JP5790189B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5790189B2
JP5790189B2 JP2011134352A JP2011134352A JP5790189B2 JP 5790189 B2 JP5790189 B2 JP 5790189B2 JP 2011134352 A JP2011134352 A JP 2011134352A JP 2011134352 A JP2011134352 A JP 2011134352A JP 5790189 B2 JP5790189 B2 JP 5790189B2
Authority
JP
Japan
Prior art keywords
power
coil
power transmission
side switch
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011134352A
Other languages
Japanese (ja)
Other versions
JP2013005591A (en
Inventor
成文 遠嶋
成文 遠嶋
祐司 前川
祐司 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011134352A priority Critical patent/JP5790189B2/en
Publication of JP2013005591A publication Critical patent/JP2013005591A/en
Application granted granted Critical
Publication of JP5790189B2 publication Critical patent/JP5790189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、非接触給電装置に関する。  The present invention relates to a non-contact power feeding device.

従来から非接触給電方式として、電磁誘導方式、電波受信方式、電界結合方式及び磁界共鳴方式等が知られている。これらの方式の内、磁界共鳴方式とは、送電回路側と受電回路側に、コイルとコンデンサからなるLC共振回路を設け、両回路間で磁界を共鳴させてワイヤレスで電力を伝送する技術である(下記特許文献参照)。
この磁界共鳴方式は、広く実用化されている電磁誘導方式と比べて、弱い磁界で高効率且つ長距離の電力伝送を実現できるという特徴があり、携帯端末や電気自動車等に利用可能な次世代のワイヤレス充電技術として注目されている。
Conventionally, as a non-contact power feeding method, an electromagnetic induction method, a radio wave reception method, an electric field coupling method, a magnetic field resonance method, and the like are known. Among these methods, the magnetic field resonance method is a technology in which an LC resonance circuit composed of a coil and a capacitor is provided on the power transmission circuit side and the power reception circuit side, and electric power is transmitted wirelessly by resonating the magnetic field between both circuits. (See the following patent document).
This magnetic resonance method is characterized by the fact that it can realize high-efficiency and long-distance power transmission with a weak magnetic field, compared to the widely used electromagnetic induction method, and can be used for portable terminals, electric vehicles, etc. It is attracting attention as a wireless charging technology.

特表2009−501510号公報Special table 2009-501510 特開2010−087353号公報JP 2010-087353 A 特開2010−098896号公報JP 2010-098896 A 特開2010−114965号公報JP 2010-114965 A

従来の磁界共鳴方式では、送電回路及び受電回路ともに単一のヘリカルコイルを使用し、送電回路側の送電コイルと受電回路側の受電コイルとを正対させながら磁界共鳴を発生させて電力伝送を行うことが一般的であるが、送電コイルから受電コイルへの磁界の伝搬方向が一方向のみであるため、送電コイルと受電コイルとの位置関係にズレが生じると電力の伝送効率が低下するという問題があった。  In the conventional magnetic field resonance method, a single helical coil is used for both the power transmission circuit and the power reception circuit, and power transmission is performed by generating magnetic field resonance while the power transmission coil on the power transmission circuit side and the power reception coil on the power reception circuit side are facing each other. It is common to do this, but because the propagation direction of the magnetic field from the power transmission coil to the power reception coil is only one direction, if the positional relationship between the power transmission coil and the power reception coil is shifted, the power transmission efficiency will be reduced. There was a problem.

本発明は、上述した事情に鑑みてなされたものであり、送電コイルと受電コイルとの位置関係に依らずに高効率での非接触給電を実現することを目的とする。  The present invention has been made in view of the above-described circumstances, and an object of the present invention is to realize non-contact power feeding with high efficiency without depending on the positional relationship between the power transmission coil and the power reception coil.

上記目的を達成するために、本発明では、第1の解決手段として、交流電源から供給される交流電力を磁気エネルギに変換して無線送電する送電コイルと、前記磁気エネルギを交流電力に再変換する受電コイルとを備える非接触給電装置であって、前記送電コイルと前記受電コイルの少なくとも一方は、球形状に組み付けられた複数のヘリカルコイルから構成されている、という手段を採用する。  In order to achieve the above object, according to the present invention, as a first solution, a power transmission coil that converts AC power supplied from an AC power source into magnetic energy and wirelessly transmits the power, and reconverts the magnetic energy into AC power. It is a non-contact electric power feeder provided with the receiving coil to perform, Comprising: At least one of the said power transmission coil and the said power receiving coil employ | adopts the means that it is comprised from the several helical coil assembled | attached to spherical shape.

