JP5760772B2 - Flying object guidance control device - Google Patents

Flying object guidance control device Download PDF

Info

Publication number
JP5760772B2
JP5760772B2 JP2011151362A JP2011151362A JP5760772B2 JP 5760772 B2 JP5760772 B2 JP 5760772B2 JP 2011151362 A JP2011151362 A JP 2011151362A JP 2011151362 A JP2011151362 A JP 2011151362A JP 5760772 B2 JP5760772 B2 JP 5760772B2
Authority
JP
Japan
Prior art keywords
calculation
calculation device
optimization
guidance control
flying object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011151362A
Other languages
Japanese (ja)
Other versions
JP2013019570A (en
Inventor
龍介 大畠
龍介 大畠
類 廣川
類 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011151362A priority Critical patent/JP5760772B2/en
Publication of JP2013019570A publication Critical patent/JP2013019570A/en
Application granted granted Critical
Publication of JP5760772B2 publication Critical patent/JP5760772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

この発明は、飛しょう体を目標物に会合させるための飛しょう体誘導制御装置に関するものである。   The present invention relates to a flying object guidance control apparatus for associating a flying object with a target.

従来、飛しょう体を誘導する際に比例航法則が多く使用されてきた(例えば、非特許文献1の11頁〜30頁)。
ここで比例航法則とは、シーカで検出された目視線角の変化率と相対運動計算よって推定される相対接近速度に比例した加速度指令による誘導則のことである。
Conventionally, a proportional navigation law has been frequently used when guiding a flying object (for example, pages 11 to 30 of Non-Patent Document 1).
Here, the proportional navigation law is a guidance law based on an acceleration command proportional to the rate of change of the visual line angle detected by the seeker and the relative approach speed estimated by the relative motion calculation.

また、あらかじめ数式モデルを用いて、ミスディスタンスの零化を目的とし、入力コストを最小化する意味での最適な誘導則が提案されてきた(例えば、非特許文献1の143頁〜162頁)。   In addition, an optimal guidance law has been proposed in order to minimize the input cost with the aim of null distance reduction using a mathematical model in advance (for example, pages 143 to 162 of Non-Patent Document 1). .

また、プラント制御等の時定数が大きいシステムにおいて、オンライン最適制御が行われてきた(例えば、特許文献1)。
しかしながら、従来、計算速度の問題からオンライン最適制御は飛しょう体のような時定数が小さくノイズの影響が大きいシステムには用いられていない。これは最適化計算が収束する前に次の制御周期が来てしまい、十分な制御性能を発揮することが難しいからである。
Further, online optimal control has been performed in a system with a large time constant such as plant control (for example, Patent Document 1).
However, conventionally, online optimal control has not been used for a system with a small time constant such as a flying object and a large influence of noise due to the problem of calculation speed. This is because the next control cycle comes before the optimization calculation converges, and it is difficult to exhibit sufficient control performance.

特開2008−199825号公報JP 2008-199825 A

“Tactical and Strategic Missile Guidance Fourth Edition”,Paul Zarchan,ISBN:1-56347-497-2“Tactical and Strategic Missile Guidance Fourth Edition”, Paul Zarchan, ISBN: 1-56347-497-2

近年、飛しょう体の会合目標物である航空機などに対するステルス化技術の発達により、目標のRCS(Rader Cross Section)が小さくなっている。これにより飛しょう体のシーカの探知及び追尾性能が劣化し、目標を精度良く探知できる距離(ロックオンレンジという)が短縮し、結果として、飛しょう体を目標へ会合させるための終末誘導時間が短縮して目標との会合確率が低下してしまうという課題があった。   In recent years, due to the development of stealth technology for aircraft and the like, which are target objects for flying objects, the target RCS (Radar Cross Section) has become smaller. As a result, the detection and tracking performance of the flying object's seeker deteriorates, and the distance at which the target can be detected with high precision (called lock-on range) is shortened. As a result, the terminal induction time for associating the flying object with the target is reduced. There was a problem that the probability of meeting with the target would be reduced by shortening.

