction current peeling device for the pipe inner surface adhesion product of the present invention is shown as Example 2. This Example 2 is performed by installing an experimental apparatus corresponding to the electromagnetic induction current peeling apparatus 101 for the pipe inner surface adhesion product shown in the first embodiment described above in the pipe of (Oto) Zou in Matsushiro Onsen, Nagano Prefecture. ing. The spring quality of Otoso is characterized by having more components such as scale in the aqueous solution than Ikaho Onsen.

実験現場の写真を図16に示す。図16(a)は、源泉付近の配管及びこの配管に設置する本実験装置を示している。図16(b)は、源泉から約200m先に位置し、貯水槽に温泉水を供給する配管を示している。   A photograph of the experiment site is shown in FIG. FIG. 16A shows a pipe near the source spring and the experimental apparatus installed in the pipe. FIG. 16B shows a pipe that is located about 200 m away from the source and supplies hot spring water to the water storage tank.

配管内面付着生成物を除去する配管は、塩ビ管によって形成されている。また、この配管は、長さが約200メートルと長く、大部分が地中に埋設した状態になっている。このため、源泉側の立ち上がり付近において地上に露出した部分の配管(即ち、上流端部(配管最先端近傍)の配管)の外周面に配管最先端側リード線を直接コイル状に巻き、ほぼ200メートル先の貯水槽に温泉水を供給する部位において地上に露出した状態の配管(即ち、下流端部(配管最終端近傍)の配管)の外周面に配管最終端側リード線を直接コイル状に巻いている。この配管の径は、70mmφである。また、配管最先端側リード線の最先端部には定電圧電源の正(+)電圧として+30Vの電圧を印加し、当該配管最先端側リード線の最終端部には定電圧電源の負(−)電圧として−30Vの電圧を印加した。配管最終端側リード線の設置付近の土壌にアース棒を打ち込み、このアース棒に配管最終端側リード線を接続した。なお、配管最先端側リード線及び配管最終端側リード線については、裸の導線を用いていることから、コイル状に巻いた上から保護テープを巻いて絶縁保護した。この状態で、配管に温泉水を流すことにより実験を行った。   The pipe for removing the product adhered to the inner surface of the pipe is formed of a vinyl chloride pipe. Moreover, this pipe has a long length of about 200 meters, and most of the pipe is buried in the ground. For this reason, the pipe leading end side lead wire is directly coiled around the outer peripheral surface of the pipe of the portion exposed to the ground in the vicinity of the rise on the source side (that is, the pipe at the upstream end (near the pipe leading end)), and approximately 200 The lead end of the pipe at the end of the pipe is directly coiled on the outer peripheral surface of the pipe exposed to the ground (that is, the pipe at the downstream end (near the end of the pipe)) at the site where hot spring water is supplied to the water tank ahead of the meter. Winding. The diameter of this pipe is 70 mmφ. In addition, a positive (+) voltage of + 30V is applied to the most advanced part of the lead wire on the most advanced side of the pipe, and a negative ( -) A voltage of -30 V was applied as the voltage. A grounding rod was driven into the soil near the installation of the lead wire at the end of the piping, and the lead wire at the end of the piping was connected to the grounding rod. In addition, about the piping front end side lead wire and the piping last end side lead wire, since the bare conducting wire was used, the protective tape was wound around the coil shape, and it insulated and protected. In this state, the experiment was conducted by flowing hot spring water through the pipe.

