JP5816705B2 - Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure - Google Patents

Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure Download PDF

Info

Publication number
JP5816705B2
JP5816705B2 JP2013555051A JP2013555051A JP5816705B2 JP 5816705 B2 JP5816705 B2 JP 5816705B2 JP 2013555051 A JP2013555051 A JP 2013555051A JP 2013555051 A JP2013555051 A JP 2013555051A JP 5816705 B2 JP5816705 B2 JP 5816705B2
Authority
JP
Japan
Prior art keywords
reachable
reachable range
contour
image processing
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013555051A
Other languages
Japanese (ja)
Other versions
JPWO2013111289A1 (en
Inventor
英士 松永
英士 松永
進 大沢
進 大沢
福田 達也
達也 福田
安士 光男
光男 安士
要一 伊藤
要一 伊藤
廣瀬 智博
智博 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Publication of JPWO2013111289A1 publication Critical patent/JPWO2013111289A1/en
Application granted granted Critical
Publication of JP5816705B2 publication Critical patent/JP5816705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、移動体の残存エネルギー量に基づいて移動体の到達可能範囲を生成する画像処理装置、画像処理管理装置、端末、画像処理方法およびデータ構造に関する。ただし、この発明の利用は、画像処理装置、画像処理管理装置、端末、画像処理方法およびデータ構造に限らない。   The present invention relates to an image processing device, an image processing management device, a terminal, an image processing method, and a data structure that generate a reachable range of a moving body based on a residual energy amount of the moving body. However, the use of the present invention is not limited to the image processing device, the image processing management device, the terminal, the image processing method, and the data structure.

従来、移動体の現在地点に基づいて、移動体の到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献1参照。)。下記特許文献1では、移動体の現在地点を中心に地図上の全方位を放射状に分割し、分割領域ごとに移動体の現在地点から最も遠い到達可能な交差点を地図情報のノードとして取得する。そして、取得した複数のノードを結んで得られるベジュ曲線を移動体の到達可能範囲として表示している。   Conventionally, a processing device that generates a reachable range of a moving body based on the current location of the moving body is known (for example, see Patent Document 1 below). In the following Patent Document 1, all directions on the map are radially divided around the current location of the moving object, and the reachable intersection that is farthest from the current location of the moving object is obtained as a map information node for each divided region. A beige curve obtained by connecting a plurality of acquired nodes is displayed as the reachable range of the moving object.

また、移動体のバッテリー残容量および電力消費量に基づいて、各道路における移動体の現在地点からの到達可能範囲を生成する処理装置が知られている(たとえば、下記特許文献2参照。)。下記特許文献2では、移動体の現在地点に接続する複数の道路において移動体の電力消費量を算出し、移動体のバッテリー残容量および電力消費量に基づいて各道路における移動体の走行可能距離を算出する。そして、移動体の現在地点と、当該現在地点から走行可能距離だけ離れた移動体の複数の到達可能地点とを地図情報のノードとして取得し、複数のノードを結んで得られる線分の集合体を移動体の到達可能範囲として表示している。   Also, a processing device is known that generates a reachable range from the current location of a moving body on each road based on the remaining battery capacity and power consumption of the moving body (see, for example, Patent Document 2 below). In the following Patent Document 2, the power consumption of the mobile body is calculated on a plurality of roads connected to the current location of the mobile body, and the travelable distance of the mobile body on each road based on the remaining battery capacity and the power consumption of the mobile body Is calculated. Then, a set of line segments obtained by acquiring the current location of the mobile body and a plurality of reachable locations of the mobile body that are separated from the current location by a travelable distance as nodes of map information and connecting the plurality of nodes Is displayed as the reachable range of the moving object.

また、車両が到達できる時間を等時帯で表示する地図表示装置が知られている(たとえば、下記特許文献3参照。)。下記特許文献3では、車両からの直線距離ごとにノードに識別子を付与し、同じ到達時間となるノード同士をベジエ曲線により接続し囲まれた領域を塗りつぶして到達可能な領域を表示している。   Further, a map display device that displays time in which a vehicle can reach in an isochronous zone is known (for example, see Patent Document 3 below). In Patent Document 3 below, an identifier is assigned to each node for each straight line distance from the vehicle, nodes that have the same arrival time are connected by a Bezier curve, and an area that can be reached is displayed by painting.

特開平11−016094号公報Japanese Patent Laid-Open No. 11-016094 特開平07−085397号公報Japanese Patent Application Laid-Open No. 07-0859797 国際公開第2007/032318号International Publication No. 2007/032318

しかしながら、上述した特許文献1の技術では、移動体の現在地点を中心に各方位における移動体から最も遠い到達地点のみを取得しているので、移動体の到達可能範囲の輪郭しか得られない。このため、移動体の現在地点と移動体から最も遠い到達地点との間に、海や湖など移動体が走行することのできない領域が含まれていたとしても、この移動体が走行することのできない領域を除外して移動体の到達可能範囲を取得することができないという問題点が一例として挙げられる。   However, in the technique of Patent Document 1 described above, since only the reaching point farthest from the moving body in each azimuth is obtained with the current position of the moving body as the center, only the outline of the reachable range of the moving body can be obtained. For this reason, even if there is an area where the mobile body cannot travel, such as the sea or lake, between the current location of the mobile body and the destination farthest from the mobile body, As an example, a problem that the reachable range of the moving body cannot be obtained by excluding the area that cannot be obtained.

また、上述した特許文献2の技術では、移動体の到達可能範囲として道路のみを取得しているので、道路以外の範囲を移動体の到達可能範囲に含めることができない。また、移動体の到達可能範囲が移動体の走行可能な道路に沿った線分の集合体で表示されるので、到達可能範囲の輪郭を取得することができない。このため、移動体の到達可能範囲を見やすく、かつ漏れなく表示することが困難であるという問題点が一例として挙げられる。   Moreover, in the technique of patent document 2 mentioned above, since only a road is acquired as the reachable range of a mobile body, ranges other than a road cannot be included in the reachable range of a mobile body. In addition, since the reachable range of the mobile object is displayed as an assembly of line segments along the road on which the mobile object can travel, the outline of the reachable range cannot be acquired. For this reason, the problem that it is easy to see the reachable range of the moving body and it is difficult to display without omission is an example.

また、上述した特許文献3の技術では、ノード間を接続して等時帯を表示することができるが、湖や、沼、山など到達不可能な領域がある場合、到達可能な領域と区別して表示することができない。特に、到達可能な領域の内部に湖や、沼、山などの到達不可能な領域がある場合、この到達不可能な領域を表示上、到達不可能であることを明確に表示することができないという問題点が一例として挙げられる。   In the technique of Patent Document 3 described above, nodes can be connected to display isochronous zones, but if there are unreachable areas such as lakes, swamps, and mountains, the reachable areas It cannot be displayed separately. In particular, if there are unreachable areas such as lakes, swamps, and mountains within the reachable area, it is not possible to clearly indicate that this is unreachable on the display. The problem is given as an example.

上述した課題を解決し、目的を達成するため、請求項1の発明にかかる画像処理装置は、移動体の到達可能範囲に関する情報を処理する画像処理装置であって、前記移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段と、前記到達可能範囲算出手段により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出手段と、前記輪郭データ算出手段により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出手段と、前記輪郭データ算出手段により算出された輪郭データ、および、前記向き算出手段により算出された前記向きのデータに基づき、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を表示手段に表示させる表示制御手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, an image processing apparatus according to a first aspect of the present invention is an image processing apparatus that processes information relating to a reachable range of a moving body, and the energy held by the moving body. A reachable range calculating means for calculating a reachable range including a reachable area of the moving object calculated based on an amount; and an arrival of the moving object based on the reachable range calculated by the reachable range calculating means Outline data calculating means for calculating outline data indicating the contour of the possible range, and direction calculating means for calculating direction data indicating that the outline data calculated by the outline data calculating means is clockwise or counterclockwise. And the contour data calculated by the contour data calculating means and the orientation data calculated by the orientation calculating means. Display control means for displaying range and the inside of the unreachable range of the reachable range in the display means, characterized in that it comprises a.

また、請求項4の発明にかかる画像処理管理装置は、移動体の到達可能範囲に関する情報を処理する画像処理管理装置であって、前記移動体の現在地点に関する情報、および、前記移動体の現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を受信する受信手段と、前記受信手段により受信された前記移動体の現在地点に関する情報、および、初期保有エネルギー量に関する情報に基づき、前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段と、前記到達可能範囲算出手段により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出手段と、前記輪郭データ算出手段により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出手段と、前記輪郭データおよび前記向きのデータを送信する送信手段と、を備えることを特徴とする。   An image processing management apparatus according to a fourth aspect of the present invention is an image processing management apparatus for processing information relating to a reachable range of a mobile object, wherein the information relating to the current location of the mobile object and the current status of the mobile object Receiving means for receiving information on the initial stored energy amount, which is the amount of energy held by the mobile body at the point, information on the current location of the mobile body received by the receiving means, and information on the initial stored energy amount Based on the reachable range calculating means for calculating the reachable range including the reachable area of the mobile body, and the reachable range of the mobile body based on the reachable range calculated by the reachable range calculating means. Contour data calculating means for calculating contour data indicating the contour, and the contour data calculated by the contour data calculating means is clockwise. Or characterized by comprising a direction calculation means for calculating data orientation indicating a counterclockwise, and transmission means for transmitting the data of the contour data and the orientation.

また、請求項5の発明にかかる端末は、移動体の到達可能範囲に関する情報を処理する端末であって、前記移動体の現在地点に関する情報、および、前記移動体の現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を管理装置へ送信する送信手段と、前記移動体の到達可能な領域を含む到達可能範囲の輪郭を示す輪郭データおよび当該輪郭データが右回り、又は、左回りであることを示す向きのデータを受信する受信手段と、前記受信手段により受信された輪郭データおよび向きのデータに基づき、前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、を備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided a terminal for processing information relating to a reachable range of a mobile object, wherein the mobile object is information at the current location of the mobile object and the current location of the mobile object. Transmitting means for transmitting information on the initial stored energy amount, which is the amount of energy held, to the management device, contour data indicating the contour of the reachable range including the reachable region of the mobile object, and the contour data is clockwise, Alternatively, receiving means for receiving the orientation data indicating that it is counterclockwise, and display control for causing the display means to display the reachable range of the moving object based on the contour data and the orientation data received by the receiving means. And means.

また、請求項6の発明にかかる画像処理方法は、移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、前記移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出工程と、前記到達可能範囲算出工程により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出工程と、前記輪郭データ算出工程により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出工程と、前記輪郭データ、および、前記向き算出工程により算出された前記向きのデータに基づき、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を表示手段に表示させる表示制御工程と、を含むことを特徴とする。   An image processing method according to a sixth aspect of the present invention is an image processing method in an image processing apparatus for processing information relating to a reachable range of a moving object, wherein the image processing method is calculated based on an energy amount held by the moving object. A reachable range calculating step for calculating a reachable range including a reachable region of the moving object, and a contour indicating an outline of the reachable range of the moving object based on the reachable range calculated by the reachable range calculating step A contour data calculation step for calculating data, a direction calculation step for calculating direction data indicating that the contour data calculated by the contour data calculation step is clockwise or counterclockwise, the contour data, and Based on the orientation data calculated by the orientation calculation step, the reachable range of the moving body and the unreachable inside of the reachable range Characterized by comprising a display control step of displaying the circumference on the display unit.

また、請求項7の発明にかかるデータ構造は、移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段を備えた画像処理装置が扱う表示制御のためのデータ構造であって、前記移動体の到達可能範囲の輪郭を示す輪郭データと、前記輪郭データが右回り、又は、左回りであることを示す向きのデータと、を含み、前記輪郭データ、および、前記向きのデータにより、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を示すことを特徴とする。   The data structure according to the invention of claim 7 is an image provided with reachable range calculating means for calculating a reachable range including a reachable area of the moving body calculated based on an energy amount held by the moving body. A data structure for display control handled by the processing device, contour data indicating a contour of the reachable range of the moving object, and data indicating a direction in which the contour data is clockwise or counterclockwise The reachable range of the moving object and the unreachable range inside the reachable range are indicated by the contour data and the orientation data.

図1は、実施の形態1にかかる画像処理装置の機能的構成の一例を示すブロック図である。FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment. 図2は、画像処理装置による画像処理の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus. 図3は、ナビゲーション装置のハードウェア構成の一例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a hardware configuration of the navigation device. 図4−1は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4A is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4−2は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4B is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4−3は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。FIG. 4-3 is an explanatory diagram schematically illustrating an example of reachable point search by the navigation device. 図4−4は、ナビゲーション装置による到達可能地点探索の一例について模式的に示す説明図である。4-4 is explanatory drawing typically shown about an example of the reachable point search by a navigation apparatus. 図5−1は、ナビゲーション装置による到達可能地点探索の一例について示す説明図である。FIG. 5A is an explanatory diagram of an example of a reachable point search by the navigation device. 図5−2は、ナビゲーション装置による到達可能地点探索の別の一例について示す説明図である。5-2 is explanatory drawing shown about another example of the reachable point search by a navigation apparatus. 図6は、ナビゲーション装置による到達可能地点を経度−緯度で示す一例の説明図である。FIG. 6 is an explanatory diagram of an example showing a reachable point by the navigation device in longitude-latitude. 図7は、ナビゲーション装置による到達可能地点をメッシュデータで示す一例の説明図である。FIG. 7 is an explanatory diagram of an example showing the reachable points by the navigation device as mesh data. 図8は、ナビゲーション装置によるクローニング処理の一例を示す説明図である。FIG. 8 is an explanatory diagram illustrating an example of cloning processing by the navigation device. 図9は、ナビゲーション装置によるオープニング処理の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of the opening process by the navigation device. 図10は、ナビゲーション装置による車両の到達可能範囲抽出の一例を模式的に示す説明図である。FIG. 10 is an explanatory diagram schematically illustrating an example of vehicle reachable range extraction by the navigation device. 図11は、ナビゲーション装置による車両の到達可能範囲抽出後のメッシュデータの一例を模式的に示す説明図である。FIG. 11 is an explanatory diagram schematically showing an example of mesh data after the reachable range of the vehicle is extracted by the navigation device. 図12は、ナビゲーション装置による車両の到達可能範囲抽出の別の一例について模式的に示す説明図である。FIG. 12 is an explanatory diagram schematically illustrating another example of vehicle reachable range extraction by the navigation device. 図13は、ナビゲーション装置による画像処理の手順の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of an image processing procedure performed by the navigation device. 図14は、ナビゲーション装置による推定消費電力量算出処理の手順の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device. 図15−1は、ナビゲーション装置による到達可能地点探索処理の手順の一例を示すフローチャートである(その1)。FIG. 15A is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 1). 図15−2は、ナビゲーション装置による到達可能地点探索処理の手順の一例を示すフローチャートである(その2)。FIG. 15-2 is a flowchart of an example of a procedure of reachable point search processing by the navigation device (part 2). 図16−1は、ナビゲーション装置による識別情報付与処理の手順の一例を示すフローチャートである。FIG. 16A is a flowchart illustrating an example of a procedure of identification information provision processing by the navigation device. 図16−2は、ナビゲーション装置による第1識別情報変更処理の手順の一例を示すフローチャートである。FIG. 16-2 is a flowchart illustrating an example of a procedure of first identification information change processing by the navigation device. 図17は、ナビゲーション装置による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである。FIG. 17 is a flowchart illustrating an example of a reachable range contour extraction process performed by the navigation device. 図18は、ナビゲーション装置による輪郭追跡処理の手順の一例を示すフローチャートである。FIG. 18 is a flowchart illustrating an example of a procedure of contour tracking processing by the navigation device. 図19は、輪郭追跡処理を説明するための図である。FIG. 19 is a diagram for explaining the contour tracking process. 図20は、ナビゲーション装置による輪郭の向きの算出処理の手順の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of a procedure of a contour direction calculation process performed by the navigation device. 図21は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。FIG. 21 is an explanatory view schematically showing an example of acceleration applied to a vehicle traveling on a road having a gradient. 図22は、ナビゲーション装置による到達可能地点探索処理後の表示例の一例について示す説明図である。FIG. 22 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device. 図23−1は、ナビゲーション装置による識別情報付与処理後の表示例の一例について示す説明図である。FIG. 23A is an explanatory diagram illustrating an example of a display example after the identification information providing process by the navigation device. 図23−2は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。FIG. 23-2 is an explanatory diagram of an example of a display example after the first identification information change process by the navigation device. 図24は、ナビゲーション装置によるクローニング処理(膨張)後の表示例の一例について示す説明図である。FIG. 24 is an explanatory diagram illustrating an example of a display example after the cloning process (expansion) by the navigation device. 図25は、ナビゲーション装置によるクローニング処理(縮小)後の表示例の一例について示す説明図である。FIG. 25 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device. 図26は、到達可能範囲および到達不可能範囲の例を示す図である。FIG. 26 is a diagram illustrating an example of a reachable range and an unreachable range. 図27は、実施の形態2にかかる画像処理装置の機能的構成の一例を示すブロック図である。FIG. 27 is a block diagram of an example of a functional configuration of the image processing apparatus according to the second embodiment. 図28は、実施の形態3にかかる画像処理装置の機能的構成の一例を示すブロック図である。FIG. 28 is a block diagram of an example of a functional configuration of the image processing apparatus according to the third embodiment. 図29は、実施例2にかかる画像処理装置のシステム構成の一例を示す説明図である。FIG. 29 is an explanatory diagram of an example of a system configuration of the image processing apparatus according to the second embodiment.

以下に添付図面を参照して、この発明にかかる画像処理装置、画像処理管理装置、端末、画像処理方法およびデータ構造の好適な実施の形態を詳細に説明する。   Exemplary embodiments of an image processing device, an image processing management device, a terminal, an image processing method, and a data structure according to the present invention will be explained below in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、実施の形態1にかかる画像処理装置の機能的構成の一例を示すブロック図である。実施の形態1にかかる画像処理装置100は、移動体の残存エネルギー量に基づいて探索された移動体の到達可能地点を求め、移動体の到達可能範囲を生成し、表示部110に表示させる。また、画像処理装置100は、取得部101、算出部102、探索部103、分割部104、付与部105、輪郭データ算出部106、向き算出部107、表示制御部108によって構成される。取得部101、算出部102、探索部103、分割部104、付与部105は、移動体が保有するエネルギー量に基づき算出された移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出部109として機能する。
(Embodiment 1)
FIG. 1 is a block diagram of an example of a functional configuration of the image processing apparatus according to the first embodiment. The image processing apparatus 100 according to the first embodiment obtains a reachable point of the mobile object searched based on the remaining energy amount of the mobile object, generates a reachable range of the mobile object, and displays the reachable range on the display unit 110. The image processing apparatus 100 includes an acquisition unit 101, a calculation unit 102, a search unit 103, a division unit 104, a grant unit 105, a contour data calculation unit 106, a direction calculation unit 107, and a display control unit 108. The acquisition unit 101, the calculation unit 102, the search unit 103, the division unit 104, and the grant unit 105 calculate a reachable range that includes a reachable area of the mobile object calculated based on the amount of energy held by the mobile object. It functions as the range calculation unit 109.

ここで、エネルギーとは、たとえば、EV(Electric Vehicle)車などの場合、電気などに基づくエネルギーであり、HV(Hybrid Vehicle)車、PHV(Plug−in Hybrid Vehicle)車などの場合は電気などに基づくエネルギーおよび、たとえばガソリンや軽油、ガスなどに基づくエネルギーである。また、エネルギーとは、たとえば燃料電池車の場合、電気などに基づくエネルギーおよび、たとえば水素や水素原料になる化石燃料などである(以下、EV車、HV車、PHV車、燃料電池車は単に「EV車」という)。また、エネルギーとは、たとえば、ガソリン車、ディーゼル車など(以下、単に「ガソリン車」という)の場合、たとえば、ガソリンや軽油、ガスなどに基づくエネルギーである。たとえば残存エネルギーとは、たとえば、移動体の燃料タンクやバッテリー内、高圧タンクなどに残っているエネルギーであり、後の移動体の走行に用いることのできるエネルギーである。   Here, the energy is energy based on electricity in the case of an EV (Electric Vehicle) vehicle, for example, and in the case of an HV (Hybrid Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) vehicle, etc. Energy based on, for example, gasoline, light oil, gas and the like. In addition, in the case of a fuel cell vehicle, for example, energy is energy based on electricity and the like, for example, hydrogen or a fossil fuel that becomes a hydrogen raw material (hereinafter, EV vehicle, HV vehicle, PHV vehicle, and fuel cell vehicle are simply “ EV car "). In addition, the energy is energy based on, for example, gasoline, light oil, gas, etc., for example, in the case of a gasoline vehicle, a diesel vehicle or the like (hereinafter simply referred to as “gasoline vehicle”). For example, the residual energy is, for example, energy remaining in a fuel tank, a battery, a high-pressure tank, or the like of the moving body, and is energy that can be used for the subsequent traveling of the moving body.

取得部101は、画像処理装置100を搭載した移動体の現在地点に関する情報や、移動体の現在地点において当該移動体が保有するエネルギー量である初期保有エネルギー量に関する情報を取得する。具体的には、取得部101は、たとえば、GPS衛星から受信したGPS情報などを用いて、自装置の現在位置を算出することによって現在地点に関する情報(位置情報)を取得する。   The acquisition unit 101 acquires information related to the current location of the moving object on which the image processing apparatus 100 is mounted, and information related to the initial amount of energy held by the moving object at the current location of the moving object. Specifically, the acquisition unit 101 acquires information (position information) about the current location by calculating the current position of the device using, for example, GPS information received from a GPS satellite.

また、取得部101は、たとえば、CAN(Controller Area Network)など通信プロトコルによって動作する車内通信網を介して、エレクトロニックコントロールユニット(ECU:Electronic Control Unit)によって管理されている移動体の残存エネルギー量を、初期保有エネルギー量として取得する。   In addition, the acquisition unit 101 determines the remaining energy amount of the moving body managed by an electronic control unit (ECU) via an in-vehicle communication network that operates according to a communication protocol such as CAN (Controller Area Network). , Get the initial amount of energy.

取得部101は、移動体の速度に関する情報や、渋滞情報、移動体情報を取得してもよい。移動体の速度に関する情報とは、移動体の速度、加速度である。また、取得部101は、たとえば、記憶部(不図示)に記憶された地図情報から道路に関する情報を取得してもよいし、傾斜センサなどから道路勾配などを取得してもよい。道路に関する情報とは、たとえば、道路種別や、道路勾配、路面状況などにより移動体に生じる走行抵抗である。   The acquisition unit 101 may acquire information regarding the speed of the moving object, traffic jam information, and moving object information. The information regarding the speed of the moving body is the speed and acceleration of the moving body. Moreover, the acquisition part 101 may acquire the information regarding a road from the map information memorize | stored in the memory | storage part (not shown), and may acquire a road gradient etc. from an inclination sensor etc., for example. The information on the road is, for example, a running resistance generated in the moving body due to the road type, road gradient, road surface condition, and the like.

算出部102は、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する。所定区間とは、たとえば、道路上の一の所定地点(以下、「ノード」とする)と当該一のノードに隣り合う他のノードとを結ぶ区間(以下、「リンク」とする)である。ノードとは、たとえば、交差点やスタンドであってもよいし、所定の距離で区切られたリンク間の接続地点であってもよい。ノードおよびリンクは、記憶部に記憶された地図情報を構成する。地図情報は、たとえば、交差点(点)、道路(線や曲線)、領域(面)やこれらを表示する色などを数値化したベクタデータで構成される。   The calculation unit 102 calculates an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section. The predetermined section is, for example, a section (hereinafter referred to as “link”) connecting one predetermined point on the road (hereinafter referred to as “node”) and another node adjacent to the one node. The node may be, for example, an intersection or a stand, or a connection point between links separated by a predetermined distance. The nodes and links constitute map information stored in the storage unit. The map information includes, for example, vector data in which intersections (points), roads (lines and curves), regions (surfaces), colors for displaying these, and the like are digitized.

具体的には、算出部102は、第一情報と、第二情報と、第三情報と、を含む消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定する。より具体的には、算出部102は、移動体の速度に関する情報や移動体情報に基づいて、所定区間における推定エネルギー消費量を推定する。移動体情報とは、移動体の重量(乗車人数や積載荷物による重量も含む)、回転体の重量など、移動体走行時に消費または回収されるエネルギー量を変化させる要因となる情報である。なお、道路勾配が明らかな場合、算出部102は、さらに第四情報を加えた消費エネルギー推定式に基づいて、所定区間における推定エネルギー消費量を推定してもよい。   Specifically, the calculation unit 102 estimates the estimated energy consumption amount in a predetermined section based on the consumption energy estimation formula including the first information, the second information, and the third information. More specifically, the calculation unit 102 estimates an estimated energy consumption amount in a predetermined section based on information on the speed of the moving body and the moving body information. The moving body information is information that causes a change in the amount of energy consumed or recovered during traveling of the moving body, such as the weight of the moving body (including the number of passengers and the weight of the loaded luggage) and the weight of the rotating body. When the road gradient is clear, the calculation unit 102 may estimate the estimated energy consumption amount in the predetermined section based on the consumption energy estimation formula further including the fourth information.

消費エネルギー推定式とは、所定区間における移動体のエネルギー消費量を推定する推定式である。具体的には、消費エネルギー推定式は、エネルギー消費量を増減させる異なる要因である第一情報、第二情報および第三情報を含む多項式である。また、道路勾配が明らかな場合、消費エネルギー推定式には、さらに第四情報が加えられる。消費エネルギー推定式についての詳細な説明は後述する。   The consumption energy estimation formula is an estimation formula for estimating the energy consumption amount of the moving body in a predetermined section. Specifically, the energy consumption estimation formula is a polynomial including first information, second information, and third information, which are different factors that increase or decrease the energy consumption. Further, when the road gradient is clear, fourth information is further added to the energy consumption estimation formula. Detailed description of the energy consumption estimation formula will be described later.

第一情報は、移動体に備えられた装備品により消費されるエネルギーに関する情報である。この第一情報は、移動体の走行に関係しない要因で消費されるエネルギー消費量であり、移動体に備えられたエアコンやオーディオなどによるエネルギー消費量である。また、移動体の加減速時を含む走行時および停止時に消費されるエネルギーに関する情報である。   The first information is information related to energy consumed by the equipment provided in the moving body. This first information is the amount of energy consumed due to factors not related to the traveling of the moving body, and is the amount of energy consumed by the air conditioner, audio, etc. provided in the moving body. Moreover, it is the information regarding the energy consumed at the time of driving | running | working including the time of acceleration / deceleration of a moving body, and a stop.

具体的には、第一情報は移動体の走行に関係しない要因で消費されるエネルギー量である。より具体的には、第一情報は移動体に備えられたエアコン、カーオーディオ、ヘッドライト、ウインカー、ブレーキポンプなどの装備品によって消費されるエネルギー量である。   Specifically, the first information is the amount of energy consumed due to a factor not related to the traveling of the moving body. More specifically, the first information is the amount of energy consumed by equipment such as an air conditioner, a car audio, a headlight, a winker, and a brake pump provided in the moving body.

第二情報は、移動体の加減速時に消費および回収されるエネルギーに関する情報である。移動体の加減速時とは、移動体の速度が時間的に変化している走行状態である。具体的には、移動体の加減速時とは、所定時間内において、移動体の速度が変化する走行状態である。所定時間とは、一定間隔の時間の区切りであり、たとえば、単位時間当たりなどである。回収されるエネルギーとは、EV車の場合、たとえば、移動体の走行時にバッテリーに充電される電力である。また、回収されるエネルギーとは、ガソリン車の場合、たとえば、消費される燃料を低減(燃料カット)し節約することのできる燃料である。   The second information is information related to energy consumed and recovered during acceleration / deceleration of the moving body. The time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes with time. Specifically, the time of acceleration / deceleration of the moving body is a traveling state in which the speed of the moving body changes within a predetermined time. The predetermined time is a time interval at regular intervals, for example, per unit time. In the case of an EV vehicle, the recovered energy is, for example, electric power charged in a battery when the mobile body is traveling. In the case of a gasoline vehicle, the recovered energy is, for example, fuel that can be saved by reducing (fuel cut) the consumed fuel.

第三情報は、移動体の走行時に生じる抵抗により消費されるエネルギーに関する情報である。移動体の走行時とは、所定時間内において、移動体の速度が一定、加速もしくは減速している走行状態である。移動体の走行時に生じる抵抗とは、移動体の走行時に移動体の走行状態を変化させる要因である。具体的には、移動体の走行時に生じる抵抗とは、気象状況、道路状況、車両状況などにより移動体に生じる各種抵抗である。   The third information is information related to energy consumed by the resistance generated when the mobile object travels. The traveling time of the moving body is a traveling state where the speed of the moving body is constant, accelerated or decelerated within a predetermined time. The resistance generated when the mobile body travels is a factor that changes the travel state of the mobile body when the mobile body travels. Specifically, the resistance generated when the mobile body travels is various resistances generated in the mobile body due to weather conditions, road conditions, vehicle conditions, and the like.

気象状況により移動体に生じる抵抗とは、たとえば、雨、風などの気象変化による空気抵抗である。道路状況により移動体に生じる抵抗とは、道路勾配、路面の舗装状態、路面上の水などによる路面抵抗である。車両状況により移動体に生じる抵抗とは、タイヤの空気圧、乗車人数、積載重量などにより移動体にかかる負荷抵抗である。   The resistance generated in the moving body due to the weather condition is, for example, air resistance due to weather changes such as rain and wind. The resistance generated in the moving body according to the road condition is road resistance due to road gradient, pavement state of road surface, water on the road surface, and the like. The resistance generated in the moving body depending on the vehicle condition is a load resistance applied to the moving body due to tire air pressure, number of passengers, loaded weight, and the like.

具体的には、第三情報は、空気抵抗や路面抵抗、負荷抵抗を受けた状態で、移動体を一定速度、加速もしくは減速で走行させたときのエネルギー消費量である。より具体的には、第三情報は、たとえば、向かい風により移動体に生じる空気抵抗や、舗装されていない道路から受ける路面抵抗などを、移動体が一定速度、加速もしくは減速で走行するときに消費されるエネルギー消費量である。   Specifically, the third information is energy consumption when the moving body is driven at a constant speed, acceleration or deceleration while receiving air resistance, road surface resistance, and load resistance. More specifically, the third information is consumed when the moving body travels at a constant speed, acceleration or deceleration, for example, air resistance generated in the moving body due to the head wind or road surface resistance received from a road that is not paved. Energy consumption.