本発明は、係る課題を解決するためになされたものであり、短い終末誘導時間でも精度良く飛しょう体を目標に会合させるため、飛しょう体および目標の運動を逐次に数値シミュレーションを行うことにより高い精度で予測し、制御系の遅れ要素、非線形要素の影響を補償することにより、短時間での誘導を可能にする誘導制御技術を提供することを目的とする。   The present invention has been made to solve such a problem, and in order to accurately associate the flying object with the target even in a short terminal induction time, by performing a numerical simulation of the flying object and the movement of the target sequentially. An object of the present invention is to provide a guidance control technology that enables guidance in a short time by predicting with high accuracy and compensating for the influence of delay elements and nonlinear elements of a control system.

この発明に係る飛しょう体誘導制御装置は、目標の運動を予測する目標運動計算装置と、誘導弾の運動を予測する誘導弾運動計算装置と、前記誘導弾の満たすべき拘束条件を計算する拘束条件計算装置と、最適化計算の指標となる評価関数を計算する評価関数計算装置と、制御周期であるサンプリング時間毎に、前記拘束条件計算装置から出力される拘束条件の評価値と、前記評価関数計算装置から出力される評価関数の値を用いて、一回の収束演算で最適化パラメータの時間微分を算出し、前記最適化パラメータの時間微分を積分することで最適化パラメータを算出して前記誘導弾の運動を制御する最適誘導制御装置とを備える。

A flying object guidance control device according to the present invention includes a target motion calculation device that predicts a target motion, a guided bullet motion calculation device that predicts the motion of a guided bullet, and a constraint that calculates a constraint condition to be satisfied by the guided bullet. A condition calculation device, an evaluation function calculation device that calculates an evaluation function that serves as an index for optimization calculation, an evaluation value of a constraint condition output from the constraint condition calculation device for each sampling time that is a control period, and the evaluation Using the value of the evaluation function output from the function calculation device, the time derivative of the optimization parameter is calculated by a single convergence operation, and the optimization parameter is calculated by integrating the time derivative of the optimization parameter. An optimum guidance control device for controlling the movement of the guidance bullet .

この発明によれば、終末誘導距離が短い場合においてもオンラインで最適化計算を行うことができ、その結果、目標と飛しょう体間の相対運動を高い精度で予測することができる。また、制御系の遅れ要素、非線形要素を補償することができるので、従来の誘導則に比べ、高い確率で飛しょう体を目標に会合させることができる。   According to the present invention, optimization calculation can be performed online even when the terminal guidance distance is short, and as a result, the relative motion between the target and the flying object can be predicted with high accuracy. Further, since the delay element and nonlinear element of the control system can be compensated, the flying object can be associated with the target with higher probability than the conventional guidance law.

実施の形態1の飛しょう体誘導制御装置において、飛しょう体に搭載された誘導装置の構成を示す図である。In the flying body guidance control apparatus of Embodiment 1, it is a figure which shows the structure of the guidance apparatus mounted in the flying body. 実施の形態2の飛しょう体誘導制御装置において、飛しょう体に搭載された誘導装置の構成を示す図である。In the flying object guidance control apparatus of Embodiment 2, it is a figure which shows the structure of the guidance apparatus mounted in the flying object.