配管は、口径が70mmのものを用いているが、配管内面付着生成物により、1年でほぼ埋まる状態となることから、1年毎に交換することになっている。従って、配管の交換時に実験を開始した。図17(a)は、本実験装置を装着時の源泉付近の配管内の様子を示した写真であり、配管内面付着生成物が約80%程配管の内面に付着した状態になっている。図17(b)は、本実験装置を装着して5ケ月後の源泉付近の配管内の様子を示した写真であり、本実験装置の装着により配管内面付着生成物の量がほぼ半分に減少していることが分かる。即ち、本実験装置に対応する実施形態1の配管内面付着生成物の電磁誘導電流剥離装置101は、配管内面付着生成物の剥離効果が顕著であることが確認できた。   The pipes having a diameter of 70 mm are used, but the pipes are almost filled in one year due to the pipe inner surface adhesion products, and therefore are to be replaced every year. Therefore, the experiment was started when the pipe was replaced. FIG. 17 (a) is a photograph showing the inside of the pipe near the source when the experimental apparatus is mounted, and about 80% of the pipe inner surface adhered product is attached to the inner surface of the pipe. FIG. 17 (b) is a photograph showing the inside of the pipe near the source 5 months after the installation of this experimental device, and the amount of the product adhering to the inner surface of the pipe is reduced to almost half by the installation of this experimental device. You can see that That is, it was confirmed that the electromagnetic induction current peeling apparatus 101 for the pipe inner surface attached product according to the first embodiment corresponding to this experimental apparatus has a remarkable peeling effect for the pipe inner surface attached product.

本発明の配管内面付着生成物の電磁誘導電流剥離装置を用いた第3の実験例を実施例3として示す。この実施例3は、上述した実施形態2で示した配管内面付着生成物の電磁誘導電流剥離装置102に相当する実験装置を、有馬温泉の源泉付近の配管に設置することによって行った。この温泉は、スケールなどの配管内付着量が日本一で、かつ高温であることが特徴である。この温泉では、水温が高いことから、配管として、高温での耐久性にすぐれた鋳鉄管が用いられている。即ち、配管は導電体によって形成されている。また、口径が50mmの配管を用いているが、配管内面付着生成物が5日程度で約90%に達することから、5日毎に配管を交換する作業が行われている。   A third experimental example using the electromagnetic induction current peeling apparatus for the pipe inner surface adhesion product of the present invention is shown as Example 3. This Example 3 was performed by installing an experimental apparatus corresponding to the electromagnetic induction current peeling apparatus 102 for the pipe inner surface adhered product shown in the second embodiment described above in a pipe near the source spring of Arima hot spring. This hot spring is characterized by the highest amount of deposits in piping such as scales in Japan and the highest temperature. In this hot spring, since the water temperature is high, cast iron pipes excellent in durability at high temperatures are used as piping. That is, the pipe is formed of a conductor. Moreover, although the pipe | tube whose diameter is 50 mm is used, since the pipe inner surface adhesion product reaches about 90% in about 5 days, the operation | work which replaces piping every 5 days is performed.

実験現場の写真を図18に示す。図18(a)は、源泉付近の配管及びこの配管に設置する本実験装置を示している。図18(b)は、配管におけるゴムシート及び配管最先端側リード線を巻いた部分の拡大写真である。   A photograph of the experiment site is shown in FIG. FIG. 18A shows a pipe near the source and the experimental apparatus installed in this pipe. FIG. 18B is an enlarged photograph of a portion of the pipe wound with the rubber sheet and the pipe leading end side lead wire.

この実施例3では、配管の上流端部(配管最先端近傍)の外周面にゴムシートを巻いた上で、その上から配管最先端側リード線をコイル状に巻き、当該配管の下流端部(配管最終端近傍)の外周面にゴムシートを巻いた上で、その上から配管最終端側リード線をコイル状に巻いている。配管最先端側リード線の最先端部には定電圧電源の正(+)電圧として+30Vの電圧を印加し、当該配管最先端側リード線の最終端部には定電圧電源の負(−)電圧として−30Vを印加した。配管最終端側リード線には、アース棒を接続している。このアース棒は配管最終端側リード線の近傍の土壌に打ち込まれている。なお、配管最先端側リード線及び配管最終端側リード線については、裸の導線を用いていることから、コイル状に巻いた上から保護テープを巻いて絶縁保護している。この状態で、配管に温泉水を流すことにより実験を行った。   In Example 3, after a rubber sheet is wound around the outer peripheral surface of the upstream end of the pipe (near the pipe front end), the pipe leading end side lead wire is wound in a coil shape from above, and the downstream end of the pipe A rubber sheet is wound around the outer peripheral surface (near the pipe final end), and then the pipe final end side lead wire is wound in a coil shape from above. Apply + 30V as the positive (+) voltage of the constant voltage power supply to the most advanced part of the lead wire on the most advanced side of the pipe, and negative (-) of the constant voltage power supply to the final end of the lead wire on the most advanced side of the pipe. A voltage of −30 V was applied. A grounding rod is connected to the lead wire at the end of the pipe. This ground bar is driven into the soil near the lead wire at the end of the pipe. In addition, about the piping front end side lead wire and the piping last end side lead wire, since the bare conducting wire is used, after winding in a coil shape, the protective tape is wound and insulated. In this state, the experiment was conducted by flowing hot spring water through the pipe.