また、第2の解決手段として、上記第1の解決手段において、前記送電コイルと前記受電コイルの両方が前記球形状に組み付けられた複数のヘリカルコイルから構成されており、前記送電コイルを構成する各ヘリカルコイルの両端と前記交流電源の出力端子との電気的な接続または切断の切り替えを行う送電側スイッチと、前記受電コイルを構成する各ヘリカルコイルの両端と負荷の入力端子との電気的な接続または切断の切り替えを行う受電側スイッチと、前記交流電源から前記送電側スイッチへ伝搬する進行波と、前記送電側スイッチから前記交流電源へ伝搬する反射波とを分離して取り出す波形分離手段と、前記送電コイルを構成するヘリカルコイルと前記受電コイルを構成するヘリカルコイルとの組合わせの中から伝送効率の最も高い組合わせを前記進行波及び反射波に基づいて割出し、その結果得られた組合わせを使用して非接触給電を行う制御手段とを備える、という手段を採用する。  Further, as a second solving means, in the first solving means, both the power transmission coil and the power receiving coil are composed of a plurality of helical coils assembled in the spherical shape, and constitute the power transmission coil. A power transmission side switch for switching between electrical connection or disconnection between both ends of each helical coil and the output terminal of the AC power supply, and electrical connection between both ends of each helical coil constituting the power reception coil and the input terminal of the load A power receiving side switch for switching connection or disconnection, a waveform separating means for separating and extracting a traveling wave propagating from the AC power source to the power transmission side switch and a reflected wave propagating from the power transmission side switch to the AC power source; The transmission efficiency is the highest among the combinations of the helical coil constituting the power transmission coil and the helical coil constituting the power receiving coil. Indexing based combinations in the traveling wave and reflected wave, and a control means for performing non-contact power supply by using the combination of the resulting, employing a means of.

また、第3の解決手段として、上記第1または第2の解決手段において、前記送電コイルと前記受電コイルの少なくとも一方にコアを挿入し、そのコア位置を調整自在とするコア位置調整機構を備える、という手段を採用する。   In addition, as a third solving means, in the first or second solving means, a core position adjusting mechanism is provided in which a core is inserted into at least one of the power transmission coil and the power receiving coil, and the core position is adjustable. , Is adopted.

本発明によれば、複数のヘリカルコイルからなる球形状の送電コイル及び受電コイルを採用することにより、送電コイルから受電コイルへの磁界の伝搬方向が複数存在することになるため、送電コイルと受電コイルとの位置関係に依らずに高効率での非接触給電を実現することができる。  According to the present invention, by adopting a spherical power transmission coil and power reception coil composed of a plurality of helical coils, there are a plurality of magnetic field propagation directions from the power transmission coil to the power reception coil. Highly efficient non-contact power feeding can be realized regardless of the positional relationship with the coil.

本発明の一実施形態に係る非接触給電装置Aの構成概略図である。1 is a schematic configuration diagram of a non-contact power feeding apparatus A according to an embodiment of the present invention. 非接触給電装置Aの動作フローチャートである。5 is an operation flowchart of the non-contact power feeding apparatus A. 非接触給電装置Aの変形例に関する説明図である。It is explanatory drawing regarding the modification of the non-contact electric power feeder A.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る非接触給電装置Aの構成概略図である。この非接触給電装置Aは、例えばバッテリ等の負荷Lに対して、離れた位置に設置された交流電源Pから非接触で(ワイヤレスで)電力伝送を行うものであり、送電回路1及び受電回路2から構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a non-contact power feeding apparatus A according to the present embodiment. This non-contact power feeding apparatus A performs power transmission in a non-contact (wireless) manner from an AC power source P installed at a distant position with respect to a load L such as a battery. It consists of two.

送電回路1は、送電コイル11、送電側スイッチ12、方向性結合器13及びコントローラ14を備えている。送電コイル11は、螺旋状に巻かれた3つのヘリカルコイル11a、11b、11cから構成されている。図1に示すように、これらのヘリカルコイル11a、11b、11cは、球形状に組み付けられて1つの送電コイル11を構成している。なお、ヘリカルコイル11a、11b、11cは、互いに電気的に絶縁されている。  The power transmission circuit 1 includes a power transmission coil 11, a power transmission side switch 12, a directional coupler 13, and a controller 14. The power transmission coil 11 includes three helical coils 11a, 11b, and 11c wound in a spiral shape. As shown in FIG. 1, these helical coils 11 a, 11 b, 11 c are assembled into a spherical shape to constitute one power transmission coil 11. The helical coils 11a, 11b, and 11c are electrically insulated from each other.

