JP5759644B1 - Differential amplifier circuit - Google Patents

Differential amplifier circuit Download PDF

Info

Publication number
JP5759644B1
JP5759644B1 JP2015016531A JP2015016531A JP5759644B1 JP 5759644 B1 JP5759644 B1 JP 5759644B1 JP 2015016531 A JP2015016531 A JP 2015016531A JP 2015016531 A JP2015016531 A JP 2015016531A JP 5759644 B1 JP5759644 B1 JP 5759644B1
Authority
JP
Japan
Prior art keywords
differential amplifier
circuit
input terminal
input
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015016531A
Other languages
Japanese (ja)
Other versions
JP2016143946A (en
Inventor
喜隆 渡辺
渡辺  喜隆
森 栄二
栄二 森
Original Assignee
ソニックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニックス株式会社 filed Critical ソニックス株式会社
Priority to JP2015016531A priority Critical patent/JP5759644B1/en
Application granted granted Critical
Publication of JP5759644B1 publication Critical patent/JP5759644B1/en
Priority to PCT/JP2016/052691 priority patent/WO2016121943A1/en
Publication of JP2016143946A publication Critical patent/JP2016143946A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

【課題】交流結合時のCMRRを実動作状況において改善する。【解決手段】交流結合された差動増幅器と、前記差動増幅器の入力端子に接続されたハイパスフィルタと、前記差動増幅器の正入力端子と負入力端子との間を接続する可変抵抗素子と、前記可変抵抗素子の抵抗値を変化させるための調整回路とを備えた差動増幅回路である。【選択図】図1To improve CMRR during AC coupling in an actual operation state. An AC-coupled differential amplifier, a high-pass filter connected to an input terminal of the differential amplifier, and a variable resistance element that connects between a positive input terminal and a negative input terminal of the differential amplifier A differential amplifier circuit including an adjustment circuit for changing a resistance value of the variable resistance element. [Selection] Figure 1

Description

本発明は、差動増幅回路に関する。   The present invention relates to a differential amplifier circuit.

2つの入力信号の差分を一定係数で増幅する回路である差動増幅回路は、微小信号を増幅する機能が要求される測定器の入力回路等に利用される。計装アンプとして用いられる理想的な差動増幅回路では、交流結合時の同相電圧は完全に除去され、同相電圧除去比(CMRR)は無限大(dB)である。しかし、現実の差動増幅回路では、回路内部に使用する部品の製作精度、温度変化による回路定数の変動などにより、回路自体の特性が大きく変化する。このようなCMRRの変動を抑制して回路特性を改善しようという試みが多くなされてきたが、入力信号に対する過渡状態から定常状態に復旧するための増幅回路の回復時間が長い、あるいは増幅回路のゲインの設定自由度が低くなるなどの問題があった。   A differential amplifier circuit, which is a circuit that amplifies a difference between two input signals by a constant coefficient, is used in an input circuit of a measuring instrument that requires a function of amplifying a minute signal. In an ideal differential amplifier circuit used as an instrumentation amplifier, the common-mode voltage during AC coupling is completely removed, and the common-mode voltage rejection ratio (CMRR) is infinite (dB). However, in an actual differential amplifier circuit, the characteristics of the circuit itself change greatly due to the manufacturing accuracy of components used in the circuit and the fluctuation of circuit constants due to temperature changes. Many attempts have been made to improve the circuit characteristics by suppressing such variation in CMRR. However, the recovery time of the amplifier circuit for recovering from the transient state to the steady state with respect to the input signal is long, or the gain of the amplifier circuit is large. There were problems such as lowering the degree of freedom of setting.

この点、特許文献1はAC結合差動増幅器に関し、例えば図1を参照すると、各出力の同相電圧を抵抗器R5、またはR6を通して増幅器A1,A2の反転入力端子に帰還させ、さらにその点より、コンデンサC3,C4を通じて帰還させて、抵抗器R1、あるいはR4を使った分圧回路を通じて、みかけの時定数を増やしている。また、特許文献2に開示されている計装アンプ/差動アンプでは、基本的に交流CMRRは悪化しないとされている。この計装アンプ/差動アンプでは、図中の抵抗器(図1のR2とR4)の抵抗値が一定の場合、回路の入力抵抗値(図1のR1,R3)を小さくすると、回路全体の入力の電圧範囲が狭くなる。逆に入力電圧範囲を大きくする場合には、入力抵抗値(図1のR1,R3)を大きくする必要がある。   In this regard, Patent Document 1 relates to an AC coupled differential amplifier. For example, referring to FIG. 1, the common-mode voltage of each output is fed back to the inverting input terminals of the amplifiers A1 and A2 through the resistors R5 and R6. The apparent time constant is increased through the voltage dividing circuit using the resistor R1 or R4 by feeding back through the capacitors C3 and C4. In the instrumentation amplifier / differential amplifier disclosed in Patent Document 2, the AC CMRR is basically not deteriorated. In this instrumentation amplifier / differential amplifier, if the resistance values of the resistors in the figure (R2 and R4 in FIG. 1) are constant, if the input resistance values of the circuit (R1, R3 in FIG. 1) are reduced, the entire circuit The input voltage range becomes narrower. Conversely, when the input voltage range is increased, it is necessary to increase the input resistance value (R1, R3 in FIG. 1).