第四情報は、移動体が位置する高度の変化により消費および回収されるエネルギーに関する情報である。移動体が位置する高度の変化とは、移動体の位置する高度が時間的に変化している状態である。具体的には、移動体が位置する高度の変化とは、所定時間内において、移動体が勾配のある道路を走行することにより高度が変化する走行状態である。   The fourth information is information relating to energy consumed and recovered by a change in altitude at which the mobile object is located. The change in altitude at which the moving body is located is a state in which the altitude at which the moving body is located changes over time. Specifically, the change in altitude at which the moving body is located is a traveling state in which the altitude changes when the moving body travels on a sloped road within a predetermined time.

また、第四情報は、所定区間内における道路勾配が明らかな場合に求めることができる付加的な情報であり、これによりエネルギー消費量の推定精度を向上することができる。なお、道路の傾斜が不明な場合、または計算を簡略化する場合、移動体が位置する高度の変化はないものとして、後述する消費エネルギー推定式における道路勾配θ=0としてエネルギー消費量を推定することができる。   Further, the fourth information is additional information that can be obtained when the road gradient in the predetermined section is clear, thereby improving the energy consumption estimation accuracy. When the road slope is unknown or when the calculation is simplified, it is assumed that there is no change in the altitude at which the moving body is located, and the energy consumption is estimated with the road gradient θ = 0 in the energy consumption estimation formula described later. be able to.

探索部103は、記憶部に記憶された地図情報、取得部101によって取得された移動体の現在地点および初期保有エネルギー量、ならびに算出部102によって算出された推定エネルギー消費量に基づいて、移動体が現在地点から到達可能な地点である複数の到達可能地点を探索する。   The search unit 103 is based on the map information stored in the storage unit, the current location and initial stored energy amount of the mobile object acquired by the acquisition unit 101, and the estimated energy consumption calculated by the calculation unit 102. Search for a plurality of reachable points that can be reached from the current point.

具体的には、探索部103は、移動体の現在地点から移動可能なすべての経路において、それぞれ、移動体の現在地点を始点とし、移動体からの経路上の所定地点同士を結ぶ所定区間における推定エネルギー消費量の累計が最小となるように所定地点および所定区間を探索する。そして、探索部103は、移動体の現在地点から移動可能なすべての経路において、それぞれ、推定エネルギー消費量の累計が移動体の現時点での初期保有エネルギー量の範囲内にある所定地点を移動体の到達可能地点とする。   Specifically, in all routes that can move from the current location of the mobile object, the search unit 103 starts from the current location of the mobile object, and in a predetermined section that connects predetermined points on the route from the mobile object. A predetermined point and a predetermined section are searched so that the total of the estimated energy consumption is minimized. Then, the search unit 103 moves the mobile unit to a predetermined point where the total estimated energy consumption amount is within the range of the initial stored energy amount of the mobile unit in all routes that can move from the current point of the mobile unit. The reachable point of

より具体的には、探索部103は、移動体の現在地点を始点として、移動体の現在地点から移動可能なすべてのリンク、これらのリンクにそれぞれ接続するノード、これらのノードから移動可能なすべてのリンクと、移動体の到達可能なすべてのノードおよびリンクを順に探索する。このとき、探索部103は、新たな一のリンクを探索するごとに、一のリンクが接続する経路の推定エネルギー消費量を累計し、推定エネルギー消費量の累計が最小となるように当該一のリンクに接続するノードおよびこのノードに接続する複数のリンクを探索する。   More specifically, the search unit 103 starts from the current location of the mobile object as a starting point, all links that can be moved from the current location of the mobile object, nodes that connect to these links, and all that can be moved from these nodes. , And all the nodes and links that can be reached by the moving object. At this time, each time the search unit 103 searches for a new link, the search unit 103 accumulates the estimated energy consumption of the route to which the one link is connected, and the accumulated energy consumption is minimized. Search for a node connected to the link and a plurality of links connected to this node.

たとえば、探索部103は、当該一のリンクおよび他のリンクが同一のノードに接続されている場合、このノードに接続する複数のリンクのうち、移動体の現在地点から当該ノードまでの推定エネルギー消費量の累計の少ないリンクの推定エネルギー消費量を使って当該ノードの推定エネルギー消費量の累計を算出する。そして、探索部103は、探索されたノードおよびリンクで構成される複数の経路において、それぞれ、推定エネルギー消費量の累計が移動体の初期保有エネルギー量の範囲内にあるすべてのノードを移動体の到達可能地点として探索する。このように推定エネルギー消費量の少ないリンクの推定エネルギー消費量を使うことにより、当該ノードの推定エネルギー消費量の正しい累計を算出することができる。   For example, when the one link and the other link are connected to the same node, the search unit 103 estimates the estimated energy consumption from the current location of the mobile body to the node among the plurality of links connected to the node. The estimated energy consumption of the relevant node is calculated using the estimated energy consumption of the link with a small amount of accumulation. Then, in the plurality of paths configured by the searched nodes and links, the search unit 103 sets all the nodes whose accumulated energy consumption amount is within the range of the initial stored energy amount of the mobile object, respectively. Search as a reachable point. As described above, by using the estimated energy consumption of the link with the small estimated energy consumption, it is possible to calculate the correct total of the estimated energy consumption of the node.

また、探索部103は、移動体の移動が禁止された所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。移動体の移動が禁止された所定区間とは、たとえば、一方通行の逆走となるリンク、時間規制や季節規制により通行禁止区間となるリンクである。時間規制とは、たとえば、通学路や行事などに設定されることにより、ある時間帯で通行が禁止されることである。季節規制とは、たとえば、大雨や大雪などにより通行が禁止されることである。   Further, the search unit 103 may search for a reachable point by excluding a predetermined section in which the movement of the mobile object is prohibited from candidates for searching for a reachable point of the mobile object. The predetermined section in which the movement of the moving body is prohibited is, for example, a link that is one-way reverse running, or a link that is a passage-prohibited section due to time restrictions or seasonal restrictions. The time restriction is, for example, that traffic is prohibited in a certain time zone by being set as a school road or an event. The seasonal restriction is, for example, that traffic is prohibited due to heavy rain or heavy snow.

探索部103は、複数の所定区間のうち、一の所定区間のつぎに選択する他の所定区間の重要度が当該一の所定区間の重要度よりも低い場合、他の所定区間を、移動体の到達可能地点を探索するための候補から除いて当該到達可能地点を探索してもよい。所定区間の重要度とは、たとえば、道路種別などである。道路種別とは、法定速度や、道路の勾配、道路幅、信号の有無などの道路状態の違いにより区別することのできる道路の種類である。具体的には、道路種別とは、一般国道、高速道路、一般道路、市街地などを通る細街路などである。細街路とは、たとえば、市街地内にある幅員4メートル未満の建築基準法に規定された道路である。   When the importance of another predetermined section to be selected next to one predetermined section among the plurality of predetermined sections is lower than the importance of the one predetermined section, the search unit 103 selects another predetermined section as a mobile object The reachable point may be searched for by removing it from the candidates for searching for the reachable point. The importance of the predetermined section is, for example, a road type. The road type is a type of road that can be distinguished by differences in road conditions such as legal speed, road gradient, road width, and presence / absence of signals. Specifically, the road type is a narrow street that passes through a general national road, a highway, a general road, an urban area, or the like. A narrow street is, for example, a road defined in the Building Standard Law with a width of less than 4 meters in an urban area.

さらに、探索部103は、一の橋または一のトンネルの入口および出口が移動体の到達可能地点となる場合、分割部104によって分割される地図情報の一の橋または一のトンネルを構成するすべての領域が移動体の到達可能範囲に含まれるように移動体の到達可能地点を探索するのが好ましい。具体的には、探索部103は、たとえば、一の橋または一のトンネルの入口が移動体の到達可能地点となる場合、一の橋または一のトンネルの入口から出口に向かって、一の橋または一のトンネル上に複数の到達可能地点が探索されるように当該到達可能地点を探索してもよい。一の橋または一のトンネルの入口とは、一の橋または一のトンネルの、移動体の現在地点に近い側の始点である。   Further, when the entrance and exit of one bridge or one tunnel are reachable points of the moving body, the search unit 103 moves all the areas constituting one bridge or one tunnel of the map information divided by the dividing unit 104. It is preferable to search for a reachable point of the moving body so as to be included in the reachable range of the body. Specifically, for example, when the entrance of one bridge or one tunnel is a reachable point of the mobile object, the search unit 103 is located on one bridge or one tunnel from the entrance of the one bridge or one tunnel toward the exit. You may search the said reachable point so that several reachable points may be searched. The entrance of one bridge or one tunnel is the starting point of one bridge or one tunnel on the side close to the current position of the moving object.

分割部104は、地図情報を複数の領域に分割する。具体的には、分割部104は、探索部103によって探索された移動体の複数の到達可能地点のうち、移動体の現在地点から最も離れた到達可能地点に基づいて、地図情報を複数の矩形状の領域に分割し、たとえばm×mドットのメッシュデータに変換する。m×mドットのメッシュデータは、後述する付与部105によって識別情報が付与されたラスタデータ(画像データ)として扱われる。なお、m×mドットのそれぞれのmは同じ数値でも構わないし、異なる数値でも構わない。   The dividing unit 104 divides the map information into a plurality of areas. Specifically, the dividing unit 104 divides the map information into a plurality of rectangles based on a reachable point farthest from the current point of the mobile object among a plurality of reachable points of the mobile object searched by the search unit 103. It is divided into shape areas and converted into mesh data of m × m dots, for example. The m × m dot mesh data is handled as raster data (image data) to which identification information is added by the adding unit 105 described later. Note that each m of m × m dots may be the same numerical value or a different numerical value.

より具体的には、分割部104は、最大経度、最小経度、最大緯度、最小緯度を抽出し移動体の現在地点からの距離を算出する。そして、分割部104は、たとえば、移動体の現在地点から最も遠い到達可能地点と移動体の現在地点とをn等分したときの一の領域の大きさを、地図情報を複数の領域に分割したときの一の領域の大きさとし、地図情報をm×mドットのメッシュデータに分割する。このとき、メッシュデータの周辺のたとえば4ドット分を空白にするために、n=(m/2)−4とする。   More specifically, the dividing unit 104 extracts the maximum longitude, the minimum longitude, the maximum latitude, and the minimum latitude, and calculates the distance from the current location of the moving object. Then, the dividing unit 104 divides the map information into a plurality of areas, for example, by dividing the size of one area when the reachable point farthest from the current position of the moving object and the current position of the moving object are equally divided into n. The map information is divided into mesh data of m × m dots. At this time, n = (m / 2) −4 is set in order to make, for example, 4 dots around the mesh data blank.

付与部105は、探索部103によって探索された複数の到達可能地点に基づいて、分割部104によって分割された複数の領域にそれぞれ移動体が到達可能であるか否かを識別する識別情報を付与する。具体的には、付与部105は、分割部104によって分割された一の領域に移動体の到達可能地点が含まれる場合、その一の領域に移動体が到達可能であることを識別する到達可能の識別情報を付与する。その後、付与部105は、分割部104によって分割された一の領域に移動体の到達可能地点が含まれない場合、その一の領域に移動体が到達不可能であることを識別する到達不可能の識別情報を付与する。   The assigning unit 105 assigns identification information for identifying whether or not the mobile body can reach each of the plurality of areas divided by the dividing unit 104 based on the plurality of reachable points searched by the search unit 103. To do. Specifically, when the reachable point of the moving object is included in one area divided by the dividing unit 104, the granting unit 105 can reach the one area to identify that the moving object is reachable. The identification information is assigned. After that, when the reachable point of the moving object is not included in the one area divided by the dividing unit 104, the assigning unit 105 identifies that the moving object cannot reach the one area. The identification information is assigned.

より具体的には、付与部105は、m×mに分割されたメッシュデータの各領域に、到達可能の識別情報「1」または到達不可能の識別情報「0」を付与することで、m行m列の2次元行列データのメッシュデータに変換する。分割部104および付与部105は、このように地図情報を分割してm行m列の2次元行列データのメッシュデータに変換し、2値化されたラスタデータとして扱う。   More specifically, the assigning unit 105 assigns reachable identification information “1” or unreachable identification information “0” to each area of the mesh data divided into m × m. It is converted into mesh data of two-dimensional matrix data in rows and columns. The dividing unit 104 and the assigning unit 105 divide the map information in this way, convert it into mesh data of 2D matrix data of m rows and m columns, and handle it as binarized raster data.

付与部105は、分割部104によって分割された複数の領域に対して識別情報の変更処理をおこなう変更部を備える。具体的には、付与部105は、変更部によって、地図情報が分割されてなるメッシュデータを2値化されたラスタデータとして扱い、クローニング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。また、付与部105は、変更部によって、オープニング処理(縮小処理後に膨張処理をおこなう処理)をおこなってもよい。   The assigning unit 105 includes a changing unit that performs identification information changing processing on a plurality of areas divided by the dividing unit 104. Specifically, the adding unit 105 treats mesh data obtained by dividing the map information as binarized raster data by the changing unit, and performs a cloning process (a process of performing a reduction process after the expansion process). Further, the assigning unit 105 may perform an opening process (a process of performing an expansion process after the reduction process) by the changing unit.

具体的には、変更部は、第1,第2の変更部からなり、第1変更部は、識別情報が付与された一の領域に隣り合う他の領域に到達可能の識別情報が付与されている場合、当該一の領域の識別情報を到達可能の識別情報に変更する(膨張処理)。より具体的には、第1変更部は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達可能の識別情報である「1」が付与されている場合、当該一の領域の識別情報を「1」に変更する。   Specifically, the changing unit includes first and second changing units, and the first changing unit is provided with identification information that can reach another region adjacent to one region to which the identification information is added. If so, the identification information of the one area is changed to reachable identification information (expansion process). More specifically, the first change unit is any one of the other areas adjacent to the left, bottom, bottom, bottom right, right, top right, top, top left, and left of one rectangular area. If “1”, which is identification information that can reach the area, is assigned, the identification information of the one area is changed to “1”.

また、第2変更部は、第1変更部による識別情報の変更後、識別情報が付与された一の領域に隣り合う他の領域に到達不可能の識別情報が付与されている場合、当該一の領域の識別情報を到達不可能の識別情報に変更する(縮小処理)。より具体的には、第2変更部は、矩形状の一の領域の、左下、下、右下、右、右上、上、左上、左の8方向に隣り合う他の領域のうちのいずれかの領域に到達不可能の識別情報である「0」が付与されている場合、当該一の領域の識別情報を「0」に変更する。第1変更部による膨張処理と、第2変更部による縮小処理は、同じ回数ずつおこなう。   In addition, after the identification information is changed by the first changing unit, the second changing unit is provided with identification information that cannot reach another region adjacent to the one region to which the identification information is provided. The identification information of the area is changed to unreachable identification information (reduction process). More specifically, the second changing unit is any one of the other regions adjacent to each other in the eight directions of lower left, lower, lower right, right, upper right, upper, upper left, and left of one rectangular region. If “0”, which is identification information that cannot reach the area, is assigned, the identification information of the one area is changed to “0”. The expansion process by the first changing unit and the reduction process by the second changing unit are performed the same number of times.

付与部105は、分割部104によって分割された複数の領域のうち、移動体が現在地点から到達可能な地点である到達可能地点を含む領域に、当該移動体が到達可能であることを識別する到達可能の識別情報を付与して当該移動体の到達可能範囲とする。その後、付与部105は、到達可能の識別情報を付与した領域に隣り合う領域にも到達可能の識別情報を付与し、移動体の到達可能範囲に欠損点が生じないように各領域の識別情報を変更する。   The granting unit 105 identifies that the moving body can reach a region including a reachable point that is a point where the moving body can reach from the current point among the plurality of regions divided by the dividing unit 104. Reachable identification information is given to make the movable body reachable. Thereafter, the assigning unit 105 assigns reachable identification information to a region adjacent to the region to which reachable identification information is assigned, and the identification information of each region so that no missing point is generated in the reachable range of the moving object. To change.

また、付与部105は、地図情報の一の橋または一のトンネルの入口および出口に相当する分割された地図情報に、到達可能であることを識別する到達可能の識別情報が付与されている場合、当該一の橋または当該一のトンネルを構成するすべての領域に相当する分割された地図情報に、到達可能の識別手段を付与する。具体的には、付与部105は、たとえば、一の橋または一のトンネルの入口および出口に相当する各領域にそれぞれ到達可能の識別情報が付与されている場合、一の橋または一のトンネルの入口に相当する領域から出口に相当する領域に至るまでに移動体が移動可能な全領域に到達可能の識別情報を付与する。   Further, when the reachable identification information for identifying that the reachable unit 105 is reachable is assigned to the divided map information corresponding to the entrance and exit of one bridge or one tunnel of the map information, Reachable identification means is assigned to the divided map information corresponding to all areas constituting one bridge or one tunnel. Specifically, the granting unit 105 corresponds to the entrance of one bridge or one tunnel, for example, when the reachable identification information is given to each area corresponding to the entrance and exit of one bridge or one tunnel, respectively. Identification information that can reach all areas where the moving body can move from the area to the area corresponding to the exit is given.

より具体的には、付与部105は、たとえば、第1変更部による膨張処理前に、一の橋または一のトンネルの入口および出口に相当する各領域にそれぞれ到達可能の識別情報である「1」が付与されている場合で、一の橋または一のトンネル上に欠損点が生じているときに、一の橋または一のトンネルの入口に相当する領域と出口に相当する領域とを結ぶ区間上に位置する全領域の識別情報を「1」に変更する。一の橋または一のトンネルの入口に相当する領域と出口に相当する領域とを結ぶ区間とは、複数のカーブを含む道路に相当する区間であってもよいし、一本の直線状の道路に相当する区間であってもよい。   More specifically, the assigning unit 105 has identification information “1” that is reachable to each region corresponding to an entrance and an exit of one bridge or one tunnel, for example, before the expansion process by the first changing unit. All areas located on the section connecting the area corresponding to the entrance and the area corresponding to the exit of one bridge or tunnel when there is a defect point on the one bridge or tunnel if it is granted Is changed to “1”. The section connecting the area corresponding to the entrance of one bridge or tunnel and the area corresponding to the exit may be a section corresponding to a road including a plurality of curves, or a single straight road. It may be a section.

輪郭データ算出部106は、付与部105によって付与された到達可能範囲の輪郭の輪郭データを算出する。たとえば、到達可能な識別情報「1」が付与されている最も外側の輪郭をつなぐことにより、到達可能範囲の外輪郭を算出する。   The contour data calculation unit 106 calculates the contour data of the contour of the reachable range given by the grant unit 105. For example, the outer contour of the reachable range is calculated by connecting the outermost contour to which the reachable identification information “1” is assigned.

また、輪郭データ算出部106は、到達可能範囲の内部に移動体が到達不可能な範囲の輪郭を算出することができる。この到達不可能な範囲とは、到達可能範囲の内部に「穴」が空く形で生じることがある。この穴とは、たとえば、地図情報上における湖や沼、山など、移動体が進入できない領域に相当する。そして、輪郭データ算出部106は、到達可能範囲の内部に、移動体が進入できない到達不可能範囲がある場合、この到達不可能範囲の内輪郭を算出する。   Further, the contour data calculation unit 106 can calculate a contour in a range where the moving body cannot reach within the reachable range. This unreachable range may occur in the form of a “hole” inside the reachable range. This hole corresponds to a region where a moving body cannot enter, such as a lake, a swamp, or a mountain on map information. Then, when there is an unreachable range in which the mobile object cannot enter within the reachable range, the contour data calculation unit 106 calculates the inner contour of this unreachable range.

移動体の到達可能範囲、および到達不可能範囲の輪郭は、たとえば、フリーマンのチェインコードを用いて算出することができる。到達可能範囲および到達可能範囲の内部の到達不可能範囲は、いずれも同じチェインコードを用いて算出することができる。詳細は後述するが、識別情報が付与された地図情報を上下方向に1ラインずつ水平方向に走査しておこなう。   The reachable range and unreachable range outline of the mobile object can be calculated using, for example, a Freeman chain code. Both the reachable range and the unreachable range inside the reachable range can be calculated using the same chain code. Although details will be described later, the map information to which the identification information is added is scanned in the horizontal direction one line at a time in the vertical direction.

輪郭データ算出部106は、向き算出部107を含む。向き算出部107は、輪郭を算出する際の向きを算出する。この識別情報が示す方向により、外輪郭であるか内輪郭であるかを判別でき、到達可能範囲、および到達不可能範囲の輪郭を検出することができる。上記1ラインずつ走査する際に、ある走査ではじめに識別情報を検出した箇所(識別箇所1)に対して、次回以降の走査で識別箇所1に対して、縦横斜めのいずれかの方向で隣接する他の識別情報を検出した箇所(識別箇所2)の検出方向をチェインコードにしたがい加算していく。この際、各識別情報の検出方向がいずれも反時計回りとして検出された識別情報は外輪郭となり、各識別情報の検出方向が時計回りで検出された識別情報は内輪郭になる。   The contour data calculation unit 106 includes a direction calculation unit 107. The direction calculation unit 107 calculates the direction when calculating the contour. Depending on the direction indicated by the identification information, it can be determined whether the contour is an outer contour or an inner contour, and the reachable range and the contour of the unreachable range can be detected. When scanning one line at a time, a point where identification information is first detected in one scan (identification point 1) is adjacent to the identification point 1 in the next or subsequent scan in either a vertical or horizontal direction. The detection direction of the location where the other identification information is detected (identification location 2) is added according to the chain code. At this time, the identification information detected with the detection direction of each identification information counterclockwise is an outer contour, and the identification information detected with the detection direction of each identification information clockwise is an inner contour.

輪郭データ算出部106は、到達可能範囲を示す外輪郭および到達不可能範囲を示す内輪郭それぞれについて、各識別情報ごとのチェインコードの値(数列)を出力する。この際、あわせて、向き算出部107は、識別情報の検出方向(地図情報上での回転方向)として時計回り、あるいは反時計回りであることを出力する。   The contour data calculation unit 106 outputs a chain code value (sequence) for each piece of identification information for each of the outer contour indicating the reachable range and the inner contour indicating the unreachable range. At this time, the direction calculation unit 107 also outputs that the identification information detection direction (rotation direction on the map information) is clockwise or counterclockwise.

表示制御部108は、付与部105によって識別情報が付与された領域の識別情報に基づいて、移動体の到達可能範囲を地図情報とともに表示部110に表示させる。具体的には、表示制御部108は、付与部105によって識別情報が付与された複数の画像データであるメッシュデータをベクタデータに変換し、記憶部に記憶された地図情報とともに表示部110に表示させる。   The display control unit 108 causes the display unit 110 to display the reachable range of the moving object together with the map information based on the identification information of the region to which the identification information is given by the granting unit 105. Specifically, the display control unit 108 converts mesh data, which is a plurality of image data to which identification information has been added by the adding unit 105, into vector data, and displays it on the display unit 110 together with the map information stored in the storage unit. Let

より具体的には、表示制御部108は、輪郭データ算出部106により算出された移動体の到達可能範囲の輪郭を抽出し表示部110に表示させる。また、到達可能範囲の内部に到達不可能範囲が存在する場合には、この到達不可能範囲についても輪郭を抽出し表示部110に表示させる。この際、識別情報の検出方向が反時計回りとされた該当する領域を到達可能範囲として表示させる。また、識別情報の検出方向が時計回りとされた該当する領域を到達可能範囲の内部で到達不可能範囲として表示させる。   More specifically, the display control unit 108 extracts the contour of the reachable range of the moving object calculated by the contour data calculation unit 106 and causes the display unit 110 to display the contour. If there is an unreachable range within the reachable range, the contour is also extracted from the unreachable range and displayed on the display unit 110. At this time, the corresponding area in which the detection direction of the identification information is counterclockwise is displayed as the reachable range. Further, the corresponding area in which the detection direction of the identification information is clockwise is displayed as the unreachable range within the reachable range.

つぎに、画像処理装置100による画像処理について説明する。図2は、画像処理装置による画像処理の手順の一例を示すフローチャートである。図2のフローチャートにおいて、画像処理装置100は、まず、取得部101によって、移動体の現在地点に関する情報、および、移動体の現在地点において移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を取得する(ステップS201,S202)。このとき、画像処理装置100は、移動体情報も取得してもよい。   Next, image processing by the image processing apparatus 100 will be described. FIG. 2 is a flowchart illustrating an example of an image processing procedure performed by the image processing apparatus. In the flowchart of FIG. 2, the image processing apparatus 100 first uses the acquisition unit 101 to obtain information on the current location of the moving object and information on the initial amount of energy held by the moving object at the current location of the moving object. Are acquired (steps S201 and S202). At this time, the image processing apparatus 100 may also acquire moving body information.

そして、画像処理装置100は、算出部102によって、移動体が所定区間を走行する際に消費するエネルギーである推定エネルギー消費量を算出する(ステップS203)。このとき、画像処理装置100は、移動体の経路上の所定地点同士を結ぶ複数の所定区間における推定エネルギー消費量をそれぞれ算出する。つぎに、画像処理装置100は、探索部103によって、記憶部に記憶された地図情報と、ステップS202,S203において取得した初期保有エネルギー量および推定エネルギー消費量とに基づいて、移動体の複数の到達可能地点を探索する(ステップS204)。   Then, the image processing apparatus 100 uses the calculation unit 102 to calculate an estimated energy consumption that is energy consumed when the moving body travels in a predetermined section (step S203). At this time, the image processing apparatus 100 calculates estimated energy consumption amounts in a plurality of predetermined sections connecting predetermined points on the route of the moving body. Next, the image processing apparatus 100 uses the search unit 103 based on the map information stored in the storage unit and the initial stored energy amount and the estimated energy consumption amount acquired in steps S202 and S203. A reachable point is searched (step S204).

つぎに、画像処理装置100は、分割部104によって、ベクタデータからなる地図情報を複数の領域に分割し、ラスタデータからなるメッシュデータに変換する(ステップS205)。つぎに、画像処理装置100は、ステップS204において探索した複数の到達可能地点に基づいて、ステップS205において分割した複数の領域にそれぞれ、付与部105によって到達可能または到達不可能の識別情報を付与する(ステップS206)。その後、画像処理装置100は、ステップS206において識別情報を付与した複数の領域の識別情報に基づいて、表示制御部108によって移動体の到達可能範囲を表示部110に表示させる(ステップS207)。また、移動体の到達可能範囲の内部に到達不可能範囲がある場合には、ステップS206において識別情報を付与した複数の領域の識別情報に基づいて、到達不可能範囲を表示させ(ステップS208)、本フローチャートによる処理を終了する。   Next, the image processing apparatus 100 uses the dividing unit 104 to divide the map information made up of vector data into a plurality of regions and convert it into mesh data made up of raster data (step S205). Next, the image processing apparatus 100 assigns the reachable or unreachable identification information to each of the plurality of regions divided in step S205 based on the plurality of reachable points searched in step S204. (Step S206). After that, the image processing apparatus 100 causes the display control unit 108 to display the reachable range of the moving object on the display unit 110 based on the identification information of the plurality of areas to which the identification information is assigned in step S206 (step S207). If there is an unreachable range within the reachable range of the mobile object, the unreachable range is displayed based on the identification information of the plurality of areas to which the identification information is assigned in step S206 (step S208). Then, the process according to this flowchart is terminated.

以上説明したように、実施の形態にかかる画像処理装置100は、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、画像処理装置100は、到達可能の識別情報が付与された領域に基づいて移動体の到達可能範囲を生成する。このため、画像処理装置100は、海や湖、山脈など移動体の走行不可能な領域を除いた状態で移動体の到達可能範囲を生成することができる。したがって、画像処理装置100は、移動体の到達可能範囲を正確に表示することができる。   As described above, the image processing apparatus 100 according to the embodiment divides the map information into a plurality of areas, searches for each area to determine whether or not the moving body is reachable, and each area has a moving body. Reachable or unreachable identification information that identifies reachability or unreachability is added. Then, the image processing apparatus 100 generates a reachable range of the moving object based on the region to which reachable identification information is assigned. For this reason, the image processing apparatus 100 can generate the reachable range of the moving object in a state excluding areas where the moving object cannot travel, such as the sea, lakes, and mountain ranges. Therefore, the image processing apparatus 100 can accurately display the reachable range of the moving object.

また、画像処理装置100は、到達可能の識別情報が付与された領域に基づいて移動体の到達可能範囲の内部の到達不可能範囲を生成する。このため、画像処理装置100は、移動体の到達可能範囲の内部に湖や沼、山などの到達不可能範囲がある場合には、この到達不可能範囲を表示することができる。   Further, the image processing apparatus 100 generates an unreachable range inside the reachable range of the moving object based on the region to which reachable identification information is assigned. Therefore, the image processing apparatus 100 can display the unreachable range when there is an unreachable range such as a lake, a swamp, or a mountain inside the reachable range of the moving object.

また、画像処理装置100は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クローニングの膨張処理をおこなう。このため、画像処理装置100は、移動体の到達可能範囲内の欠損点を除去することができる。   Further, the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information that can be reached or cannot reach each of the plurality of areas, and then performs an expansion process of cloning. For this reason, the image processing apparatus 100 can remove missing points within the reachable range of the moving object.

また、画像処理装置100は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、画像処理装置100は、移動体の到達可能範囲の孤立点を除去することができる。   In addition, the image processing apparatus 100 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating whether the plurality of areas are reachable or unreachable, and then performs an opening reduction process. For this reason, the image processing apparatus 100 can remove isolated points in the reachable range of the moving object.

このように、画像処理装置100は、移動体の到達可能範囲の欠損点や孤立点を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、画像処理装置100は、地図情報を複数の領域に分割して生成したメッシュデータの輪郭を抽出する。このため、画像処理装置100は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。   As described above, the image processing apparatus 100 can remove missing points and isolated points in the reachable range of the moving body, and therefore, the travelable range of the moving body can be displayed on a two-dimensional smooth surface in an easy-to-read manner. it can. The image processing apparatus 100 also extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the image processing apparatus 100 can display the outline of the reachable range of the moving object smoothly.