送電側スイッチ12は、コントローラ14による制御に応じて、送電コイル11を構成する各ヘリカルコイル11a、11b、11cの両端と交流電源Pの出力端子との電気的な接続または切断の切り替えを行う。
なお、ヘリカルコイル11aの両端は、送電コイル11から引き出されて送電側スイッチ12の外部端子12aに接続されている。ヘリカルコイル11bの両端は、送電コイル11から引き出されて送電側スイッチ12の外部端子12bに接続されている。ヘリカルコイル11cの両端は、送電コイル11から引き出されて送電側スイッチ12の外部端子12cに接続されている。また、交流電源Pの出力端子は、方向性結合器13を介して送電側スイッチ12の外部端子12dに接続されている。
The power transmission side switch 12 performs switching between electrical connection or disconnection between both ends of each of the helical coils 11 a, 11 b, 11 c constituting the power transmission coil 11 and the output terminal of the AC power source P in accordance with control by the controller 14.
Note that both ends of the helical coil 11 a are drawn from the power transmission coil 11 and connected to the external terminals 12 a of the power transmission side switch 12. Both ends of the helical coil 11 b are drawn from the power transmission coil 11 and connected to the external terminals 12 b of the power transmission side switch 12. Both ends of the helical coil 11 c are drawn from the power transmission coil 11 and connected to the external terminals 12 c of the power transmission side switch 12. The output terminal of the AC power supply P is connected to the external terminal 12 d of the power transmission side switch 12 via the directional coupler 13.

つまり、送電側スイッチ12は、ヘリカルコイル11aの両端と交流電源Pの出力端子とを接続する場合、外部端子12aと外部端子12dとを接続状態に切り替える(図1参照)。また、送電側スイッチ12は、ヘリカルコイル11bの両端と交流電源Pの出力端子とを接続する場合、外部端子12bと外部端子12dとを接続状態に切り替える。また、送電側スイッチ12は、ヘリカルコイル11cの両端と交流電源Pの出力端子とを接続する場合、外部端子12cと外部端子12dとを接続状態に切り替える。  That is, the power transmission side switch 12 switches the external terminal 12a and the external terminal 12d to the connection state when connecting both ends of the helical coil 11a and the output terminal of the AC power supply P (see FIG. 1). Moreover, when connecting the both ends of the helical coil 11b and the output terminal of AC power supply P, the power transmission side switch 12 switches the external terminal 12b and the external terminal 12d to a connection state. Moreover, when connecting the both ends of the helical coil 11c and the output terminal of AC power supply P, the power transmission side switch 12 switches the external terminal 12c and the external terminal 12d to a connection state.

方向性結合器13は、送電側スイッチ12と交流電源Pとの間に介挿され、交流電源P側から送電コイル11側へ伝搬する進行波と、送電コイル11側から交流電源P側へ伝搬する反射波とを分離して取り出す波形分離手段である。なお、この方向性結合器13は、取り出した進行波W1と反射波W2(いずれも電気信号)をコントローラ14へ出力する。  The directional coupler 13 is inserted between the power transmission side switch 12 and the AC power source P, and propagates from the AC power source P side to the power transmission coil 11 side, and propagates from the power transmission coil 11 side to the AC power source P side. Waveform separating means for separating and extracting the reflected wave. The directional coupler 13 outputs the extracted traveling wave W1 and reflected wave W2 (both electrical signals) to the controller 14.

コントローラ14は、例えばメモリやCPU、入出力インターフェース等が一体的に組み込まれたマイコンであり、方向性結合器13から入力される進行波W1及び反射波W2に基づいて定在波比VSWRを算出し、その算出結果から最も伝送効率の高い状態に送電側スイッチ12を制御する機能を有している。なお、このコントローラ14の機能の詳細については後述する。   The controller 14 is a microcomputer in which, for example, a memory, a CPU, an input / output interface, and the like are integrated, and calculates the standing wave ratio VSWR based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13. And from the calculation result, it has the function to control the power transmission side switch 12 in the state with the highest transmission efficiency. Details of the function of the controller 14 will be described later.

一方、受電回路2は、受電コイル21、受電側スイッチ22及び整流回路23を備えている。受電コイル21は、送電コイル11と同様に、螺旋状に巻かれた3つのヘリカルコイル21a、21b、21cから構成されている。図1に示すように、これらのヘリカルコイル21a、21b、21cは、球形状に組み付けられて1つの受電コイル21を構成している。なお、ヘリカルコイル21a、21b、21cは、互いに電気的に絶縁されている。  On the other hand, the power receiving circuit 2 includes a power receiving coil 21, a power receiving side switch 22, and a rectifier circuit 23. Similarly to the power transmission coil 11, the power reception coil 21 includes three helical coils 21 a, 21 b, and 21 c wound in a spiral shape. As shown in FIG. 1, these helical coils 21 a, 21 b, and 21 c are assembled in a spherical shape to constitute one power receiving coil 21. The helical coils 21a, 21b, 21c are electrically insulated from each other.