米国特許第5300896号明細書US Pat. No. 5,300,906

"計装アンプ/差動アンプをAC結合で使用する(対象:±200V差動アンプINA117・INA106ベースの±100V差動アンプ・G=1、10の差動アンプINA105とINA106・計装アンプINA101、INA102、INA103、INA110、INA120)"、[online]、2001年11月、日本テキサス・インスツルメンツ株式会社、[平成27年1月27日検索]、インターネット(http://www.tij.co.jp/jp/lit/an/jaja183/jaja183.pdf)"Using instrumentation amplifier / differential amplifier with AC coupling (target: ± 200V differential amplifier INA117, ± 100V differential amplifier based on INA106, G = 1, 10 differential amplifiers INA105 and INA106, instrumentation amplifier INA101 , INA102, INA103, INA110, INA120) ", [online], November 2001, Texas Instruments Incorporated, [searched January 27, 2015], Internet (http://www.tij.co. jp / jp / lit / an / jaja183 / jaja183.pdf)

しかしながら、特許文献1では、帰還抵抗器R5,R6、あるいはブートストラップ回路、および入力に使っている抵抗器R1およびR4の抵抗値などに高いマッチング精度が要求されるため必要な回路特性を得ながらコストを抑えることは現実的には難しい。また、特許文献2では、抵抗器の熱雑音が増えることにより回路全体のノイズ特性が悪化する問題がある。一般には、計装アンプ・差動アンプの場合、微小な信号を利用可能な電圧まで増幅する必要があるため、大きなゲインをとる必要があり、特許文献2の方法では大きなゲインを得る場合大きな抵抗値を選ぶ必要があるためノイズが増えてしまい応用範囲が狭いと考えられる。   However, in Patent Document 1, high matching accuracy is required for the feedback resistors R5 and R6, or the bootstrap circuit, and the resistance values of the resistors R1 and R4 used for input, so that necessary circuit characteristics are obtained. In practice, it is difficult to keep costs down. Moreover, in patent document 2, there exists a problem which the noise characteristic of the whole circuit deteriorates, when the thermal noise of a resistor increases. In general, in the case of instrumentation amplifiers / differential amplifiers, it is necessary to amplify a minute signal to a usable voltage, so it is necessary to obtain a large gain. In the method of Patent Document 2, a large resistance is required when a large gain is obtained. Since it is necessary to select a value, noise increases and the application range is considered to be narrow.

本発明は、交流結合時のCMRRを実動作状況において改善することができる差動増幅回路を提供することを一つの目的としている。   An object of the present invention is to provide a differential amplifier circuit capable of improving CMRR during AC coupling in an actual operating state.

上記の目的等を達成するための本発明の一態様は、差動増幅器と、前記差動増幅器の入力端子に接続されたハイパスフィルタと、前記差動増幅器の正入力端子と負入力端子との間を接続する可変抵抗素子と、前記差動増幅器の出力レベルに応じて前記可変抵抗素子の抵抗値を変化させるための調整回路とを備えた差動増幅回路である。 An aspect of the present invention for achieving the above-described object and the like includes a differential amplifier , a high-pass filter connected to an input terminal of the differential amplifier, and a positive input terminal and a negative input terminal of the differential amplifier. A differential amplifier circuit comprising: a variable resistance element that connects the two; and an adjustment circuit that changes a resistance value of the variable resistance element in accordance with an output level of the differential amplifier.

本発明の一態様によれば、交流結合時のCMRRを実動作状況において改善することができる差動増幅回路が提供される。   According to one aspect of the present invention, a differential amplifier circuit that can improve CMRR during AC coupling in an actual operating state is provided.