実験は、5日間の配管の交換に合わせて行った。図19(a)は本実験装置の使用開始時(即ち、本実験装置を未使用の状態で5日経過時)の配管内の状態を示したものであり、配管内には約85%程の配管内面付着生成物が付着していることが分かる。一方、図19(b)は図19(a)の状態から本実験装置の使用を開始し、5日間経過した後の配管内の状態を示したものであり、配管内面付着生成物が約50%に低減していることが分かる。即ち、本実験装置に対応する実施形態2の配管内面付着生成物の電磁誘導電流剥離装置102は、配管の内面に付着した配管内面付着生成物を剥離する効果が極めて大きいことが確認できた。   The experiment was conducted in accordance with the replacement of the piping for 5 days. FIG. 19 (a) shows the state in the pipe at the start of use of the experimental apparatus (that is, when the experimental apparatus has not been used for five days). It can be seen that the product adhered to the inner surface of the pipe is attached. On the other hand, FIG. 19 (b) shows the state in the pipe after starting the use of this experimental apparatus from the state of FIG. 19 (a), and after 5 days, and about 50 products adhered to the inner surface of the pipe. It can be seen that it is reduced to%. That is, it was confirmed that the electromagnetic induction current peeling device 102 for the pipe inner surface adhered product according to the second embodiment corresponding to this experimental apparatus has an extremely great effect of peeling the pipe inner surface adhered product attached to the inner surface of the pipe.

ET1、ET2 アース(アース棒)
F1、F2 ローレンツ力
f1、f2 イオン電流に基づくローレンツ力
H1、H2 磁界
h1、h2 イオン電流に基づく磁界
I1、I2 電磁誘導電流
i1、i2 イオン電流
J ゴムシート(誘電体シート)
La1、La2 配管最先端側リード線
Lb1、Lb2 配管最終端側リード線
P1、P2 配管
P1a、P2a 本流配管
P1b、P2b 分岐配管
S 配管内面付着生成物
X 定電圧電源
ET1, ET2 Earth (earth bar)
F1, F2 Lorentz force f1, f2 Lorentz force based on ion current H1, H2 Magnetic field h1, h2 Magnetic field based on ion current I1, I2 Electromagnetic induction current i1, i2 Ion current J Rubber sheet (dielectric sheet)
La1, La2 Piping most advanced lead wire Lb1, Lb2 Piping final end side lead wire P1, P2 Piping P1a, P2a Main piping P1b, P2b Branch piping S Piping inner surface attached product X Constant voltage power supply

Claims (2)