受電側スイッチ22は、ユーザによる手動操作に応じて、受電コイル21を構成する各ヘリカルコイル21a、21b、21cの両端と整流回路23(負荷Lの前段回路)の入力端子との電気的な接続または切断の切り替えを行う。
なお、ヘリカルコイル21aの両端は、受電コイル21から引き出されて受電側スイッチ22の外部端子22aに接続されている。ヘリカルコイル21bの両端は、受電コイル21から引き出されて受電側スイッチ22の外部端子22bに接続されている。ヘリカルコイル21cの両端は、受電コイル21から引き出されて受電側スイッチ22の外部端子22cに接続されている。また、整流回路23の入力端子は、受電側スイッチ22の外部端子22dに接続されている。
The power receiving side switch 22 is electrically connected between both ends of each of the helical coils 21a, 21b, and 21c constituting the power receiving coil 21 and the input terminal of the rectifier circuit 23 (the front stage circuit of the load L) according to a manual operation by the user. Or switch the disconnection.
Note that both ends of the helical coil 21 a are drawn from the power receiving coil 21 and connected to the external terminals 22 a of the power receiving side switch 22. Both ends of the helical coil 21 b are drawn from the power receiving coil 21 and connected to the external terminals 22 b of the power receiving side switch 22. Both ends of the helical coil 21 c are drawn from the power receiving coil 21 and connected to the external terminals 22 c of the power receiving side switch 22. The input terminal of the rectifier circuit 23 is connected to the external terminal 22 d of the power receiving side switch 22.

つまり、受電側スイッチ22は、ヘリカルコイル21aの両端と整流回路23の入力端子とを接続する場合、外部端子22aと外部端子22dとを接続状態に切り替える(図1参照)。また、受電側スイッチ22は、ヘリカルコイル21bの両端と整流回路23の入力端子とを接続する場合、外部端子22bと外部端子22dとを接続状態に切り替える。また、受電側スイッチ22は、ヘリカルコイル21cの両端子と整流回路23の入力端子とを接続する場合、外部端子22cと外部端子22dとを接続状態に切り替える。  That is, when the power receiving side switch 22 connects both ends of the helical coil 21a and the input terminal of the rectifier circuit 23, the power receiving side switch 22 switches the external terminal 22a and the external terminal 22d to a connected state (see FIG. 1). Moreover, the power receiving side switch 22 switches the external terminal 22b and the external terminal 22d to a connection state, when connecting the both ends of the helical coil 21b, and the input terminal of the rectifier circuit 23. FIG. In addition, when the power receiving side switch 22 connects both terminals of the helical coil 21c and the input terminal of the rectifying circuit 23, the power receiving side switch 22 switches the external terminal 22c and the external terminal 22d to a connected state.

整流回路23は、受電側スイッチ22を介して受電コイル21から供給される交流電力を直流電力に変換して負荷Lに出力する。   The rectifier circuit 23 converts AC power supplied from the power receiving coil 21 through the power receiving side switch 22 into DC power and outputs the DC power to the load L.

以上のように構成された非接触給電装置Aにおいて、送電コイル11と受電コイル21は、それぞれ不図示のコンデンサとともにLC共振回路を構成している。送電コイル11の共振周波数と受電コイル21の共振周波数とが等しくなるように回路定数を設定すれば、送電コイル11と受電コイル21との間に磁界共鳴を発生させることができる。   In the non-contact power supply apparatus A configured as described above, the power transmission coil 11 and the power reception coil 21 constitute an LC resonance circuit together with a capacitor (not shown). If circuit constants are set so that the resonance frequency of the power transmission coil 11 and the resonance frequency of the power reception coil 21 are equal, magnetic field resonance can be generated between the power transmission coil 11 and the power reception coil 21.

磁界共鳴が発生すると、交流電源Pから供給される交流電力は送電コイル11によって磁気エネルギに変換されて無線送信され、その磁気エネルギは受電コイル21によって交流電力に再変換される。受電コイル21から得られた交流電力は、整流回路23によって直流電力に変換された後、負荷Lに供給されることになる。このように、負荷Lに対して、離れた位置に設置された交流電源Pから非接触で電力伝送を行うことができる。  When the magnetic field resonance occurs, the AC power supplied from the AC power source P is converted into magnetic energy by the power transmission coil 11 and wirelessly transmitted, and the magnetic energy is converted back to AC power by the power receiving coil 21. The AC power obtained from the power receiving coil 21 is converted into DC power by the rectifier circuit 23 and then supplied to the load L. In this way, electric power can be transmitted to the load L in a non-contact manner from the AC power supply P installed at a distant position.