本発明の一実施形態に係る差動増幅回路の回路図の例を示す図である。It is a figure which shows the example of the circuit diagram of the differential amplifier circuit which concerns on one Embodiment of this invention. 回路動作のシミュレーション結果を示す図である。It is a figure which shows the simulation result of a circuit operation | movement. シミュレーションに係る差動増幅回路(本発明回路あり)の応答特性を示す図である。It is a figure which shows the response characteristic of the differential amplifier circuit (with this invention circuit) which concerns on simulation. シミュレーションに係る差動増幅回路(本発明回路なし)の応答特性を示す図である。It is a figure which shows the response characteristic of the differential amplifier circuit (without this invention circuit) which concerns on simulation. 本発明回路の有無による差動増幅回路の出力波形を比較して示すグラフである。It is a graph which compares and shows the output waveform of the differential amplifier circuit by the presence or absence of this invention circuit. 一般的な差動増幅回路の回路図の例を示す図である。It is a figure which shows the example of the circuit diagram of a general differential amplifier circuit.

本発明の差動増幅回路について、添付図面を参照しながらその一実施形態に即して説明する。まず従来の一般的な差動増幅回路について説明する。図6に一般的な差動増幅回路の回路図の例を示している。図6に例示する差動増幅回路では、差動増幅器U1の正入力端子にコンデンサC2が、負入力端子にコンデンサC1が接続されている。コンデンサC2とC1の入力端子側の間には2つの抵抗器R2,R3が直列に接続されている。抵抗器R2とR3の中点は接地されている。   A differential amplifier circuit of the present invention will be described in accordance with an embodiment thereof with reference to the accompanying drawings. First, a conventional general differential amplifier circuit will be described. FIG. 6 shows an example of a circuit diagram of a general differential amplifier circuit. In the differential amplifier circuit illustrated in FIG. 6, the capacitor C2 is connected to the positive input terminal of the differential amplifier U1, and the capacitor C1 is connected to the negative input terminal. Two resistors R2 and R3 are connected in series between the input terminals of the capacitors C2 and C1. The midpoint of resistors R2 and R3 is grounded.

図6に例示する理想的な差動増幅回路のCMRRは、入力時定数を規定する抵抗器R2,R3の抵抗値と入力コンデンサC2,C1の容量の誤差(マッチング精度)に大きく依存する。理想的な差動増幅器でない場合には、差動増幅器U1の入力インピーダンスを含めた抵抗器R2,R3の抵抗値との合成インピーダンス、および入力コンデンサC2,C1の容量により定まる時定数が、利用周波数帯域において一致する場合に、高い交流CMRRが実現できる。   The CMRR of the ideal differential amplifier circuit illustrated in FIG. 6 greatly depends on the error (matching accuracy) between the resistance values of the resistors R2 and R3 that define the input time constant and the capacitances of the input capacitors C2 and C1. If the differential amplifier is not an ideal differential amplifier, the combined frequency with the resistance values of the resistors R2 and R3 including the input impedance of the differential amplifier U1 and the time constant determined by the capacitances of the input capacitors C2 and C1 are used frequencies. A high AC CMRR can be achieved if they match in the bands.

しかし、市販の一般的な抵抗器やコンデンサを用いる場合には、それらの製作精度は5%、1%精度であり、抵抗値、容量を完全に一致させることは困難である。交流CMRRを改善するには、入力時定数の抵抗器R2,R3と入力コンデンサC2,C1による時定数(R2×C2、R3×C1)を、誤差の大きな部品を使っても一致させる必要がある。その一つの実現方法は、結合コンデンサC1,C2の値をできるだけ小さくして、入力時定数の抵抗器R2,R3の抵抗値を大きくすることである。あるいは、別の例として、結合コンデンサC1,C2の容量値を固定値とした場合には、入力時定数の抵抗器R2,R3の抵抗値を大きくすればよい。しかしながら、この方法では、入力信号のカットオフ周波数が極端に低くなるため、差動増幅回路全体が過渡状態から定常状態に移行するために長い時間を要してしまう。   However, when using commercially available general resistors and capacitors, their manufacturing accuracy is 5% and 1% accuracy, and it is difficult to make the resistance value and the capacitance completely coincide. In order to improve the AC CMRR, it is necessary to match the time constants (R2 × C2, R3 × C1) of the input time constant resistors R2 and R3 and the input capacitors C2 and C1 even if components having a large error are used. . One realization method is to reduce the values of the coupling capacitors C1 and C2 as much as possible and increase the resistance values of the resistors R2 and R3 having input time constants. Alternatively, as another example, when the capacitance values of the coupling capacitors C1 and C2 are fixed values, the resistance values of the resistors R2 and R3 having input time constants may be increased. However, in this method, since the cutoff frequency of the input signal is extremely low, it takes a long time for the entire differential amplifier circuit to shift from the transient state to the steady state.