実施の形態1.
図1は、本実施の形態1に係る飛しょう体誘導制御装置の構成を示す図である。飛しょ
う体誘導装置は、目標運動計算装置1、誘導弾運動計算装置2、拘束条件計算装置3、評価関数計算装置4、最適化計算装置5から構成される。
目標運動計算装置1は、与えられた現在の目標の状態量から、有限先未来までにおける目標の位置・速度・旋回加速度の予測を行い、目標の位置・速度・旋回加速度を出力する装置である。
誘導弾運動計算装置2は、与えられた現在の誘導弾の状態量と最適化計算装置5から得られる最適化パラメータを用いて、有限先未来までにおける誘導弾の位置・速度・旋回加速度の予測を行い、誘導弾の状態量変化率を出力する装置である。
拘束条件計算装置3は、誘導弾運動計算装置2で得られた誘導弾の状態量とその変化率が満たすべき拘束条件を計算し、その値を計算し出力する装置である。
評価関数計算装置4は、目標運動計算装置1で得られた目標の位置・速度・旋回加速度と誘導弾運動計算装置2で得られた誘導弾状態量変化率を元に算出される誘導弾の位置・速度・旋回加速度からあらかじめ定めた方程式から導き出される評価関数値を計算し出力する装置である。
最適誘導計算装置5は、拘束条件計算装置3、評価関数計算装置4からそれぞれ出力される拘束条件値および評価関数値を用いて、与えられた評価関数を最小化するような誘導弾の旋回加速度指令をオンラインで最適化計算を行う。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a flying object guidance control apparatus according to the first embodiment. The flying object guidance device includes a target motion calculation device 1, a guided bullet motion calculation device 2, a constraint condition calculation device 3, an evaluation function calculation device 4, and an optimization calculation device 5.
The target motion calculation device 1 is a device that predicts a target position / velocity / turning acceleration from a given current state quantity to a finite future and outputs the target position / velocity / turning acceleration. .
The guided bullet motion calculation device 2 predicts the position / velocity / turning acceleration of the guided bullet up to a finite future using the given state quantity of the current guided bullet and the optimization parameters obtained from the optimization calculation device 5. Is a device that outputs the state quantity change rate of the guided bullet.
The constraint condition calculation device 3 is a device that calculates a constraint condition to be satisfied by the state amount of the guided bullet obtained by the guided bullet motion calculation device 2 and the rate of change thereof, and calculates and outputs the value.
The evaluation function calculation device 4 is a guided bullet that is calculated based on the target position / velocity / turning acceleration obtained by the target motion calculation device 1 and the induced bullet state quantity change rate obtained by the guided bullet motion calculation device 2. It is a device that calculates and outputs an evaluation function value derived from a predetermined equation from position, velocity, and turning acceleration.
The optimum guidance calculation device 5 uses the constraint condition values and the evaluation function values output from the constraint condition calculation device 3 and the evaluation function calculation device 4, respectively, to turn the guided bullets so as to minimize the given evaluation function. Perform optimization calculation on-line with the command.

目標運動計算部1は以下の処理により目標の運動予測を行う。
現在時刻をt0、時刻t0における目標の位置を(xt(0),yt(0))、速度をvt(0)、速度方位角etat(0)を、旋回加速度をat(0)、サンプリング時間をTとおくと、時刻t'=t0+kT(k=0:N)における目標の予測状態量{xt(i),yt(i),etat(i)}(i=0,,,N)は以下の数式で表すことができる。ここで目標の速度vtは一定と仮定する。また、以下の数式において、*は乗算を^はべき乗を表す。^Tは行列の転置を表す。
The target motion calculation unit 1 performs target motion prediction by the following processing.
Current time is t0, target position at time t0 is (xt (0), yt (0)), speed is vt (0), speed azimuth etat (0), turning acceleration is at (0), sampling time Is T, the target state quantity {xt (i), yt (i), etat (i)} (i = 0 ,,, N at the time t '= t0 + kT (k = 0: N) ) Can be expressed by the following equation. Here, it is assumed that the target speed vt is constant. In the following formula, * represents multiplication and ^ represents power. ^ T represents the transpose of the matrix.

Figure 0005760772
Figure 0005760772

誘導弾運動計算部2は以下の処理により誘導弾の状態量変化率を算出する。
現在時刻をt0、時刻t0における誘導弾の位置を(xm(0),ym(0))、速度をvm(0)、速度方位角etam(0)を、旋回加速度をam(0)、サンプリング時間をT、入力に関する最適化パラメータをUとおくと、時刻t'(i)=t0+iT(i=1,2,・・,N)における誘導弾状態量の変化率{dxm(i)/dt,dym(i)/dt,dvm(i)/dt,detam(i)/dt,dam(i)/dt}(i=1,2,・・,N)は以下の数式で表すことができる。
The guided bullet motion calculation unit 2 calculates the state quantity change rate of the guided bullet by the following processing.
Sampling the ammunition position at time t0 (xm (0), ym (0)), velocity vm (0), velocity azimuth etam (0), turning acceleration am (0), sampling If the time is T and the input optimization parameter is U, the rate of change of the induced bullet state quantity at time t '(i) = t0 + iT (i = 1,2, ..., N) {dxm (i) /dt,dym(i)/dt,dvm(i)/dt,detam(i)/dt,dam(i)/dt}(i=1,2,...N) Can do.