また、画像処理装置100は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、画像処理装置100は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクローニングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損点を除去することができる。したがって、画像処理装置100は、移動体の到達可能範囲を生成するための処理量を低減することができる。また、画像処理装置100は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。   In addition, the image processing apparatus 100 narrows down the road for searching for the reachable point of the moving object, and searches for the reachable point of the moving object. For this reason, the image processing apparatus 100 can reduce the processing amount at the time of searching the reachable point of a moving body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the mobile object, the expansion process of cloning is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the image processing apparatus 100 can reduce the processing amount for generating the reachable range of the moving object. In addition, the image processing apparatus 100 can display the travelable range of the moving object in a two-dimensional smooth manner so that it can be easily seen.

以下に、本発明の実施例1について説明する。本実施例では、車両に搭載されるナビゲーション装置300を画像処理装置100として、本発明を適用した場合の一例について説明する。   Example 1 of the present invention will be described below. In the present embodiment, an example in which the present invention is applied will be described with the navigation apparatus 300 mounted on the vehicle as the image processing apparatus 100.

(ナビゲーション装置300のハードウェア構成)
つぎに、ナビゲーション装置300のハードウェア構成について説明する。図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。図3において、ナビゲーション装置300は、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、音声I/F(インターフェース)308、マイク309、スピーカ310、入力デバイス311、映像I/F312、ディスプレイ313、カメラ314、通信I/F315、GPSユニット316、各種センサ317を備えている。各構成部301〜317は、バス320によってそれぞれ接続されている。
(Hardware configuration of navigation device 300)
Next, the hardware configuration of the navigation device 300 will be described. FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus. In FIG. 3, a navigation device 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided. Each component 301 to 317 is connected by a bus 320.

CPU301は、ナビゲーション装置300の全体の制御を司る。ROM302は、ブートプログラム、推定エネルギー消費量算出プログラム、到達可能地点探索プログラム、識別情報付与プログラム、地図データ表示プログラムなどのプログラムを記録している。RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録された各種プログラムを実行することによって、ナビゲーション装置300の全体の制御を司る。   The CPU 301 governs overall control of the navigation device 300. The ROM 302 records programs such as a boot program, an estimated energy consumption calculation program, a reachable point search program, an identification information addition program, and a map data display program. The RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.

推定エネルギー消費量算出プログラムでは、車両の推定エネルギー消費量を算出する消費エネルギー推定式に基づいて、一のノードと隣り合うノードとを結ぶリンクにおける推定エネルギー消費量を算出する。到達可能地点探索プログラムでは、推定プログラムにおいて算出された推定エネルギー消費量に基づいて、車両の現在地点での残存エネルギー量で到達可能な複数の地点(ノード)が探索される。識別情報付与プログラムでは、探索プログラムにおいて探索された複数の到達可能地点に基づいて、地図情報を分割した複数の領域に、車両が到達可能または到達不可能であることを識別する識別情報が付与される。地図データ表示プログラムでは、識別情報付与プログラムによって識別情報が付与された複数の領域に基づいて、車両の到達可能範囲と到達不可能範囲、および到達可能範囲の内部の到達不可能範囲をディスプレイ313に表示させる。   In the estimated energy consumption calculation program, an estimated energy consumption in a link connecting one node and an adjacent node is calculated based on a consumption energy estimation expression for calculating an estimated energy consumption of the vehicle. In the reachable point search program, a plurality of points (nodes) that can be reached with the remaining energy amount at the current point of the vehicle are searched based on the estimated energy consumption calculated in the estimation program. In the identification information addition program, identification information for identifying whether the vehicle is reachable or unreachable is assigned to a plurality of areas obtained by dividing the map information based on a plurality of reachable points searched in the search program. The In the map data display program, the reachable range and unreachable range of the vehicle, and the unreachable range inside the reachable range are displayed on the display 313 based on the plurality of areas to which the identification information is given by the identification information giving program. Display.

磁気ディスクドライブ304は、CPU301の制御にしたがって磁気ディスク305に対するデータの読み取り/書き込みを制御する。磁気ディスク305は、磁気ディスクドライブ304の制御で書き込まれたデータを記録する。磁気ディスク305としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。   The magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301. The magnetic disk 305 records data written under the control of the magnetic disk drive 304. As the magnetic disk 305, for example, an HD (hard disk) or an FD (flexible disk) can be used.

また、光ディスクドライブ306は、CPU301の制御にしたがって光ディスク307に対するデータの読み取り/書き込みを制御する。光ディスク307は、光ディスクドライブ306の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク307は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク307のほか、MO、メモリカードなどを用いることができる。   The optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301. The optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306. As the optical disc 307, a writable recording medium can be used. In addition to the optical disk 307, an MO, a memory card, or the like can be used as a removable recording medium.

磁気ディスク305および光ディスク307に記録される情報の一例としては、地図データ、車両情報、道路情報、走行履歴などが挙げられる。地図データは、カーナビゲーションシステムにおいて車両の到達可能地点を探索するときや、車両の到達可能範囲を表示するときに用いられ、建物、河川、地表面などの地物(フィーチャ)を表す背景データ、道路の形状をリンクやノードなどで表す道路形状データなどを含むベクタデータである。   Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data, vehicle information, road information, travel history, and the like. Map data is used when searching for a reachable point of a vehicle in a car navigation system or when displaying a reachable range of a vehicle. This is vector data including road shape data that expresses the shape of the road by links and nodes.

音声I/F308は、音声入力用のマイク309および音声出力用のスピーカ310に接続される。マイク309に受音された音声は、音声I/F308内でA/D変換される。マイク309は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ310からは、所定の音声信号を音声I/F308内でD/A変換した音声が出力される。   The audio I / F 308 is connected to a microphone 309 for audio input and a speaker 310 for audio output. The sound received by the microphone 309 is A / D converted in the sound I / F 308. For example, the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.

入力デバイス311は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス311は、リモコン、キーボード、タッチパネルのうちいずれか1つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。   Examples of the input device 311 include a remote controller having a plurality of keys for inputting characters, numerical values, various instructions, and the like, a keyboard, and a touch panel. The input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but can also be realized by a plurality of forms.

映像I/F312は、ディスプレイ313に接続される。映像I/F312は、具体的には、たとえば、ディスプレイ313全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ313を制御する制御ICなどによって構成される。   The video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.

ディスプレイ313には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ313としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。   The display 313 displays icons, cursors, menus, windows, or various data such as characters and images. As the display 313, for example, a TFT liquid crystal display, an organic EL display, or the like can be used.

カメラ314は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ314によって車両外部を撮影し、撮影した画像をCPU301において画像解析したり、映像I/F312を介して磁気ディスク305や光ディスク307などの記録媒体に出力したりする。   The camera 314 captures images inside or outside the vehicle. The image may be either a still image or a moving image. For example, the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to

通信I/F315は、無線を介してネットワークに接続され、ナビゲーション装置300およびCPU301のインターフェースとして機能する。ネットワークとして機能する通信網には、CANやLIN(Local Interconnect Network)などの車内通信網や、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F315は、たとえば、公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System(登録商標))/ビーコンレシーバなどである。   The communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301. Communication networks that function as networks include in-vehicle communication networks such as CAN and LIN (Local Interconnect Network), public line networks and mobile phone networks, DSRC (Dedicated Short Range Communication), LAN, and WAN. The communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System (registered trademark)) / beacon receiver, or the like.

GPSユニット316は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット316の出力情報は、後述する各種センサ317の出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば、緯度・経度、高度などの、地図データ上の1点を特定する情報である。   The GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle. The output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later. The information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.

各種センサ317は、車速センサ、加速度センサ、角速度センサ、傾斜センサなどの、車両の位置や挙動を判断するための情報を出力する。各種センサ317の出力値は、CPU301による車両の現在位置の算出や、速度や方位の変化量の算出に用いられる。   The various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and a tilt sensor. The output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle and the amount of change in speed and direction.

図1に示した画像処理装置100の取得部101、算出部102、探索部103、分割部104、付与部105、表示制御部108は、上述したナビゲーション装置300におけるROM302、RAM303、磁気ディスク305、光ディスク307などに記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行し、ナビゲーション装置300における各部を制御することによってその機能を実現する。   The acquisition unit 101, the calculation unit 102, the search unit 103, the dividing unit 104, the adding unit 105, and the display control unit 108 of the image processing apparatus 100 illustrated in FIG. 1 are the ROM 302, the RAM 303, the magnetic disk 305, the navigation device 300 described above. The CPU 301 executes a predetermined program using a program and data recorded on the optical disc 307 and the like, and realizes its function by controlling each unit in the navigation device 300.

(ナビゲーション装置300による推定エネルギー消費量算出の概要)
本実施例のナビゲーション装置300は、自装置が搭載された車両の推定エネルギー消費量を算出する。具体的には、ナビゲーション装置300は、たとえば、速度、加速度、車両の勾配に基づいて、第一情報と、第二情報と、第三情報と、を含む消費エネルギー推定式のいずれか一つ以上の式を用いて、所定区間における車両の推定エネルギー消費量を算出する。所定区間とは、道路上の一のノード(たとえば交差点)と当該一のノードに隣り合う他のノードとを結ぶリンクである。
(Outline of estimated energy consumption calculation by the navigation device 300)
The navigation device 300 according to the present embodiment calculates the estimated energy consumption of the vehicle on which the device itself is mounted. Specifically, the navigation apparatus 300 is one or more of energy consumption estimation formulas including first information, second information, and third information based on, for example, speed, acceleration, and vehicle gradient. Is used to calculate the estimated energy consumption of the vehicle in a predetermined section. The predetermined section is a link connecting one node (for example, an intersection) on the road and another node adjacent to the one node.

より具体的には、ナビゲーション装置300は、プローブで提供される渋滞情報や、サーバを介して取得した渋滞予測データ、記憶装置に記憶されたリンクの長さや道路種別などに基づいて、車両がリンクを走行し終わるのに要する旅行時間を算出する。そして、ナビゲーション装置300は、次の(1)式〜(4)式に示す消費エネルギー推定式のいずれかを用いて単位時間当たりの推定エネルギー消費量を算出し、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出する。   More specifically, the navigation device 300 determines whether the vehicle is linked based on the traffic jam information provided by the probe, the traffic jam prediction data acquired through the server, the link length or road type stored in the storage device, and the like. The travel time required to finish driving is calculated. And the navigation apparatus 300 calculates the estimated energy consumption per unit time using either of the consumption energy estimation formulas shown in the following formulas (1) to (4), and the vehicle travels the link in the travel time. Calculate the estimated energy consumption when finishing.

Figure 0005816705
Figure 0005816705
Figure 0005816705
Figure 0005816705

上記(1)式に示す消費エネルギー推定式は、加速時および走行時における単位時間当たりの消費エネルギーを推定する理論式である。ここで、εは正味熱効率、ηは総伝達効率である。移動体の加速度αと道路勾配θから重力の加速度gとの合計を合成加速度|α|とすると、合成加速度|α|が負の場合の消費エネルギー推定式は、上記(2)式で表される。すなわち、上記(2)式に示す消費エネルギー推定式は、減速時における単位時間当たりの消費エネルギーを推定する理論式である。このように、加減速時および走行時における単位時間当たりの消費エネルギー推定式は、走行抵抗と走行距離と正味モータ効率と伝達効率との積で表される。   The energy consumption estimation formula shown in the above equation (1) is a theoretical formula for estimating the energy consumption per unit time during acceleration and traveling. Where ε is the net thermal efficiency and η is the total transmission efficiency. Assuming that the sum of the acceleration α of the moving object and the acceleration of gravity g from the road gradient θ is the combined acceleration | α |, the energy consumption estimation formula when the combined acceleration | α | is negative is expressed by the above equation (2). The That is, the energy consumption estimation formula shown in the above equation (2) is a theoretical formula for estimating the energy consumption per unit time during deceleration. Thus, the energy consumption estimation formula per unit time during acceleration / deceleration and travel is expressed by the product of travel resistance, travel distance, net motor efficiency, and transmission efficiency.

上記(1)式および(2)式において、右辺第1項は、アイドリング時等、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)である。右辺第2項は、勾配成分によるエネルギー消費量(第四情報)および転がり抵抗成分によるエネルギー消費量(第三情報)である。右辺第3項は、空気抵抗成分によるエネルギー消費量(第三情報)である。また、(1)式の右辺第4項は、加速成分によるエネルギー消費量(第二情報)である。(2)式の右辺第4項は、減速成分によるエネルギー消費量(第二情報)である。   In the above formulas (1) and (2), the first term on the right side is the energy consumption (first information) consumed by the equipment provided in the moving body, such as when idling. The second term on the right side is the energy consumption (fourth information) due to the gradient component and the energy consumption (third information) due to the rolling resistance component. The third term on the right side is energy consumption (third information) due to the air resistance component. Further, the fourth term on the right side of the equation (1) is the energy consumption (second information) by the acceleration component. The fourth term on the right side of equation (2) is the energy consumption (second information) due to the deceleration component.

上記(1)式および(2)式では、モータ効率と駆動効率は一定と見なしている。しかし、実際には、モータ効率および駆動効率はモータ回転数やトルクの影響により変動する。そこで、次の(3)式および(4)式に単位時間当たりの消費エネルギーを推定する実証式を示す。   In the above formulas (1) and (2), the motor efficiency and the drive efficiency are considered to be constant. However, in practice, the motor efficiency and the driving efficiency vary due to the influence of the motor speed and torque. Therefore, the following equations (3) and (4) show empirical equations for estimating the energy consumption per unit time.

合成加速度|α+g・sinθ|が正の場合の推定エネルギー消費量を算出する実証式、すなわち、加速時および走行時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(3)式で表される。また、合成加速度|α+g・sinθ|が負の場合の推定エネルギー消費量を算出する実証式、すなわち、減速時における単位時間当たりの推定エネルギー消費量を算出する実証式は、次の(4)式で表される。   The empirical formula for calculating the estimated energy consumption when the combined acceleration | α + g · sin θ | is positive, that is, the empirical formula for calculating the estimated energy consumption per unit time during acceleration and traveling is (3) It is expressed by a formula. The empirical formula for calculating the estimated energy consumption when the combined acceleration | α + g · sin θ | is negative, that is, the empirical formula for calculating the estimated energy consumption per unit time during deceleration is the following formula (4): It is represented by

Figure 0005816705
Figure 0005816705

Figure 0005816705
Figure 0005816705

上記(3)式および(4)式において、係数a1,a2は、車両状況などに応じて設定される常数である。係数k1は、加減速時を含む走行時および停止時におけるエネルギー消費量に基づく変数である。係数k2,k3は、加減速時を含む走行時におけるエネルギー消費量に基づく変数である。また、速度V、加速度Aとしており、その他の変数は、上記(1)式および(2)式と同様である。右辺第1項は、上記(1)式および(2)式の右辺第1項に相当する。   In the above formulas (3) and (4), the coefficients a1 and a2 are constants set according to the vehicle situation. The coefficient k1 is a variable based on the amount of energy consumed during traveling and stopping including acceleration / deceleration. The coefficients k2 and k3 are variables based on the energy consumption during traveling including acceleration / deceleration. Further, the speed V and the acceleration A are set, and other variables are the same as the above formulas (1) and (2). The first term on the right side corresponds to the first term on the right side of the above equations (1) and (2).

また、上記(3)式および(4)式において、右辺第2項は、上記(1)式および(2)式の、右辺第2項の勾配抵抗成分のエネルギーと、右辺第4項の加速度抵抗成分のエネルギーとに相当する。右辺第3項は、上記(1)式および(2)式の、右辺第2項の転がり抵抗成分のエネルギーと、右辺第3項の空気抵抗成分のエネルギーに相当する。(4)式の右辺第2項のβは、位置エネルギーと運動エネルギーの回収分(以下、「回収率」とする)である。   In the above formulas (3) and (4), the second term on the right side is the energy of the gradient resistance component in the second term on the right side and the acceleration in the fourth term on the right side in the formulas (1) and (2). It corresponds to the energy of the resistance component. The third term on the right side corresponds to the energy of the rolling resistance component in the second term on the right side and the energy of the air resistance component in the third term on the right side in the above equations (1) and (2). Β in the second term on the right side of the equation (4) is the amount of potential energy and kinetic energy recovered (hereinafter referred to as “recovery rate”).

また、ナビゲーション装置300は、上述したように車両がリンクを走行するのに要する旅行時間を算出し、車両がリンクを走行するときの平均速度および平均加速度を算出する。そして、ナビゲーション装置300は、リンクにおける車両の平均速度および平均加速度を用いて、次の(5)式または(6)式に示す消費エネルギー推定式に基づいて、車両がリンクを旅行時間で走行し終える際の推定エネルギー消費量を算出してもよい。   Moreover, the navigation apparatus 300 calculates the travel time required for the vehicle to travel on the link as described above, and calculates the average speed and average acceleration when the vehicle travels on the link. Then, the navigation device 300 uses the average speed and average acceleration of the vehicle at the link, and the vehicle travels on the link in the travel time based on the consumption energy estimation formula shown in the following equation (5) or (6). You may calculate the estimated energy consumption at the time of finishing.

Figure 0005816705
Figure 0005816705

Figure 0005816705
Figure 0005816705

上記(5)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが正の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが正の場合とは、車両が上り坂を走行している場合である。上記(6)式に示す消費エネルギー推定式は、車両が走行するリンクの高度差Δhが負の場合の、リンクにおける推定エネルギー消費量を算出する理論式である。高度差Δhが負の場合とは、車両が下り坂を走行している場合である。高度差がない場合は、上記(5)式に示す消費エネルギー推定式を用いるのが好ましい。   The energy consumption estimation formula shown in the above formula (5) is a theoretical formula for calculating the estimated energy consumption amount in the link when the altitude difference Δh of the link on which the vehicle travels is positive. The case where the altitude difference Δh is positive is a case where the vehicle is traveling uphill. The consumption energy estimation formula shown in the above equation (6) is a theoretical formula for calculating the estimated energy consumption amount in the link when the altitude difference Δh of the link on which the vehicle travels is negative. The case where the altitude difference Δh is negative is a case where the vehicle is traveling downhill. When there is no difference in altitude, it is preferable to use the energy consumption estimation formula shown in the above formula (5).

上記(5)式および(6)式において、右辺第1項は、アイドリング時等、移動体に備えられた装備品により消費されるエネルギー消費量(第一情報)である。右辺第2項は、加速抵抗によるエネルギー消費量(第二情報)である。右辺第3項は、位置エネルギーとして消費されるエネルギー消費量である(第四情報)。右辺第4項は、単位面積当たりに受ける空気抵抗および転がり抵抗(走行抵抗)によるエネルギー消費量(第三情報)である。   In the above formulas (5) and (6), the first term on the right-hand side is the energy consumption (first information) consumed by the equipment provided in the moving body such as when idling. The second term on the right side is the energy consumption (second information) by the acceleration resistance. The third term on the right side is energy consumption consumed as potential energy (fourth information). The fourth term on the right side is the energy consumption (third information) due to the air resistance and rolling resistance (running resistance) received per unit area.

ナビゲーション装置300は、道路勾配が明らかでない場合、上記(1)式〜(6)式に示す消費エネルギー推定式の道路勾配θ=0として車両の推定エネルギー消費量を算出してもよい。   When the road gradient is not clear, the navigation device 300 may calculate the estimated energy consumption amount of the vehicle by setting the road gradient θ = 0 in the energy consumption estimation equations shown in the above equations (1) to (6).

つぎに、上記(1)式〜(6)式で用いる回収率βについて説明する。上記(5)式において、右辺第2項をリンクにおける加速成分のエネルギー消費量Paccとすると、加速成分のエネルギー消費量Paccは、リンクにおける全エネルギー消費量(左辺)から、アイドリング時のエネルギー消費量(右辺第1項)と走行抵抗によるエネルギー消費量(右辺第4項)を減じたものであり、次の(7)式で表される。Next, the recovery rate β used in the above equations (1) to (6) will be described. In the above equation (5), if the second term on the right side is the energy consumption P acc of the acceleration component in the link, the energy consumption P acc of the acceleration component is calculated from the total energy consumption (left side) of the link from the energy at idling. This is obtained by subtracting the amount of consumption (first term on the right side) and the amount of energy consumed by the running resistance (fourth term on the right side), and is expressed by the following equation (7).

Figure 0005816705
Figure 0005816705

なお、上記(7)式では、車両は道路勾配θの影響を受けていないこととする(θ=0)。すなわち、上記(5)式の右辺第3項をゼロとする。そして、上記(7)式を上記(5)式に代入することで、次の(8)式に示す回収率βの算出式を得ることができる。   In the above equation (7), it is assumed that the vehicle is not affected by the road gradient θ (θ = 0). That is, the third term on the right side of the above equation (5) is set to zero. Then, by substituting the above equation (7) into the above equation (5), the calculation formula for the recovery rate β shown in the following equation (8) can be obtained.

Figure 0005816705
Figure 0005816705

回収率βは、EV車では0.7〜0.9程度であり、HV車では0.6〜0.8程度であり、ガソリン車では0.2〜0.3程度である。なお、ガソリン車の回収率とは、加速時に要するエネルギーと減速時に回収するエネルギーとの割合である。   The recovery rate β is about 0.7 to 0.9 for EV vehicles, about 0.6 to 0.8 for HV vehicles, and about 0.2 to 0.3 for gasoline vehicles. The recovery rate of the gasoline vehicle is a ratio of energy required for acceleration and energy recovered for deceleration.

(ナビゲーション装置300における到達可能地点探索の概要)
本実施例のナビゲーション装置300は、自装置が搭載された車両の現在地点から到達可能な複数のノードを車両の到達可能地点として探索する。具体的には、ナビゲーション装置300は、上記(1)〜(6)式に示す消費エネルギー推定式のいずれか1つ以上を用いてリンクにおける推定エネルギー消費量を算出する。そして、ナビゲーション装置300は、リンクにおける推定エネルギー消費量の累計が最小となるように車両の到達可能なノードを探索し到達可能地点とする。以下に、ナビゲーション装置300による到達可能地点探索の一例について説明する。
(Outline of reachable point search in the navigation device 300)
The navigation device 300 according to the present embodiment searches for a plurality of nodes that can be reached from the current location of the vehicle on which the device is mounted as reachable locations of the vehicle. Specifically, the navigation apparatus 300 calculates the estimated energy consumption in a link using any one or more of the consumption energy estimation formulas shown in the above formulas (1) to (6). Then, the navigation device 300 searches for a reachable node of the vehicle so as to make the reachable point so that the total of the estimated energy consumption in the link is minimized. Below, an example of the reachable point search by the navigation apparatus 300 is demonstrated.

図4−1〜4−4は、ナビゲーション装置300による到達可能地点探索の一例について模式的に示す説明図である。図4−1〜4−4では、地図データのノード(たとえば交差点)を丸印とし、隣り合うノードどうしを結ぶリンク(道路上の所定区間)を線分で示す(図5−1,5−2についても同様にノードおよびリンクを図示)。   4A to 4D are explanatory diagrams schematically illustrating an example of reachable point search by the navigation device 300. FIG. In FIGS. 4-1 to 4-4, nodes (for example, intersections) of map data are indicated by circles, and links (predetermined sections on the road) connecting adjacent nodes are indicated by line segments (FIGS. 5-1 and 5- Similarly, nodes and links are shown for 2).

図4−1に示すように、ナビゲーション装置300は、まず、車両の現在地点400から最も近いリンクL1_1を探索する。そして、ナビゲーション装置300は、リンクL1_1に接続するノードN1_1を探索し、到達可能地点を探索するためのノード候補(以下、単に「ノード候補」という)に追加する。   As illustrated in FIG. 4A, the navigation device 300 first searches for a link L1_1 that is closest to the current location 400 of the vehicle. Then, navigation device 300 searches for node N1_1 connected to link L1_1 and adds it to a node candidate for searching for a reachable point (hereinafter simply referred to as “node candidate”).

つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、車両の現在地点400とノード候補としたノードN1_1とを結ぶリンクL1_1における推定エネルギー消費量を算出する。そして、ナビゲーション装置300は、リンクL1_1における推定エネルギー消費量3whを、たとえばノードN1_1に関連付けて記憶装置(磁気ディスク305や光ディスク307)に書き出す。   Next, the navigation apparatus 300 calculates the estimated energy consumption in the link L1_1 that connects the current point 400 of the vehicle and the node N1_1 that is the node candidate using the consumption energy estimation formula. Then, the navigation device 300 writes the estimated energy consumption 3wh in the link L1_1 to the storage device (magnetic disk 305 or optical disk 307) in association with the node N1_1, for example.

つぎに、図4−2に示すように、ナビゲーション装置300は、ノードN1_1に接続するすべてのリンクL2_1,L2_2,L2_3を探索し、到達可能地点を探索するためのリンク候補(以下、単に「リンク候補」という)とする。つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、リンクL2_1における推定エネルギー消費量を算出する。   Next, as illustrated in FIG. 4B, the navigation apparatus 300 searches for all links L2_1, L2_2, and L2_3 connected to the node N1_1 and searches for reachable points (hereinafter simply referred to as “links”). "Candidate"). Next, the navigation apparatus 300 calculates the estimated energy consumption in the link L2_1 using the consumption energy estimation formula.

そして、ナビゲーション装置300は、リンクL2_1における推定エネルギー消費量4whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量7whを、リンクL2_1に接続するノードN2_1に関連付けて記憶装置(磁気ディスク305や光ディスク307)に書き出す(以下、「累計エネルギー量をノードに設定」とする)。   The navigation device 300 associates the accumulated energy amount 7wh obtained by accumulating the estimated energy consumption amount 4wh in the link L2_1 and the estimated energy consumption amount 3wh in the link L1_1 with the node N2_1 connected to the link L2_1, and stores the storage device (magnetic disk 305). Or the optical disc 307) (hereinafter referred to as “set cumulative energy amount to node”).

さらに、ナビゲーション装置300は、リンクL2_1の場合と同様に、消費エネルギー推定式を用いて、リンクL2_2,L2_3における推定エネルギー消費量をそれぞれ算出する。そして、ナビゲーション装置300は、リンクL2_2における推定エネルギー消費量5whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量8whを、リンクL2_2に接続するノードN2_2に設定する。   Furthermore, similarly to the case of the link L2_1, the navigation device 300 calculates the estimated energy consumption in the links L2_2 and L2_3 using the energy consumption estimation formula. Then, the navigation apparatus 300 sets the accumulated energy amount 8wh obtained by accumulating the estimated energy consumption amount 5wh in the link L2_2 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_2 connected to the link L2_2.

また、ナビゲーション装置300は、リンクL2_3における推定エネルギー消費量3whとリンクL1_1における推定エネルギー消費量3whとを累計した累計エネルギー量6whを、リンクL2_3に接続するノードN2_3に設定する。このとき、ナビゲーション装置300は、累計エネルギー量を設定したノードがノード候補でない場合には、そのノードをノード候補に追加する。   In addition, the navigation device 300 sets the accumulated energy amount 6wh obtained by accumulating the estimated energy consumption amount 3wh in the link L2_3 and the estimated energy consumption amount 3wh in the link L1_1 to the node N2_3 connected to the link L2_3. At this time, if the node for which the cumulative energy amount is set is not a node candidate, navigation device 300 adds the node to the node candidate.

つぎに、図4−3に示すように、ナビゲーション装置300は、ノードN2_1に接続するすべてのリンクL3_1,L3_2_1、ノードN2_2に接続するすべてのリンクL3_2_2,L3_3,L3_4、およびノードN2_3に接続するリンクL3_5を探索し、リンク候補とする。つぎに、ナビゲーション装置300は、消費エネルギー推定式を用いて、リンクL3_1〜リンクL3_5における推定エネルギー消費量を算出する。   Next, as illustrated in FIG. 4C, the navigation device 300 includes all links L3_1 and L3_2_1 connected to the node N2_1, all links L3_2_2, L3_3, L3_4 connected to the node N2_2, and links connected to the node N2_3. L3_5 is searched for as a link candidate. Next, the navigation apparatus 300 calculates the estimated energy consumption in link L3_1-link L3_5 using a consumption energy estimation formula.

そして、ナビゲーション装置300は、リンクL3_1における推定エネルギー消費量4whをノードN2_1に設定した累計エネルギー量7whに累計し、リンクL3_1に接続するノードN3_1に累計エネルギー量11whを設定する。また、ナビゲーション装置300は、リンクL3_3〜L3_5においてもリンクL3_1の場合と同様に、各リンクL3_3〜L3_5にそれぞれ接続するノードN3_3〜N3_5に累計エネルギー量13wh,12wh,10whを設定する。   Then, the navigation apparatus 300 accumulates the estimated energy consumption 4wh in the link L3_1 to the accumulated energy amount 7wh set in the node N2_1, and sets the accumulated energy amount 11wh in the node N3_1 connected to the link L3_1. Also, the navigation apparatus 300 sets the cumulative energy amounts 13wh, 12wh, and 10wh for the nodes N3_3 to N3_5 that are respectively connected to the links L3_3 to L3_5 in the links L3_3 to L3_5 as in the case of the link L3_1.

具体的には、ナビゲーション装置300は、リンクL3_3における推定エネルギー消費量5whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_3に累計エネルギー量13whを設定する。ナビゲーション装置300は、リンクL_3_4における推定エネルギー消費量4whをノードN2_2に設定した累計エネルギー量8whに累計し、ノードN3_4に累計エネルギー量12whを設定する。ナビゲーション装置300は、リンクL3_5における推定エネルギー消費量4whをノードN2_3に設定した累計エネルギー量6whに累計し、ノードN3_5に累計エネルギー量10whを設定する。   Specifically, the navigation apparatus 300 accumulates the estimated energy consumption 5wh in the link L3_3 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 13wh in the node N3_3. The navigation device 300 accumulates the estimated energy consumption 4wh in the link L_3_4 to the accumulated energy amount 8wh set in the node N2_2, and sets the accumulated energy amount 12wh in the node N3_4. The navigation device 300 accumulates the estimated energy consumption 4wh in the link L3_5 to the accumulated energy amount 6wh set in the node N2_3, and sets the accumulated energy amount 10wh in the node N3_5.