入力信号が過渡状態から定常状態に移る場合の時定数は、増幅器U1が差動増幅器として機能していない状態から、差動増幅器として機能する状態に移行することと同じように考えることができる。したがって、この場合の時定数(T=C×R)は、合成容量C=1/(1/C1+1/C2)と合成抵抗R=R2+R3によって定まるため、合成容量を小さくして、合成抵抗値を大きくすることで、時定数を小さく、つまり、過渡応答状態から定常状態に移行する時間を短くすることができる。   The time constant when the input signal shifts from the transient state to the steady state can be considered in the same way as when the amplifier U1 does not function as a differential amplifier and shifts to a state that functions as a differential amplifier. Therefore, the time constant (T = C × R) in this case is determined by the combined capacitance C = 1 / (1 / C1 + 1 / C2) and the combined resistance R = R2 + R3. By increasing the time constant, the time constant can be reduced, that is, the time for transition from the transient response state to the steady state can be shortened.

例えば、回路全体に直流電圧が印加されて、増幅器U1のゲインが1000倍、カットオフ周波数が0.001Hzであるとすると、回路全体が過渡状態から定常状態に移行するには1000秒以上かかってしまうことになる。これは、例えば、回路全体をプローブやセンサーなどの増幅器として応用した場合、入力信号が遮断された状態、あるいは、入力端子が開放された状態から小信号の信号を増幅できるような状態に移行するまで長時間を要することを意味し、回路を応用する観点からは不便である。逆に過渡応答特性を重視すると、大きなCや小さなRを利用して回路の時定数を小さくする必要があり、交流CMRR特性が劣化することになる。そのため、交流CMRRと時定数とはトレードオフの関係にあり、どちらも改善することは困難であった。   For example, if a DC voltage is applied to the entire circuit, the gain of the amplifier U1 is 1000 times, and the cutoff frequency is 0.001 Hz, it takes 1000 seconds or more for the entire circuit to transition from the transient state to the steady state. Will end up. For example, when the entire circuit is applied as an amplifier such as a probe or a sensor, the state shifts from a state where the input signal is blocked or a state where the input terminal is opened to a state where a small signal can be amplified. It is inconvenient from the viewpoint of applying the circuit. Conversely, if the transient response characteristic is emphasized, it is necessary to reduce the time constant of the circuit using a large C or a small R, and the AC CMRR characteristic is deteriorated. Therefore, AC CMRR and time constant are in a trade-off relationship, and it has been difficult to improve both.

実施例
次に、本発明の実施例に係る差動増幅回路について説明する。図1に本実施例の差動増幅回路の回路図を例示している。本実施例の差動増幅回路は前記した一般的な差動増幅回路(図6)と基本的な構成は同等であるが、増幅器U1の正負入力端子間を接続する可変抵抗素子R1が設けられている点が異なる。この可変抵抗素子R1の抵抗値は増幅器U1の出力に接続された調整回路CIRによって調整される。
Next, a differential amplifier circuit according to an embodiment of the present invention will be described. FIG. 1 illustrates a circuit diagram of the differential amplifier circuit of this embodiment. The basic configuration of the differential amplifier circuit of this embodiment is the same as that of the general differential amplifier circuit (FIG. 6) described above, but a variable resistance element R1 for connecting the positive and negative input terminals of the amplifier U1 is provided. Is different. The resistance value of the variable resistance element R1 is adjusted by an adjustment circuit CIR connected to the output of the amplifier U1.

本実施例の調整回路CIRは、増幅器U1の出力レベルをモニタしており、その信号を利用して差動入力増幅器U1の正入力端子と負入力端子との間にある可変抵抗素子R1の端子間抵抗値を変化させる機能を有する。増幅器U1の入力端子間電圧が大きい場合、つまり、入力信号が過渡状態にあるような場合には、調整回路CIRは、増幅器U1の出力端子の電圧が、正又は負のある電圧以上となっている条件で、可変抵抗素子R1の抵抗値を減少させる方向に作用する。一例として、調整回路CIRとして両波整流回路を用い、可変抵抗素子R1としてフォトカプラ(例えば、LEDとCdSセルを組み合わせたアナログフォトカプラ)を用いることができる。具体的には、調整回路CIRは、増幅器U1の両波整流後の出力レベルが一定値を超えたときに、一定値との差分に応じてフォトカプラの信号の大きさを増加させるように動作して可変抵抗素子R1の抵抗値を減少させることができる。なお、調整回路CIR、可変抵抗素子R1は、上記の動作特性を実現するどのような回路により構成してもよく、具体的な動作特性は、入力信号の条件、所要のゲイン等に応じて決定することができる。   The adjustment circuit CIR of the present embodiment monitors the output level of the amplifier U1, and uses the signal of the variable resistance element R1 between the positive input terminal and the negative input terminal of the differential input amplifier U1. It has a function to change the resistance value. When the voltage between the input terminals of the amplifier U1 is large, that is, when the input signal is in a transient state, the adjustment circuit CIR causes the voltage at the output terminal of the amplifier U1 to be equal to or higher than a positive or negative voltage. Under the condition that the resistance value of the variable resistance element R1 is decreased. As an example, a double-wave rectifier circuit can be used as the adjustment circuit CIR, and a photocoupler (for example, an analog photocoupler in which an LED and a CdS cell are combined) can be used as the variable resistance element R1. Specifically, the adjustment circuit CIR operates so as to increase the signal magnitude of the photocoupler according to the difference from the constant value when the output level after the two-wave rectification of the amplifier U1 exceeds the constant value. Thus, the resistance value of the variable resistance element R1 can be reduced. The adjustment circuit CIR and the variable resistance element R1 may be configured by any circuit that realizes the above operating characteristics, and the specific operating characteristics are determined according to the conditions of the input signal, the required gain, and the like. can do.

動作状態の例
例えば、直流電圧10Vが入力端子(図1の入力1−入力2間)に印加され、増幅器U1のゲインが1000倍であると仮定してみる。この場合、入力信号の線形応答範囲は10mVである。増幅器U1が過渡応答状態から定常応答状態に移行するには、増幅器U1の入力端子間電圧が10mV以下になるまで待つ必要がある。したがって、可変抵抗素子R1が設けられない場合、抵抗器R2,R3を通して増幅器U1の同相入力電圧が10mV以下になるまで待つ必要がある。コンデンサC1,C2の電荷は抵抗器R2,R3とオペアンプのインピーダンスを通して充電又は放電されるため、抵抗器R2,R3の抵抗値が大である場合には、その充電又は放電のために時間がかかることになる。
Example of Operation State For example, assume that a DC voltage of 10 V is applied to the input terminal (between input 1 and input 2 in FIG. 1), and the gain of the amplifier U1 is 1000 times. In this case, the linear response range of the input signal is 10 mV. In order for the amplifier U1 to shift from the transient response state to the steady response state, it is necessary to wait until the voltage between the input terminals of the amplifier U1 becomes 10 mV or less. Therefore, when the variable resistance element R1 is not provided, it is necessary to wait until the common-mode input voltage of the amplifier U1 becomes 10 mV or less through the resistors R2 and R3. Since the charges of the capacitors C1 and C2 are charged or discharged through the impedances of the resistors R2 and R3 and the operational amplifier, if the resistance values of the resistors R2 and R3 are large, the charging or discharging takes time. It will be.

一方、増幅器U1の入力端子間に可変抵抗素子R1を追加した本実施例の差動増幅回路(図1)では、過渡応答状態(この例では、増幅器U1の入力端子間電圧が10mVを超えている場合)から定常状態に移行する場合、コンデンサC1,C2の充電又は放電は、抵抗器R2,R3と、それらよりもはるかに小さな抵抗値を有する可変抵抗素子R1を通して行われる。したがって、抵抗器R2,R3のみにより充電又は放電される場合(図6の従来例)に比べて、回路全体を1000分の1以下の短い時間で定常状態(増幅器U1の入力端子間電圧が10mV以下の状態)に移行させることが可能となる。 On the other hand, in the differential amplifier circuit (FIG. 1) of the present embodiment in which the variable resistance element R1 is added between the input terminals of the amplifier U1, the transient response state (in this example, the voltage between the input terminals of the amplifier U1 exceeds 10 mV). When the transition to the steady state is performed, the capacitors C1 and C2 are charged or discharged through the resistors R2 and R3 and the variable resistance element R1 having a much smaller resistance value. Therefore, the entire circuit is in a steady state in a short time of 1/1000 or less (the voltage between the input terminals of the amplifier U1 is 10 mV) as compared with the case where only the resistors R2 and R3 are charged or discharged (conventional example in FIG. 6). It is possible to shift to the following state.

シミュレーション結果
図1に例示している本実施例の差動増幅回路による動作シミュレーション結果を、図2に示している。図2は、シミュレーションの対象となった回路についての入力信号の周波数と交流CMRRとの関係を示している。図2のグラフで、実線は本実施例の回路、破線は比較例の回路、一点鎖線は両者に用いた増幅器U1の単体についての結果を示している。なお、本シミュレーションにおいては、図3〜図5に例示する動作特性を有するように回路条件を設定した。図4は本発明による回路がない場合の応答特性であり、750秒程度で過渡状態から定常状態に移行するように設計した回路である。同じ回路に、本発明を追加することにより得られる効果を示したものが図3である。図5は、本発明回路を備えた差動増幅回路(図1の例)と、本発明回路を有しない差動増幅回路(図6の例)の出力波形を比較して示すグラフを例示している。また、増幅器U1としては、一般的なオペアンプであればどれでも採用することができるが、一例としてはAD620,INA128,LT1167など(いずれもメーカーの製品型番)のオペアンプが考えられる。本シミュレーションで想定した増幅器U1は、一般的なオペアンプであって比較的CMRRの大きなものを考えて、利用したものである。また、本実施例では調整回路CIRを、±10V、ゲイン1000倍(60dB)という増幅器の動作条件で設計したため、10mVを超える入力がオペアンプ(増幅器U1)の入力に加わるような条件では、オペアンプの動作モードが線形状態から非線形状態(あるいは、定常状態から過渡状態)に変化すると考えられるが、本シミュレーション例の回路では、増幅器U1の入力に対して、数mV、つまり、アンプが線形増幅器として機能しなくなるレベルよりも低い電圧の条件では、調整回路CIRが動作を止める、つまり可変抵抗素子R1の値が十分に大きくなる特性で可変抵抗素子R1の抵抗値を変化させるものと設定した。これらのシミュレーション条件の設定は、本発明の技術的範囲をなんら制約するものではない。
Simulation Result FIG. 2 shows an operation simulation result by the differential amplifier circuit of this embodiment illustrated in FIG. FIG. 2 shows the relationship between the frequency of the input signal and the AC CMRR for the circuit to be simulated. In the graph of FIG. 2, the solid line indicates the result of the circuit of this example, the broken line indicates the result of the comparative example, and the alternate long and short dash line indicates the result of the amplifier U1 used for both. In this simulation, the circuit conditions are set so as to have the operation characteristics illustrated in FIGS. FIG. 4 shows the response characteristics when there is no circuit according to the present invention, which is a circuit designed to shift from a transient state to a steady state in about 750 seconds. FIG. 3 shows the effect obtained by adding the present invention to the same circuit. FIG. 5 illustrates a graph showing a comparison between output waveforms of a differential amplifier circuit (example in FIG. 1) having the circuit of the present invention and a differential amplifier circuit not having the circuit of the present invention (example in FIG. 6). ing. Further, as the amplifier U1, any general operational amplifier can be used. As an example, operational amplifiers such as AD620, INA128, and LT1167 (all of which are manufacturer's product model numbers) are conceivable. The amplifier U1 assumed in this simulation is a general operational amplifier that is used in consideration of a comparatively large CMRR. Further, in this embodiment, the adjustment circuit CIR is designed under the operating condition of the amplifier of ± 10 V and gain 1000 times (60 dB), so that the input of the operational amplifier (amplifier U1) is added to the input of the operational amplifier (amplifier U1). Although the operation mode is considered to change from a linear state to a non-linear state (or from a steady state to a transient state), in the circuit of this simulation example, several mV with respect to the input of the amplifier U1, that is, the amplifier functions as a linear amplifier. Under the condition of a voltage lower than the level at which it does not occur, the adjustment circuit CIR is set to stop the operation, that is, to change the resistance value of the variable resistance element R1 with a characteristic that the value of the variable resistance element R1 becomes sufficiently large. The setting of these simulation conditions does not limit the technical scope of the present invention.

図6の回路構成を有する比較例の差動増幅回路においては、回路入力の時定数を決定する部品であるコンデンサC1,C2、抵抗器R2,R3の定数を、設計値から1%ずらした設定とした。本実施例の差動増幅回路は、その比較例の回路に対して可変抵抗素子R1と調整回路CIRを設けた。この結果、図2に示されるように、従来方式の比較例では、回路部品の定数のわずかな誤差でも交流CMRRが劣化することがわかる。例えば図2の入力周波数100Hzでの交流CMRRは、わずか40dBに悪化している。これに対して、本実施例の回路では、入力周波数100Hzにおける交流CMRRが100dBと、比較例に対して60dBの改善効果が得られることが確認された。
以上のように、本実施例の差動増幅回路によれば、入力時定数に関して所望の過渡応答特性を確保した上で、交流CMRRの劣化を防止することができるという効果を奏するものである。
In the differential amplifier circuit of the comparative example having the circuit configuration of FIG. 6, the constants of capacitors C1 and C2 and resistors R2 and R3, which are components for determining the circuit input time constant, are set by shifting by 1% from the design values. It was. The differential amplifier circuit of this embodiment is provided with a variable resistance element R1 and an adjustment circuit CIR with respect to the circuit of the comparative example. As a result, as shown in FIG. 2, it can be seen that the AC CMRR deteriorates even with a slight error in the constants of the circuit components in the conventional comparative example. For example, the AC CMRR at an input frequency of 100 Hz in FIG. 2 has deteriorated to only 40 dB. In contrast, in the circuit of this example, it was confirmed that the AC CMRR at an input frequency of 100 Hz was 100 dB, and an improvement effect of 60 dB was obtained with respect to the comparative example.
As described above, according to the differential amplifier circuit of the present embodiment, it is possible to prevent the AC CMRR from being deteriorated while ensuring a desired transient response characteristic with respect to the input time constant.

応用例
本発明の差動増幅回路は、例えば、生体信号等の微小な信号を大きなゲインで増幅するような用途の測定器の入力段の増幅器などに用いることで、交流CMRRが大きく、回復時間の時定数が短い測定器を実現することができる。測定器などの入力段では、高い交流CMRRを有することで、外部からの同相ノイズの影響を少なくして微小な信号を増幅することができ、また、測定対象回路やセンサなどからの微小出力を次々と測定していくような場合、回路の入力端子は「開放→被測定物1へ接続→開放→被測定物2へ接続→…」という一連の動作を繰り返すことになる。このような場合、復旧時間の長い従来回路では試験時間を短縮することははなはだ困難であった。しかし、上記本実施例に例示するような本発明の差動増幅回路によれば、従来回路に比べて応答時間を相当短縮することができるため、効率よい測定が可能となる。
Application Example The differential amplifier circuit of the present invention is used for an amplifier in an input stage of a measuring instrument for a purpose of amplifying a minute signal such as a biological signal with a large gain, and thus has a large AC CMRR and a recovery time. A measuring instrument with a short time constant can be realized. By having a high AC CMRR at the input stage such as a measuring instrument, it is possible to amplify a minute signal by reducing the influence of external common mode noise, and to output a minute output from a circuit to be measured or a sensor. When measuring one after another, the input terminal of the circuit repeats a series of operations of “open → connect to device under test 1 → open → connect to device under test 2... In such a case, it is very difficult to shorten the test time with the conventional circuit having a long recovery time. However, according to the differential amplifier circuit of the present invention as exemplified in the above-described embodiment, the response time can be considerably shortened compared with the conventional circuit, so that efficient measurement is possible.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば,上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、ある実施形態の構成に他の構成を加えることも可能である。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of a certain embodiment.

C1,C2 コンデンサ
R1 可変抵抗素子
R2,R3 抵抗器
CIR 調整回路
U1 差動増幅器
C1, C2 Capacitor R1, Variable resistance element R2, R3 Resistor CIR Adjustment circuit U1 Differential amplifier

Claims (4)

差動増幅器と、
前記差動増幅器の入力端子に接続されたハイパスフィルタと、
前記差動増幅器の正入力端子と負入力端子との間を接続する可変抵抗素子と、
前記差動増幅器の出力レベルに応じて前記可変抵抗素子の抵抗値を変化させるための調整回路と、を備えた差動増幅回路。
A differential amplifier ;
A high-pass filter connected to the input terminal of the differential amplifier;
A variable resistance element for connecting between a positive input terminal and a negative input terminal of the differential amplifier;
A differential amplifier circuit comprising: an adjustment circuit for changing a resistance value of the variable resistance element according to an output level of the differential amplifier;
請求項1に記載の差動増幅回路であって、前記ハイパスフィルタは、前記差動増幅器の各入力端子に直列に接続されたコンデンサと、各入力端子を接地する直列抵抗器によって構成されている、差動増幅回路。   The differential amplifier circuit according to claim 1, wherein the high-pass filter includes a capacitor connected in series to each input terminal of the differential amplifier and a series resistor that grounds each input terminal. Differential amplifier circuit. 請求項1に記載の差動増幅回路であって、前記調整回路は前記差動増幅器の出力を監視しており、前記差動増幅器の出力レベル絶対値が所定値を超えた場合に、当該超えた差分に応じて前記可変抵抗素子の抵抗値を減少させるように構成されている、差動増幅回路。   2. The differential amplifier circuit according to claim 1, wherein the adjustment circuit monitors an output of the differential amplifier, and when the absolute value of the output level of the differential amplifier exceeds a predetermined value, the excess is exceeded. A differential amplifier circuit configured to decrease the resistance value of the variable resistance element according to the difference. 差動増幅器と、
前記差動増幅器の入力端子に接続されたハイパスフィルタと、
前記差動増幅器の正入力端子と負入力端子との間を接続する可変抵抗素子と、
前記差動増幅器の出力レベルに応じて前記可変抵抗素子の抵抗値を変化させるための調整回路と、を備えた差動増幅回路を備えている電気信号の測定器。
A differential amplifier ;
A high-pass filter connected to the input terminal of the differential amplifier;
A variable resistance element for connecting between a positive input terminal and a negative input terminal of the differential amplifier;
An electrical signal measuring instrument comprising a differential amplifier circuit comprising: an adjustment circuit for changing a resistance value of the variable resistance element in accordance with an output level of the differential amplifier.
JP2015016531A 2015-01-30 2015-01-30 Differential amplifier circuit Active JP5759644B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015016531A JP5759644B1 (en) 2015-01-30 2015-01-30 Differential amplifier circuit
PCT/JP2016/052691 WO2016121943A1 (en) 2015-01-30 2016-01-29 Differential amplification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016531A JP5759644B1 (en) 2015-01-30 2015-01-30 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JP5759644B1 true JP5759644B1 (en) 2015-08-05
JP2016143946A JP2016143946A (en) 2016-08-08