ここで、本実施形態では、送電コイル11及び受電コイル21が、球形状に組み付けられた複数(本実施形態では3つ)のヘリカルコイルから構成されている。前述のように、従来では、送電コイルから受電コイルへの磁界の伝搬方向が一方向のみであったため、送電コイルと受電コイルとの位置関係にズレが生じると電力の伝送効率が低下するという問題があった。これに対して、本実施形態では、複数のヘリカルコイルからなる球形状の送電コイル11及び受電コイル21を採用することで、送電コイル11から受電コイル21への磁界の伝搬方向が複数存在することになるため、送電コイル11と受電コイル21との位置関係に依らずに高効率での非接触給電を実現することができる。   Here, in the present embodiment, the power transmission coil 11 and the power reception coil 21 are composed of a plurality of (three in this embodiment) helical coils assembled in a spherical shape. As described above, conventionally, since the propagation direction of the magnetic field from the power transmission coil to the power reception coil is only one direction, if the positional relationship between the power transmission coil and the power reception coil is shifted, the power transmission efficiency is reduced. was there. On the other hand, in this embodiment, there are a plurality of magnetic field propagation directions from the power transmission coil 11 to the power reception coil 21 by adopting the spherical power transmission coil 11 and the power reception coil 21 formed of a plurality of helical coils. Therefore, highly efficient non-contact power feeding can be realized regardless of the positional relationship between the power transmitting coil 11 and the power receiving coil 21.

ところで、本実施形態では、電力伝送に使用される送電コイル11側のヘリカルコイルと受電コイル21側のヘリカルコイルの組み合わせ(以下、この組み合わせを伝送コイルペアと称す)によって電力の伝送効率が異なるため、送電コイル11と受電コイル21との位置関係に応じて最も伝送効率が高くなるように伝送コイルペアを決定する必要がある。
本実施形態では、非接触給電装置Aによる給電開始時において、図2のフローチャートに示す手順に従って最も伝送効率の高い伝送コイルペアを決定し、その伝送コイルペアを使用して非接触給電を行う。
By the way, in this embodiment, since the transmission efficiency of electric power changes with the combination of the helical coil by the side of the power transmission coil 11 used for electric power transmission, and the helical coil by the side of the receiving coil 21 (henceforth this combination is called a transmission coil pair), It is necessary to determine the transmission coil pair so that the transmission efficiency is highest according to the positional relationship between the power transmission coil 11 and the power reception coil 21.
In the present embodiment, at the start of power feeding by the non-contact power feeding device A, a transmission coil pair with the highest transmission efficiency is determined according to the procedure shown in the flowchart of FIG. 2, and the non-contact power feeding is performed using the transmission coil pair.

図2に示すように、まず、受電側スイッチ22を手動操作して、受電コイル21のヘリルカルコイル21aと負荷Lとを接続させる(ステップS1)。そして、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11aと交流電源Pとを接続させる(ステップS2)。つまり、この場合、ヘリカルコイル11aと21aとが伝送コイルペアとなる。  As shown in FIG. 2, first, the power receiving side switch 22 is manually operated to connect the helical coil 21a of the power receiving coil 21 and the load L (step S1). And the controller 14 controls the power transmission side switch 12, and connects the helical coil 11a of the power transmission coil 11, and AC power supply P (step S2). That is, in this case, the helical coils 11a and 21a form a transmission coil pair.

そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS3)。なお、コントローラ14は、進行波W1の振幅V1と反射波W2の振幅V2を検出し、これらV1、V2の値と下記(1)式及び(2)式に基づいて定在波比VSWRを算出する。
ρ=V2/V1 ・・・(1)
VSWR=(1+|ρ|)/(1−|ρ|) ・・・(2)
Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S3). The controller 14 detects the amplitude V1 of the traveling wave W1 and the amplitude V2 of the reflected wave W2, and calculates the standing wave ratio VSWR based on the values of these V1 and V2 and the following equations (1) and (2). To do.
ρ = V2 / V1 (1)
VSWR = (1+ | ρ |) / (1- | ρ |) (2)

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11bと交流電源Pとを接続させる(ステップS4)。つまり、この場合、ヘリカルコイル11bと21aとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS5)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11b of the power transmission coil 11 and the AC power source P (step S4). That is, in this case, the helical coils 11b and 21a form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S5).

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11cと交流電源Pとを接続させる(ステップS6)。つまり、この場合、ヘリカルコイル11cと21aとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS7)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11c of the power transmission coil 11 and the AC power source P (step S6). That is, in this case, the helical coils 11c and 21a form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S7).

次に、受電側スイッチ22を手動操作して、受電コイル21のヘリルカルコイル21bと負荷Lとを接続させる(ステップS8)。そして、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11aと交流電源Pとを接続させる(ステップS9)。つまり、この場合、ヘリカルコイル11aと21bとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS10)。  Next, the power receiving side switch 22 is manually operated to connect the helical coil 21b of the power receiving coil 21 and the load L (step S8). And the controller 14 controls the power transmission side switch 12, and connects the helical coil 11a of the power transmission coil 11, and AC power supply P (step S9). That is, in this case, the helical coils 11a and 21b form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S10).

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11bと交流電源Pとを接続させる(ステップS11)。つまり、この場合、ヘリカルコイル11bと21bとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS12)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11b of the power transmission coil 11 and the AC power source P (step S11). That is, in this case, the helical coils 11b and 21b form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S12).