一方、ナビゲーション装置300は、ノードN3_2のように一のノードに複数のリンクL3_2_1,L3_2_2が接続する場合には、車両の現在地点400から一のノードN3_2までの複数の経路における累計エネルギー量のうち、最小の累計エネルギー量10whを当該一のノードN3_2に設定する。   On the other hand, in the case where a plurality of links L3_2_1 and L3_2_2 are connected to one node like the node N3_2, the navigation device 300 includes a cumulative energy amount in a plurality of routes from the vehicle current point 400 to the one node N3_2. , The minimum accumulated energy amount 10wh is set in the one node N3_2.

具体的には、ナビゲーション装置300は、リンクL3_2_1における推定エネルギー消費量4whをノード2_1に設定した累計エネルギー量7whに累計し(=累計エネルギー量11wh)、リンクL3_2_2における推定エネルギー消費量2whをノード2_2に設定した累計エネルギー量8whに累計する(=累計エネルギー量10wh)。そして、ナビゲーション装置300は、車両の現在地点400からリンクL3_2_1までの経路の累計エネルギー量11whと、車両の現在地点400からリンクL3_2_2までの経路の累計エネルギー量10whとを比較し、最小の累計エネルギー量となるリンクL3_2_2側の経路の累計エネルギー量10whをノードN3_2に設定する。   Specifically, the navigation apparatus 300 accumulates the estimated energy consumption 4wh in the link L3_2_1 to the accumulated energy amount 7wh set in the node 2_1 (= total energy amount 11wh), and the estimated energy consumption amount 2wh in the link L3_2_2 is set to the node 2_2. Is accumulated in the accumulated energy amount 8wh set to (= total energy amount 10wh). Then, the navigation device 300 compares the cumulative energy amount 11wh of the route from the current point 400 of the vehicle to the link L3_2_1 with the cumulative energy amount 10wh of the route from the current point 400 of the vehicle to the link L3_2_2, and the minimum cumulative energy. The cumulative energy amount 10wh of the path on the link L3_2_2 side that is the amount is set to the node N3_2.

ナビゲーション装置300は、上述したノードN2_1〜N2_3のように車両の現在地点400から同一階層のノードが複数存在する場合、たとえば、同一レベルのノードのうち、累計エネルギー量が少ないノードに接続するリンクから順に推定エネルギー消費量および累計エネルギー量を算出する。具体的には、ナビゲーション装置300は、ノードN2_3、ノードN2_1、ノードN2_2の順に、各ノードに接続するリンクにおける推定エネルギー消費量をそれぞれ算出し、各ノードにおける累計エネルギー量に累計する。このように、推定エネルギー消費量および累計エネルギー量を算出するノードの順番を特定することにより、残存エネルギー量で到達可能な範囲を効率的に算出することができる。   When there are a plurality of nodes in the same hierarchy from the current location 400 of the vehicle, such as the above-described nodes N2_1 to N2_3, the navigation device 300, for example, from a link connected to a node having a low cumulative energy amount among the nodes at the same level. The estimated energy consumption and the cumulative energy amount are calculated in order. Specifically, the navigation apparatus 300 calculates the estimated energy consumption amount in the link connected to each node in the order of the node N2_3, the node N2_1, and the node N2_2, and accumulates the accumulated energy amount in each node. Thus, by specifying the order of the nodes for calculating the estimated energy consumption amount and the cumulative energy amount, it is possible to efficiently calculate the reachable range with the remaining energy amount.

その後、ナビゲーション装置300は、ノードN3_1〜N3_5からさらに深い階層のノードへと、上述したような累計エネルギー量の累計を続けていく。そして、ナビゲーション装置300は、予め設定された指定エネルギー量以下の累計エネルギー量が設定されたすべてのノードを、車両の到達可能地点として抽出し、到達可能地点として抽出されたノードの経度緯度情報をそれぞれのノードに関連付けて記憶装置に書き出す。   Thereafter, the navigation apparatus 300 continues to accumulate the accumulated energy amount as described above from the nodes N3_1 to N3_5 to the deeper level nodes. And the navigation apparatus 300 extracts all the nodes in which the cumulative energy amount below the preset designated energy amount was set as the reachable point of the vehicle, and the longitude and latitude information of the nodes extracted as the reachable points Write to the storage device in association with each node.

具体的には、たとえば指定エネルギー量を10whとした場合、図4−4に斜線で塗りつぶされた丸印で示すように、ナビゲーション装置300は、10wh以下の累計エネルギー量が設定されたノードN1_1,N2_1,N2_2,N2_3,N3_2,N3_5を車両の到達可能地点として抽出する。予め設定された指定エネルギー量とは、たとえば、車両の現在地点400での残存エネルギー量(初期保有エネルギー量)である。   Specifically, for example, when the designated energy amount is 10wh, the navigation device 300, as shown by a hatched circle in FIG. 4-4, is a node N1_1, for which a cumulative energy amount of 10wh or less is set. N2_1, N2_2, N2_3, N3_2, and N3_5 are extracted as reachable points of the vehicle. The designated energy amount set in advance is, for example, the remaining energy amount (initial stored energy amount) at the current point 400 of the vehicle.

図4−4に示す車両の現在地点400と複数のノードおよびリンクとで構成された地図データ440は到達可能地点探索を説明するための一例であり、ナビゲーション装置300は、実際には図5−1に示すように図4−4に示す地図データ440よりも広い範囲でさらに多くのノードおよびリンクを探索する。   The map data 440 composed of the current location 400 of the vehicle and a plurality of nodes and links shown in FIG. 4-4 is an example for explaining the reachable location search, and the navigation device 300 is actually shown in FIG. As shown in FIG. 1, more nodes and links are searched in a wider range than the map data 440 shown in FIG.

図5−1は、ナビゲーション装置300による到達可能地点探索の一例について示す説明図である。上述したようにすべての道路(細街路を除く)について累計エネルギー量を算出し続けていく場合、図5−1に示すように、各道路のすべてのノードにおける累計エネルギー量を漏れなく詳細に探索することができる。しかし、日本全国で約200万個のリンクにおける推定エネルギー消費量を算出し累計することとなり、ナビゲーション装置300の情報処理量が膨大となる。このため、ナビゲーション装置300は、たとえばリンクの重要度などに基づいて、移動体の到達可能地点を探索する道路を絞り込んでもよい。   FIG. 5A is an explanatory diagram illustrating an example of reachable point search by the navigation device 300. As described above, when the cumulative energy amount is continuously calculated for all roads (excluding narrow streets), as shown in FIG. 5-1, the total energy amount in all nodes of each road is searched in detail without omission. can do. However, the estimated energy consumption of about 2 million links in Japan is calculated and accumulated, and the information processing amount of the navigation device 300 becomes enormous. For this reason, the navigation apparatus 300 may narrow down the road which searches for the reachable point of a mobile body based on the importance of a link etc., for example.

図5−2は、ナビゲーション装置300による到達可能地点探索の別の一例について示す説明図である。具体的には、ナビゲーション装置300は、たとえば、車両の現在地点400周辺ではすべての道路(細街路を除く)において累計エネルギー量を算出し、ある一定距離以上離れた範囲では重要度の高い道路のみで累計エネルギー量を算出する。これにより、図5−2に示すように、ナビゲーション装置300によって探索されるノード数およびリンク数を減少させることができ、ナビゲーション装置300の情報処理量を低減させることができる。したがって、ナビゲーション装置300の処理速度を向上することができる。   FIG. 5B is an explanatory diagram illustrating another example of the reachable point search by the navigation device 300. Specifically, for example, the navigation device 300 calculates a cumulative energy amount on all roads (excluding narrow streets) around the current location 400 of the vehicle, and only high-importance roads are within a certain distance away. To calculate the total energy. Accordingly, as illustrated in FIG. 5B, the number of nodes and the number of links searched by the navigation device 300 can be reduced, and the information processing amount of the navigation device 300 can be reduced. Therefore, the processing speed of the navigation device 300 can be improved.

(ナビゲーション装置300における地図データ分割の概要)
本実施例のナビゲーション装置300は、上述したように探索された到達可能地点に基づいて、記憶装置に記憶された地図データを分割する。具体的には、ナビゲーション装置300は、ベクタデータで構成される地図データを、たとえば64×64ドットのメッシュデータ(X,Y)に変換し、地図データをラスタデータ(画像データ)にする。
(Outline of map data division in navigation device 300)
The navigation device 300 according to the present embodiment divides the map data stored in the storage device based on the reachable point searched as described above. Specifically, the navigation device 300 converts map data composed of vector data into, for example, 64 × 64 dot mesh data (X, Y), and converts the map data into raster data (image data).

図6は、ナビゲーション装置300による到達可能地点を経度−緯度で示す一例の説明図である。また、図7は、ナビゲーション装置300による到達可能地点をメッシュデータで示す一例の説明図である。図6には、たとえば図5−1,5−2に示すように探索された到達可能地点の経度緯度情報(x,y)を絶対座標で図示している。図7には、到達可能地点に基づいて識別情報が付与された64×64ドットのメッシュデータ(X,Y)をスクリーン座標で図示している。   FIG. 6 is an explanatory diagram of an example showing the reachable point by the navigation device 300 in longitude-latitude. FIG. 7 is an explanatory diagram of an example in which a reachable point by the navigation device 300 is indicated by mesh data. FIG. 6 shows, in absolute coordinates, longitude and latitude information (x, y) of reachable points searched as shown in FIGS. 5-1, 5-2, for example. FIG. 7 illustrates screen data of 64 × 64 dot mesh data (X, Y) to which identification information is given based on reachable points.

図6に示すように、ナビゲーション装置300は、まず、複数の到達可能地点のそれぞれの経度x、緯度yに基づいて、絶対座標で点群600を有する経度緯度情報(x,y)を生成する。経度緯度情報(x,y)の原点(0,0)は図6の左下である。そして、ナビゲーション装置300は、車両の現在地点400の経度ofxから経度x方向に最も離れた到達可能地点の最大経度x_max、最小経度x_minまで距離w1,w2を算出する。また、ナビゲーション装置300は、車両の現在地点400の緯度ofyから緯度y方向に最も離れた到達可能地点の最大緯度y_max、最小緯度y_minまで距離w3,w4を算出する。   As shown in FIG. 6, the navigation apparatus 300 first generates longitude / latitude information (x, y) having a point group 600 in absolute coordinates based on the longitude x and latitude y of each of a plurality of reachable points. . The origin (0, 0) of the longitude / latitude information (x, y) is at the lower left of FIG. Then, the navigation apparatus 300 calculates the distances w1 and w2 from the longitude ofx of the current point 400 of the vehicle to the maximum longitude x_max and the minimum longitude x_min of the reachable point farthest in the longitude x direction. Further, the navigation device 300 calculates the distances w3 and w4 from the latitude of the current point 400 of the vehicle to the maximum latitude y_max and the minimum latitude y_min of the reachable point farthest in the direction of the latitude y.

つぎに、ナビゲーション装置300は、車両の現在地点400からの距離w1〜w4のうち、最も距離のある、車両の現在地点400から最小経度x_minまでの距離w2(以下、w5=max(w1,w2,w3,w4)とする)のn分の1の長さがメッシュデータ(X,Y)の矩形状の一要素の1辺の長さとなるように、複数の到達可能地点を含む地図データを、たとえばm×mドット(たとえば64×64ドット)のメッシュデータ(X,Y)に変換する。   Next, the navigation device 300 has a distance w2 (hereinafter, w5 = max (w1, w2) from the vehicle current point 400 to the minimum longitude x_min, which is the longest distance among the distances w1 to w4 from the vehicle current point 400. , W3, w4)), and map data including a plurality of reachable points so that the length of 1 / n becomes the length of one side of a rectangular element of mesh data (X, Y). For example, it is converted into mesh data (X, Y) of m × m dots (for example, 64 × 64 dots).

具体的には、ナビゲーション装置300は、1メッシュと経度緯度の大きさとの比を倍率mag=w5/nとし、経度緯度情報(x,y)とメッシュデータ(X,Y)とが次の(9)式,(10)式を満たすように、経度緯度情報(x,y)をメッシュデータ(X,Y)に変換する。   Specifically, the navigation apparatus 300 sets the ratio of 1 mesh and the size of longitude and latitude as the magnification mag = w5 / n, and the longitude / latitude information (x, y) and mesh data (X, Y) are the following ( The longitude / latitude information (x, y) is converted into mesh data (X, Y) so as to satisfy the expressions (9) and (10).

X=(x−ofx)/mag ・・・(9)   X = (x−ofx) / mag (9)

Y=(y−ofy)/mag ・・・(10)   Y = (y-ofy) / mag (10)

経度緯度情報(x,y)をメッシュデータ(X,Y)に変換することにより、図7に示すように、車両の現在地点400は、m×mドットのメッシュデータ(X,Y)で構成される矩形状の画像データの中心となり、車両の現在地点400のメッシュデータ(X,Y)はX軸方向、Y軸方向ともに等しく、X=Y=m/2=n+4となる。また、メッシュデータ(X,Y)の周辺のたとえば4ドット分を空白にするためにn=(m/2)−4とする。そして、ナビゲーション装置300は、経度緯度情報(x,y)をメッシュデータ(X,Y)に変換するときに、メッシュデータ(X,Y)の各領域にそれぞれ識別情報を付与し、m行m列の2次元行列データ(Y,X)のメッシュデータに変換する。   By converting the longitude / latitude information (x, y) into mesh data (X, Y), as shown in FIG. 7, the current location 400 of the vehicle is configured by mesh data (X, Y) of m × m dots. The mesh data (X, Y) of the current point 400 of the vehicle is the same in both the X-axis direction and the Y-axis direction, and X = Y = m / 2 = n + 4. Further, n = (m / 2) −4 is set in order to make, for example, four dots around the mesh data (X, Y) blank. Then, when the navigation device 300 converts the longitude / latitude information (x, y) into mesh data (X, Y), it gives identification information to each area of the mesh data (X, Y), and m rows m It is converted into mesh data of two-dimensional matrix data (Y, X) of columns.

具体的には、ナビゲーション装置300は、メッシュデータ(X,Y)の一の領域に車両の到達可能地点が含まれる場合、当該一の領域に車両が到達可能であることを識別する到達可能の識別情報として、たとえば「1」を付与する(図7では1ドットをたとえば黒色で描画)。一方、ナビゲーション装置300は、メッシュデータ(X,Y)の一の領域に車両の到達可能地点が含まれない場合、当該の一の領域に車両が到達不可能であることを識別する到達不可能の識別情報として、たとえば「0」を付与する(図7では1ドットをたとえば白色で描画)。   Specifically, when the reachable point of the vehicle is included in one area of the mesh data (X, Y), the navigation device 300 can be identified to identify that the vehicle can reach the one area. For example, “1” is given as the identification information (in FIG. 7, one dot is drawn in black, for example). On the other hand, when the reachable point of the vehicle is not included in one region of the mesh data (X, Y), the navigation device 300 cannot reach that vehicle that cannot reach the one region. For example, “0” is given as the identification information (in FIG. 7, one dot is drawn in white, for example).

このように、ナビゲーション装置300は、地図データを分割した各領域にそれぞれ識別情報を付与したm行m列の2次元行列データ(Y,X)のメッシュデータに変換し、地図データを2値化されたラスタデータとして扱う。メッシュデータの各領域は、それぞれ一定範囲の矩形状の領域であらわされる。具体的には、図7に示すように、たとえば、複数の到達可能地点の点群700が黒色で描画されたm×mドットのメッシュデータ(X,Y)が生成される。メッシュデータ(X,Y)の原点(0,0)は左上である。   As described above, the navigation device 300 converts the map data into binarized map data of m rows and m columns of two-dimensional matrix data (Y, X) obtained by adding identification information to each area obtained by dividing the map data. Treated as raster data. Each area of the mesh data is represented by a rectangular area within a certain range. Specifically, as shown in FIG. 7, for example, m × m dot mesh data (X, Y) in which a point group 700 of a plurality of reachable points is drawn in black is generated. The origin (0, 0) of the mesh data (X, Y) is at the upper left.

(ナビゲーション装置300における識別情報付与の概要・その1)
本実施例のナビゲーション装置300は、上述したように分割されたm×mドットのメッシュデータ(X,Y)のそれぞれの領域に付与された識別情報を変更する。具体的には、ナビゲーション装置300は、m行m列の2次元行列データ(Y,X)のメッシュデータに対してクローニング処理(膨張処理後に縮小処理をおこなう処理)をおこなう。
(Outline of identification information assignment in the navigation device 300, part 1)
The navigation apparatus 300 according to the present embodiment changes the identification information given to each area of the m × m dot mesh data (X, Y) divided as described above. Specifically, the navigation apparatus 300 performs a cloning process (a process of performing a reduction process after the expansion process) on mesh data of m-dimensional data and m-dimensional two-dimensional matrix data (Y, X).

図8は、ナビゲーション装置によるクローニング処理の一例を示す説明図である。図8(A)〜図8(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュデータである。図8(A)には、地図データの分割処理後、はじめて識別情報が付与されたメッシュデータ800を示す。すなわち、図8(A)に示すメッシュデータ800は、図7に示すメッシュデータと同一である。   FIG. 8 is an explanatory diagram illustrating an example of cloning processing by the navigation device. 8A to 8C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region. FIG. 8A shows mesh data 800 to which identification information is given for the first time after map data division processing. That is, the mesh data 800 shown in FIG. 8A is the same as the mesh data shown in FIG.

また、図8(B)には、図8(A)に示すメッシュデータ800に対してクローニング処理(膨張)をおこなった後のメッシュデータ810を示す。図8(C)には、図8(B)に示すメッシュデータ810に対してクローニング処理(縮小)をおこなった後のメッシュデータ820を示す。図8(A)〜8(C)に示すメッシュデータ800,810,820において、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲801,811,821を黒く塗りつぶした状態で示す。   FIG. 8B shows mesh data 810 after the cloning process (expansion) is performed on the mesh data 800 shown in FIG. 8A. FIG. 8C shows mesh data 820 after the cloning process (reduction) is performed on the mesh data 810 shown in FIG. 8B. In the mesh data 800, 810, and 820 shown in FIGS. 8 (A) to 8 (C), the vehicle reachable ranges 801, 811 and 821 generated by a plurality of regions to which reachable identification information is assigned are blacked out. It shows in the state.

図8(A)に示すように、識別情報付与後のメッシュデータ800には、車両の到達可能範囲801内に含まれる到達不可能な領域からなる欠損点802(ハッチングされた到達可能範囲801内の白地部分)が生じている。欠損点802は、たとえば、図5−2に示すようにナビゲーション装置300による到達可能地点探索処理の負荷を低減させるためにノードおよびリンクを探索する道路を絞り込んだ場合に、到達可能地点となるノード数が少なくなることにより生じる。   As shown in FIG. 8A, in the mesh data 800 after the identification information is given, a missing point 802 (in the reachable range 801 that is hatched) that is an unreachable area included in the reachable range 801 of the vehicle. White background). For example, as shown in FIG. 5B, the missing point 802 is a node that becomes a reachable point when narrowing down roads to search for nodes and links in order to reduce the load of reachable point search processing by the navigation device 300. This occurs when the number is reduced.

つぎに、図8(B)に示すように、ナビゲーション装置300は、識別情報付与後のメッシュデータ800に対してクローニングの膨張処理をおこなう。クローニングの膨張処理では、識別情報付与後のメッシュデータ800の、到達可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。これにより、膨張処理前(識別情報付与後)の車両の到達可能範囲801内に生じていた欠損部802が消滅する。   Next, as shown in FIG. 8B, the navigation device 300 performs an expansion process of cloning on the mesh data 800 after the identification information is given. In the expansion process of cloning, the identification information of one area adjacent to the area to which reachable identification information is added in the mesh data 800 after the identification information is added is changed to reachable identification information. As a result, the missing portion 802 generated in the reachable range 801 of the vehicle before the expansion process (after the identification information is given) disappears.

また、膨張処理前の車両の到達可能範囲801の最外周の領域に隣り合うすべての領域の識別情報が、到達可能な識別情報に変更される。このため、膨張処理後の車両の到達可能範囲811の外周は、膨張処理をおこなうごとに、膨張処理前の車両の到達可能範囲801の最外周の各領域の外周を囲むように1ドット分ずつ広がる。   Moreover, the identification information of all the areas adjacent to the outermost area of the reachable range 801 of the vehicle before the expansion process is changed to the reachable identification information. For this reason, the outer periphery of the reachable range 811 of the vehicle after the expansion process is one dot at a time so as to surround the outer periphery of each outermost region of the reachable range 801 of the vehicle before the expansion process every time the expansion process is performed. spread.

その後、図8(C)に示すように、ナビゲーション装置300は、メッシュデータ810に対してクローニングの縮小処理をおこなう。クローニングの縮小処理では、膨張処理後のメッシュデータ810の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。   Thereafter, as illustrated in FIG. 8C, the navigation device 300 performs a cloning reduction process on the mesh data 810. In the reduction process of cloning, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 810 after the expansion process is changed to the unreachable identification information.

このため、膨張処理後の車両の到達可能範囲811の最外周の各領域が、縮小処理がおこなわれるごとに1ドット分ずつ到達不可能な領域となり、膨張処理後の車両の到達可能範囲811の外周が縮まる。これにより、縮小処理後の車両の到達可能範囲821の外周は、膨張処理前の車両の到達可能範囲801の外周とほぼ同様となる。   For this reason, each area on the outermost periphery of the reachable range 811 of the vehicle after the expansion process becomes an area that cannot be reached by one dot every time the reduction process is performed, and the reachable range 811 of the vehicle after the expansion process is reached. The outer circumference shrinks. Thereby, the outer periphery of the reachable range 821 of the vehicle after the reduction process is substantially the same as the outer periphery of the reachable range 801 of the vehicle before the expansion process.

ナビゲーション装置300は、上述した膨張処理および縮小処理は同じ回数ずつおこなう。具体的には、膨張処理が2回おこなわれた場合、その後の縮小処理も2回おこなわれる。膨張処理と縮小処理との処理回数を等しくすることで、膨張処理によって到達可能の識別情報に変更された車両の到達可能範囲の外周部分のほぼすべての領域の識別情報を、縮小処理によって元の到達不可能の識別情報に変更することができる。このようにして、ナビゲーション装置300は、車両の到達可能範囲内の欠損点802を除去し、かつ外周を明瞭に表示可能な車両の到達可能範囲821を生成することができる。   The navigation device 300 performs the expansion process and the reduction process described above by the same number of times. Specifically, when the expansion process is performed twice, the subsequent reduction process is also performed twice. By equalizing the number of times of the expansion process and the reduction process, the identification information of almost all areas in the outer periphery of the reachable range of the vehicle that has been changed to the identification information that can be reached by the expansion process is restored to the original information by the reduction process. It can be changed to unreachable identification information. In this way, the navigation device 300 can remove the missing point 802 in the reachable range of the vehicle and generate the reachable range 821 of the vehicle that can clearly display the outer periphery.

(ナビゲーション装置300における識別情報付与の概要・その2)
ナビゲーション装置300は、2次元行列データ(Y,X)のメッシュデータに対してオープニング処理(縮小処理後に膨張処理をおこなう処理)をおこない、外周を明瞭に表示可能な車両の到達可能範囲を生成してもよい。具体的には、ナビゲーション装置300は、次のようにオープニング処理をおこなう。
(Outline of identification information addition in the navigation device 300, part 2)
The navigation device 300 performs an opening process (a process of performing an expansion process after the reduction process) on the mesh data of the two-dimensional matrix data (Y, X), and generates a vehicle reachable range in which the outer periphery can be clearly displayed. May be. Specifically, the navigation device 300 performs an opening process as follows.

図9は、ナビゲーション装置によるオープニング処理の一例を示す説明図である。図9(A)〜図9(C)は、各領域にそれぞれ識別情報が付与されたm行m列の2次元行列データ(Y,X)のメッシュデータである。図9(A)には、識別情報付与後のメッシュデータ1000を示す。図9(B)には、図9(A)に対するオープニング処理(縮小)後のメッシュデータ1010を示す。また、図9(C)には、図9(B)に対するオープニング処理(膨張)後のメッシュデータ1020を示す。図9(A)〜図9(C)に示すメッシュデータ1000,1010,1020おいて、到達可能の識別情報が付与された複数の領域によって生成される車両の到達可能範囲1001,1011,1021を黒く塗りつぶした状態で示す。   FIG. 9 is an explanatory diagram showing an example of the opening process by the navigation device. FIGS. 9A to 9C are mesh data of two-dimensional matrix data (Y, X) of m rows and m columns in which identification information is assigned to each region. FIG. 9A shows mesh data 1000 after identification information is given. FIG. 9B shows mesh data 1010 after the opening process (reduction) with respect to FIG. FIG. 9C shows mesh data 1020 after the opening process (expansion) with respect to FIG. 9B. In mesh data 1000, 1010, and 1020 shown in FIGS. 9A to 9C, vehicle reachable ranges 1001, 1011, and 1021 generated by a plurality of areas to which reachable identification information is assigned are shown. Shown in black.

図9(A)に示すように、識別情報付与後のメッシュデータ1000における車両の到達可能範囲1001の外周に孤立点1002が多く生じている場合、識別情報付与後のメッシュデータ1000に対してオープニング処理をおこなうことで、孤立点1002を除去することができる。具体的には、図9(B)に示すように、ナビゲーション装置300は、識別情報付与後のメッシュデータ1000に対してオープニングの縮小処理をおこなう。   As shown in FIG. 9A, when there are many isolated points 1002 on the outer periphery of the reachable range 1001 of the vehicle in the mesh data 1000 after the identification information is added, the mesh data 1000 after the identification information is added is opened. By performing the processing, the isolated point 1002 can be removed. Specifically, as shown in FIG. 9B, the navigation device 300 performs an opening reduction process on the mesh data 1000 after the identification information is given.

オープニングの縮小処理では、識別情報付与後のメッシュデータ1000の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達不可能の識別情報に変更される。これにより、縮小処理前(識別情報付与後)の車両の到達可能範囲1001内に生じていた孤立点1002が除去される。   In the opening reduction process, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1000 after the identification information is added is changed to the unreachable identification information. As a result, the isolated point 1002 generated in the reachable range 1001 of the vehicle before the reduction process (after the identification information is given) is removed.

このため、識別情報付与後の車両の到達可能範囲1001の最外周の各領域が、縮小処理がおこなわれるごとに1ドット分ずつ到達不可能な領域となり、識別情報付与後の車両の到達可能範囲1001の外周が縮まる。また、識別情報付与後の車両の到達可能範囲1001に生じていた孤立点1002が除去される。   For this reason, each area of the outermost periphery of the reachable range 1001 of the vehicle after the identification information is added becomes an area that cannot be reached by one dot every time the reduction process is performed, and the reachable range of the vehicle after the identification information is given The outer periphery of 1001 shrinks. Further, the isolated point 1002 generated in the reachable range 1001 of the vehicle after the identification information is given is removed.

その後、図9(C)に示すように、ナビゲーション装置300は、メッシュデータ1010に対してオープニングの膨張処理をおこなう。オープニングの膨張処理では、縮小処理後のメッシュデータ1010の、到達不可能の識別情報が付与されている領域に隣り合う一の領域の識別情報が、到達可能の識別情報に変更される。このため、膨張処理後の車両の到達可能範囲1021の外周は、膨張処理をおこなうごとに、縮小処理後の車両の到達可能範囲1011の最外周の各領域の外周を囲むように1ドット分ずつ広がる。   Thereafter, as illustrated in FIG. 9C, the navigation device 300 performs an opening expansion process on the mesh data 1010. In the opening expansion process, the identification information of one area adjacent to the area to which the unreachable identification information is added in the mesh data 1010 after the reduction process is changed to the reachable identification information. For this reason, the outer periphery of the reachable range 1021 of the vehicle after the expansion process is one dot at a time so as to surround the outer periphery of each outermost region of the reachable range 1011 of the vehicle after the reduction process every time the expansion process is performed. spread.

ナビゲーション装置300は、オープニング処理においても、クローニング処理と同様に膨張処理および縮小処理は同じ回数ずつおこなう。このように膨張処理と縮小処理との処理回数を等しくすることで、縮小処理によって縮まった車両の到達可能範囲1011の外周を広げ、縮小処理後の車両の到達可能範囲1021の外周を縮小処理前の車両の到達可能範囲1001の外周に戻すことができる。このようにして、ナビゲーション装置300は、孤立点1002が生じず、かつ外周を明瞭に表示可能な車両の到達可能範囲1021を生成することができる。   In the opening process, the navigation device 300 performs the expansion process and the reduction process the same number of times as in the cloning process. Thus, by equalizing the number of times of the expansion process and the reduction process, the outer periphery of the reachable range 1011 of the vehicle shrunk by the reduction process is expanded, and the outer periphery of the vehicle reachable range 1021 after the reduction process is expanded before the reduction process. Can be returned to the outer periphery of the reachable range 1001 of the vehicle. In this way, the navigation apparatus 300 can generate the vehicle reachable range 1021 in which the isolated point 1002 does not occur and the outer periphery can be clearly displayed.

(ナビゲーション装置300における到達可能範囲の輪郭抽出の概要・その1)
本実施例のナビゲーション装置300は、m行m列の2次元行列データ(Y,X)のメッシュデータに付与された識別情報に基づいて、車両の到達可能範囲の輪郭を抽出する。具体的には、ナビゲーション装置300は、たとえば、フリーマンのチェインコードを用いて車両の到達可能範囲の輪郭を抽出する。より具体的には、ナビゲーション装置300は、次のように車両の到達可能範囲の輪郭を抽出する。
(Outline of outline extraction of reachable range in navigation device 300, part 1)
The navigation device 300 according to the present embodiment extracts the outline of the reachable range of the vehicle based on the identification information given to the mesh data of the two-dimensional matrix data (Y, X) of m rows and m columns. Specifically, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle using, for example, a Freeman chain code. More specifically, the navigation device 300 extracts the outline of the reachable range of the vehicle as follows.