定電圧電源と、
水溶液を通す配管における当該水溶液の流れ方向の上流側に位置する配管最先端近傍の外周にコイル状に巻き、上記定電圧電源からの電気の供給を受ける配管最先端側リード線と、
上記配管における上記水溶液の流れ方向の下流側に位置する配管最終端近傍の外周にコイル状に巻き、上記定電圧電源からの電気の供給を受けない配管最終端側リード線と、
上記配管最終端側リード線に接続され、当該配管最終端側リード線の近傍の土壌に設置されるアースとを備えてなり
上記定電圧電源は、正電圧を上記配管最先端側リード線における上記上流側に位置する最先端部に印加すると共に、負電圧を上記配管最先端側リード線における上記下流側に位置する最終端部に印加する状態を配管内面付着生成物の剥離に際して連続して維持するようになっており
上記配管最先端側リード線及び上記配管最終端側リード線は、上記配管が誘電体である場合には当該配管の外周面にコイル状に巻き、上記配管が導電体である場合には当該配管の外周面に誘電体シートを巻いた上で、その誘電体シートの上からコイル状に巻くようになっていることを特徴とする配管内面付着生成物の電磁誘導電流剥離装置。
A constant voltage power supply,
-Out wound into a coil on the outer circumference of the pipe cutting edge near which is located upstream of the flow direction of the aqueous solution in the pipe through an aqueous solution, a pipe leading-edge-side lead wire supplied with electricity from the constant-voltage power supply,
-Out pipe terminating end wound into a coil on the outer periphery of the vicinity of the downstream side of the flow direction of the aqueous solution in the pipe, the pipe terminating end side lead wire is not supplied with electricity from the constant-voltage power supply,
Connected to said pipe terminating end side lead wire, it and a ground installed in the soil in the vicinity of the pipe end-end side lead wire,
The constant voltage power source applies a positive voltage to the most upstream portion located on the upstream side of the pipe leading end side lead wire, and a negative voltage is applied to the final end located on the downstream side of the pipe leading end side lead wire. The state to be applied to the part is continuously maintained when the product adhered to the inner surface of the pipe is peeled off ,
When the pipe is a dielectric, the lead end side lead wire and the pipe end side lead wire are wound around the outer peripheral surface of the pipe in a coil shape, and when the pipe is a conductor, the pipe An electromagnetic induction current peeling device for a product adhered to the inner surface of a pipe, wherein a dielectric sheet is wound around the outer peripheral surface of the pipe and then wound in a coil shape from above the dielectric sheet.
請求項1に記載の配管内面付着生成物の電磁誘導電流剥離装置において、
上記配管は下流側に向けて分岐されたものとなっており、
上記配管最先端側リード線は、分岐前の配管における上記配管最先端近傍の外周にコイル状に巻くようになっており、
上記配管最終端側リード線は、分岐後の配管における上記配管最終端近傍の外周にコイル状に巻くようになっていることを特徴とする配管内面付着生成物の電磁誘導電流剥離装置。
In the electromagnetic induction current peeling apparatus of the pipe inner surface adhesion product according to claim 1,
The above piping is branched toward the downstream side,
The pipe leading end side lead wire is wound around the outer periphery in the vicinity of the pipe leading end in the pipe before branching,
Said pipe terminating end side lead wire, an electromagnetic induction current stripping apparatus of the pipe inner surface adherent product, characterized by being adapted to coiling the outer periphery of the upper Symbol pipe endmost vicinity that put the pipe after branching .
JP2014534839A 2014-03-04 2014-03-04 Electromagnetic induction current stripping device for pipe inner surface adhesion products Active JP5830172B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055392 WO2015132870A1 (en) 2014-03-04 2014-03-04 Electromagnetic induction electric peeling apparatus for pipe inner surface adhesion products

Publications (2)

Publication Number Publication Date
JP5830172B1 true JP5830172B1 (en) 2015-12-09
JPWO2015132870A1 JPWO2015132870A1 (en) 2017-03-30

Family

ID=54054711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534839A Active JP5830172B1 (en) 2014-03-04 2014-03-04 Electromagnetic induction current stripping device for pipe inner surface adhesion products

Country Status (3)

Country Link
JP (1) JP5830172B1 (en)
CN (1) CN106170656A (en)
WO (1) WO2015132870A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281082A (en) * 1993-03-30 1994-10-07 Nkk Corp Branching device for piping
JP2001038362A (en) * 1999-07-30 2001-02-13 Ska Kk Device for electromagnetic field treatment
JP2002096070A (en) * 2000-09-25 2002-04-02 Keisoku Kenkyusho:Kk Foreign matter adhesion preventive method and foreign matter adhesion preventive device
JP2006334516A (en) * 2005-06-02 2006-12-14 Life Field Sogo Kenkyusho:Kk Scale removing method and scale removing apparatus
JP2008006433A (en) * 2006-05-29 2008-01-17 Seiki Shiga Method and apparatus for treating water in electromagnetic field