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11cと交流電源Pとを接続させる(ステップS13)。つまり、この場合、ヘリカルコイル11cと21bとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS14)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11c of the power transmission coil 11 and the AC power source P (step S13). That is, in this case, the helical coils 11c and 21b form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S14).

次に、受電側スイッチ22を手動操作して、受電コイル21のヘリルカルコイル21cと負荷Lとを接続させる(ステップS15)。そして、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11aと交流電源Pとを接続させる(ステップS16)。つまり、この場合、ヘリカルコイル11aと21cとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS17)。  Next, the power receiving side switch 22 is manually operated to connect the helical coil 21c of the power receiving coil 21 and the load L (step S15). And the controller 14 controls the power transmission side switch 12, and connects the helical coil 11a of the power transmission coil 11, and AC power supply P (step S16). That is, in this case, the helical coils 11a and 21c form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S17).

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11bと交流電源Pとを接続させる(ステップS18)。つまり、この場合、ヘリカルコイル11bと21cとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS19)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11b of the power transmission coil 11 and the AC power source P (step S18). That is, in this case, the helical coils 11b and 21c form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S19).

続いて、コントローラ14は、送電側スイッチ12を制御して、送電コイル11のヘリカルコイル11cと交流電源Pとを接続させる(ステップS20)。つまり、この場合、ヘリカルコイル11cと21cとが伝送コイルペアとなる。そして、コントローラ14は、方向性結合器13から入力される進行波W1と反射波W2に基づいて、今回の伝送コイルペアでの定在波比VSWRを算出し、その算出結果を内部メモリに保存する(ステップS21)。  Subsequently, the controller 14 controls the power transmission side switch 12 to connect the helical coil 11c of the power transmission coil 11 and the AC power source P (step S20). That is, in this case, the helical coils 11c and 21c form a transmission coil pair. Then, the controller 14 calculates the standing wave ratio VSWR in the current transmission coil pair based on the traveling wave W1 and the reflected wave W2 input from the directional coupler 13, and stores the calculation result in the internal memory. (Step S21).

最後に、コントローラ14は、内部メモリに保存した各伝送コイルペアの定在波比VSWRに基づいて最も伝送効率の高いペアを割出し、その伝送コイルペアとなるように送電側スイッチ12を制御する(ステップS22)。この時、受電側スイッチ22側は手動操作にて切り替える。従って、最も伝送効率の高い伝送コイルペアをユーザに知らせる必要があるため、不図示の表示装置等に最も伝送効率の高い伝送コイルペアを表示させる機能をコントローラ14に持たせることが望ましい。なお、周知のように、定在波比VSWRが低いほど伝送効率は高くなるため、各伝送コイルペアの中から最も定在波比VSWRが低いペアを、最も伝送効率の高いペアとして決定すれば良い。  Finally, the controller 14 determines the pair with the highest transmission efficiency based on the standing wave ratio VSWR of each transmission coil pair stored in the internal memory, and controls the power transmission side switch 12 so as to become the transmission coil pair (step). S22). At this time, the power receiving side switch 22 side is switched manually. Therefore, since it is necessary to inform the user of the transmission coil pair with the highest transmission efficiency, it is desirable that the controller 14 has a function of displaying the transmission coil pair with the highest transmission efficiency on a display device (not shown). As is well known, since the transmission efficiency increases as the standing wave ratio VSWR decreases, the pair having the lowest standing wave ratio VSWR out of each transmission coil pair may be determined as the pair having the highest transmission efficiency. .

以上説明したように、本実施形態によれば、複数のヘリカルコイルからなる球形状の送電コイル11及び受電コイル21を採用することにより、送電コイル11から受電コイル21への磁界の伝搬方向が複数存在することになるため、送電コイル11と受電コイル21との位置関係に依らずに高効率での非接触給電を実現することができる。  As described above, according to the present embodiment, by adopting the spherical power transmission coil 11 and the power reception coil 21 formed of a plurality of helical coils, a plurality of magnetic field propagation directions from the power transmission coil 11 to the power reception coil 21 are achieved. Therefore, non-contact power feeding with high efficiency can be realized without depending on the positional relationship between the power transmission coil 11 and the power reception coil 21.

なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、送電コイル11及び受電コイル21ともに、3つのヘリカルコイルによって構成した場合を例示したが、図3(a)に示すように、3つ以上のヘリカルコイルを球形状に組み付けて構成しても良い。ヘリカルコイル数が多いほど、伝送効率の高い伝送コイルペアを発見しやすくなる。また、送電コイル11と受電コイル21の少なくとも一方が、球形状に組み付けられた複数のヘリカルコイルから構成されていれば良い。
In addition, this invention is not limited to the said embodiment, The following modifications are mentioned.
(1) In the above embodiment, the power transmission coil 11 and the power receiving coil 21 are both configured by three helical coils. However, as shown in FIG. 3A, three or more helical coils are formed in a spherical shape. It may be assembled and configured. As the number of helical coils increases, it becomes easier to find a transmission coil pair with high transmission efficiency. Moreover, at least one of the power transmission coil 11 and the power reception coil 21 should just be comprised from the some helical coil assembled | attached by the spherical shape.