Family

ID=53887600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016531A Active JP5759644B1 (en) 2015-01-30 2015-01-30 Differential amplifier circuit

Country Status (2)

Country Link
JP (1) JP5759644B1 (en)
WO (1) WO2016121943A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175603A1 (en) * 2016-04-06 2017-10-12 Ntn株式会社 Capacitance change detection circuit and monitoring device
CN110166384A (en) * 2019-05-28 2019-08-23 苏州浪潮智能科技有限公司 A kind of differential signal transmission circuit and communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107643A (en) * 2016-12-27 2018-07-05 ヤマハ株式会社 Differential amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323252A (en) * 1976-08-16 1978-03-03 Yashica Co Ltd Operational amplifier
JPS606330U (en) * 1983-12-26 1985-01-17 株式会社日立製作所 differential amplifier
JPS6133520U (en) * 1984-07-27 1986-02-28 横河電機株式会社 differential amplifier circuit
JPS6326106A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Amplifier circuit
JPH05206747A (en) * 1992-01-27 1993-08-13 Iwatsu Electric Co Ltd Broad band amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323252A (en) * 1976-08-16 1978-03-03 Yashica Co Ltd Operational amplifier
JPS606330U (en) * 1983-12-26 1985-01-17 株式会社日立製作所 differential amplifier
JPS6133520U (en) * 1984-07-27 1986-02-28 横河電機株式会社 differential amplifier circuit
JPS6326106A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Amplifier circuit
JPH05206747A (en) * 1992-01-27 1993-08-13 Iwatsu Electric Co Ltd Broad band amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175603A1 (en) * 2016-04-06 2017-10-12 Ntn株式会社 Capacitance change detection circuit and monitoring device
CN110166384A (en) * 2019-05-28 2019-08-23 苏州浪潮智能科技有限公司 A kind of differential signal transmission circuit and communication device
CN110166384B (en) * 2019-05-28 2022-02-18 苏州浪潮智能科技有限公司 Differential signal transmission circuit and communication device

Also Published As

Publication number Publication date
JP2016143946A (en) 2016-08-08
WO2016121943A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6744695B2 (en) Active shunt ammeter
JP5759644B1 (en) Differential amplifier circuit
JP2006174122A (en) Output amplifier circuit, and sensor device using the same
CN112083212B (en) Current sensor and frequency compensation method thereof
CN102035483B (en) Operational amplifier
CN102577287B (en) High speed intra-pair de-skew circuit
RU128043U1 (en) ACTIVE LOW FILTER RC FILTER
JP5348389B2 (en) oscilloscope
CN104883147A (en) Preamplifier of acoustic emission detector
JP2008261722A (en) Probe
Bajer et al. Voltage-mode quadrature oscillator using VD-DIBA active elements
WO2006008945A1 (en) Video signal output circuit, and electronic device using the circuit
JP2014072680A (en) Amplification circuit
JP2001177063A (en) Semiconductor device, and amplifying circuit, and active filter
JP6698045B2 (en) amplifier
JP6695262B2 (en) Variable low-pass filter circuit
JP6512826B2 (en) Differential amplifier
JP6725781B2 (en) Impedance increase/decrease circuit
TWI660575B (en) Operational amplifier device with improved output voltage response
WO2024090239A1 (en) Differential input/differential output inverting amplifier circuit and measuring device
US9013221B2 (en) Low-voltage differential signal receiver circuitry
CN105509626A (en) Instrument amplification circuit for micro displacement testing
JP5944740B2 (en) Bandpass filter circuit
JP2014155169A (en) Operational amplifier
CN109962687B (en) Automatic transconductance control amplifying circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151019

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250