図10は、ナビゲーション装置による車両の到達可能範囲抽出の一例を模式的に示す説明図である。また、図11は、ナビゲーション装置による車両の到達可能範囲抽出後のメッシュデータの一例を模式的に示す説明図である。図10(A)には、領域1100に隣り合う領域1110〜1117の隣接方向を示す数字(以下、「方向指数(チェインコード)」という)と、方向指数に対応する8方向の矢印とを示す。図10(B)には、i行i列の2次元行列データ(Y,X)のメッシュデータ1120を一例として示す。また、図10(B)には、到達可能の識別情報が付与された領域1121〜1138をハッチングで図示する。また、到達可能の識別情報が付与された領域1121〜1138の内部には、到達不可能の識別情報が付与された領域1140〜1142が存在している(白で図示)。   FIG. 10 is an explanatory diagram schematically illustrating an example of vehicle reachable range extraction by the navigation device. Moreover, FIG. 11 is explanatory drawing which shows typically an example of the mesh data after vehicle reachable range extraction by a navigation apparatus. FIG. 10A shows numbers indicating the adjacent directions of the areas 1110 to 1117 adjacent to the area 1100 (hereinafter referred to as “direction index (chain code)”) and arrows in eight directions corresponding to the direction index. . FIG. 10B shows mesh data 1120 of two-dimensional matrix data (Y, X) of i rows and i columns as an example. In FIG. 10B, regions 1121 to 1138 to which reachable identification information is assigned are indicated by hatching. In addition, areas 1140 to 1142 to which unreachable identification information is assigned exist in areas 1121 to 1138 to which reachable identification information is assigned (illustrated in white).

方向指数は、単位長さの線分の向いている方向を示す。メッシュデータ(X,Y)において、方向指数に対応する座標は、(X+dx,Y+dy)となる。具体的には、図10(A)に示すように、領域1100から左下に隣り合う領域1110へ向かう方向の方向指数は「0」である。領域1100から下に隣り合う領域1111へ向かう方向の方向指数は「1」である。領域1100から右下に隣り合う領域1112へ向かう方向の方向指数は「2」である。   The direction index indicates the direction in which the unit length line segment is facing. In the mesh data (X, Y), the coordinates corresponding to the direction index are (X + dx, Y + dy). Specifically, as shown in FIG. 10A, the direction index in the direction from the region 1100 toward the region 1110 adjacent to the lower left is “0”. The direction index in the direction from the region 1100 to the adjacent region 1111 is “1”. The direction index in the direction from the region 1100 toward the region 1112 adjacent to the lower right is “2”.

また、領域1100から右に隣り合う領域1113へ向かう方向の方向指数は「3」である。領域1100から右上に隣り合う領域1114へ向かう方向の方向指数は「4」である。領域1100から上に隣り合う領域1115へ向かう方向の方向指数は「5」である。領域1100から左上に隣り合う領域1116へ向かう方向の方向指数は「6」である。領域1100から左に隣り合う領域1117へ向かう方向の方向指数は「7」である。   The direction index in the direction from the region 1100 to the region 1113 adjacent to the right is “3”. The direction index in the direction from the region 1100 toward the region 1114 adjacent to the upper right is “4”. The direction index in the direction from the region 1100 toward the adjacent region 1115 is “5”. The direction index in the direction from the region 1100 toward the region 1116 adjacent to the upper left is “6”. The direction index in the direction from the region 1100 toward the region 1117 adjacent to the left is “7”.

ナビゲーション装置300は、領域1100に隣り合う到達可能の識別情報「1」が付与された領域を左回りに検索する。つまり、ナビゲーション装置300は、領域1100を中心とする反時計回りに、例えば領域1110を検索開始点として到達可能の識別情報「1」が付与された領域を検索する。ここで、ナビゲーション装置300は、領域1100に隣り合う到達可能の識別情報が付与された領域の検索開始点を、前回の方向指数に基づいて決定する。具体的には、ナビゲーション装置300は、他の領域から領域1100へ向かう方向指数が「0」であった場合、領域1100の上に隣り合う領域、すなわち方向指数「5」の方向に隣り合う領域1115を決定し、領域1115から検索を開始する。   The navigation device 300 searches the area 1100 adjacent to the area 1100 and provided with the reachable identification information “1” counterclockwise. In other words, the navigation device 300 searches for a region to which the reachable identification information “1” is assigned, for example, using the region 1110 as a search start point, counterclockwise around the region 1100. Here, the navigation apparatus 300 determines the search start point of the area | region to which the reachable identification information adjacent to the area | region 1100 was provided based on the last direction index | exponent. Specifically, when the direction index from another area toward area 1100 is “0”, navigation apparatus 300 is adjacent to area 1100, that is, adjacent to the direction of direction index “5”. 1115 is determined, and the search is started from the area 1115.

同様に、ナビゲーション装置300は、他の領域から領域1100へ向かう方向指数が「1」〜「7」であった場合、領域1100の左上、左、左下、下、右下、右、右上に隣り合う領域、すなわちそれぞれ方向指数「6」、「7」、「0」、「1」、「2」、「3」、「4」の方向に隣り合う領域1116、領域1117、領域1110、領域1111、領域1112、領域1113、領域1114を決定し、決定された領域から検索を開始する。そして、ナビゲーション装置300は、検索を開始してから最初に到達可能の識別情報「1」を検出した場合、到達可能の識別情報「1」を検出した領域1110〜1117に対応する方向指数「0」〜「7」を、領域1100に関連付けて記憶装置に書き込む。   Similarly, when the direction index from another region toward the region 1100 is “1” to “7”, the navigation device 300 is adjacent to the upper left, left, lower left, lower, lower right, right, and upper right of the region 1100. Matching areas, that is, areas 1116, 1117, 1110, 1111 adjacent to each other in the directions of direction indices “6”, “7”, “0”, “1”, “2”, “3”, “4”, respectively. , Region 1112, region 1113, and region 1114 are determined, and the search is started from the determined region. When the navigation apparatus 300 detects the reachable identification information “1” for the first time after starting the search, the direction index “0” corresponding to the areas 1110 to 1117 in which the reachable identification information “1” is detected. ”To“ 7 ”are written in the storage device in association with the area 1100.

このような、対象となる領域への方向指数に基づいて決定される、対象となる領域を中心とした反時計回りに検索を開始する開始領域を使って、ナビゲーション装置300は、次のように車両の到達可能範囲の輪郭を抽出する。なお、ここで示す、対象となる領域への方向指数と検索を開始する開始領域との関係は一例であって、他の関係でも車両の到達可能範囲の輪郭の抽出は可能である。図10(B)に示すように、ナビゲーション装置300は、まず、i行i列の2次元行列データ(Y,X)のメッシュデータ1120のa行a列の領域から行単位で、到達不可能の識別情報が付与された領域から到達可能の識別情報が付与された領域に変化した領域を検出する。   Using such a start region that starts the search counterclockwise around the target region, which is determined based on the direction index to the target region, the navigation device 300 is as follows. The contour of the reachable range of the vehicle is extracted. Note that the relationship between the direction index to the target region and the start region where the search is started is an example, and the contour of the reachable range of the vehicle can be extracted with other relationships. As shown in FIG. 10 (B), the navigation device 300 cannot be reached in units of rows from the region of a row and a column of the mesh data 1120 of the two-dimensional matrix data (Y, X) of i row and i column. An area that has changed from an area assigned identification information to an area assigned reachable identification information is detected.

メッシュデータ1120のa行目のすべての領域には到達不可能の識別情報が付与されているので、つぎに、ナビゲーション装置300は、メッシュデータ1120のb行a列の領域からb行i列の領域に向かって到達可能の識別情報を検索する。そして、ナビゲーション装置300は、b行の水平方向への走査により、メッシュデータ1120のb行f列の領域1121において到達可能の識別情報(輪郭検出の第1のスタート地点)を検出する。そして、輪郭検出の第1のスタート地点であるメッシュデータ1120のb行f列の領域1121を中心として左回りに、車両の到達可能範囲の輪郭となる到達可能の識別情報を有する領域を検索する。   Since unreachable identification information is given to all the regions in the a-th row of the mesh data 1120, the navigation apparatus 300 next moves the b-row and i-th column from the b-row and a-column region of the mesh data 1120. Search for identification information that can be reached toward the area. Then, the navigation device 300 detects the reachable identification information (the first start point of the contour detection) in the region 1121 in the b row f column of the mesh data 1120 by scanning the b row in the horizontal direction. And the area | region which has the reachable identification information used as the outline of the reachable range of a vehicle is searched counterclockwise centering on the area | region 1121 of b row f column of the mesh data 1120 which is the 1st start point of outline detection. .

具体的には、ナビゲーション装置300は、水平方向への走査による領域1121への方向指数が「3」であるため領域1121の左下に隣り合う領域1122を決定し、決定された領域1122から領域1121を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置300は、領域1122の到達可能の識別情報を検出し、領域1121から領域1122へ向かう方向の方向指数「0」を、領域1121に関連付けて記憶装置に記憶する。   Specifically, the navigation device 300 determines the region 1122 adjacent to the lower left of the region 1121 because the direction index to the region 1121 by the scanning in the horizontal direction is “3”, and determines from the determined region 1122 to the region 1121. It is searched whether there is an area having identification information that can be reached counterclockwise around the center. Then, the navigation apparatus 300 detects the reachable identification information of the area 1122 and stores the direction index “0” in the direction from the area 1121 to the area 1122 in the storage device in association with the area 1121.

つぎに、ナビゲーション装置300は、前回の方向指数「0」であるため、領域1122の上に隣り合うb行e列の領域を決定し、決定されたb行e列の領域から領域1122を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置300は、領域1122の左下に隣り合う領域1123の到達可能の識別情報を検出し、領域1122から領域1123へ向かう方向の方向指数「0」を、前回の方向指数に関連付けて記憶装置に記憶する。   Next, since the navigation apparatus 300 has the previous direction index “0”, the navigation apparatus 300 determines a region of b rows and e columns adjacent to the region 1122, and centers the region 1122 from the determined region of b rows and e columns. As a counterclockwise search for whether there is an area having reachable identification information. The navigation apparatus 300 detects the reachable identification information of the area 1123 adjacent to the lower left of the area 1122 and stores the direction index “0” in the direction from the area 1122 to the area 1123 in association with the previous direction index. Store in the device.

以降、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かを検索する処理を、方向指数に対応する矢印が領域1121に戻ってくるまで繰り返しおこなう。具体的には、ナビゲーション装置300は、領域1123の上に隣り合う領域を決定し、決定された領域から領域1123を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1123の下に隣り合う領域1124の到達可能の識別情報を検出して、方向指数「1」を前回の方向指数に関連付けて記憶装置に記憶する。   Thereafter, the navigation device 300 determines a search start point based on the previous direction index, and uses the direction index as a process for searching whether there is an area having identification information that can be reached counterclockwise from the search start point. The process is repeated until the corresponding arrow returns to the area 1121. Specifically, the navigation apparatus 300 determines an adjacent area on the area 1123, and determines whether there is an area having identification information that can be reached counterclockwise from the determined area centering on the area 1123. Retrieval is performed, the reachable identification information of the area 1124 adjacent below the area 1123 is detected, and the direction index “1” is stored in the storage device in association with the previous direction index.

同様に、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定した後、検索開始点から左回りに到達可能の識別情報を有する領域を検索し、到達可能の識別情報を有する領域1124〜1134を順次検出する。そして、ナビゲーション装置300は、方向指数を取得するごとに前回の方向指数に関連付けて記憶装置に記憶する。   Similarly, after determining the search start point based on the previous direction index, the navigation device 300 searches for an area having identification information that can be reached counterclockwise from the search start point, and an area having reachable identification information 1124 to 1134 are sequentially detected. Then, every time the navigation device 300 acquires the direction index, the navigation device 300 associates it with the previous direction index and stores it in the storage device.

その後、ナビゲーション装置300は、領域1134の右に隣り合うc行h列を決定し、決定されたc行h列の領域から領域1134を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索し、領域1134の左上に隣り合う領域1121の到達可能の識別情報を検出して、方向指数「6」を前回の方向指数に関連付けて記憶装置に記憶する。これにより、記憶装置には、方向指数「0」→「0」→「1」→「0」→「2」→「3」→「4」→「3」→「2」→「5」→「5」→「5」→「6」→「6」がこの順で記憶される。このようにして記憶された方向指数の連続した配列は、図10(B)に示す通り、到達可能範囲の輪郭をあらわしている。また、方向指数の連続した矢印の向きであらわされる到達可能範囲の輪郭の向きは、図10(B)に示す通り、左回りとなっている。これは、到達可能範囲の輪郭となる領域を左回りに検索したことをあらわしている。   After that, the navigation device 300 determines the c rows and h columns adjacent to the right of the region 1134, and the region having the reachable identification information is located in the counterclockwise direction from the determined region of the c rows and h columns around the region 1134. A search is performed to determine whether or not there is, reachable identification information of the area 1121 adjacent to the upper left of the area 1134 is detected, and the direction index “6” is stored in the storage device in association with the previous direction index. As a result, the direction index “0” → “0” → “1” → “0” → “2” → “3” → “4” → “3” → “2” → “5” → “5” → “5” → “6” → “6” is stored in this order. The continuous arrangement of the direction indices stored in this way represents the outline of the reachable range as shown in FIG. Also, the direction of the outline of the reachable range, which is represented by the direction of the continuous arrow of the direction index, is counterclockwise as shown in FIG. This indicates that the region that is the outline of the reachable range is searched counterclockwise.

つぎに、ナビゲーション装置300は、到達可能範囲の他の輪郭を抽出する。具体的には、図10(B)に示すように、メッシュデータ1120のb行f列の領域1121からb行の水平方向への走査により、到達不可能の識別情報が付与された領域から到達可能の識別情報が付与された領域へ変化した他の領域を検出する。つまり、輪郭検出の第2のスタート地点を検出する。この際、一度、到達可能範囲の輪郭として抽出された領域は検出から除外されるので、領域1122や領域1123は輪郭検出の第2のスタート地点として検出されることはない。   Next, the navigation apparatus 300 extracts another outline of the reachable range. Specifically, as shown in FIG. 10 (B), the region 1121 in the b row and f column of the mesh data 1120 is reached from the region to which unreachable identification information is given by scanning in the b row in the horizontal direction. Other areas that have changed to areas to which possible identification information is assigned are detected. That is, the second start point for contour detection is detected. At this time, since the region once extracted as the outline of the reachable range is excluded from the detection, the region 1122 and the region 1123 are not detected as the second start point of the contour detection.

このようにして、到達可能範囲の他の輪郭のスタート地点、つまり、輪郭検出の第2のスタート地点として、d行g列の領域1135を検出する。そして、輪郭検出の第2のスタート地点であるメッシュデータ1120のd行g列の領域1135を中心として左回りに、車両の到達可能範囲の輪郭となる到達可能の識別情報を有する領域を検索する。   In this manner, the region 1135 of the d row and the g column is detected as the start point of another contour in the reachable range, that is, the second start point of the contour detection. And the area | region which has the reachable identification information used as the outline of the reachable range of a vehicle is searched counterclockwise centering on the area | region 1135 of d line g column of the mesh data 1120 which is a 2nd start point of outline detection. .

具体的には、ナビゲーション装置300は、水平方向への走査により領域1135への方向指数は「3」であるため領域1135の左下に隣り合う領域1142を決定し、決定された領域1135を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索する。そして、ナビゲーション装置300は、領域1132の到達可能の識別情報を検出し、領域1135から領域1132へ向かう方向の方向指数「2」を、領域1135に関連付けて記憶装置に記憶する。   Specifically, the navigation device 300 determines the region 1142 adjacent to the lower left of the region 1135 because the direction index to the region 1135 is “3” by scanning in the horizontal direction, and the determined region 1135 is the center. It is searched whether there is an area having identification information that can be reached counterclockwise. Then, the navigation device 300 detects the reachable identification information of the region 1132 and stores the direction index “2” in the direction from the region 1135 to the region 1132 in association with the region 1135 in the storage device.

つぎに、ナビゲーション装置300は、前回の方向指数「2」であるため、領域1132の左に隣り合うe行g列の領域を決定し、決定されたe行g列の領域から領域1132を中心として左回りに、到達可能の識別情報を有する領域があるか否かを検索した結果、領域1129の到達可能の識別情報を検出し、領域1132から領域1129へ向かう方向の方向指数「0」を、前回の方向指数に関連付けて記憶装置に記憶する。   Next, since the navigation apparatus 300 has the previous direction index “2”, it determines an area of e rows and g columns adjacent to the left of the area 1132, and centers the area 1132 from the determined area of e rows and g columns. As a result of searching whether there is an area having reachable identification information in the counterclockwise direction, reachable identification information of the area 1129 is detected, and the direction index “0” in the direction from the area 1132 to the area 1129 is set. And stored in the storage device in association with the previous direction index.

以降、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かを検索する処理を、方向指数に対応する矢印が領域1135に戻ってくるまで繰り返しおこなう。これにより、第2のスタート地点の領域1135を起点とする到達可能範囲の輪郭として、記憶装置には方向指数「2」→「0」→「7」→「6」→「5」→「4」→「2」がこの順で記憶される。このようにして記憶された方向指数の連続した配列は、図10(B)で示す通り、到達可能範囲の2つ目の輪郭をあらわしている。また、方向指数の連続した矢印の向きであらわされる到達可能範囲の2つ目の輪郭の向きは、図10(B)で示す通り、右回りとなっている。これは、到達可能範囲の輪郭となる領域を右回りに検索したことをあらわしている。   Thereafter, the navigation device 300 determines a search start point based on the previous direction index, and uses the direction index as a process for searching whether there is an area having identification information that can be reached counterclockwise from the search start point. Repeat until the corresponding arrow returns to region 1135. As a result, the direction index “2” → “0” → “7” → “6” → “5” → “4” is stored in the storage device as the outline of the reachable range starting from the area 1135 of the second start point. "→" 2 "is stored in this order. The continuous arrangement of the direction indexes stored in this way represents the second contour of the reachable range as shown in FIG. In addition, the direction of the second outline of the reachable range represented by the direction of the arrow having the continuous direction index is clockwise as shown in FIG. This indicates that the region that is the outline of the reachable range has been searched clockwise.

さらに、ナビゲーション装置300は、到達可能範囲の他の輪郭を抽出する。具体的には、図10(B)に示すように、メッシュデータ1120のd行g列の領域1135からd行の水平方向への走査により、到達不可能の識別情報が付与された領域から到達可能の識別情報が付与された領域へ変化した他の領域を検出する。つまり、輪郭検出の第3以降のスタート地点を検出する。この際、一度、到達可能範囲の輪郭として探索された領域は検出から除外される。この走査はi行i列まで続けられる。   Further, the navigation device 300 extracts other contours of the reachable range. Specifically, as shown in FIG. 10B, the mesh data 1120 reaches from the region 1135 in the d row and the g column from the region to which the identification information that cannot be reached is given by scanning the d row in the horizontal direction. Other areas that have changed to areas to which possible identification information is assigned are detected. That is, the third and subsequent start points for contour detection are detected. At this time, the area once searched as the outline of the reachable range is excluded from detection. This scanning continues until i rows and i columns.

以上のようにナビゲーション装置300は、最初に検出した領域1121から、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かの検索する処理を方向指数に対応する矢印が領域1121に戻ってくるまで繰り返し行うことにより、領域1122〜1134を探索し方向指数を取得する。さらに、次に検出した領域1135から、同様に、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かの検索する処理を方向指数に対応する矢印が領域1135に戻ってくるまで繰り返し行うことにより、領域1132、領域1129、領域1128、領域1136、領域1137、領域1138を探索し方向指数を取得する。そして、ナビゲーション装置300は、領域1121および領域1135から方向指数に対応する方向の一連の領域を塗りつぶすことで、図11に示すように、車両の到達可能範囲の輪郭1201および当該輪郭1201に囲まれた部分1202からなり、輪郭1203に囲まれた部分は除外された到達可能範囲1200を有するメッシュデータを生成する。   As described above, the navigation device 300 determines the search start point from the first detected region 1121 based on the previous direction index, and whether there is a region having identification information that can be reached counterclockwise from the search start point. By repeating this search process until the arrow corresponding to the direction index returns to the area 1121, the areas 1122 to 1134 are searched to acquire the direction index. Further, from the next detected area 1135, similarly, the search start point is determined based on the previous direction index, and it is searched whether there is an area having identification information that can be reached counterclockwise from the search start point. By repeating the processing until the arrow corresponding to the direction index returns to the area 1135, the area 1132, the area 1129, the area 1128, the area 1136, the area 1137, and the area 1138 are searched to acquire the direction index. Then, the navigation device 300 is surrounded by the contour 1201 of the reachable range of the vehicle and the contour 1201 as shown in FIG. 11 by painting a series of regions in the direction corresponding to the direction index from the region 1121 and the region 1135. The mesh data having the reachable range 1200 excluded from the portion surrounded by the contour 1203 is generated.

また、ナビゲーション装置300は、前回の方向指数に基づいて検索開始点を決定し、検索開始点から左回りに到達可能の識別情報を有する領域があるか否かの検索する処理を方向指数に対応する矢印が元の領域に戻ってくるまで繰り返し行うことにより得られる方向指数の連続した軌跡は、図10(b)で示すように、車両の到達可能範囲の外側輪郭では左回り(反時計回り)となる。また、車両の到達可能範囲の内側に到達不可能範囲がある場合、到達不可能範囲と接する到達可能範囲の内側輪郭の方向指数は右回り(時計回り)となる。つまり、方向指数の連続した矢印の向きが右回りであるのか、左回りであるのかを調べれば、かかる方向指数の連続した矢印の向きにより示される輪郭が到達可能範囲の外側輪郭であるのか、到達可能範囲の内側に到達可能不可能範囲がある場合の到達可能範囲の内側輪郭であるのか、を判別することができる。   Further, the navigation device 300 determines a search start point based on the previous direction index, and corresponds to the direction index for a process of searching whether there is an area having identification information that can be reached counterclockwise from the search start point. As shown in FIG. 10 (b), the continuous trajectory of the direction index obtained by repeating until the arrow to return to the original area is counterclockwise (counterclockwise) in the outer contour of the reachable range of the vehicle. ) In addition, when there is an unreachable range inside the reachable range of the vehicle, the direction index of the inner contour of the reachable range in contact with the unreachable range is clockwise (clockwise). That is, if the direction of the continuous arrow of the direction index is determined to be clockwise or counterclockwise, whether the contour indicated by the direction of the continuous arrow of the direction index is the outer contour of the reachable range, It is possible to determine whether the inner contour of the reachable range exists when the reachable range exists inside the reachable range.

(ナビゲーション装置300における到達可能範囲の輪郭抽出の概要・その2)
本実施例のナビゲーション装置300による車両の到達可能範囲抽出の別の一例について説明する。ナビゲーション装置300は、たとえば、到達可能の識別情報が付与された2次元行列データ(Y,X)のメッシュデータの経度緯度情報に基づいて、車両の到達可能範囲の輪郭を抽出してもよい。具体的には、ナビゲーション装置300は、次のように車両の到達可能範囲の輪郭を抽出する。
(Outline of outline extraction of reachable range in navigation device 300, part 2)
Another example of vehicle reachable range extraction by the navigation device 300 of the present embodiment will be described. For example, the navigation device 300 may extract the outline of the reachable range of the vehicle based on the longitude and latitude information of the mesh data of the two-dimensional matrix data (Y, X) to which reachable identification information is assigned. Specifically, the navigation apparatus 300 extracts the outline of the reachable range of the vehicle as follows.

図12は、ナビゲーション装置による車両の到達可能範囲抽出の別の一例について模式的に示す説明図である。図12に示すようなd行i列の2次元行列データ(Y,X)のメッシュデータ1300を例に説明する。ナビゲーション装置300は、メッシュデータ1300の、到達可能の識別情報「1」が付与された領域を検索する。具体的には、ナビゲーション装置300は、まず、a行a列の領域からa行i列の領域に向かって到達可能の識別情報「1」を検索する。   FIG. 12 is an explanatory diagram schematically illustrating another example of vehicle reachable range extraction by the navigation device. The mesh data 1300 of the two-dimensional matrix data (Y, X) of d rows and i columns as shown in FIG. 12 will be described as an example. The navigation device 300 searches the mesh data 1300 for the region to which the reachable identification information “1” is assigned. Specifically, the navigation apparatus 300 first searches for identification information “1” that can be reached from the area of the a row and the a column to the area of the a row and the i column.

メッシュデータ1300のa行目のすべての領域には到達不可能の識別情報「0」が付与されているので、つぎに、ナビゲーション装置300は、b行a列の領域からb行i列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置300は、到達可能の識別情報「1」を有するb行c列の領域1301の最小経度px1、最小緯度py1(領域1301の左上座標)を取得する。   Since unreachable identification information “0” is assigned to all the regions in the a-th row of the mesh data 1300, the navigation device 300 next moves the region from the b-th row a-column to the b-th row i-th column. A region having identification information “1” that can be reached is searched. Then, the navigation apparatus 300 acquires the minimum longitude px1 and the minimum latitude py1 (upper left coordinates of the area 1301) of the area 1301 in the b row and c column having the reachable identification information “1”.

つぎに、ナビゲーション装置300は、b行d列の領域からb行i列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置300は、到達可能の識別情報「1」を有する領域と、到達可能の識別情報「0」を有する領域との境界を検索し、到達可能の識別情報「1」を有するb行f列の領域1302の最大経度px2、最大緯度py2(領域1302の右下座標)を取得する。   Next, the navigation device 300 searches for an area having identification information “1” that can be reached from the area of b rows and d columns toward the area of b rows and i columns. Then, the navigation device 300 searches for a boundary between the area having the reachable identification information “1” and the area having the reachable identification information “0”, and b rows having the reachable identification information “1”. The maximum longitude px2 and the maximum latitude py2 (lower right coordinates of the region 1302) of the region 1302 in the f column are acquired.

つぎに、ナビゲーション装置300は、b行c列の領域1301の左上座標(px1,py1)と、b行f列の領域1302の右下座標(px2,py2)とを対向する頂点とする矩形領域を塗りつぶす。   Next, the navigation device 300 has a rectangular area whose apexes are the upper left coordinates (px1, py1) of the area 1301 of b rows and c columns and the lower right coordinates (px2, py2) of the area 1302 of b rows and f columns. Fill.

つぎに、ナビゲーション装置300は、メッシュデータ1300のb行g列からb行i列の領域へ、さらにc行a列からc行i列に向かって到達可能の識別情報「1」を検索する。そして、ナビゲーション装置300は、到達可能の識別情報「1」を有するc行d列の領域1303の最小経度px3、最小緯度py3(領域1303の左上座標)を取得する。   Next, the navigation apparatus 300 searches the mesh data 1300 for identification information “1” that can be reached from the b row g column to the b row i column area and further from the c row a column to the c row i column. The navigation apparatus 300 acquires the minimum longitude px3 and the minimum latitude py3 (upper left coordinates of the area 1303) of the area 1303 in the c row and d column having the reachable identification information “1”.

つぎに、ナビゲーション装置300は、c行e列の領域からc行i列の領域に向かって到達可能の識別情報「1」を有する領域を検索する。そして、ナビゲーション装置300は、到達可能の識別情報「1」を有する領域と、到達可能の識別情報「0」を有する領域との境界を検索し、到達可能の識別情報「1」を有するc行f列の領域1304の最大経度px4、最大緯度py4(領域1304の右下座標)を取得する。   Next, the navigation apparatus 300 searches for an area having identification information “1” that can be reached from the area of the c row and the e column toward the area of the c row and the i column. Then, the navigation apparatus 300 searches for a boundary between the area having the reachable identification information “1” and the area having the reachable identification information “0”, and row c having the reachable identification information “1”. The maximum longitude px4 and the maximum latitude py4 (lower right coordinates of the region 1304) of the region 1304 in the f column are acquired.

つぎに、ナビゲーション装置300は、c行d列の領域1303の左上座標(px3,py3)と、c行f列の領域1304の右下座標(px4,py4)とを対向する頂点とする矩形領域を塗りつぶす。   Next, the navigation device 300 has a rectangular area whose apexes are the upper left coordinates (px3, py3) of the area 1303 of c row and d column and the lower right coordinates (px4, py4) of the area 1304 of c row and f column. Fill.

その後、ナビゲーション装置300は、c行g列の領域からc行i列の領域へ、さらにさらにd行a列からd行i列に向かって到達可能の識別情報「1」を有する領域を検索する。ナビゲーション装置300は、c行g列の領域からd行i列までのすべての領域には到達不可能の識別情報「0」が付与されているので、処理を終了する。   After that, the navigation apparatus 300 searches for an area having identification information “1” that can be reached from the area of the c row and the g column to the area of the c row and the i column and further from the d row and the a column to the d row and the i column. . The navigation device 300 ends the process because the unreachable identification information “0” is assigned to all the areas from the c row and g column area to the d row and i column.

このように、2次元行列データ(Y,X)のメッシュデータ1300の各行ごとに、到達可能の識別情報「1」を有する領域を塗りつぶすことにより、車両の到達可能範囲および車両の到達可能範囲の輪郭を取得することができる。   In this way, by filling the area having the reachable identification information “1” for each row of the mesh data 1300 of the two-dimensional matrix data (Y, X), the reachable range of the vehicle and the reachable range of the vehicle are set. The contour can be acquired.

車両の到達範囲の中に到達不可能範囲がある場合においても、この到達不可能範囲について上記同様の処理をおこなうことにより、塗りつぶしの一部を変更(戻す)ことにより、到達不可能範囲の輪郭を取得することができる。   Even if there is an unreachable range within the reachable range of the vehicle, the contour of the unreachable range can be obtained by changing (returning) part of the fill by performing the same process as above for the unreachable range. Can be obtained.

(ナビゲーション装置300における画像処理)
上述のように、ナビゲーション装置300は、車両の残存エネルギー量に基づいて探索された移動体の到達可能なノードに基づいて移動体の到達可能範囲を生成しディスプレイ313に表示させる。以下、たとえば、ナビゲーション装置300がEV車に搭載されている場合を例に説明する。
(Image processing in the navigation device 300)
As described above, the navigation device 300 generates a reachable range of the moving object based on the reachable node of the moving object searched based on the remaining energy amount of the vehicle, and causes the display 313 to display the reachable range. Hereinafter, for example, a case where the navigation device 300 is mounted on an EV car will be described as an example.

図13は、ナビゲーション装置による画像処理の手順の一例を示すフローチャートである。図13のフローチャートにおいて、ナビゲーション装置300は、まず、たとえば、通信I/F315を介して、自装置が搭載された車両の現在地点(ofx,ofy)を取得する(ステップS1301)。つぎに、ナビゲーション装置300は、たとえば、通信I/F315を介して、車両の現在地点(ofx,ofy)における車両の初期保有エネルギー量を取得する(ステップS1302)。   FIG. 13 is a flowchart illustrating an example of an image processing procedure performed by the navigation device. In the flowchart of FIG. 13, the navigation device 300 first acquires the current location (ofx, ofy) of the vehicle on which the device is mounted, for example, via the communication I / F 315 (step S1301). Next, the navigation apparatus 300 acquires the initial stored energy amount of the vehicle at the current location (ofx, ofy) of the vehicle, for example, via the communication I / F 315 (step S1302).

つぎに、ナビゲーション装置300は、到達可能ノード探索処理をおこなう(ステップS1303)。つぎに、ナビゲーション装置300は、メッシュデータ生成および識別情報付与処理をおこなう(ステップS1304)。つぎに、ナビゲーション装置300は、車両の到達可能範囲および到達不可能範囲の輪郭を抽出する(ステップS1305)。その後、ナビゲーション装置300は、ディスプレイ313に車両の到達可能範囲を表示し(ステップS1306)、本フローチャートによる処理を終了する。   Next, the navigation apparatus 300 performs a reachable node search process (step S1303). Next, the navigation apparatus 300 performs mesh data generation and identification information addition processing (step S1304). Next, the navigation apparatus 300 extracts the contours of the reachable range and the unreachable range of the vehicle (step S1305). Thereafter, the navigation device 300 displays the reachable range of the vehicle on the display 313 (step S1306), and ends the processing according to this flowchart.

(ナビゲーション装置300における推定消費電力量算出処理)
つぎに、ナビゲーション装置300による推定消費電力量算出処理について説明する。図14は、ナビゲーション装置による推定消費電力量算出処理の手順の一例を示すフローチャートである。図14に示すフローチャートでは、上述したステップS1303の到達可能ノード探索処理でおこなう処理である。
(Estimated power consumption calculation process in the navigation device 300)
Next, the estimated power consumption calculation process by the navigation device 300 will be described. FIG. 14 is a flowchart illustrating an example of a procedure of estimated power consumption calculation processing by the navigation device. In the flowchart shown in FIG. 14, it is the process performed by the reachable node search process of step S1303 mentioned above.

図14のフローチャートにおいて、ナビゲーション装置300は、まず、通信I/F315を介して、プローブデータなどの渋滞情報や渋滞予測データを取得する(ステップS1401)。つぎに、ナビゲーション装置300は、リンクの長さや、リンクの道路種別を取得する(ステップS1402)。   In the flowchart of FIG. 14, the navigation device 300 first acquires traffic jam information such as probe data and traffic jam prediction data via the communication I / F 315 (step S1401). Next, the navigation apparatus 300 acquires the length of the link and the road type of the link (step S1402).

つぎに、ナビゲーション装置300は、ステップS1401,S1402で取得した情報に基づいて、リンクの旅行時間を算出する(ステップS1403)。リンクの旅行時間とは、車両がリンクを走行し終わるのに要する時間である。つぎに、ナビゲーション装置300は、ステップS1401〜S1403で取得した情報に基づいて、リンクの平均速度を算出する(ステップS1404)。リンクの平均速度とは、車両がリンクを走行する際の平均速度である。   Next, the navigation device 300 calculates the travel time of the link based on the information acquired in steps S1401 and S1402 (step S1403). The travel time of the link is the time required for the vehicle to finish traveling on the link. Next, the navigation device 300 calculates the average link speed based on the information acquired in steps S1401 to S1403 (step S1404). The average speed of the link is an average speed when the vehicle travels on the link.

つぎに、ナビゲーション装置300は、リンクの標高データを取得する(ステップS1405)。つぎに、ナビゲーション装置300は、車両の設定情報を取得する(ステップS1406)。つぎに、ナビゲーション装置300は、ステップS1401〜S1406で取得した情報に基づいて、上述した(1)式〜(6)式のいずれか1つ以上の消費エネルギー推定式を用いて、リンクにおける推定消費電力量を算出し(ステップS1407)、本フローチャートによる処理を終了する。   Next, the navigation apparatus 300 acquires the altitude data of the link (step S1405). Next, the navigation apparatus 300 acquires vehicle setting information (step S1406). Next, based on the information acquired in steps S1401 to S1406, the navigation apparatus 300 uses one or more of the above-described energy consumption estimation formulas (1) to (6) to estimate the consumption at the link. The amount of electric power is calculated (step S1407), and the processing according to this flowchart ends.

(ナビゲーション装置300における到達可能地点探索処理)
つぎに、ナビゲーション装置300による到達可能地点探索処理について説明する。図15−1,15−2は、ナビゲーション装置による到達可能地点探索処理の手順を示すフローチャートである。ナビゲーション装置300は、探索始点に最も近いリンクL(i)_jに接続するノードN(i)_jをノード候補に追加する(ステップS1501)。探索始点とは、上述したステップS1301で取得した車両の現在地点(ofx,ofy)である。
(Reachable point search process in the navigation device 300)
Next, reachable point search processing by the navigation device 300 will be described. 15A and 15B are flowcharts illustrating the procedure of reachable point search processing by the navigation device. The navigation device 300 adds the node N (i) _j connected to the link L (i) _j closest to the search start point to the node candidates (step S1501). The search start point is the current point (ofx, ofy) of the vehicle acquired in step S1301 described above.

変数i,jは、任意の数値であり、たとえば、探索始点に最も近いリンクおよびノードをそれぞれリンクL(1)_jおよびノードN(1)_jとし、さらに、ノードN(1)_jに接続するリンクをリンクL(2)_j、リンクL(2)_jに接続するノードをノードN(2)_jとしていけばよい(j=1,2、・・・,j1)。変数j1は、任意の数値であり、同一の階層に複数のリンクまたはノードが存在することを意味する。   The variables i and j are arbitrary numerical values. For example, a link and a node closest to the search start point are a link L (1) _j and a node N (1) _j, respectively, and are further connected to the node N (1) _j. A node connecting the link to the link L (2) _j and the node connecting to the link L (2) _j may be a node N (2) _j (j = 1, 2,..., J1). The variable j1 is an arbitrary numerical value and means that a plurality of links or nodes exist in the same hierarchy.

つぎに、ナビゲーション装置300は、ノード候補が1つ以上あるか否かを判断する(ステップS1502)。ノード候補が1つ以上ある場合(ステップS1502:Yes)、ナビゲーション装置300は、車両の現在地点からノード候補までの累計消費電力量が最小なノード候補を選択する(ステップS1503)。たとえば、ナビゲーション装置300がノード候補としてノードN(i)_jを選択したとして以降の処理を説明する。   Next, the navigation apparatus 300 determines whether there are one or more node candidates (step S1502). When there is one or more node candidates (step S1502: Yes), the navigation apparatus 300 selects a node candidate with the minimum cumulative power consumption from the current point of the vehicle to the node candidate (step S1503). For example, the following processing will be described assuming that the navigation device 300 selects the node N (i) _j as a node candidate.

つぎに、ナビゲーション装置300は、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量以下であるか否かを判断する(ステップS1504)。指定エネルギー量とは、たとえば、車両の現在地点における車両の残存エネルギー量である。指定エネルギー量以下である場合(ステップS1504:Yes)、ナビゲーション装置300は、ノードN(i)_jに接続するすべてのリンクL(i+1)_jを抽出する(ステップS1505)。   Next, the navigation apparatus 300 determines whether or not the cumulative power consumption from the current point of the vehicle to the node N (i) _j is less than or equal to the specified energy amount (step S1504). The designated energy amount is, for example, the remaining energy amount of the vehicle at the current location of the vehicle. If it is equal to or less than the specified energy amount (step S1504: Yes), the navigation apparatus 300 extracts all links L (i + 1) _j connected to the node N (i) _j (step S1505).

つぎに、ナビゲーション装置300は、ステップS1505において抽出したリンクL(i+1)_jのうち、一のリンクL(i+1)_jを選択する(ステップS1506)。つぎに、ナビゲーション装置300は、ステップS1506において選択した一のリンクL(i+1)_jをリンク候補とするか否かを判断する候補判断処理をおこなう(ステップS1507,S1508)。   Next, the navigation apparatus 300 selects one link L (i + 1) _j among the links L (i + 1) _j extracted in step S1505 (step S1506). Next, the navigation apparatus 300 performs candidate determination processing for determining whether or not the one link L (i + 1) _j selected in step S1506 is a link candidate (steps S1507 and S1508).

一のリンクL(i+1)_jをリンク候補とする場合(ステップS1508:Yes)、ナビゲーション装置300は、一のリンクL(i+1)_jでの消費電力量算出処理をおこなう(ステップS1509)。つぎに、ナビゲーション装置300は、一のリンクL(i+1)_jに接続するノードN(i+1)_jまでの累計消費電力量W(i+1)_jを算出する(ステップS1510)。つぎに、ナビゲーション装置300は、ノードN(i+1)_jに接続する処理済みの他の経路があるか否かを判断する(ステップS1511)。   When one link L (i + 1) _j is set as a link candidate (step S1508: Yes), the navigation apparatus 300 performs a power consumption calculation process for the one link L (i + 1) _j (step S1509). Next, the navigation apparatus 300 calculates the cumulative power consumption W (i + 1) _j up to the node N (i + 1) _j connected to one link L (i + 1) _j (step S1510). Next, the navigation apparatus 300 determines whether there is another processed route connected to the node N (i + 1) _j (step S1511).

処理済みの他の経路がある場合(ステップS1511:Yes)、ナビゲーション装置300は、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量よりも小さいか否かを判断する(ステップS1512)。他の経路での累計消費電力量よりも小さい場合(ステップS1512:Yes)、ナビゲーション装置300は、ノードN(i+1)_jに車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jを設定する(ステップS1513)。   If there is another route that has been processed (step S1511: Yes), the navigation apparatus 300 determines that the cumulative power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is the cumulative amount of the other route. It is determined whether or not it is smaller than the power consumption (step S1512). If the accumulated power consumption is smaller than the other route (step S1512: Yes), the navigation apparatus 300 causes the node N (i + 1) _j to accumulate the accumulated power consumption W from the current point of the vehicle to the node N (i + 1) _j. (I + 1) _j is set (step S1513).

一方、処理済みの他の経路がない場合(ステップS1511:No)、ナビゲーション装置300は、ステップS1513に進む。つぎに、ナビゲーション装置300は、ノードN(i+1)_jがノード候補であるか否かを判断する(ステップS1514)。ノード候補でない場合(ステップS1514:No)、ナビゲーション装置300は、ノードN(i+1)_jをノード候補に追加する(ステップS1515)。   On the other hand, when there is no other processed route (step S1511: No), the navigation apparatus 300 proceeds to step S1513. Next, the navigation apparatus 300 determines whether or not the node N (i + 1) _j is a node candidate (step S1514). If not a node candidate (step S1514: No), the navigation apparatus 300 adds the node N (i + 1) _j to the node candidate (step S1515).

また、一のリンクL(i+1)_jをリンク候補としない場合(ステップS1508:No)、車両の現在地点からノードN(i+1)_jまでの累計消費電力量W(i+1)_jが他の経路での累計消費電力量以上である場合(ステップS1512:No)、ノードN(i+1)_jがノード候補である場合(ステップS1514:Yes)、ナビゲーション装置300は、ステップS1516へ進む。   When one link L (i + 1) _j is not a link candidate (step S1508: No), the accumulated power consumption W (i + 1) _j from the current point of the vehicle to the node N (i + 1) _j is another route. If the node N (i + 1) _j is a node candidate (step S1514: Yes), the navigation device 300 proceeds to step S1516.

つぎに、ナビゲーション装置300は、すべてのリンクL(i+1)_jの候補判断処理が終了したか否かを判断する(ステップS1516)。すべてのリンクL(i+1)_jの候補判断処理が終了した場合(ステップS1516:Yes)、ノードN(i)_jをノード候補から外した後(ステップS1517)、ステップS1502へ戻る。そして、ナビゲーション装置300は、ノード候補が1つ以上ある場合(ステップS1502:Yes)、ノード候補の中から、車両の現在地点からの累計消費電力量が最小なノード候補を選択し(ステップS1503)、ステップS1503において選択したノード候補を次のノードN(i)_jとしてステップS1504以降の処理をおこなう。   Next, the navigation apparatus 300 determines whether or not the candidate determination process for all links L (i + 1) _j has been completed (step S1516). When the candidate determination process for all links L (i + 1) _j is completed (step S1516: Yes), the node N (i) _j is excluded from the node candidates (step S1517), and the process returns to step S1502. Then, when there is one or more node candidates (step S1502: Yes), the navigation apparatus 300 selects a node candidate having the minimum cumulative power consumption from the current location of the vehicle from the node candidates (step S1503). Then, the node candidate selected in step S1503 is set as the next node N (i) _j, and the processing from step S1504 is performed.

一方、すべてのリンクL(i+1)_jの候補判断処理が終了していない場合(ステップS1516:No)、ステップS1506へ戻る。そして、ナビゲーション装置300は、再度、ノードN(i)_jに接続する他のリンクL(i+1)_jを選択し、同一のノード候補に接続するすべてのリンクL(i+1)_jの候補判断処理が終了するまで(ステップS1516:Yes)、ステップS1507からステップS1515までの処理を繰り返しおこなう。また、ノード候補が1つ以上ない場合(ステップS1502:No)、車両の現在地点からノードN(i)_jまでの累計消費電力量が指定エネルギー量より大きい場合(ステップS1504:No)、ナビゲーション装置300は、本フローチャートによる処理を終了する。   On the other hand, if the candidate determination process for all links L (i + 1) _j is not completed (step S1516: No), the process returns to step S1506. The navigation device 300 selects another link L (i + 1) _j connected to the node N (i) _j again, and performs candidate determination processing for all the links L (i + 1) _j connected to the same node candidate. Until the process ends (step S1516: Yes), the processes from step S1507 to step S1515 are repeated. If there is no one or more node candidates (step S1502: No), the cumulative power consumption from the current point of the vehicle to the node N (i) _j is larger than the specified energy amount (step S1504: No), the navigation device 300 terminates the processing according to this flowchart.

(ナビゲーション装置300における識別情報付与処理)
つぎに、ナビゲーション装置300による識別情報付与処理について説明する。図16−1は、ナビゲーション装置による識別情報付与処理の手順の一例を示すフローチャートである。図16−1のフローチャートは、上述したステップS1304でおこなう処理である。
(Identification information adding process in the navigation device 300)
Next, the identification information giving process by the navigation device 300 will be described. FIG. 16A is a flowchart illustrating an example of a procedure of identification information provision processing by the navigation device. The flowchart in FIG. 16A is a process performed in step S1304 described above.

図16−1のフローチャートにおいて、ナビゲーション装置300は、まず、到達可能なノード(探索可能地点)の経度緯度情報(x,y)を取得する(ステップS1701)。つぎに、ナビゲーション装置300は、最大経度x_max、最小経度x_min、最大緯度y_max、最小緯度y_minを取得する(ステップS1702)。   In the flowchart of FIG. 16A, the navigation apparatus 300 first acquires longitude / latitude information (x, y) of a reachable node (searchable point) (step S1701). Next, the navigation apparatus 300 acquires the maximum longitude x_max, the minimum longitude x_min, the maximum latitude y_max, and the minimum latitude y_min (step S1702).

つぎに、ナビゲーション装置300は、ステップS1301で取得した車両の現在地点(ofx,ofy)から、最大経度x_maxまでの距離w1、最小経度x_minまでの距離w2、最大緯度y_maxまでの距離w3、最小緯度y_minまでの距離w4をそれぞれ算出する(ステップS1703)。つぎに、ナビゲーション装置300は、距離w1〜w4のうちの最も長い距離w5=max(w1,w2,w3,w4)を取得する(ステップS1704)。   Next, the navigation apparatus 300 determines the distance w1 from the current vehicle location (ofx, ofy) acquired in step S1301 to the maximum longitude x_max, the distance w2 to the minimum longitude x_min, the distance w3 to the maximum latitude y_max, and the minimum latitude. A distance w4 to y_min is calculated (step S1703). Next, the navigation apparatus 300 acquires the longest distance w5 = max (w1, w2, w3, w4) among the distances w1 to w4 (step S1704).

つぎに、ナビゲーション装置300は、記憶装置に記憶された地図データを絶対座標系からスクリーン座標系へ変換するための倍率mag=w5/nを算出する(ステップS1705)。つぎに、ナビゲーション装置300は、ステップS1705において算出した倍率magを用いて地図データを絶対座標系からスクリーン座標系へ変換し、m×mドットのメッシュデータ(X,Y)を生成する(ステップS1706)。   Next, the navigation device 300 calculates the magnification mag = w5 / n for converting the map data stored in the storage device from the absolute coordinate system to the screen coordinate system (step S1705). Next, the navigation apparatus 300 converts the map data from the absolute coordinate system to the screen coordinate system using the magnification mag calculated in step S1705, and generates m × m dot mesh data (X, Y) (step S1706). ).

ナビゲーション装置300は、ステップS1706において、到達可能なノードを含むメッシュデータ(X,Y)に到達可能の識別情報を付与し、到達可能なノードを含まないメッシュデータ(X,Y)に到達不可能の識別情報を付与する。そして、ナビゲーション装置300は、第1識別情報変更処理をおこなうことで、橋またはトンネルに相当するメッシュデータ(X,Y)の欠損点を除去する(ステップS1707)。   In step S1706, the navigation apparatus 300 gives reachable identification information to the mesh data (X, Y) including the reachable node, and cannot reach the mesh data (X, Y) that does not include the reachable node. The identification information is assigned. And the navigation apparatus 300 removes the missing point of the mesh data (X, Y) corresponding to a bridge or a tunnel by performing a 1st identification information change process (step S1707).

つぎに、ナビゲーション装置300は、第2識別情報変更処理をおこなう(ステップS1708)。つぎに、ナビゲーション装置300は、第3識別情報変更処理をおこない(ステップS1709)、本フローチャートによる処理を終了する。第2識別情報変更処理は、クローニングの膨張処理である。第3識別情報変更処理は、クローニングの縮小処理である。なお、本フローチャートでは、第1識別情報変更処理(ステップS1707)の後で第2識別情報変更処理(ステップS1708)と第3識別情報変更処理(ステップS1709)を行っているが、第2識別情報変更処理(ステップS1708)と第3識別情報変更処理(ステップS1709)の後で、第1識別情報変更処理(ステップS1707)を行ってもよい。   Next, the navigation apparatus 300 performs a second identification information change process (step S1708). Next, the navigation apparatus 300 performs a third identification information change process (step S1709), and ends the process according to this flowchart. The second identification information changing process is a cloning expansion process. The third identification information change process is a cloning reduction process. In this flowchart, the second identification information change process (step S1708) and the third identification information change process (step S1709) are performed after the first identification information change process (step S1707). After the change process (step S1708) and the third identification information change process (step S1709), the first identification information change process (step S1707) may be performed.

(ナビゲーション装置300における第1識別情報変更処理)
つぎに、ナビゲーション装置300による第1識別情報変更処理について説明する。図16−2は、ナビゲーション装置による第1識別情報変更処理の手順の一例を示すフローチャートである。図16−2のフローチャートは、上述したステップS1707でおこなう処理の一例である。具体的には、ナビゲーション装置300は、橋またはトンネルの入口および出口に相当する各領域の識別情報が到達可能の識別情報である場合に、橋またはトンネルに相当する領域に生じている欠損点を除去する。
(First Identification Information Changing Process in Navigation Device 300)
Next, the first identification information changing process by the navigation device 300 will be described. FIG. 16-2 is a flowchart illustrating an example of a procedure of first identification information change processing by the navigation device. The flowchart in FIG. 16B is an example of the process performed in step S1707 described above. Specifically, when the identification information of each area corresponding to the entrance and exit of the bridge or tunnel is reachable identification information, the navigation device 300 detects the missing point generated in the area corresponding to the bridge or tunnel. Remove.

図16−2のフローチャートにおいて、ナビゲーション装置300は、まず、my行mx列の2次元行列データのメッシュデータを取得する(ステップS1711)。つぎに、ナビゲーション装置300は、メッシュデータのi行j列の領域の識別情報を検索するために、変数i,jに1を代入する(ステップS1712,S1713)。つぎに、ナビゲーション装置300は、メッシュデータのi行j列の領域が橋またはトンネルの出入り口であるか否かを判断する(ステップS1714)。   In the flowchart of FIG. 16B, the navigation apparatus 300 first acquires mesh data of two-dimensional matrix data of my rows and mx columns (step S1711). Next, the navigation apparatus 300 substitutes 1 for the variables i and j in order to search the identification information of the area of the i row and j column of the mesh data (steps S1712 and S1713). Next, the navigation apparatus 300 determines whether or not the area in the i-th row and j-th column of the mesh data is a bridge or tunnel entrance / exit (step S1714).

i行j列の領域が橋またはトンネルの出入り口である場合(ステップS1714:Yes)、ナビゲーション装置300は、メッシュデータのi行j列の領域の識別情報が「1」であるか否かを判断する(ステップS1715)。i行j列の領域の識別情報が「1」である場合(ステップS1715:Yes)、ナビゲーション装置300は、メッシュデータのi行j列の領域に対応する、橋またはトンネルの他方の出入り口の領域の位置(i1,j1)を取得する(ステップS1716)。   When the i-th row and j-th column region is the entrance of a bridge or tunnel (step S1714: Yes), the navigation apparatus 300 determines whether or not the identification information of the i-th row and j-th column region of the mesh data is “1”. (Step S1715). When the identification information of the i-th row and j-th column area is “1” (step S1715: Yes), the navigation apparatus 300 corresponds to the i-th row and j-th column area of the mesh data and the other entrance / exit area of the bridge or tunnel. Position (i1, j1) is acquired (step S1716).

つぎに、ナビゲーション装置300は、メッシュデータのi1行j1列の領域の識別情報が「1」であるか否かを判断する(ステップS1717)。i1行j1列の領域の識別情報が「1」である場合(ステップS1717:Yes)、ナビゲーション装置300は、i行j列の領域とi1行j1列の領域とを結ぶ区間上にあるすべての領域の位置情報を取得する(ステップS1718)。   Next, the navigation apparatus 300 determines whether the identification information of the area | region of i1 row j1 column of mesh data is "1" (step S1717). When the identification information of the area of i1 row j1 column is “1” (step S1717: Yes), the navigation apparatus 300 determines that all the areas on the section connecting the i row j column area and the i1 row j1 column area are present. The position information of the area is acquired (step S1718).

つぎに、ナビゲーション装置300は、ステップS1718において取得した各領域の識別情報を「1」に変更する(ステップS1719)。これにより、i行j列の領域とi1行j1列の領域とを結ぶ橋またはトンネルに相当する領域に生じている欠損点が除去される。ナビゲーション装置300は、ステップS1718において取得した各領域の識別情報がすべて「1」であった場合に、ステップS1719の処理をおこなわずにステップS1720へ進んでもよい。   Next, the navigation apparatus 300 changes the identification information of each area acquired in step S1718 to “1” (step S1719). As a result, the missing point generated in the region corresponding to the bridge or tunnel connecting the region of i row and j column and the region of i1 row and j1 column is removed. The navigation apparatus 300 may proceed to step S1720 without performing the process of step S1719 when the identification information of each area acquired in step S1718 is all “1”.

また、i行j列の領域が橋またはトンネルの出入り口でない場合(ステップS1714:No)、i行j列の領域の識別情報が「1」でない場合(ステップS1715:No)、および、i1行j1列の領域の識別情報が「1」でない場合(ステップS1717:No)、ナビゲーション装置300は、ステップS1720に進む。   Further, when the region of i row and j column is not the entrance of the bridge or tunnel (step S1714: No), when the identification information of the region of i row and j column is not “1” (step S1715: No), and i1 row j1 If the identification information of the row area is not “1” (step S1717: No), the navigation apparatus 300 proceeds to step S1720.

つぎに、ナビゲーション装置300は、変数jに1を加算し(ステップS1720)、変数jがmx列を超えているか否かを判断する(ステップS1721)。変数jがmx列を超えていない場合(ステップS1721:No)、ナビゲーション装置300は、ステップS1714に戻り、以降の処理を繰り返しおこなう。一方、変数jがmx列を超えている場合(ステップS1721:Yes)、ナビゲーション装置300は、変数iに1を加算し(ステップS1722)、変数iがmy行を超えているか否かを判断する(ステップS1723)。   Next, the navigation apparatus 300 adds 1 to the variable j (step S1720), and determines whether the variable j exceeds the mx column (step S1721). If the variable j does not exceed the mx column (step S1721: NO), the navigation device 300 returns to step S1714 and repeats the subsequent processing. On the other hand, when the variable j exceeds the mx column (step S1721: Yes), the navigation apparatus 300 adds 1 to the variable i (step S1722), and determines whether the variable i exceeds the my row. (Step S1723).

変数iがmy行を超えていない場合(ステップS1723:No)、ナビゲーション装置300は、ステップS1713に戻り、変数jに1を代入した後、以降の処理を繰り返しおこなう。一方、変数iがmy行を超えている場合(ステップS1723:Yes)、ナビゲーション装置300は、本フローチャートによる処理を終了する。これにより、ナビゲーション装置300は、my行mx列の2次元行列データのメッシュデータに含まれる橋またはトンネル上のすべての欠損点を除去することができる。   If the variable i does not exceed the my line (step S1723: NO), the navigation apparatus 300 returns to step S1713, substitutes 1 for the variable j, and then repeats the subsequent processing. On the other hand, when the variable i exceeds the my line (step S1723: Yes), the navigation device 300 ends the process according to the flowchart. Thereby, the navigation apparatus 300 can remove all missing points on the bridge or tunnel included in the mesh data of the two-dimensional matrix data of my rows and mx columns.

また、ナビゲーション装置300は、ステップS1716において橋またはトンネルの他方の出入り口として取得されたi1行j1列の領域について、再度、橋またはトンネルの他方の出入り口であるか否かの判断(ステップS1714の処理)をおこなわなくてもよい。これにより、ナビゲーション装置300は、第1識別情報変更処理の処理量を低減させることができる。   In addition, the navigation device 300 determines again whether or not the region of the column i1 and j1 acquired as the other entrance / exit of the bridge or tunnel in step S1716 is the other entrance / exit of the bridge or tunnel (processing in step S1714). ) Is not necessary. Thereby, the navigation apparatus 300 can reduce the processing amount of a 1st identification information change process.

(ナビゲーション装置300における到達可能範囲輪郭抽出処理)
つぎに、ナビゲーション装置300による識別情報付与処理について説明する。図17は、ナビゲーション装置による到達可能範囲輪郭抽出処理の手順の一例を示すフローチャートである。図17のフローチャートは、上述したステップS1305でおこなう処理の一例である。
(Area reachable range extraction process in navigation device 300)
Next, the identification information giving process by the navigation device 300 will be described. FIG. 17 is a flowchart illustrating an example of a reachable range contour extraction process performed by the navigation device. The flowchart in FIG. 17 is an example of the process performed in step S1305 described above.

図10(B)に示したように、ナビゲーション装置300の輪郭データ算出部106は、2次元行列のメッシュデータを画像の左上端からx方向(東方向)に+1ずつ走査し、右端に到達したらy方向(南方向)に+1進む(ステップS1801)。そして、現在の画素の色を確認し白から黒(識別情報が「0」→「1」)に変わる画素を探し、この画素(図10(B)の領域1121)を追跡開始画素とする(ステップS1802)。   As shown in FIG. 10B, the contour data calculation unit 106 of the navigation device 300 scans the mesh data of the two-dimensional matrix by +1 from the upper left end of the image in the x direction (eastward direction) and reaches the right end. Proceed +1 in the y direction (south direction) (step S1801). Then, the color of the current pixel is confirmed, a pixel that changes from white to black (identification information “0” → “1”) is searched, and this pixel (region 1121 in FIG. 10B) is set as a tracking start pixel ( Step S1802).

つぎに、追跡開始画素が以前に抽出した輪郭の一部であるか判断する(ステップS1803)。追跡開始画素が以前に抽出した輪郭の一部であれば(ステップS1803:Yes)、ステップS1806に移行する。追跡開始画素が以前に抽出した輪郭の一部でなければ(ステップS1803:No)、上述した輪郭追跡処理をおこなう(ステップS1804)。そして、抽出した輪郭を構成する画素を、抽出済みの画素として記憶装置に保存する(ステップS1805)。この後、全ての画素を走査し終えたか判断し(ステップS1806)、全ての画素を走査し終えていなければ(ステップS1806:No)、ステップS1801に戻り、全ての画素を走査し終えていれば(ステップS1806:Yes)、以上の処理を終了する。   Next, it is determined whether the tracking start pixel is a part of a previously extracted contour (step S1803). If the tracking start pixel is a part of the previously extracted contour (step S1803: Yes), the process proceeds to step S1806. If the tracking start pixel is not part of the previously extracted contour (step S1803: No), the above-described contour tracking process is performed (step S1804). Then, the pixels constituting the extracted contour are stored in the storage device as extracted pixels (step S1805). Thereafter, it is determined whether all the pixels have been scanned (step S1806). If all the pixels have not been scanned (step S1806: No), the process returns to step S1801, and if all the pixels have been scanned. (Step S1806: Yes), the above process ends.

図18は、ナビゲーション装置による輪郭追跡処理の手順の一例を示すフローチャートである。図18のフローチャートは、上述したステップS1804でおこなう処理の一例である。また、図19は、輪郭追跡処理を説明するための図である。チェインコードと探索開始画素を示している。現在注目している画素(領域1100)を探索基準画素とし、この探索基準画素には8方向の隣接画素が隣接している。そして、追跡開始画素から探索をはじめる場合は、追跡開始画素を探索基準画素とする。   FIG. 18 is a flowchart illustrating an example of a procedure of contour tracking processing by the navigation device. The flowchart in FIG. 18 is an example of the process performed in step S1804 described above. FIG. 19 is a diagram for explaining the contour tracking process. A chain code and a search start pixel are shown. The currently focused pixel (region 1100) is set as a search reference pixel, and adjacent pixels in eight directions are adjacent to this search reference pixel. When the search is started from the tracking start pixel, the tracking start pixel is set as the search reference pixel.

はじめに、ナビゲーション装置300の輪郭データ算出部106は、探索基準画素への進入方向から、時計周りに(2π/隣接画素数)×3=135°だけ回転した探索方位に位置する隣接画素を探索開始画素と呼び、探索開始画素を決定する(ステップS1901)。たとえば、図19の(A)に示すように、進入方向が3であれば探索開始方位は0となる。また、進入方向が6であれば探索開始方位は3となる。   First, the contour data calculation unit 106 of the navigation apparatus 300 starts searching for an adjacent pixel located in the search direction rotated by (2π / number of adjacent pixels) × 3 = 135 ° clockwise from the approach direction to the search reference pixel. This is called a pixel, and a search start pixel is determined (step S1901). For example, as shown in FIG. 19A, if the approach direction is 3, the search start direction is 0. If the approach direction is 6, the search start direction is 3.

つぎに、図19の(B)に示すように、探索開始画素からはじめて、探索方位を反時計周りに単位回転角(2π/隣接画素数)ずつ変えながら全ての隣接画素を反時計回りに順に探索し、はじめて黒(識別情報が「1」)になる画素を次の探索基準画素とする(ステップS1902)。そして、探索基準画素が存在するか判断する(ステップS1903)。すなわち、隣接画素に黒い画素(識別情報が「1」)が存在するか判断する。図19の(C)に示すように、存在する場合には(ステップS1903:Yes)、次の探索開始画素への進入方向を保存し、この探索開始画素を探索基準画素とする(ステップS1904)。この後、探索基準画素が追跡開始画素に戻ったか判断し(ステップS1905)、戻っていなければ(ステップS1905:No)、輪郭を追跡中であり処理継続のためにステップS1901に戻り、戻っていれば(ステップS1905:Yes)、輪郭を追跡し終えたため、以上の処理を終了する。   Next, as shown in FIG. 19B, starting from the search start pixel, all adjacent pixels are sequentially turned counterclockwise while changing the search direction counterclockwise by unit rotation angle (2π / number of adjacent pixels). The pixel that becomes black (identification information is “1”) for the first time after the search is set as the next search reference pixel (step S1902). Then, it is determined whether a search reference pixel exists (step S1903). That is, it is determined whether there is a black pixel (identification information is “1”) in the adjacent pixel. As shown in FIG. 19C, if it exists (step S1903: Yes), the approach direction to the next search start pixel is stored, and this search start pixel is set as a search reference pixel (step S1904). . Thereafter, it is determined whether the search reference pixel has returned to the tracking start pixel (step S1905). If the search reference pixel has not returned (step S1905: No), the contour is being tracked and the process returns to step S1901 to continue the process. If the contour has been traced (step S1905: Yes), the above process is terminated.

また、ステップS1903において、探索基準画素が存在しない場合には(ステップS1903:No)、図19の(D)に示すように、孤立した点だけで構成される輪郭で確定することとなり、以上の処理を終了する。   In step S1903, if no search reference pixel exists (step S1903: No), as shown in FIG. 19D, the contour is defined by only isolated points. The process ends.

(輪郭の向きの算出処理)
図20は、ナビゲーション装置による輪郭の向きの算出処理の手順の一例を示すフローチャートである。ナビゲーション装置300の向き算出部107がおこなう処理について説明する。図20のフローチャートは、図18に示した輪郭追跡処理の後に実行される。はじめに、図18に示した輪郭追跡処理にて確定した進入方向の遷移を順に走査する(ステップS2201)。
(Contour direction calculation processing)
FIG. 20 is a flowchart illustrating an example of a procedure of a contour direction calculation process performed by the navigation device. Processing performed by the orientation calculation unit 107 of the navigation device 300 will be described. The flowchart of FIG. 20 is executed after the contour tracking process shown in FIG. First, the transition in the approach direction determined by the contour tracking process shown in FIG. 18 is sequentially scanned (step S2201).

つぎに、進入方向の変化量の絶対値が、隣接画素数の半分以上である場合(上記例では4以上または−4以下)は、隣接画素数を1回加算または減算し、進入方向の変化量の絶対値が隣接画素数の半分より小さく(−3以上3以下)なるように補正する(ステップS2202)。そして、補正した進入方向の変化量と単位回転角(2π/隣接画素数)の積を計算し、進入方向の遷移による回転角度の累積を計算する(ステップS2203)。   Next, when the absolute value of the change amount in the approach direction is more than half of the number of adjacent pixels (4 or more or -4 or less in the above example), the number of adjacent pixels is added or subtracted once to change the approach direction. The absolute value of the quantity is corrected so as to be smaller than half of the number of adjacent pixels (−3 to 3) (step S2202). Then, the product of the corrected change amount in the approach direction and the unit rotation angle (2π / number of adjacent pixels) is calculated, and the cumulative rotation angle due to the transition in the approach direction is calculated (step S2203).

この後、全ての進入方向の線を走査し終えたか判断し(ステップS2204)、走査し終えていなければ(ステップS2204:No)、ステップS2201に戻り、走査し終えていれば(ステップS2204:Yes)、つぎに、進入方向の遷移による回転角度の累積が2πまたは0であるか判断する(ステップS2205)。判断結果、回転角度の累積が2πまたは0の場合には(ステップS2205:2πまたは0)、進入方向の遷移が周回する方向が反時計回りであることが分かり(ステップS2206)、以上の処理を終了する。ここで、累積値が0の場合は反時計回りの特殊な場合とする。一方、回転角度の累積が−2πである場合には(ステップS2205:−2π)、進入方向の遷移が周回する方向が時計回りであることが分かり(ステップS2207)、以上の処理を終了する。   Thereafter, it is determined whether or not all the lines in the approach direction have been scanned (step S2204). If the scanning has not been completed (step S2204: No), the process returns to step S2201, and if the scanning has been completed (step S2204: Yes). Next, it is determined whether the cumulative rotation angle due to the transition in the approach direction is 2π or 0 (step S2205). If the cumulative rotation angle is 2π or 0 (step S2205: 2π or 0) as a result of the determination, it can be seen that the direction in which the transition of the approach direction circulates is counterclockwise (step S2206). finish. Here, when the accumulated value is 0, it is a special case of counterclockwise rotation. On the other hand, when the accumulated rotation angle is −2π (step S2205: −2π), it is found that the direction in which the transition of the approach direction circulates is clockwise (step S2207), and the above processing is terminated.

上記輪郭の向きの処理について、具体的に、上述した図10(B)に示した輪郭(外輪郭および内輪郭)を用いて説明する。外輪郭については、一周するまでにおける方向指数の値が、0→0→1→0→2→3→4→3→2→5→5→5→6→6→0と変化する。各値間の変化量(差分)は、それぞれ0,1,−1,2,1,1,−1,−1,3,0,0,1,0,−6である。ここで、方向指数の変化について最後の6→0が示す−6の値は、図10(A)で見て隣接画素2つ分だけの変化であるため、補正値として+8を加え、−6の代わりに方向指数が+2であるとする。そして、合計の累積値を8(8×45°=360°)とし、この場合、反時計回り(外輪郭)であると判断する。   The processing of the direction of the contour will be specifically described using the contours (outer contour and inner contour) shown in FIG. For the outer contour, the value of the direction index until it goes around changes as 0 → 0 → 1 → 0 → 2 → 3 → 4 → 3 → 2 → 5 → 5 → 5 → 6 → 6 → 0. The amount of change (difference) between the values is 0, 1, -1, 2, 1, 1, -1, -1, 3, 0, 0, 1, 0, -6, respectively. Here, with respect to the change in the direction index, the value of −6 indicated by the last 6 → 0 is a change of only two adjacent pixels as viewed in FIG. Suppose that the direction index is +2 instead of. The total accumulated value is 8 (8 × 45 ° = 360 °), and in this case, it is determined that the counterclockwise direction (outer contour) is obtained.

また、内輪郭については、一周するまでにおける方向指数の値が、2→0→7→6→5→4→2→2と変化する。各値間の変化量(差分)は、それぞれ−2,7,−1,−1,−1,−2,0である。ここで、方向指数の変化について0→7が示す7の値は、図10(A)で見て隣接画素1つ分だけの変化であるため、補正値として−8を加え、7の代わりに方向指数を−1とする。合計の累積値を−8(−8×45°=−360°)とし、この場合、時計回り(内輪郭)であると判断する。   As for the inner contour, the value of the direction index until it goes around changes from 2 → 0 → 7 → 6 → 5 → 4 → 2 → 2. The amount of change (difference) between the values is -2, 7, -1, -1, -1, -2, 0, respectively. Here, regarding the change in the direction index, the value of 7 indicated by 0 → 7 is a change corresponding to one adjacent pixel as seen in FIG. Let the direction index be -1. The total accumulated value is set to −8 (−8 × 45 ° = −360 °), and in this case, it is determined to be clockwise (inner contour).

このようにして、向き算出部107は、輪郭データ算出部106により算出された輪郭の向き(時計回りまたは反時計回り)を求め、輪郭データ算出部106(向き算出部107)は、図10(C)に示すように、到達可能範囲の輪郭データについて、1つの座標ごとのチェインコード(方向指数)1150と、輪郭の向きを表す付加情報1160を付与して表示制御部108に出力する。これにより、表示制御部108では、反時計回りの外輪郭1130により車両の到達可能範囲を表示でき、時計回りの内輪郭1140があれば、外輪郭1130の内部に車両の到達不可能範囲を表示することができるようになる。   In this way, the orientation calculation unit 107 obtains the contour direction (clockwise or counterclockwise) calculated by the contour data calculation unit 106, and the contour data calculation unit 106 (direction calculation unit 107) As shown in (C), a chain code (direction index) 1150 for each coordinate and additional information 1160 representing the direction of the contour are attached to the contour data of the reachable range and output to the display control unit 108. Thus, the display control unit 108 can display the reachable range of the vehicle by the counterclockwise outer contour 1130, and if there is the clockwise inner contour 1140, the unreachable range of the vehicle is displayed inside the outer contour 1130. Will be able to.

(道路勾配について)
つぎに、上記(1)式〜(6)式の右辺に変数として用いられる道路勾配θについて説明する。図21は、勾配がある道路を走行する車両にかかる加速度の一例を模式的に示した説明図である。図21に示すように、道路勾配がθの坂道を走行する車両には、車両の走行に伴う加速度A(=dx/dt)と、重力加速度gの進行方向成分B(=g・sinθ)がかかる。たとえば、上記(1)式を例に説明すると、上記(1)式の右辺第2項は、この車両の走行に伴う加速度Aと、重力加速度gの進行方向成分Bの合成加速度Cを示している。また、車両が走行する区間の距離Dとし、走行時間Tとし、走行速度Vとする。
(About road gradient)
Next, the road gradient θ used as a variable on the right side of the equations (1) to (6) will be described. FIG. 21 is an explanatory view schematically showing an example of acceleration applied to a vehicle traveling on a road having a gradient. As shown in FIG. 21, a vehicle traveling on a slope with a road gradient θ has acceleration A (= dx / dt) accompanying traveling of the vehicle and a traveling direction component B (= g · sin θ) of gravitational acceleration g. Take it. For example, taking the above equation (1) as an example, the second term on the right side of the above equation (1) indicates the acceleration A accompanying the traveling of the vehicle and the combined acceleration C of the traveling direction component B of the gravitational acceleration g. Yes. Further, the distance D of the section in which the vehicle travels is defined as the travel time T and the travel speed V.

道路勾配θを考慮せずに電力消費量の推定をおこなった場合、道路勾配θが小さい領域では推定消費電力量と実際の消費電力量との誤差が小さいが、道路勾配θが大きい領域では推定した推定消費電力量と実際の消費電力量との誤差が大きくなってしまう。このため、ナビゲーション装置300では、道路勾配、すなわち第四情報を考慮して燃費の推定をおこなうことで推定精度が向上する。   When the power consumption is estimated without considering the road gradient θ, the error between the estimated power consumption and the actual power consumption is small in the region where the road gradient θ is small, but the estimation is performed in the region where the road gradient θ is large. An error between the estimated power consumption and the actual power consumption increases. For this reason, in the navigation apparatus 300, the estimation accuracy is improved by estimating the fuel consumption in consideration of the road gradient, that is, the fourth information.

車両が走行する道路の勾配は、たとえば、ナビゲーション装置300に搭載された傾斜計を用いて知ることができる。また、ナビゲーション装置300に傾斜計が搭載されていない場合は、たとえば、地図データに含まれる道路の勾配情報を用いることができる。   The slope of the road on which the vehicle travels can be known using, for example, an inclinometer mounted on the navigation device 300. Further, when the inclinometer is not mounted on the navigation device 300, for example, road gradient information included in the map data can be used.

(走行抵抗について)
つぎに、車両に生じる走行抵抗について説明する。ナビゲーション装置300は、たとえば、次の(11)式により走行抵抗を算出する。一般的に、走行抵抗は、道路種別や、道路勾配、路面状況などにより、加速時や走行時に移動体に生じる。
(About running resistance)
Next, traveling resistance generated in the vehicle will be described. The navigation device 300 calculates the running resistance by the following equation (11), for example. Generally, traveling resistance is generated in a moving body during acceleration or traveling due to road type, road gradient, road surface condition, and the like.

Figure 0005816705
Figure 0005816705

(ナビゲーション装置によるクローニング処理後の表示例)
つぎに、ナビゲーション装置によるクローニング処理後の表示例について説明する。図22は、ナビゲーション装置による到達可能地点探索処理後の表示例の一例について示す説明図である。図23−1は、ナビゲーション装置による識別情報付与処理後の表示例の一例について示す説明図である。図23−2は、ナビゲーション装置による第1識別情報変更処理後の表示例の一例について示す説明図である。また、図24は、ナビゲーション装置によるクローニング処理(膨張)後の表示例の一例について示す説明図である。図25は、ナビゲーション装置によるクローニング処理(縮小)後の表示例の一例について示す説明図である。
(Display example after cloning processing by the navigation device)
Next, a display example after the cloning process by the navigation device will be described. FIG. 22 is an explanatory diagram illustrating an example of a display example after the reachable point search process by the navigation device. FIG. 23A is an explanatory diagram illustrating an example of a display example after the identification information providing process by the navigation device. FIG. 23-2 is an explanatory diagram of an example of a display example after the first identification information change process by the navigation device. FIG. 24 is an explanatory diagram showing an example of a display example after the cloning process (expansion) by the navigation device. FIG. 25 is an explanatory diagram illustrating an example of a display example after the cloning process (reduction) by the navigation device.

図22に示すように、たとえば、ディスプレイ313には、地図データとともに、ナビゲーション装置300によって探索された複数の車両の到達可能地点が表示される。図22に示すディスプレイ313の状態は、ナビゲーション装置300によって到達可能地点探索処理がおこなわれたときの、ディスプレイに表示される情報の一例である。具体的には、図13のステップS1303の処理がおこなわれた状態である。   As shown in FIG. 22, for example, the display 313 displays reachable points of a plurality of vehicles searched by the navigation device 300 together with the map data. The state of the display 313 illustrated in FIG. 22 is an example of information displayed on the display when the reachable point search process is performed by the navigation device 300. Specifically, this is a state in which the process of step S1303 of FIG. 13 has been performed.

つぎに、ナビゲーション装置300によって地図データが複数の領域に分割され、到達可能地点に基づいて各領域に到達可能または到達不可能の識別情報が付与されることで、図23−1に示すように、ディスプレイ313には、到達可能の識別情報に基づく車両の到達可能範囲2500が表示される。この段階では、車両の到達可能範囲2500内に、到達不可能な領域2501があるとする。この到達不可能な領域2501は、輪郭データ算出部106により車両が到達不可能と判断した領域であるが、この他に欠損点も生じている。   Next, the map data is divided into a plurality of areas by the navigation device 300, and identification information indicating whether each area is reachable or unreachable is given based on reachable points, as shown in FIG. 23-1. The display 313 displays a reachable range 2500 of the vehicle based on the reachable identification information. At this stage, it is assumed that there is an unreachable region 2501 within the reachable range 2500 of the vehicle. The unreachable region 2501 is a region that the contour data calculation unit 106 determines that the vehicle cannot reach, but there are also missing points.

つぎに、ナビゲーション装置300によって第1識別情報変更処理がおこなわれることにより、図23−2に示すように到達不可能な領域2501を除く欠損点(たとえば、東京湾横断道路2521)を含み、ディスプレイ313には、東京湾横断道路2521の全領域が含まれた到達可能範囲2520および到達不可能範囲2501が表示される。   Next, when the first identification information changing process is performed by the navigation device 300, the display includes a missing point (for example, a Tokyo Bay crossing road 2521) excluding the unreachable region 2501, as shown in FIG. In 313, a reachable range 2520 and an unreachable range 2501 including the entire area of the Tokyo Bay crossing road 2521 are displayed.

つぎに、ナビゲーション装置300によってクローニングの膨張処理がおこなわれることにより、図24に示すように、欠損点の除去された車両の到達可能範囲2600が生成される。また、すでに、第1識別情報変更処理によって東京湾横断道路上の全領域2610が到達可能範囲2600に含まれているため、クローニングの膨張処理後においても、東京湾横断道路上の全領域2610は、車両の到達可能範囲2600となる。   Next, the expansion process of the cloning is performed by the navigation device 300, so that the reachable range 2600 of the vehicle from which the missing points are removed is generated as shown in FIG. In addition, since the entire area 2610 on the Tokyo Bay crossing road is already included in the reachable range 2600 by the first identification information change process, the entire area 2610 on the Tokyo Bay crossing road is The vehicle reachable range 2600 is obtained.

その後、ナビゲーション装置300によってクローニングの縮小処理がおこなわれることにより、図25に示すように、車両の到達可能範囲2700の外周は、クローニングがおこなわれる前の車両の到達可能範囲2500の外周とほぼ同様の大きさとなる。   Thereafter, the reduction processing of the cloning is performed by the navigation device 300, so that the outer periphery of the vehicle reachable range 2700 is substantially the same as the outer periphery of the vehicle reachable range 2500 before the cloning is performed, as shown in FIG. It becomes the size of.

そして、ナビゲーション装置300によって車両の到達可能範囲2700の輪郭2701および到達不可能範囲2710の輪郭2711を抽出することで、車両の到達可能範囲2700および到達不可能範囲2710の輪郭をなめらかに表示することができる。また、クローニングによって欠損点を除去しているため、車両の到達可能範囲2700は、2次元のなめらかな面2702で表示される。なお、クローニング縮小処理後においても、東京湾横断道路上の全領域2720は、車両の到達可能範囲2700の一部として表示される。   Then, by extracting the contour 2701 of the reachable range 2700 and the contour 2711 of the unreachable range 2710 by the navigation device 300, the contours of the reachable range 2700 and the unreachable range 2710 of the vehicle are displayed smoothly. Can do. In addition, since the missing points are removed by cloning, the vehicle reachable range 2700 is displayed with a two-dimensional smooth surface 2702. Even after the cloning reduction process, the entire area 2720 on the Tokyo Bay crossing road is displayed as a part of the reachable range 2700 of the vehicle.

(到達可能範囲および到達不可能範囲の例)
図26は、到達可能範囲および到達不可能範囲の例を示す図である。到達可能範囲2800は、輪郭データ算出部106により外輪郭で囲まれた領域であり、到達可能範囲2800の内部に湖や山などの到達不可能範囲2810がある場合には、輪郭データ算出部106により内輪郭で囲まれる。輪郭データ算出部106が有する向き算出部107により外輪郭は反時計回り、内輪郭は時計回りの向きが求められる。これにより、表示制御部108は、到達可能範囲2800と到達不可能範囲2810を簡単な処理で明確に表示することができる。
(Example of reachable range and unreachable range)
FIG. 26 is a diagram illustrating an example of a reachable range and an unreachable range. The reachable range 2800 is an area surrounded by an outer contour by the contour data calculation unit 106. When the reachable range 2810 such as a lake or a mountain is inside the reachable range 2800, the contour data calculation unit 106 Is surrounded by an inner contour. An orientation calculation unit 107 included in the contour data calculation unit 106 obtains a counterclockwise direction for the outer contour and a clockwise direction for the inner contour. As a result, the display control unit 108 can clearly display the reachable range 2800 and the unreachable range 2810 with simple processing.

また、図26に示す到達可能範囲2820は、両端がノードである橋2821を渡って到達できる領域であり、内部に複数の到達不可能範囲2822,2823がある。到達可能範囲2030は、到達可能範囲2800からフェリー等の外部手段(車両以外の移動体)2831を介して到着後に移動できる領域を示している。このように、複数の到達可能範囲2800,2820,2830の領域が異なる場合でも表示することができる。また、一つの到達可能範囲2820に複数の到達不可能範囲2822,2823がある場合でも表示することができる。また、到達不可能範囲2810の内側に更なる到達可能範囲があった場合でも同様に表示することができる。   A reachable range 2820 shown in FIG. 26 is an area that can be reached across a bridge 2821 that is a node at both ends, and there are a plurality of unreachable ranges 2822 and 2823 inside. The reachable range 2030 indicates an area that can move after reaching the reachable range 2800 via an external means (moving body other than a vehicle) 2831 such as a ferry. Thus, even when the areas of the plurality of reachable ranges 2800, 2820, and 2830 are different, it can be displayed. Further, even when there are a plurality of unreachable ranges 2822 and 2823 in one reachable range 2820, it can be displayed. Further, even when there is a further reachable range inside the unreachable range 2810, the same display can be performed.

以上説明したように、ナビゲーション装置300によれば、地図情報を複数の領域に分割して各領域ごとに移動体が到達可能か否かを探索し、各領域にそれぞれ移動体が到達可能または到達不可能であることを識別する到達可能または到達不可能の識別情報を付与する。そして、ナビゲーション装置300は、到達可能の識別情報が付与された領域に基づいて、移動体の到達可能範囲を生成する。このため、ナビゲーション装置300は、海や湖、山脈など移動体の走行不可能な到達不可能範囲を除き移動体の到達可能範囲を生成することができる。したがって、画像処理装置100は、移動体の到達可能範囲を正確に表示することができる。   As described above, according to the navigation device 300, the map information is divided into a plurality of areas, and it is searched whether or not each mobile area can reach each area, and each mobile area can reach or reach each area. Reachable or unreachable identification information for identifying the impossibility is given. And the navigation apparatus 300 produces | generates the reachable range of a mobile body based on the area | region to which the reachable identification information was provided. For this reason, the navigation apparatus 300 can generate the reachable range of the moving object except for the unreachable range where the moving object cannot travel, such as the sea, the lake, and the mountain range. Therefore, the image processing apparatus 100 can accurately display the reachable range of the moving object.

また、ナビゲーション装置300は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、クローニングの膨張処理をおこなう。このため、ナビゲーション装置300は、移動体の到達可能範囲内の欠損点を除去することができる。   In addition, the navigation device 300 converts a plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating that each of the plurality of areas is reachable or unreachable, and then performs an expansion process of cloning. For this reason, the navigation apparatus 300 can remove the missing point within the reachable range of the moving body.

また、ナビゲーション装置300は、地図情報を分割した複数の領域を画像データに変換し、当該複数の領域にそれぞれ到達可能または到達不可能の識別情報を付与した後、オープニングの縮小処理をおこなう。このため、ナビゲーション装置300は、移動体の到達可能範囲の孤立点を除去することができる。   In addition, the navigation device 300 converts the plurality of areas obtained by dividing the map information into image data, and assigns identification information indicating whether the plurality of areas are reachable or unreachable, and then performs an opening reduction process. For this reason, the navigation apparatus 300 can remove the isolated points in the reachable range of the moving object.

このように、ナビゲーション装置300は、移動体の到達可能範囲の欠損点や孤立点を除去することができるので、移動体の走行可能範囲を2次元のなめらかな面でかつ見やすく表示することができる。また、ナビゲーション装置300は、地図情報を複数の領域に分割して生成したメッシュデータの輪郭を抽出する。このため、ナビゲーション装置300は、移動体の到達可能範囲の輪郭をなめらかに表示することができる。   As described above, the navigation device 300 can remove missing points and isolated points from the reachable range of the moving body, and thus can display the travelable range of the moving body on a two-dimensional smooth surface in an easy-to-read manner. . Further, the navigation device 300 extracts the outline of mesh data generated by dividing the map information into a plurality of regions. For this reason, the navigation apparatus 300 can display the outline of the reachable range of a moving body smoothly.

また、ナビゲーション装置300は、移動体の到達可能地点を探索する道路を絞り込んで、移動体の到達可能地点を探索する。このため、ナビゲーション装置300は、移動体の到達可能地点を探索する際の処理量を低減することができる。移動体の到達可能地点を探索する道路を絞り込むことで、探索可能な到達可能地点が少なくなったとしても、上述したようにクローニングの膨張処理がおこなわれることにより、移動体の到達可能範囲内に生じる欠損点を除去することができる。したがって、ナビゲーション装置300は、移動体の到達可能範囲を検出するための処理量を低減することができる。また、ナビゲーション装置300は、移動体の走行可能範囲を2次元のなめらかな面で見やすく表示することができる。   In addition, the navigation apparatus 300 narrows down the road for searching for the reachable point of the mobile object, and searches for the reachable point of the mobile object. For this reason, the navigation apparatus 300 can reduce the processing amount at the time of searching the reachable point of a mobile body. Even if the number of reachable reachable points is reduced by narrowing down the road to search for the reachable points of the mobile object, the expansion process of cloning is performed as described above, so that the reachable range of the mobile object is within the reachable range. The resulting defect point can be removed. Therefore, the navigation apparatus 300 can reduce the processing amount for detecting the reachable range of the moving body. In addition, the navigation device 300 can display the travelable range of the mobile object in a two-dimensional smooth manner in an easy-to-see manner.

また、ナビゲーション装置300は、到達可能範囲の内部に生じる穴(複数の識別情報がまとまった領域)に基づき到達不可能範囲を判断するため、到達可能範囲を外輪郭で求めることができ、到達不可能範囲を内輪郭で求めることができる。さらに、到達可能範囲と到達不可能範囲は同じ走査をおこなった場合に向きが逆になる。これを利用することで、到達可能範囲と到達不可能範囲とを簡単なデータ構造で表示制御でき、表示制御の処理負担も軽減できるようになる。   In addition, since the navigation device 300 determines the unreachable range based on a hole (a region in which a plurality of pieces of identification information are gathered) generated in the reachable range, the reachable range can be obtained from the outer contour, The possible range can be determined by the inner contour. Furthermore, the directions of the reachable range and the unreachable range are reversed when the same scanning is performed. By using this, the reachable range and the unreachable range can be displayed and controlled with a simple data structure, and the display control processing load can be reduced.

(実施の形態2)
図27は、実施の形態2にかかる画像処理装置の機能的構成の一例を示すブロック図である。実施の形態2にかかる画像処理システム2900の機能的構成について説明する。実施の形態2にかかる画像処理システム2900は、サーバ2910、端末2920によって構成される。実施の形態2にかかる画像処理システム2900は、実施の形態1の画像処理装置100の機能をサーバ2910および端末2920に備える。
(Embodiment 2)
FIG. 27 is a block diagram of an example of a functional configuration of the image processing apparatus according to the second embodiment. A functional configuration of the image processing system 2900 according to the second embodiment will be described. An image processing system 2900 according to the second embodiment includes a server 2910 and a terminal 2920. The image processing system 2900 according to the second embodiment includes the server 2910 and the terminal 2920 having the functions of the image processing apparatus 100 according to the first embodiment.

サーバ2910は、移動体に搭載された端末2920によって表示部110に表示させる情報を生成する。具体的には、サーバ2910は、移動体の到達可能範囲に関する情報を検出し端末2920に送信する。端末2920は、移動体に搭載されても構わないし、携帯端末として移動体の中で利用されても構わないし、携帯端末として移動体の外で利用されても構わない。そして、端末2920は、サーバ2910から移動体の到達可能範囲に関する情報を受信する。   The server 2910 generates information to be displayed on the display unit 110 by the terminal 2920 mounted on the mobile object. Specifically, the server 2910 detects information related to the reachable range of the mobile object and transmits it to the terminal 2920. The terminal 2920 may be mounted on a mobile object, may be used in the mobile object as a mobile terminal, or may be used outside the mobile object as a mobile terminal. Terminal 2920 receives information about the reachable range of the moving object from server 2910.

図27において、サーバ2910は、算出部102、探索部103、分割部104、付与部105、輪郭データ算出部106および向き算出部107、サーバ受信部2911、サーバ送信部2912によって構成される。端末2920は、取得部101、表示制御部108、端末受信部2921、端末送信部2922によって構成される。なお、図27に示す画像処理システム2900においては、図1に示した画像処理装置100と同一の構成部に同一の符号を付し、説明を省略する。   In FIG. 27, the server 2910 includes a calculation unit 102, a search unit 103, a division unit 104, a grant unit 105, a contour data calculation unit 106 and a direction calculation unit 107, a server reception unit 2911, and a server transmission unit 2912. The terminal 2920 includes an acquisition unit 101, a display control unit 108, a terminal reception unit 2921, and a terminal transmission unit 2922. In the image processing system 2900 shown in FIG. 27, the same components as those of the image processing apparatus 100 shown in FIG.

サーバ2910において、サーバ受信部2911は、端末2920から送信された情報を受信する。具体的には、たとえば、サーバ受信部2911は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末2920からの移動体に関する情報を受信する。移動体に関する情報とは、移動体の現在地点に関する情報、および、移動体の現在地点において移動体が保有するエネルギー量である初期保有エネルギー量に関する情報である。サーバ受信部2911によって受信された情報は、算出部102で参照される情報である。   In server 2910, server reception unit 2911 receives information transmitted from terminal 2920. Specifically, for example, the server reception unit 2911 receives information regarding a mobile unit from a terminal 2920 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, etc. via wireless. The information regarding the moving body is information regarding the current position of the moving body and information regarding the initial amount of energy that is the amount of energy held by the moving body at the current position of the moving body. Information received by the server reception unit 2911 is information referred to by the calculation unit 102.

サーバ送信部2912は、付与部105によって移動体が到達可能であることを識別する到達可能の識別情報が付与された地図情報が分割されてなる複数の領域を移動体の到達可能範囲として、端末2920に送信する。具体的には、たとえば、サーバ送信部2912は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末2920に情報を送信する。   The server transmission unit 2912 uses the plurality of areas obtained by dividing the map information to which reachable identification information for identifying that the moving body is reachable by the assigning unit 105 as a mobile object reachable range as a terminal. To 2920. Specifically, for example, the server transmission unit 2912 transmits information to a terminal 2920 that is connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN via a wireless connection.

端末2920は、たとえば、携帯端末の情報通信網や自装置に備えられた通信部(不図示)を介して通信可能な状態で、サーバ2910と接続されている。   The terminal 2920 is connected to the server 2910 in a communicable state via, for example, an information communication network of a mobile terminal or a communication unit (not shown) provided in the own device.

端末2920において、端末受信部2921は、サーバ2910からの情報を受信する。具体的には、端末受信部2921は、複数の領域に分割され、かつ当該領域のそれぞれに、移動体の到達可能地点に基づいて到達可能または到達不可能の識別情報が付与された地図情報を受信する。より具体的には、たとえば、端末受信部2921は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続されたサーバ2910から情報を受信する。   In terminal 2920, terminal reception unit 2921 receives information from server 2910. Specifically, the terminal reception unit 2921 divides the map information, which is divided into a plurality of regions, and each region is provided with identification information that is reachable or unreachable based on the reachable point of the mobile object. Receive. More specifically, for example, the terminal receiving unit 2921 receives information from a server 2910 that is connected to a communication network such as a public line network, a mobile phone network, a DSRC, a LAN, and a WAN via a radio.

端末送信部2922は、取得部101に取得された移動体に関する情報をサーバ2910に送信する。具体的には、たとえば、端末送信部2922は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続されたサーバ2910に移動体に関する情報を送信する。   The terminal transmission unit 2922 transmits information regarding the moving object acquired by the acquisition unit 101 to the server 2910. Specifically, for example, the terminal transmission unit 2922 transmits information about the mobile unit to a server 2910 connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, or the like wirelessly.

つぎに、実施の形態2にかかる画像処理システム2900による画像処理について説明する。画像処理システム2900による画像処理は、実施の形態1にかかる画像処理装置100とほぼ同一であるため、図2のフローチャートを利用して実施の形態1との差異について説明する。   Next, image processing by the image processing system 2900 according to the second embodiment will be described. Since the image processing by the image processing system 2900 is almost the same as that of the image processing apparatus 100 according to the first embodiment, the difference from the first embodiment will be described using the flowchart of FIG.

画像処理システム2900による画像処理は、実施の形態1にかかる画像処理装置100による画像処理のうち、推定エネルギー消費量算出処理、到達可能地点探索処理、識別情報付与処理、をサーバ2910がおこなう。具体的には、図2のフローチャートにおいて、端末2920は、ステップS201の処理をおこない、ステップS201で取得した情報をサーバ2910に送信する。   In the image processing by the image processing system 2900, the server 2910 performs estimated energy consumption calculation processing, reachable point search processing, and identification information addition processing among the image processing by the image processing apparatus 100 according to the first embodiment. Specifically, in the flowchart of FIG. 2, the terminal 2920 performs the process of step S <b> 201 and transmits the information acquired in step S <b> 201 to the server 2910.

つぎに、サーバ2910は、端末2920からの情報を受信する。つぎに、サーバ2910は、端末2920から受信した情報に基づいてステップS202〜S206の処理をおこない、ステップS206で取得した情報を端末2920に送信する。つぎに、端末2920は、サーバ2910からの情報を受信する。そして、端末2920は、サーバ2910から受信した情報に基づいてステップS207,ステップS208をおこない、本フローチャートによる処理を終了する。   Next, the server 2910 receives information from the terminal 2920. Next, the server 2910 performs the processes of steps S202 to S206 based on the information received from the terminal 2920, and transmits the information acquired in step S206 to the terminal 2920. Next, the terminal 2920 receives information from the server 2910. Then, the terminal 2920 performs steps S207 and S208 based on the information received from the server 2910, and ends the processing according to this flowchart.

以上説明したように、実施の形態2にかかる画像処理システム2900および画像処理方法は、実施の形態1にかかる画像処理装置100および画像処理方法と同様の効果を得ることができる。   As described above, the image processing system 2900 and the image processing method according to the second embodiment can obtain the same effects as the image processing apparatus 100 and the image processing method according to the first embodiment.

(実施の形態3)
図28は、実施の形態3にかかる画像処理システムの機能的構成の一例を示すブロック図である。実施の形態3にかかる画像処理システム3000の機能的構成について説明する。実施の形態3にかかる画像処理システム3000は、第1サーバ3010、第2サーバ3020、第3サーバ3030、端末3040によって構成される。画像処理システム3000は、実施の形態1の画像処理装置100の算出部102の機能を第1サーバ3010が備え、実施の形態1の画像処理装置100の探索部103の機能を第2サーバ3020が備え、実施の形態1の画像処理装置100の分割部104、付与部105、輪郭データ算出部106および向き算出部107の機能を第3サーバ3030が備え、実施の形態1の画像処理装置100の取得部101および表示制御部108の機能を端末3040が備える。
(Embodiment 3)
FIG. 28 is a block diagram of an example of a functional configuration of the image processing system according to the third embodiment. A functional configuration of the image processing system 3000 according to the third embodiment will be described. An image processing system 3000 according to the third embodiment includes a first server 3010, a second server 3020, a third server 3030, and a terminal 3040. In the image processing system 3000, the first server 3010 has the function of the calculation unit 102 of the image processing apparatus 100 of the first embodiment, and the second server 3020 has the function of the search unit 103 of the image processing apparatus 100 of the first embodiment. The third server 3030 includes the functions of the dividing unit 104, the adding unit 105, the contour data calculating unit 106, and the orientation calculating unit 107 of the image processing apparatus 100 according to the first embodiment. The terminal 3040 has the functions of the acquisition unit 101 and the display control unit 108.

図28において、端末3040は、実施の形態2の端末2920と同様の構成を有する。具体的には、端末3040は、取得部101、表示制御部108、端末受信部3041、端末送信部3042によって構成される。端末受信部3041は、実施の形態2の端末受信部2921と同様の構成を有する。端末送信部3042は、実施の形態2の端末送信部2922と同様の構成を有する。第1サーバ3010は、算出部102、第1サーバ受信部3011、第1サーバ送信部3012、によって構成される。   In FIG. 28, terminal 3040 has the same configuration as terminal 2920 of the second embodiment. Specifically, the terminal 3040 includes an acquisition unit 101, a display control unit 108, a terminal reception unit 3041, and a terminal transmission unit 3042. Terminal receiving section 3041 has the same configuration as terminal receiving section 2921 of the second embodiment. Terminal transmission section 3042 has the same configuration as terminal transmission section 2922 of the second embodiment. The first server 3010 includes a calculation unit 102, a first server reception unit 3011, and a first server transmission unit 3012.

第2サーバ3020は、探索部103、第2サーバ受信部3021、第2サーバ送信部3022、によって構成される。第3サーバ3030は、分割部104、付与部105、輪郭データ算出部106および向き算出部107、第3サーバ受信部3031、第3サーバ送信部3032、によって構成される。図28に示す画像処理システム3000においては、図1に示した画像処理装置100および図27に示した画像処理システム2900と同一の構成部に同一の符号を付し、説明を省略する。   The second server 3020 includes a search unit 103, a second server reception unit 3021, and a second server transmission unit 3022. The third server 3030 includes a dividing unit 104, an adding unit 105, a contour data calculating unit 106 and a direction calculating unit 107, a third server receiving unit 3031, and a third server transmitting unit 3032. In the image processing system 3000 shown in FIG. 28, the same components as those of the image processing apparatus 100 shown in FIG. 1 and the image processing system 2900 shown in FIG.

第1サーバ3010において、第1サーバ受信部3011は、端末3040から送信された情報を受信する。具体的には、たとえば、第1サーバ受信部3011は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末3040の端末送信部3042からの情報を受信する。第1サーバ受信部3011によって受信された情報は、算出部102で参照される情報である。   In the first server 3010, the first server reception unit 3011 receives information transmitted from the terminal 3040. Specifically, for example, the first server reception unit 3011 receives information from the terminal transmission unit 3042 of the terminal 3040 that is connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN via a radio. Receive. Information received by the first server reception unit 3011 is information referred to by the calculation unit 102.

第1サーバ送信部3012は、算出部102によって算出された情報を第2サーバ受信部3021に送信する。具体的には、第1サーバ送信部3012は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第2サーバ受信部3021に情報を送信してもよいし、有線で接続された第2サーバ受信部3021に情報を送信してもよい。   The first server transmission unit 3012 transmits the information calculated by the calculation unit 102 to the second server reception unit 3021. Specifically, the first server transmission unit 3012 transmits information to the second server reception unit 3021 connected to a communication network such as a public network, a mobile phone network, a DSRC, a LAN, and a WAN via a radio. Alternatively, the information may be transmitted to the second server reception unit 3021 connected by wire.

第2サーバ3020において、第2サーバ受信部3021は、端末送信部3042および第1サーバ送信部3012によって送信された情報を受信する。具体的には、たとえば、第2サーバ受信部3021は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第1サーバ送信部3012および端末送信部3042からの情報を受信する。第2サーバ受信部3021は、有線で接続された第1サーバ送信部3012からの情報を受信してもよい。第2サーバ受信部3021によって受信された情報は、探索部103で参照される情報である。   In the second server 3020, the second server reception unit 3021 receives the information transmitted by the terminal transmission unit 3042 and the first server transmission unit 3012. Specifically, for example, the second server reception unit 3021 includes a first server transmission unit 3012 and a terminal transmission unit that are wirelessly connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN. Information from 3042 is received. The second server reception unit 3021 may receive information from the first server transmission unit 3012 connected by wire. Information received by the second server reception unit 3021 is information referred to by the search unit 103.

第2サーバ送信部3022は、探索部103によって探索された情報を第3サーバ受信部3031に送信する。具体的には、たとえば、第2サーバ送信部3022は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第3サーバ受信部3031に情報を送信してもよいし、有線で接続された第3サーバ受信部3031に情報を送信してもよい。   The second server transmission unit 3022 transmits the information searched by the search unit 103 to the third server reception unit 3031. Specifically, for example, the second server transmission unit 3022 transmits information to a third server reception unit 3031 that is connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, WAN, or the like wirelessly. Alternatively, the information may be transmitted to the third server reception unit 3031 connected by wire.

第3サーバ3030において、第3サーバ受信部3031は、端末送信部3042および第2サーバ送信部3022によって送信された情報を受信する。具体的には、たとえば、第3サーバ受信部3031は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された第2サーバ送信部3022および端末送信部3042からの情報を受信してもよい。第3サーバ受信部3031は、有線で接続された第2サーバ送信部3022からの情報を受信してもよい。第2サーバ受信部3021によって受信された情報は、分割部104で参照される情報である。   In the third server 3030, the third server receiving unit 3031 receives the information transmitted by the terminal transmitting unit 3042 and the second server transmitting unit 3022. Specifically, for example, the third server reception unit 3031 includes a second server transmission unit 3022 and a terminal transmission unit that are wirelessly connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN. Information from 3042 may be received. The third server reception unit 3031 may receive information from the second server transmission unit 3022 connected by wire. Information received by the second server reception unit 3021 is information referred to by the division unit 104.

第3サーバ送信部3032は、付与部105によって生成された情報を端末受信部3041に送信する。具体的には、たとえば、第3サーバ送信部3032は、公衆回線網や携帯電話網、DSRC、LAN、WANなどの通信網に無線を介して接続された端末受信部3041に情報を送信する。   The third server transmission unit 3032 transmits the information generated by the assignment unit 105 to the terminal reception unit 3041. Specifically, for example, the third server transmission unit 3032 transmits information to a terminal reception unit 3041 that is connected to a communication network such as a public line network, a mobile phone network, DSRC, LAN, and WAN via a radio.

つぎに、実施の形態3にかかる画像処理システム3000による画像処理について説明する。画像処理システム3000による画像処理は、実施の形態1にかかる画像処理装置100とほぼ同一であるため、図2のフローチャートを利用して実施の形態1との差異について説明する。   Next, image processing by the image processing system 3000 according to the third embodiment will be described. Since the image processing by the image processing system 3000 is almost the same as that of the image processing apparatus 100 according to the first embodiment, the difference from the first embodiment will be described using the flowchart of FIG.

画像処理システム3000による画像処理は、実施の形態1にかかる画像処理装置100による画像処理のうち、推定エネルギー消費量算出処理を第1サーバ3010がおこない、到達可能地点探索処理を第2サーバ3020がおこない、識別情報付与処理および輪郭データ算出処理を第3サーバ3030がおこなう。図2のフローチャートにおいて、端末3040は、ステップS201の処理をおこない、ステップS201で取得した情報を第1サーバ3010に送信する。   In the image processing by the image processing system 3000, the first server 3010 performs the estimated energy consumption calculation processing among the image processing by the image processing apparatus 100 according to the first embodiment, and the second server 3020 performs the reachable point search processing. The third server 3030 performs the identification information adding process and the contour data calculating process. In the flowchart of FIG. 2, the terminal 3040 performs the process of step S201 and transmits the information acquired in step S201 to the first server 3010.

つぎに、第1サーバ3010は、端末3040からの情報を受信する。つぎに、第1サーバ3010は、端末3040から受信した情報に基づいてステップS202,S203の処理をおこない、ステップS203で算出した情報を第2サーバ3020に送信する。つぎに、第2サーバ3020は、第1サーバ3010からの情報を受信する。つぎに、第2サーバ3020は、第1サーバ3010から受信した情報に基づいてステップS204の処理をおこない、ステップS204で探索した情報を第3サーバ3030に送信する。   Next, the first server 3010 receives information from the terminal 3040. Next, the first server 3010 performs the processes of steps S202 and S203 based on the information received from the terminal 3040, and transmits the information calculated in step S203 to the second server 3020. Next, the second server 3020 receives information from the first server 3010. Next, the second server 3020 performs the process of step S204 based on the information received from the first server 3010, and transmits the information searched for in step S204 to the third server 3030.

つぎに、第3サーバ3030は、第2サーバ3020からの情報を受信する。つぎに、第3サーバ3030は、第2サーバ3020からの情報に基づいてステップS205,S206の処理をおこない、ステップS206で生成した情報を端末3040に送信する。つぎに、端末3040は、第3サーバ3030からの情報を受信する。そして、端末3040は、第3サーバ3030から受信した情報に基づいてステップS207,ステップS208をおこない、本フローチャートによる処理を終了する。   Next, the third server 3030 receives information from the second server 3020. Next, the third server 3030 performs the processes in steps S205 and S206 based on the information from the second server 3020, and transmits the information generated in step S206 to the terminal 3040. Next, the terminal 3040 receives information from the third server 3030. And the terminal 3040 performs step S207 and step S208 based on the information received from the 3rd server 3030, and complete | finishes the process by this flowchart.

以上説明したように、実施の形態3にかかる画像処理システム3000および画像処理方法は、実施の形態1にかかる画像処理装置100および画像処理方法と同様の効果を得ることができる。   As described above, the image processing system 3000 and the image processing method according to the third embodiment can obtain the same effects as the image processing apparatus 100 and the image processing method according to the first embodiment.

以下に、本発明の実施例2について説明する。図29は、実施例2にかかる画像処理装置のシステム構成の一例を示す説明図である。本実施例2では、車両に搭載されたナビゲーション装置3110を上記端末として用い、サーバ3120を備えた取得システム3100において、本発明を適用した場合の一例について説明する。画像処理システム3100は、車両3130に搭載されたナビゲーション装置3110、サーバ3120、ネットワーク3140によって構成される。   The second embodiment of the present invention will be described below. FIG. 29 is an explanatory diagram of an example of a system configuration of the image processing apparatus according to the second embodiment. In the second embodiment, an example in which the present invention is applied to an acquisition system 3100 provided with a server 3120 using a navigation device 3110 mounted on a vehicle as the terminal will be described. The image processing system 3100 includes a navigation device 3110, a server 3120, and a network 3140 mounted on the vehicle 3130.

ナビゲーション装置3110は、車両3130に搭載されている。ナビゲーション装置3110は、サーバ3120に車両の現在地点の情報および初期保有エネルギー量に関する情報を送信する。また、ナビゲーション装置3110は、サーバ3120から受信した情報をディスプレイに表示してユーザに報知する。サーバ3120は、ナビゲーション装置3110から車両の現在地点の情報および初期保有エネルギー量に関する情報を受信する。サーバ3120は、受信した車両情報に基づいて、車両3130の到達可能範囲に関する情報を生成する。   The navigation device 3110 is mounted on the vehicle 3130. The navigation device 3110 transmits information on the current location of the vehicle and information on the initial stored energy amount to the server 3120. In addition, the navigation device 3110 displays the information received from the server 3120 on a display and notifies the user. Server 3120 receives information on the current location of the vehicle and information on the initial stored energy amount from navigation device 3110. Server 3120 generates information related to the reachable range of vehicle 3130 based on the received vehicle information.

サーバ3120およびナビゲーション装置3110のハードウェア構成は、実施例1のナビゲーション装置300のハードウェア構成と同一である。また、ナビゲーション装置3110は、車両情報をサーバ3120に送信する機能と、サーバ3120からの情報を受信してユーザに報知する機能に該当するハードウェア構成のみを備えていればよい。   The hardware configuration of the server 3120 and the navigation device 3110 is the same as the hardware configuration of the navigation device 300 of the first embodiment. The navigation device 3110 only needs to have a hardware configuration corresponding to a function of transmitting vehicle information to the server 3120 and a function of receiving information from the server 3120 and notifying the user.

また、取得システム3100は、車両に搭載されたナビゲーション装置3110を実施の形態3の端末3040とし、サーバ3120の機能構成を実施の形態3の第1〜3サーバ3010〜3030に分散させた構成してもよい。   Further, the acquisition system 3100 is configured such that the navigation device 3110 mounted on the vehicle is the terminal 3040 of the third embodiment, and the functional configuration of the server 3120 is distributed to the first to third servers 3010 to 3030 of the third embodiment. May be.

なお、本実施の形態で説明した画像処理方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD−ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。   Note that the image processing method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.

100 画像処理装置
101 取得部
102 算出部
103 探索部
104 分割部
105 付与部
106 輪郭データ算出部
107 向き算出部
108 表示制御部
110 表示部
DESCRIPTION OF SYMBOLS 100 Image processing apparatus 101 Acquisition part 102 Calculation part 103 Search part 104 Division | segmentation part 105 Assignment part 106 Contour data calculation part 107 Orientation calculation part 108 Display control part 110 Display part

Claims (7)

移動体の到達可能範囲に関する情報を処理する画像処理装置であって、
前記移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段と、
前記到達可能範囲算出手段により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出手段と、
前記輪郭データ算出手段により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出手段と、
前記輪郭データ算出手段により算出された輪郭データ、および、前記向き算出手段により算出された前記向きのデータに基づき、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を表示手段に表示させる表示制御手段と、
を備えることを特徴とする画像処理装置。
An image processing apparatus for processing information relating to a reachable range of a moving object,
Reachable range calculating means for calculating a reachable range including a reachable area of the moving body calculated based on an amount of energy held by the moving body;
Contour data calculating means for calculating contour data indicating the contour of the reachable range of the mobile body based on the reachable range calculated by the reachable range calculating means;
Orientation calculation means for calculating the orientation data indicating that the contour data calculated by the contour data calculation means is clockwise or counterclockwise;
Based on the contour data calculated by the contour data calculating unit and the direction data calculated by the direction calculating unit , the reachable range of the moving body and the unreachable range inside the reachable range are displayed. Display control means for displaying on the means;
An image processing apparatus comprising:
前記向き算出手段は、到達不可能な領域と隣接し前記到達可能範囲に含まれる第1の領域と隣接し、かつ、到達不可能な領域と隣接する前記到達可能範囲に含まれる第2の領域を探索し、前記第1の領域と前記第2の領域との隣接方向を定めた方向指数を用い、前記輪郭上の前記方向指数の変化量を積算し、当該積算した値に基づき前記輪郭データが右回り、又は、左回りであることを判断することを特徴とする請求項1に記載の画像処理装置。 The direction calculation means is a second region included in the reachable range adjacent to the unreachable region and adjacent to the first region included in the reachable range and adjacent to the unreachable region. And using the direction index that defines the adjacent direction of the first area and the second area, the amount of change of the direction index on the contour is integrated, and the contour data is based on the integrated value. The image processing apparatus according to claim 1 , wherein the image processing device determines whether the image is clockwise or counterclockwise. 前記輪郭データ算出手段は、到達不可能な領域と隣接し前記到達可能範囲に含まれる第3の領域と隣接し、かつ、到達不可能な領域と隣接する前記到達可能範囲に含まれる第4の領域を探索し、当該第4の領域を当該第3の領域として前記探索を繰り返すことにより前記到達可能範囲の輪郭となる輪郭データを算出することを特徴とする請求項1に記載の画像処理装置。   The contour data calculating means includes a fourth area included in the reachable range adjacent to the unreachable area and adjacent to the third area included in the reachable range and adjacent to the unreachable area. The image processing apparatus according to claim 1, wherein a contour is searched for a region, and contour data serving as a contour of the reachable range is calculated by repeating the search using the fourth region as the third region. . 移動体の到達可能範囲に関する情報を処理する画像処理管理装置であって、
前記移動体の現在地点に関する情報、および、前記移動体の現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を受信する受信手段と、
前記受信手段により受信された前記移動体の現在地点に関する情報、および、初期保有エネルギー量に関する情報に基づき、前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段と、
前記到達可能範囲算出手段により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出手段と、
前記輪郭データ算出手段により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出手段と、
前記輪郭データおよび前記向きのデータを送信する送信手段と、
を備えることを特徴とする画像処理管理装置。
An image processing management apparatus for processing information related to a reachable range of a moving object,
Receiving means for receiving information on the current location of the mobile body, and information on an initial amount of energy held by the mobile body at the current location of the mobile body;
Reachable range calculating means for calculating a reachable range including a reachable area of the mobile body based on information on the current location of the mobile body received by the receiving means, and information on an initial stored energy amount;
Contour data calculating means for calculating contour data indicating the contour of the reachable range of the mobile body based on the reachable range calculated by the reachable range calculating means;
Orientation calculation means for calculating the orientation data indicating that the contour data calculated by the contour data calculation means is clockwise or counterclockwise;
Transmitting means for transmitting the contour data and the orientation data;
An image processing management apparatus comprising:
移動体の到達可能範囲に関する情報を処理する端末であって、
前記移動体の現在地点に関する情報、および、前記移動体の現在地点において前記移動体が保有するエネルギー量である初期保有エネルギー量に関する情報、を管理装置へ送信する送信手段と、
前記移動体の到達可能な領域を含む到達可能範囲の輪郭を示す輪郭データおよび当該輪郭データが右回り、又は、左回りであることを示す向きのデータを受信する受信手段と、
前記受信手段により受信された輪郭データおよび向きのデータに基づき、前記移動体の到達可能範囲を表示手段に表示させる表示制御手段と、
を備えることを特徴とする端末。
A terminal that processes information about the reachable range of a mobile object,
Transmitting means for transmitting to the management device information relating to the current location of the mobile object, and information relating to an initial retained energy amount that is an energy amount possessed by the mobile object at the current location of the mobile object;
Receiving means for receiving contour data indicating a contour of a reachable range including a reachable region of the moving object and data indicating a direction in which the contour data is clockwise or counterclockwise;
Display control means for displaying on the display means the reachable range of the moving body based on the contour data and the orientation data received by the receiving means;
A terminal comprising:
移動体の到達可能範囲に関する情報を処理する画像処理装置における画像処理方法であって、
前記移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出工程と、
前記到達可能範囲算出工程により算出された到達可能範囲に基づき、前記移動体の到達可能範囲の輪郭を示す輪郭データを算出する輪郭データ算出工程と、
前記輪郭データ算出工程により算出された輪郭データが右回り、又は、左回りであることを示す向きのデータを算出する向き算出工程と、
前記輪郭データ、および、前記向き算出工程により算出された前記向きのデータに基づき、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を表示手段に表示させる表示制御工程と、
を含むことを特徴とする画像処理方法。
An image processing method in an image processing apparatus for processing information relating to a reachable range of a moving object,
A reachable range calculation step of calculating a reachable range including a reachable area of the mobile body calculated based on an energy amount held by the mobile body;
A contour data calculating step for calculating contour data indicating the contour of the reachable range of the mobile body based on the reachable range calculated by the reachable range calculating step;
A direction calculating step for calculating the direction data indicating that the contour data calculated by the contour data calculating step is clockwise or counterclockwise;
A display control step for displaying on the display means the reachable range of the moving object and the unreachable range inside the reachable range based on the contour data and the orientation data calculated by the orientation calculating step; ,
An image processing method comprising:
移動体が保有するエネルギー量に基づき算出された前記移動体の到達可能な領域を含む到達可能範囲を算出する到達可能範囲算出手段を備えた画像処理装置が扱う表示制御のためのデータ構造であって、
前記移動体の到達可能範囲の輪郭を示す輪郭データと、前記輪郭データが右回り、又は、左回りであることを示す向きのデータと、を含み、
前記輪郭データ、および、前記向きのデータにより、前記移動体の到達可能範囲および前記到達可能範囲の内部の到達不可能範囲を示すことを特徴とするデータ構造。
This is a data structure for display control handled by an image processing apparatus provided with reachable range calculation means for calculating a reachable range including a reachable area of the mobile body calculated based on the amount of energy held by the mobile body. And
Including contour data indicating an outline of the reachable range of the moving object, and data indicating a direction in which the contour data is clockwise or counterclockwise ,
The data structure characterized by showing the reachable range of the said mobile body, and the unreachable range inside the reachable range by the said contour data and the data of the said direction .
JP2013555051A 2012-01-25 2012-01-25 Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure Active JP5816705B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051575 WO2013111289A1 (en) 2012-01-25 2012-01-25 Image processing apparatus, image processing/managing apparatus, terminal, image processing method, and data structure

Publications (2)

Publication Number Publication Date
JPWO2013111289A1 JPWO2013111289A1 (en) 2015-05-11
JP5816705B2 true JP5816705B2 (en) 2015-11-18

Family

ID=48873060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013555051A Active JP5816705B2 (en) 2012-01-25 2012-01-25 Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure

Country Status (3)

Country Link
JP (1) JP5816705B2 (en)
CN (1) CN104067092B (en)
WO (1) WO2013111289A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6649054B2 (en) * 2015-11-19 2020-02-19 アイシン精機株式会社 Moving body

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171643A (en) * 1994-12-16 1996-07-02 Nec Corp Contour extraction system for mesh-like graphic
JPH09119839A (en) * 1995-10-24 1997-05-06 Suzuki Motor Corp Navigation system for electric vehicle
JPH1019587A (en) * 1996-07-08 1998-01-23 Hitachi Ltd Calculating method for reachable range on vector map within specified time
JP2003016462A (en) * 2001-06-27 2003-01-17 Canon Inc Device and method for image processing
JP2003016463A (en) * 2001-07-05 2003-01-17 Toshiba Corp Extracting method for outline of figure, method and device for pattern inspection, program, and computer- readable recording medium with the same stored therein
JP2007298744A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Map display device and map display method
JP2008096209A (en) * 2006-10-10 2008-04-24 Matsushita Electric Ind Co Ltd Reachable range display device, and reachable range display method and program thereof
JP2008116364A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Navigation device, navigation method, and navigation program
JP4497178B2 (en) * 2007-06-26 2010-07-07 ソニー株式会社 Navigation device and method for controlling navigation device
CN101685016B (en) * 2008-09-23 2013-04-24 中国科学院声学研究所 Two-dimensional navigation path planning method based on vector electronic chart
JP5544983B2 (en) * 2010-03-31 2014-07-09 日産自動車株式会社 Display device for electric vehicle and display method
DE102010003762A1 (en) * 2010-04-08 2011-10-13 Robert Bosch Gmbh Vehicle e.g. electric car, range management method, involves performing range estimation of traveling distance of vehicle, and outputting traveling distance in form of accessibility of destination of driver of vehicle

Also Published As

Publication number Publication date
JPWO2013111289A1 (en) 2015-05-11
CN104067092B (en) 2016-07-13
WO2013111289A1 (en) 2013-08-01
CN104067092A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2013027270A1 (en) Image processing device, image processing management device, terminal, processing device, and image processing method
WO2015087050A1 (en) Infrastructure positioning
JP5816705B2 (en) Image processing apparatus, image processing management apparatus, terminal, image processing method, and data structure
JP6047651B2 (en) Image processing apparatus and image processing method
JP5819445B2 (en) Image processing apparatus, image processing management apparatus, terminal, and image processing method
JP2016006695A (en) Replenishment facility retrieval device, replenishment facility retrieval method, and replenishment facility retrieval program
JP6058756B2 (en) Image processing apparatus and image processing method
WO2014045432A1 (en) Image processing apparatus and image processing method
WO2013114579A1 (en) Image-processing device, method for processing image, and image-processing program
WO2013125019A1 (en) Image processing device and image processing method
WO2014162525A1 (en) Energy supply facility search device, energy supply facility search method, and energy supply facility search program
JP5619288B2 (en) Image processing apparatus, image processing management apparatus, terminal, processing apparatus, and image processing method
JP2023016847A (en) Device, method, and program for computing reachable range
JP2019212314A (en) Reachable range calculation device, reachable range calculation method, and reachable range calculation program
WO2014016948A1 (en) Image processing device and image processing method
JP2018032414A (en) Device, method, and program for computing reachable range
WO2013105271A1 (en) Image processing apparatus, image processing management apparatus, terminal, and image processing method
WO2014080535A1 (en) Display control device, display control method, display control program, display control system, display control server, and terminal
WO2014080506A1 (en) Display control device, display control method, display control program, display control system, display control server, and terminal
JP2019049569A (en) Image processing device, image processing method and image processing program
JP2017187498A (en) Image processing device, image processing method and image processing program
JPWO2013125019A1 (en) Image processing apparatus and image processing method
WO2014068685A1 (en) Display control device, server device, display control method, display control program and recording medium
JP2017227652A (en) Image processing device, image processing method, and image processing program
JP2024072828A (en) Reachable range calculation device, reachable range calculation method, and reachable range calculation program

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5816705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150