Figure 0005760772
Figure 0005760772

なお、上記数式において変数iは(i=0,,,N)を満たす。
ここで係数p_cla(0),p_cla(1),p_cla(2) , p_cd0(0),p_cd0(1),p_cd0(2), p_cdre(0),p_cdre(1),p_cdre(2)はあらかじめ定めた誘導弾の空力係数である。またp_ft(0),p_ft(1),p_ft(2)はあらかじめ定めた誘導弾の推力係数である。またp_m(0),p_m(1),p_m(2)はあらかじめ定めた誘導弾の質量係数である。また、tau_apは誘導弾の誘導時定数である。
In the above formula, the variable i satisfies (i = 0,... N).
Here, the coefficients p_cla (0), p_cla (1), p_cla (2), p_cd0 (0), p_cd0 (1), p_cd0 (2), p_cdre (0), p_cdre (1), p_cdre (2) are determined in advance. The aerodynamic coefficient of the guided bullet. Also, p_ft (0), p_ft (1), and p_ft (2) are predetermined thrust coefficients of the guided bullet. P_m (0), p_m (1), and p_m (2) are the mass coefficients of the guided bullets determined in advance. Tau_ap is the induction time constant of the induction bullet.

拘束条件計算装置3は以下の処理により誘導弾運動の拘束条件を計算する。
誘導弾運動計算装置2によって計算された誘導弾状態量の変化率{dxm(i)/dt,dym(i)/dt,dvm(i)/dt,detam(i)/dt,dam(i)/dt}(i=0,1,・・,N)と最適化計算装置5から与えられる最適化パラメータUから、以下の数式により誘導弾拘束条件行列fおよびgを計算する。
The constraint condition calculation device 3 calculates the constraint condition of the guided bullet movement by the following processing.
Rate of change of the induced bullet state quantity calculated by the guided bullet motion calculation device 2 {dxm (i) / dt, dym (i) / dt, dvm (i) / dt, detam (i) / dt, dam (i) Based on / dt} (i = 0, 1,..., N) and the optimization parameter U given from the optimization calculation device 5, the guided bullet constraint condition matrices f and g are calculated by the following formulas.

Figure 0005760772
Figure 0005760772

評価関数計算装置4は以下の処理により最適化計算で使用する評価関数を計算する。
目標運動計算装置1および誘導弾運動計算装置2によって計算された目標の予測状態量{xt(i),yt(i),etat(i)}(i=0,1,・・,N)および誘導弾状態量の変化率{dxm(i)/dt,dym(i)/dt,dvm(i)/dt,detam(i)/dt,dam(i)/dt}(i=0,,,N)から、以下の数式により評価関数値の要素phi(N)およびL(i)を計算する。ここで、評価関数は誘導弾旋回加速度の積分値および時刻t'=t0+NTにおけるLOS角変化率の2乗を要素として持つ。
The evaluation function calculation device 4 calculates an evaluation function used in the optimization calculation by the following processing.
The predicted state quantities {xt (i), yt (i), etat (i)} (i = 0, 1,..., N) calculated by the target motion calculator 1 and the guided bullet motion calculator 2 and Change rate of induced bullet state quantity {dxm (i) / dt, dym (i) / dt, dvm (i) / dt, detam (i) / dt, dam (i) / dt} (i = 0 ,,, From N), the elements phi (N) and L (i) of the evaluation function value are calculated by the following formula. Here, the evaluation function has an integral value of the guided bullet turning acceleration and the square of the LOS angle change rate at time t ′ = t0 + NT as elements.