(2)図3(b)に示すように、送電コイル11と受電コイル21の少なくとも一方にコア31を挿入し、そのコア31の位置を調整自在とするコア位置調整機構32を設けても良い。このような構成を採用することにより、送電コイル11または受電コイル21のQ値を調整できるようになるため、より効率の高い非接触給電を実現できる。なお、コア位置調整機構32は、手動、自動を問わず、公知の技術によって実現できる。 (2) As shown in FIG. 3B, a core position adjustment mechanism 32 may be provided in which the core 31 is inserted into at least one of the power transmission coil 11 and the power reception coil 21, and the position of the core 31 is adjustable. . By adopting such a configuration, the Q value of the power transmission coil 11 or the power reception coil 21 can be adjusted, so that more efficient non-contact power feeding can be realized. The core position adjusting mechanism 32 can be realized by a known technique, whether manually or automatically.

(3)上記実施形態において、送電コイル11または受電コイル21の各ヘリカルコイルの巻数やコンデンサの値等を変えておけば、各ヘリカルコイルのそれぞれの共振周波数やQ値が異なるため、利用する周波数の選択や最適なQ値の選択による高効率な非接触給電を実現できる。 (3) In the above embodiment, if the number of turns of each helical coil of the power transmission coil 11 or the power reception coil 21, the value of the capacitor, etc. are changed, the resonance frequency and Q value of each helical coil are different, so the frequency to be used High-efficiency non-contact power feeding can be realized by selecting the optimal Q value.

A…非接触給電装置、1…送電回路、2…受電回路、11…送電コイル、12…送電側スイッチ、13…方向性結合器(波形分離手段)、14…コントローラ(制御手段)、21…受電コイル、22…受電側スイッチ、23…整流回路、31…コア、32…コア位置調整機構、P…交流電源、L…負荷  DESCRIPTION OF SYMBOLS A ... Non-contact electric power feeder, 1 ... Power transmission circuit, 2 ... Power reception circuit, 11 ... Power transmission coil, 12 ... Power transmission side switch, 13 ... Directional coupler (waveform separation means), 14 ... Controller (control means), 21 ... Receiving coil, 22 ... Receiving side switch, 23 ... Rectifier circuit, 31 ... Core, 32 ... Core position adjusting mechanism, P ... AC power supply, L ... Load

Claims (2)

交流電源から供給される交流電力を磁気エネルギに変換して無線送電する送電コイルと、前記磁気エネルギを交流電力に再変換する受電コイルとを備える非接触給電装置であって、
前記送電コイルと前記受電コイルの両方は、球形状に組み付けられた複数のヘリカルコイルから構成されており、
前記送電コイルを構成する各ヘリカルコイルの両端と前記交流電源の出力端子との電気的な接続または切断の切り替えを行う送電側スイッチと、
前記受電コイルを構成する各ヘリカルコイルの両端と負荷の入力端子との電気的な接続または切断の切り替えを行う受電側スイッチと、
前記交流電源から前記送電側スイッチへ伝搬する進行波と、前記送電側スイッチから前記交流電源へ伝搬する反射波とを分離して取り出す波形分離手段と、
前記送電コイルを構成するヘリカルコイルと前記受電コイルを構成するヘリカルコイルとの組合わせの中から伝送効率の最も高い組合わせを前記進行波及び反射波から算出された定在波比に基づいて割出し、その結果得られた組合わせを使用して非接触給電を行う制御手段と、
を備えることを特徴とする非接触給電装置。
A non-contact power feeding device comprising: a power transmission coil that converts AC power supplied from an AC power source into magnetic energy and wirelessly transmits power; and a power receiving coil that reconverts the magnetic energy into AC power,
Wherein both of the power transmission coil and the power receiving coil is composed of a plurality of helical coils that are assembled to a spherical shape,
A power transmission-side switch that switches between electrical connection or disconnection between both ends of each helical coil constituting the power transmission coil and the output terminal of the AC power source;
A power receiving side switch for switching between electrical connection or disconnection between both ends of each helical coil constituting the power receiving coil and an input terminal of the load;
Waveform separating means for separating and extracting the traveling wave propagating from the AC power source to the power transmission side switch and the reflected wave propagating from the power transmission side switch to the AC power source;
Of the combinations of the helical coil constituting the power transmission coil and the helical coil constituting the power receiving coil, the combination having the highest transmission efficiency is divided based on the standing wave ratio calculated from the traveling wave and the reflected wave. Control means for performing contactless power feeding using the combination obtained as a result,
Non-contact power feeding device, characterized in that it comprises a.
前記送電コイルと前記受電コイルの少なくとも一方にコアを挿入し、そのコア位置を調整自在とするコア位置調整機構を備えることを特徴とする請求項1に記載の非接触給電装置。 The non-contact power feeding apparatus according to claim 1, further comprising a core position adjusting mechanism that inserts a core into at least one of the power transmission coil and the power receiving coil and makes the core position adjustable .
JP2011134352A 2011-06-16 2011-06-16 Non-contact power feeding device Expired - Fee Related JP5790189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134352A JP5790189B2 (en) 2011-06-16 2011-06-16 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134352A JP5790189B2 (en) 2011-06-16 2011-06-16 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2013005591A JP2013005591A (en) 2013-01-07
JP5790189B2 true JP5790189B2 (en) 2015-10-07