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842993A (en) * 1994-08-01 1996-02-16 S K A Kk Removing and preventing device for scale
JP3004918B2 (en) * 1996-05-22 2000-01-31 新一郎 石橋 Apparatus for removing boiler and other pipe adhesion products
EP1096003B1 (en) * 1999-02-19 2005-05-04 New Technology Management Co., Ltd. Electro-sensitive working medium and method of using the medium
JP2003014189A (en) * 2001-07-04 2003-01-15 Shinichiro Ishibashi Method for peeling pipe inside deposit in boiler
JP4089949B2 (en) * 2002-05-13 2008-05-28 株式会社計測研究所 Scale removal method and scale removal apparatus
TW200811059A (en) * 2006-05-29 2008-03-01 Seiki Shiga Electromagnetic field treatment method and electromagnetic field treatment equipment of water
JP2009006264A (en) * 2007-06-28 2009-01-15 Cross Point:Kk Scale removal apparatus for water supply and drain pipes for housing facility
JP4690477B2 (en) * 2009-07-01 2011-06-01 株式会社フェローテック Anode wall multi-divided plasma generator and plasma processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281082A (en) * 1993-03-30 1994-10-07 Nkk Corp Branching device for piping
JP2001038362A (en) * 1999-07-30 2001-02-13 Ska Kk Device for electromagnetic field treatment
JP2002096070A (en) * 2000-09-25 2002-04-02 Keisoku Kenkyusho:Kk Foreign matter adhesion preventive method and foreign matter adhesion preventive device
JP2006334516A (en) * 2005-06-02 2006-12-14 Life Field Sogo Kenkyusho:Kk Scale removing method and scale removing apparatus
JP2008006433A (en) * 2006-05-29 2008-01-17 Seiki Shiga Method and apparatus for treating water in electromagnetic field

Also Published As

Publication number Publication date
WO2015132870A1 (en) 2015-09-11
CN106170656A (en) 2016-11-30
JPWO2015132870A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US10494723B2 (en) System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave
JP7019701B2 (en) A device that stains the protective surface
JP2001038362A (en) Device for electromagnetic field treatment
JP5830172B1 (en) Electromagnetic induction current stripping device for pipe inner surface adhesion products
KR20150050087A (en) Device for removal of scale
CN203461885U (en) Random-sweep-frequency electronic liquid processing device
AR041072A1 (en) DEVICE AND PROCEDURE FOR THE REGENERATION OF A BATH TO DEPOSIT A METAL WITHOUT ELECTRICAL ENERGY
CN207468260U (en) A kind of corrosion product capturing device
US20190226095A1 (en) Autonomous impressed current cathodic protection device on metal surfaces with a spiral magnesium anode
JP2003014189A (en) Method for peeling pipe inside deposit in boiler
NO344030B1 (en) Rejuvenation of subsea electrical distribution systems
KR101011631B1 (en) An apparatus and a method for a non-input power electric corrosion prevention
EP1034322B1 (en) Apparatus for lead contamination control
CN203397719U (en) Novel through ground wire for railway
CN105891982B (en) Installation device and method for OPGW terminal reserved cable of transformer substation
TWI544709B (en) Method for preventing corrosion of power cord applied to highly corrosive environment
CN209100874U (en) A kind of anti-blocking pipeline and system
RU132634U1 (en) DEVICE FOR PROTECTION OF TECHNICAL MEANS OF AUTOMATION OF PULSE AND CONTROLLING GAS PIPELINES FROM TRANSITION VOLTAGE AND DISCHARGE OF PULSE CURRENT
CN205241301U (en) Multiunit winding high frequency electric magnetic -type water treatment facilities
CN104310596A (en) Powerful descaling device
CN209367945U (en) A kind of device controlled for fouling in pipeline and corrosion
CN203442488U (en) Dilute phosphoric acid conveying device
JP2008066052A (en) Washing method of insulator
JP2009149935A (en) Corrosion protection apparatus, corrosion protection method, power device and voltage generation method
CN109099259A (en) A kind of novel pipeline scale removal, except bath, anti-corrosion, sterilization comprehensive water treater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5830172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250