Figure 0005760772
Figure 0005760772

Figure 0005760772
Figure 0005760772

最適化計算装置5は以下の処理により最適化パラメータUを決定する。
拘束条件計算装置3および評価関数計算装置4によって計算された拘束条件値fおよびg,評価関数値phi(N),L(i)をもちいて最適化パラメータUを計算する。以下の数式により最適化パラメータUを算出する。
The optimization calculation device 5 determines the optimization parameter U by the following processing.
The optimization parameter U is calculated using the constraint condition values f and g and the evaluation function values phi (N) and L (i) calculated by the constraint condition calculation device 3 and the evaluation function calculation device 4. The optimization parameter U is calculated by the following formula.

Figure 0005760772
Figure 0005760772

ここでamaxは最適化パラメータの上限値、lambdaを共状態、muを拘束条件に対するラグランジュ乗数とする。また、Huは変数Hの変数uによる偏微分を、Hxは変数Hの変数xによる偏微分を、Fuは変数Fの変数uによる偏微分を表す。また^Tは行列およびベクトルの転置を表す。
上記で得られたFを状態量Xにおける値であることに注意してF|Xと記述する。ここで状態量Xに微少擾乱h*dX/dtを加え、再度Fを計算しその値をF|X+h*dX/dtと記述する。
以上から最適化パラメータUの時間微分は以下の方程式を満たす。
Where amax is the upper limit of the optimization parameter, lambda is the co-state, and mu is the Lagrange multiplier for the constraint. Hu represents partial differentiation of variable H by variable u, Hx represents partial differentiation of variable H by variable x, and Fu represents partial differentiation of variable F by variable u. ^ T represents matrix and vector transpose.
Note that F obtained above is a value in the state quantity X, and is written as F | X. Here, a slight disturbance h * dX / dt is added to the state quantity X, F is calculated again, and the value is described as F | X + h * dX / dt.
From the above, the time derivative of the optimization parameter U satisfies the following equation.

Figure 0005760772
Figure 0005760772

この方程式をdU/dtについて解き、以下のとおり積分する。 Solve this equation for dU / dt and integrate as follows:

Figure 0005760772
Figure 0005760772

求めた最適化パラメータUの先頭要素U(1)を誘導弾の旋回加速度指令値として出力する。 The leading element U (1) of the obtained optimization parameter U is output as a turning acceleration command value for the guided bullet.

従来の最適化計算手法では、繰り返し計算によって最適化パラメータUを求めていたため計算負荷が高くなっていたが、本実施の形態では、繰り返し計算をすることなく最適化パラメータUを求めることができる。このため計算負荷が低く、飛しょう体のような時定数の比較的小さいシステムでも適用可能である。   In the conventional optimization calculation method, since the optimization parameter U is obtained by iterative calculation, the calculation load is high. However, in this embodiment, the optimization parameter U can be obtained without performing iterative calculation. For this reason, it is applicable to a system with a low calculation load and a relatively small time constant such as a flying object.

このように、本実施の形態の飛しょう体誘導制御装置では、旋回加速度指令値を算出するにあたり目標および誘導弾の運動方程式が考慮されるようになっており、飛しょう体および目標の運動を逐次に数値シミュレーションを行うことで高い精度で予測することが可能となる。
更には、制御系の遅れ要素、非線形要素の影響を補償することができる。
As described above, in the flying object guidance control apparatus of the present embodiment, the motion equation of the target and the guided bullet is taken into account when calculating the turning acceleration command value, It is possible to predict with high accuracy by performing numerical simulation sequentially.
Furthermore, it is possible to compensate for the influence of delay elements and nonlinear elements of the control system.

実施の形態2.
図2は、本実施の形態2に係る飛しょう体誘導制御装置の構成を示す図である。本実施の形態の飛しょう体誘導制御装置は、従来誘導則計算部6、最適誘導則計算部7、ゲイン8から構成される。
図2において、従来誘導則計算部6は前述の比例航法則の計算を行う。最適誘導則計算部7は実施の形態1で示した一連の計算を行う。ゲイン8は最適誘導則計算部7で計算した最適化計算収斂度に応じてゲインを調節する。
最適化計算収斂度は実施例1の計算におけるHu(i)のノルムで構成される。このノルムが小さい場合、最適化計算はよく収斂しているが、このノルムが大きい場合には最適化計算が収斂していないため、従来誘導則の出力を用いる。
従来誘導則出力をa_png、最適誘導則出力をa_ongとし、ゲインをsとおく。
このとき最終的な出力aを以下で定義する。
Embodiment 2. FIG.
FIG. 2 is a diagram showing the configuration of the flying object guidance control apparatus according to the second embodiment. The flying object guidance control apparatus according to the present embodiment includes a conventional guidance law calculation unit 6, an optimum guidance law calculation unit 7, and a gain 8.
In FIG. 2, a conventional guidance law calculation unit 6 performs the above-described proportional navigation law calculation. The optimum guidance law calculation unit 7 performs a series of calculations shown in the first embodiment. The gain 8 adjusts the gain according to the optimization calculation convergence calculated by the optimum guidance law calculation unit 7.
The optimization calculation convergence is composed of the norm of Hu (i) in the calculation of the first embodiment. When this norm is small, the optimization calculation converges well, but when this norm is large, the optimization calculation does not converge, so the conventional guidance law output is used.
The conventional guidance law output is a_png, the optimum guidance law output is a_ong, and the gain is s.
At this time, the final output a is defined as follows.

Figure 0005760772
Figure 0005760772

ここでゲインsを以下で定義する。 Here, gain s is defined as follows.

Figure 0005760772
Figure 0005760772

ここでexpはネイピア数を底とする指数関数で、|Hu|はHuの2ノルムをさす。 Here, exp is an exponential function with the Napier number as the base, and | Hu | indicates the 2-norm of Hu.

上記のとおりゲインsを設定すると、最適化計算が収斂していない場合(Hu>>1)、sはほぼ0となり、逆に収斂している場合(Hu≒0)、sはほぼ1となる。この作用により従来誘導則と最適誘導則を滑らかに切り替えることができる。 When the gain s is set as described above, when the optimization calculation is not converged (Hu >> 1), s is almost 0, and conversely (Hu≈0), s is almost 1 . By this action, the conventional guidance law and the optimum guidance law can be switched smoothly.

1 目標運動計算装置、2 誘導弾運動計算装置、3 拘束条件計算装置、4 評価関数計算装置、5 最適化計算装置、6 従来誘導則、7 最適誘導則、8 ゲイン。   1 target motion calculation device, 2 guided bullet motion calculation device, 3 constraint condition calculation device, 4 evaluation function calculation device, 5 optimization calculation device, 6 conventional guidance law, 7 optimal guidance law, 8 gain.

Claims (2)

目標の運動を予測する目標運動計算装置と、
誘導弾の運動を予測する誘導弾運動計算装置と、
前記誘導弾の満たすべき拘束条件を計算する拘束条件計算装置と、
最適化計算の指標となる評価関数を計算する評価関数計算装置と、
制御周期であるサンプリング時間毎に、前記拘束条件計算装置から出力される拘束条件の評価値と、前記評価関数計算装置から出力される評価関数の値を用いて、一回の収束演算で最適化パラメータの時間微分を算出し、前記最適化パラメータの時間微分を積分することで最適化パラメータを算出して前記誘導弾の運動を制御する最適誘導制御装置と、
を備えることを特徴とする飛しょう体誘導制御装置。
A target motion calculator that predicts the target motion;
A guided bullet motion calculation device for predicting the motion of a guided bullet;
A constraint condition calculation device for calculating a constraint condition to be satisfied by the guided bullet;
An evaluation function calculation device for calculating an evaluation function as an index of optimization calculation;
Optimized by a single convergence operation using the evaluation value of the constraint condition output from the constraint condition calculation device and the value of the evaluation function output from the evaluation function calculation device at each sampling time that is a control cycle Calculating the time derivative of the parameter, calculating the optimization parameter by integrating the time derivative of the optimization parameter, and controlling the movement of the guided bullet ; and
A flying object guidance control apparatus comprising:
更に、比例航法則の計算を行う比例誘導制御装置と、前記最適化計算が収斂していない場合に比例誘導制御装置と最適誘導制御装置の出力を重みつきで加算する加速度指令値を出力する司令部を備えることを特徴とする請求項1記載の飛しょう体誘導制御装置。 Further, a proportional guidance control device that performs proportional navigation law calculation, and a commander that outputs an acceleration command value that adds the weighted outputs of the proportional guidance control device and the optimal guidance control device when the optimization calculation is not converged The flying object guidance control apparatus according to claim 1, further comprising a unit.
JP2011151362A 2011-07-08 2011-07-08 Flying object guidance control device Active JP5760772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151362A JP5760772B2 (en) 2011-07-08 2011-07-08 Flying object guidance control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151362A JP5760772B2 (en) 2011-07-08 2011-07-08 Flying object guidance control device

Publications (2)

Publication Number Publication Date
JP2013019570A JP2013019570A (en) 2013-01-31
JP5760772B2 true JP5760772B2 (en) 2015-08-12

Family

ID=47691179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151362A Active JP5760772B2 (en) 2011-07-08 2011-07-08 Flying object guidance control device

Country Status (1)

Country Link
JP (1) JP5760772B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5958403B2 (en) * 2013-03-29 2016-08-02 三菱電機株式会社 Flying object guidance control device
CN105923172B (en) * 2016-04-18 2017-03-22 北京航天自动控制研究所 Bank-to-turn overturn guidance method of lift aircraft
CN107478111B (en) * 2017-08-02 2019-04-12 北京理工大学 Target seeker model identification system and the Guidance and control analogue system for applying it
CN115615261B (en) * 2022-09-20 2023-07-04 北京理工大学 Fusion method for rocket elastic identification with large slenderness ratio and line-of-sight angular rate extraction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221798A (en) * 1990-01-26 1991-09-30 Mitsubishi Heavy Ind Ltd Digital optimum guidance system of missile
JP2000346594A (en) * 1999-06-10 2000-12-15 Mitsubishi Heavy Ind Ltd Method for guiding flying object
US6666410B2 (en) * 2001-10-05 2003-12-23 The Charles Stark Draper Laboratory, Inc. Load relief system for a launch vehicle
JP2004326363A (en) * 2003-04-23 2004-11-18 Mitsubishi Heavy Ind Ltd Four-dimensional navigation object, four-dimensional navigation device, and four-dimensional control method of navigation object

Also Published As

Publication number Publication date
JP2013019570A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
He et al. Impact angle constrained integrated guidance and control for maneuvering target interception
Cho et al. Optimal impact angle control guidance law based on linearization about collision triangle
He et al. Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets
Taub et al. Intercept angle missile guidance under time varying acceleration bounds
Xiong et al. Hyperbolic tangent function weighted optimal intercept angle guidance law
Lin et al. Missile guidance law design using adaptive cerebellar model articulation controller
CN110989669A (en) Online self-adaptive guidance algorithm for active section of multistage boosting gliding aircraft
JP5760772B2 (en) Flying object guidance control device
Liu et al. Integrated guidance and control with input saturation and disturbance observer
Yu et al. Trajectory-shaping guidance with final speed and load factor constraints
CN114020019A (en) Guidance method and device for aircraft
JP5577807B2 (en) Flying object guidance device
Maity et al. Generalized model predictive static programming and its application to 3D impact angle constrained guidance of air-to-surface missiles
Zhang et al. On-line optimization design of sliding mode guidance law with multiple constraints
Zhou et al. Design of sliding mode guidance law with dynamic delay and impact angle constraint
Yang et al. Online midcourse guidance method for boost phase interception via adaptive convex programming
Fu et al. A trajectory shaping guidance law with field-of-view angle constraint and terminal limits
Li et al. Design of three-dimensional guidance law with impact angle constraints and input saturation
Chen et al. Influence of seeker disturbance rejection and radome error on the Lyapunov stability of guidance systems
Luo et al. Integrated guidance and control based air-to-air autonomous attack occupation of UCAV
Niu et al. Research on a new process of agile turn with engine reignition based on optimal control
Won et al. A multi-model approach to gain-scheduling control for agile missile autopilot design
Gao et al. Output tracking anti-disturbance control for turbofan systems
Wang et al. Autopilot and guidance law design considering impact angle and time
Duan et al. A scheduling algorithm for phased array radar based on adaptive time window

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5760772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250