Family

ID=47673570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134352A Expired - Fee Related JP5790189B2 (en) 2011-06-16 2011-06-16 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5790189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736050B2 (en) 2018-07-09 2020-08-04 Honeywell International Inc. Adjusting transmission power of an antenna based on an object causing path loss in a communication link

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323054B2 (en) * 2013-03-08 2018-05-16 Tdk株式会社 Power feeding device, power receiving device, and wireless power transmission device
WO2015151156A1 (en) 2014-03-31 2015-10-08 富士通株式会社 Wireless power supply system and wireless power supply method
US9774218B2 (en) 2014-05-15 2017-09-26 Nissan Motor Co., Ltd. Non-contact power feeding apparatus
CN104779650A (en) * 2015-04-21 2015-07-15 东南大学 Wireless electricity supply pile for space
JP2017093174A (en) * 2015-11-11 2017-05-25 清水建設株式会社 Power supply system and control method of power supply system
JP6712337B2 (en) 2018-06-07 2020-06-17 光電子株式会社 Power receiving device, experimental animal biological information acquisition device, and experimental animal biological information acquisition system
CN115173580A (en) 2018-06-07 2022-10-11 光电子株式会社 Power receiving device, experimental animal biological information acquisition device and system
CN109038845B (en) * 2018-08-02 2021-09-24 大连理工大学 Non-directional spherical equipment induction coupling type wireless power receiving device based on spherical segmentation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887580A (en) * 1994-09-14 1996-04-02 Omron Corp Data carrier and ball game
AU2002307759A1 (en) * 2001-04-04 2002-10-21 Given Imaging Ltd. Induction powered in vivo imaging device
JP4036813B2 (en) * 2003-09-30 2008-01-23 シャープ株式会社 Non-contact power supply system
JP2007028327A (en) * 2005-07-19 2007-02-01 Ntt Docomo Inc Radio communication apparatus and antenna selecting method
JP2007125926A (en) * 2005-11-01 2007-05-24 Hitachi Plant Technologies Ltd Non-contact power supplying method and non-contact power supplying device
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US20090284369A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
JP2010183812A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736050B2 (en) 2018-07-09 2020-08-04 Honeywell International Inc. Adjusting transmission power of an antenna based on an object causing path loss in a communication link

Also Published As

Publication number Publication date
JP2013005591A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5790189B2 (en) Non-contact power feeding device
JP5353376B2 (en) Wireless power device and wireless power receiving method
US9923388B2 (en) Wireless power transmitter
JP4258505B2 (en) Power supply system
JP6061414B2 (en) Multi-coil wireless power feeder
JP6191562B2 (en) Power supply device
US9680328B2 (en) Electronic apparatus and feed system
KR20130102218A (en) Wireless power receiving device with multi coil and wireless power receiving method
JP2013055835A (en) Power feed unit, electronic appliance, and power feed system
TW201539928A (en) Resonance coupling type power transmission system, resonance power transmission apparatus, and resonance power receiving apparatus
KR20170041706A (en) Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power
JP2011142763A (en) Radio power transfer device
KR101875942B1 (en) Apparatus for receving wireless power and system for transmitting wireless power
JP2013198260A (en) Power transmission system
JP2013102593A (en) Magnetic coupling unit and magnetic coupling system
JP5674013B2 (en) Power supply device and power supply system
KR101771793B1 (en) Power supplying apparatus
JP5772687B2 (en) Power transmission system, power transmission device and power reception device, charging facility, and electric vehicle
KR101681376B1 (en) Power supplying apparatus
US20180269718A1 (en) Wireless power transfer systems and methods using non-resonant power receiver
KR102272354B1 (en) Apparatus for wireless power transmission
JP2015109724A (en) Non-contact power transmission device and power reception device
JP6215969B2 (en) Wireless power transmission system and power transmission device and power reception device thereof
JP2014075885A (en) Power transmission apparatus, power reception apparatus and non-contact power transmission device
KR102297354B1 (en) Wireless power transmission systme which enables to transmit and receive induced power signal and resonance power signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5790189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees