JP5741246B2 - Coke oven charging method and coke manufacturing method - Google Patents

Coke oven charging method and coke manufacturing method Download PDF

Info

Publication number
JP5741246B2
JP5741246B2 JP2011140515A JP2011140515A JP5741246B2 JP 5741246 B2 JP5741246 B2 JP 5741246B2 JP 2011140515 A JP2011140515 A JP 2011140515A JP 2011140515 A JP2011140515 A JP 2011140515A JP 5741246 B2 JP5741246 B2 JP 5741246B2
Authority
JP
Japan
Prior art keywords
coal
agglomerated
pulverized
particle size
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011140515A
Other languages
Japanese (ja)
Other versions
JP2013006957A (en
Inventor
窪田 征弘
征弘 窪田
野村 誠治
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011140515A priority Critical patent/JP5741246B2/en
Publication of JP2013006957A publication Critical patent/JP2013006957A/en
Application granted granted Critical
Publication of JP5741246B2 publication Critical patent/JP5741246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス炉に装入されるコークス炉装入炭の製造方法などに関する。   The present invention relates to a method for producing a coke oven charging coal charged in a coke oven.

高炉用コークスに代表される各種コークスは、多数の銘柄の石炭(原料炭)を粉砕して配合した後、コークス炉に装入される。装入された配合炭は、炉内で乾留されることによりコークスとなる。コークス製造の際に特に重要とされる品質管理項目として、コークス強度が知られている。コークス強度は、石炭の配合条件が同じであっても、粉砕後の石炭の粒度に左右される。   Various cokes such as blast furnace coke are pulverized and blended with many brands of coal (coking coal) and then charged into the coke oven. The charged coal mixture is coke by being carbonized in the furnace. Coke strength is known as a quality control item that is particularly important in the production of coke. The coke strength depends on the grain size of the pulverized coal even if the coal blending conditions are the same.

近年、原料炭を強粉砕することによりコークス強度が向上することが確認されている。特許文献1では、最大長さで1.5mm以上の粗大イナート組織の含有量が5〜7体積%の境界値を用いて、該含有量が境界値以上である高イナート含有炭を粒径3mm以下の累積%が85質量%の粉砕粒度で強粉砕する技術が開示されている。   In recent years, it has been confirmed that coke strength is improved by pulverizing raw coal. In Patent Document 1, the content of coarse inert structure having a maximum length of 1.5 mm or more is used as a boundary value of 5 to 7% by volume, and a high inert coal having a content of more than the boundary value is set to a particle size of 3 mm. A technique for strongly pulverizing with the pulverized particle size of the following cumulative percentage of 85% by mass is disclosed.

従来、強粉砕された配合炭は粗粒炭と微粉炭とに分級され、分級された微粉炭は体積が10cc以下のフレーク状に全て塊成化された後、粗粒炭とともにコークス炉に装入されていた。   Conventionally, the strongly pulverized blended coal is classified into coarse coal and pulverized coal, and the classified pulverized coal is all agglomerated into flakes with a volume of 10 cc or less and then loaded into the coke oven together with the coarse coal. It was entered.

特開2008−297385号公報JP 2008-297385 A

しかしながら、従来の方法では、コークス炉に装入される装入炭の嵩密度が低下するため、生産性の低下を招いていた。   However, in the conventional method, since the bulk density of the charging coal charged in the coke oven is lowered, the productivity is lowered.

上記課題を解決するために、本願発明に係るコークス炉装入炭の製造方法は、(1)配合炭全体の粉砕粒度が粒径3mm以下の累積%が85質量%以上となるように、前記配合炭を構成する各原料炭をそれぞれ個別の粉砕粒度で粉砕し、この粉砕後の前記配合炭を粗粒炭と微粉炭とに分級し、この分級された微粉炭を塊成化することにより、塊成炭と前記粗粒炭とからなるコークス炉装入用の装入炭を製造するコークス炉装入炭の製造方法において、前記塊成炭は、第1の塊成機で塊成化された体積が10cc以下の第1の塊成炭と、第2の塊成機で塊成化された体積が10ccよりも大きく30cc以下の第2の塊成炭とからなり、前記微粉炭のうち前記第2の塊成炭の製造に振り向ける前記微粉炭の比率が高くなる程、コークス炉に装入される装入炭の嵩密度が増加する相関特性に基づき、前記嵩密度が目標の嵩密度を満足するように前記比率を調整することを特徴とする。
In order to solve the above-mentioned problems, the method for producing a coke oven charging coal according to the present invention is as follows: (1) The pulverized particle size of the entire blended coal is such that the cumulative% of the particle size of 3 mm or less is 85% by mass or more. By pulverizing each raw coal composing the blended coal with individual pulverization particle size, classifying the blended coal after this pulverization into coarse coal and pulverized coal, and agglomerating the classified pulverized coal In the manufacturing method of the coke oven charging coal for manufacturing the charging coal for charging the coke oven composed of the agglomerated coal and the coarse coal, the agglomerated coal is agglomerated by a first agglomerator. a first mass Narusumi volume following 10cc that is, the volume which has been agglomerated with a second agglomerate machine consists largely 30cc following second mass Narusumi than 10cc, the pulverized coal Of which, the higher the proportion of the pulverized coal to be used for the production of the second agglomerated coal, the more charged into the coke oven. Based on the correlation characteristic bulk density of the instrumentation Nyusumi increases, the bulk density and adjusting the ratio to satisfy the bulk density of the target.

(2)上記(1)の構成において、前記配合炭は、前記原料炭として最大長さで1.5mm以上の粗大イナート組織の含有量が5〜7体積%の境界値を用いて、該含有量が境界値よりも高い高イナート含有炭を含んでもよい。前記高イナート含有炭は、「粒径3mm以下の累積%が90質量%以上」の粉砕粒度で強粉砕することによりコークス強度が向上する。したがって、強粉砕によるコークス強度向上効果及び嵩密度が増加することによりコークス強度向上効果双方の効果を得ることができる。   (2) In the configuration of (1) above, the blended coal contains a boundary value of 5 to 7% by volume of a coarse inert structure having a maximum length of 1.5 mm or more as the raw coal. High inert coal may be included whose amount is higher than the boundary value. The high-inert-containing charcoal is improved in coke strength by strong pulverization with a pulverized particle size of “cumulative% of particle size of 3 mm or less is 90% by mass or more”. Therefore, both the coke strength improvement effect and the bulk density increase by strong pulverization can provide both the coke strength improvement effect.

(3)上記(1)又は(2)の構成において、前記第1の塊成炭は、フレーク状であってもよい。   (3) In the configuration of the above (1) or (2), the first agglomerated coal may have a flake shape.

(4)上記(1)〜(3)の構成において、前記第2の塊成炭は、ブリケット状であってもよい。   (4) In the configurations of (1) to (3) above, the second agglomerated coal may be in a briquette shape.

(5)上記(1)〜(4)のうちいずれか一つの製造方法により製造された装入炭をコークス炉で乾留することにより、コークスを製造することができる。   (5) Coke can be manufactured by dry-distilling the charging coal manufactured by any one manufacturing method among said (1)-(4) with a coke oven.

本発明によれば、コークス炉に装入される装入炭の嵩密度を増加させることができる。   According to the present invention, the bulk density of the charged coal charged into the coke oven can be increased.

コークス炉装入炭の製造方法の工程図である。It is process drawing of the manufacturing method of coke oven charging coal. ホッパーの断面図である。It is sectional drawing of a hopper.

図1を参照しながら、本実施形態に係るコークス炉装入炭の製造方法について詳細に説明する。図1は、コークス炉装入炭の製造方法の工程図である。矢印は工程順序を示している。まず、粉砕装置11において複数銘柄の原料炭をそれぞれ個別の粉砕粒度で粉砕する。当該個別の粉砕粒度は、配合炭全体の粉砕粒度が「粒径3mm以下の累積%が85%以上」を満足するような値に設定されていればよい。配合炭全体の粉砕粒度が「粒径3mm以下の累積%が85%未満」の場合は、コークス炉に装入される装入炭の嵩密度が、コークスを製造できない値にまで低下しないため、本願発明では、配合炭全体の粉砕粒度が「粒径3mm以下の累積%が85%以上」のものを対象としている。   With reference to FIG. 1, a method for manufacturing a coke oven charging coal according to the present embodiment will be described in detail. FIG. 1 is a process diagram of a method for producing coke oven charging coal. Arrows indicate the process order. First, a plurality of brands of raw coal are pulverized with individual pulverization particle sizes in the pulverizer 11. The individual pulverized particle size may be set to such a value that the pulverized particle size of the entire blended coal satisfies “cumulative percentage of particle size of 3 mm or less is 85% or more”. When the pulverized particle size of the entire blended coal is “the cumulative percentage of the particle size of 3 mm or less is less than 85%”, the bulk density of the charged coal charged into the coke oven does not decrease to a value at which coke cannot be produced. In the present invention, the pulverized particle size of the entire blended coal is intended to be “cumulative percentage of particle size of 3 mm or less is 85% or more”.

ここで、個別の原料炭として、粗大イナート組織の含有量が5〜7体積%の境界値を用いて、該含有量が境界値よりも高い高イナート含有炭を強粉砕することによりコークス強度の向上効果を享受できる。   Here, as an individual raw coal, by using a boundary value having a coarse inert structure content of 5 to 7% by volume, the high inert-containing coal whose content is higher than the boundary value is strongly pulverized to increase the coke strength. You can enjoy the improvement effect.

ちなみに、粗大イナート組織の含有量の境界値の設定の考え方については、以下の通りである。
コークス製造用に複数の銘柄の石炭を配合する際には、配合炭の粒度として、コークスを製造可能な粒度の範囲で設定される。従って、各銘柄の石炭の粉砕粒度や配合比率は、配合炭の粒度の設定値により制約される。
Incidentally, the concept of setting the boundary value of the content of the coarse inert structure is as follows.
When blending a plurality of brands of coal for coke production, the particle size of the blended coal is set within a range of particle sizes that allow the production of coke. Therefore, the pulverization particle size and blending ratio of each brand of coal are limited by the set value of the coal blend particle size.

従って、粗大イナート含有量が相対的に高い銘柄の石炭の配合割合が多い場合に、粗大イナート含有量が相対的に高い銘柄の石炭をすべて強粉砕してしまうと、配合炭の粒度が細かくなり過ぎて、設定した粒度に調整できないケースがある。この様な場合は、粗大イナート含有量の境界値を5〜7体積%の範囲の中で、高めの値に設定することで、配合炭を所望の設定粒度とすることができる。   Therefore, if the blending ratio of brand coal with relatively high coarse inert content is large, and if all the brand coal with relatively high coarse inert content is pulverized, the grain size of the blended coal will become finer. In some cases, the granularity cannot be adjusted to the set granularity. In such a case, by setting the boundary value of the coarse inert content to a higher value within the range of 5 to 7% by volume, the blended coal can have a desired set particle size.

一方、粗大イナート含有量が相対的に高い銘柄の石炭の配合割合が少ない場合には、逆に、粗大イナート含有量の境界値を5〜7体積%の範囲の中で、低めの値に設定することで、配合炭を所望の設定粒度とすることができる。   On the other hand, if the blending ratio of brand coal with relatively high coarse inert content is small, conversely, the boundary value of coarse inert content is set to a lower value within the range of 5-7% by volume. By doing, blended charcoal can be made into a desired set particle size.

以上の考え方に基き、粗大イナート組織の含有量の境界値を設定し、この境界値よりも高い高イナート含有炭は、粒径3mm以下の累積%が90質量%以上の粉砕粒度で強粉砕することによりコークス強度が向上する。なお、原料炭を強粉砕することによりコークス強度が向上する技術は、特許文献1等の種々の先行技術文献に記載されているため、ここでは詳細を述べない。強粉砕された配合炭は、乾燥分級装置12に装入される。   Based on the above concept, the boundary value of the content of coarse inert structure is set, and the high inert content coal higher than this boundary value is strongly pulverized with a pulverization particle size of 90% by mass or more with a cumulative particle size of 3 mm or less. As a result, the coke strength is improved. In addition, since the technique which improves coke intensity | strength by pulverizing raw material charcoal is described in various prior art documents, such as patent document 1, details are not described here. The strongly pulverized blended coal is charged into the drying classifier 12.

乾燥分級装置12は、ガス室に導入されたガスを分散板を介して噴出させることにより乾燥分級室内の分散板状に流動層を形成し、石炭を乾燥させながら粗粒炭と微粉炭とに分級する。乾燥分級装置12における分級点は、当業者の技術常識により適宜定めることができる。分級点は、特に規定されないが、通常は、0.3mm以上3mm以下で設定される。分級点を0.3mm未満に設定すると、粗粒炭中に0.3mm程度の細かい石炭が混入する。その結果、コークス炉装入時に細かい石炭が発塵し、炉内のカーボン付着やタール中の微粉炭混入などの原因になるため好ましくない。分級点を3mm超に設定すると、塊成炭の中に数mmの粗い石炭がコークス炉搬送過程で破壊の基点となる。そのため、装入炭中の微粉炭の割合が増加し、コークス炉装入時に微粉が発塵して、炉内のカーボン付着やタール中の微粉炭混入などの原因になり好ましくない。
The dry classifier 12 forms a fluidized bed in the form of a dispersion plate in the dry classification chamber by ejecting the gas introduced into the gas chamber through the dispersion plate, and turns the coarse coal and pulverized coal into dry coal. Classify. The classification point in the drying classifier 12 can be appropriately determined according to the common general technical knowledge of those skilled in the art. The classification point is not particularly defined, but is usually set to 0.3 mm or more and 3 mm or less. When the classification point is set to less than 0.3 mm, fine coal of about 0.3 mm is mixed in the coarse coal. As a result, fine coal is generated when the coke oven is charged, and this is not preferable because it causes carbon adhesion in the furnace and mixing of pulverized coal in tar. When the classification point is set to more than 3 mm, coarse coal of several mm in the agglomerated coal becomes a base point for destruction in the coke oven conveyance process. Therefore, the ratio of the pulverized coal in the charging coal is increased, and the pulverized powder is generated at the time of charging into the coke oven. This is not preferable because it causes carbon adhesion in the furnace and contamination of pulverized coal in tar.

振り分け部13は、微粉炭を第1の塊成機14及び第2の塊成機15に振り分ける。ここで、微粉炭の振り分け率は粉砕装置11における粉砕粒度に基づき決定される。従来、配合炭を強粉砕することにより得られる微粉炭は、全て体積が10cc以下の塊成炭(第1の塊成炭)に塊成化されていた。本発明者は、粉砕粒度が増加するのに応じてコークス炉内の装入炭の嵩密度が下がり、微粉炭の一部を体積が10ccよりも大きく、かつ、30cc以下の塊成炭(第2の塊成炭)の製造に振り替える(以下、振替率という)ことにより、嵩密度が上昇することを発見した。これにより、石炭を強粉砕することによるコークス強度向上効果及び嵩密度が上昇することによるコークス強度向上効果双方の効果を得ることができる。   The distribution unit 13 distributes the pulverized coal to the first agglomerator 14 and the second agglomerator 15. Here, the distribution ratio of the pulverized coal is determined based on the pulverized particle size in the pulverizer 11. Conventionally, all of the pulverized coal obtained by strongly pulverizing blended coal has been agglomerated into agglomerated coal (first agglomerated coal) having a volume of 10 cc or less. As the pulverized particle size increases, the present inventor reduces the bulk density of the charged coal in the coke oven, and a part of the pulverized coal has a volume larger than 10 cc and an agglomerated coal (No. 1). It was discovered that the bulk density increases by switching to the production of 2 agglomerated coal (hereinafter referred to as the transfer rate). Thereby, both the effects of improving the coke strength by pulverizing coal and the effect of improving coke strength by increasing the bulk density can be obtained.

第1の塊成機14は、振り分け部13で振り分けられた微粉炭を塊成化して、体積が10cc以下の第1の塊成炭を製造する。第1の塊成炭は、フレーク状、或いは平板状であってもよい。さらに、第1の塊成炭の最大長さは30mm以下であることが好ましい。第2の塊成機15は、振り分け部で振り分けられた微粉炭を塊成化して、体積が10ccよりも大きく、かつ、30cc以下の第2の塊成炭を製造する。第2の塊成炭は、ブリケット状であり、マセック型、ピロー型、或いはプリズム型であってもよい。第1の塊成機14及び第2の塊成機15は、ダブルロール成型機等が例示できる。   The first agglomerator 14 agglomerates the pulverized coal distributed by the distribution unit 13 to produce a first agglomerated coal having a volume of 10 cc or less. The first agglomerated coal may be flaky or flat. Furthermore, the maximum length of the first agglomerated coal is preferably 30 mm or less. The second agglomerator 15 agglomerates the pulverized coal distributed by the distributing unit to produce a second agglomerated coal having a volume larger than 10 cc and 30 cc or less. The second agglomerated coal has a briquette shape, and may be a Macek type, a pillow type, or a prism type. Examples of the first agglomeration machine 14 and the second agglomeration machine 15 include a double roll molding machine.

粗粒炭、第1の塊成炭及び第2の塊成炭は石炭塔16に搬送され、石炭塔16に設けられたホッパーからコークス炉17に装入される。ここで、塊成炭の体積が増すことにより、装入炭の粒度分布が広くなるため嵩密度は上昇するが、塊成炭の体積が大きくなりすぎると石炭塔内での粒度偏析が顕在化し、石炭塔の貯留レベルが変動した際、石炭塔から排出される装入炭の塊成物比率も変動する。そのため装入レベルの変動が大きくなり、結果的に装入量の低下を招く。そこで、粒度偏析が顕在化しない塊成炭のサイズについて検討した。図2は、ホッパーの断面図であり、領域I〜Vはホッパー内の各位置を示している。塊成炭の体積が大きくなるほど、壁面方向、つまり、領域I、領域V側に移動する塊成炭が多くなり、粒度偏析が顕在化する。このような粒度偏析を抑制するためには、後述の通り、塊成炭の体積を30cc以下に設定する必要がある。   The coarse coal, the first agglomerated coal, and the second agglomerated coal are conveyed to the coal tower 16 and charged into the coke oven 17 from a hopper provided in the coal tower 16. Here, as the volume of the agglomerated coal increases, the bulk density increases because the particle size distribution of the charged coal widens, but when the volume of the agglomerated coal becomes too large, particle size segregation in the coal tower becomes obvious. When the storage level of the coal tower changes, the agglomerate ratio of the charged coal discharged from the coal tower also changes. Therefore, the fluctuation of the charging level becomes large, and as a result, the charging amount is reduced. Then, the size of the agglomerated coal in which particle size segregation did not appear was examined. FIG. 2 is a cross-sectional view of the hopper, and regions I to V indicate positions within the hopper. The larger the volume of the agglomerated coal, the more agglomerated coal that moves to the wall surface direction, that is, the region I and region V side, and grain size segregation becomes apparent. In order to suppress such particle size segregation, it is necessary to set the volume of the agglomerated coal to 30 cc or less as described later.

(実施例1)
次に、実施例を示して本発明について具体的に説明する。粉砕粒度がそれぞれ異なる複数の配合炭について微粉炭の振替率と嵩密度との関係を調べ、表1にその結果を示した。
粉砕粒度1は、配合炭全体の粉砕粒度を「粒径3mm以下の累積%が80質量%」に設定したものであり、各原料炭を粉砕することにより、30質量%の微粉炭と、70質量%の粗粒炭とを得た。
粉砕粒度2は、配合炭全体の粉砕粒度を「粒径3mm以下の累積%が85質量%」に設定したものであり、各原料炭を粉砕することにより、33質量%の微粉炭と、67質量%の粗粒炭とを得た。
粉砕粒度3は、配合炭全体の粉砕粒度を「粒径3mm以下の累積%が90質量%」に設定したものであり、各原料炭を粉砕することにより、37質量%の微粉炭と、63質量%の粗粒炭とを得た。
粉砕粒度4は、配合炭全体の粉砕粒度を「粒径3mm以下の累積%が95質量%」を設定したものであり、各原料炭を粉砕することにより、42質量%の微粉炭と、58質量%の粗粒炭とを得た。
本実施例では、微粉炭と粗粒炭との分級点は、0.5mmに設定した。また、分級された微粉炭をダブルロール成型機を用いて塊成化した。フレーク状の塊成炭の体積は5ccに設定し、ブリケット状の塊成炭(ピロー型)の体積は、15ccに設定した。

Figure 0005741246
Example 1
Next, an Example is shown and this invention is demonstrated concretely. The relationship between the change rate of pulverized coal and the bulk density was examined for a plurality of blended coals having different pulverized particle sizes, and the results are shown in Table 1.
The pulverized particle size 1 is obtained by setting the pulverized particle size of the entire blended coal to “cumulative% of particle size of 3 mm or less is 80% by mass”. By pulverizing each raw coal, 30% by mass of pulverized coal, A mass% of coarse coal was obtained.
The pulverized particle size 2 is obtained by setting the pulverized particle size of the entire blended coal to be “cumulative% having a particle size of 3 mm or less is 85 mass%”, and by pulverizing each raw coal, A mass% of coarse coal was obtained.
The pulverized particle size 3 is obtained by setting the pulverized particle size of the entire blended coal to be “cumulative% having a particle size of 3 mm or less is 90 mass%”. By pulverizing each raw coal, 37 mass% pulverized coal, A mass% of coarse coal was obtained.
The pulverized particle size 4 is set by setting the pulverized particle size of the entire blended coal as “cumulative% having a particle size of 3 mm or less is 95% by mass”. By pulverizing each raw material coal, A mass% of coarse coal was obtained.
In this example, the classification point between pulverized coal and coarse coal was set to 0.5 mm. Moreover, the classified pulverized coal was agglomerated using a double roll molding machine. The volume of flake-like agglomerated coal was set to 5 cc, and the volume of briquette-like agglomerated coal (pillow type) was set to 15 cc.
Figure 0005741246

粉砕粒度1〜4のそれぞれについて、塊成炭と粗粒炭を混合したものを、30cm角の容器に1mの高さから装入した。この塊成炭については、振替率も変化させた。また、容器内の配合炭は、粒度偏析することなくほぼ均一に装入されていた。
その結果、表1で示す通り、配合炭の粉砕粒度が細かくなるほど、嵩密度が低下することがわかった。さらに、振替率が上がると嵩密度は、ほぼ直線的に上がることがわかった。粉砕粒度2の振替率0%(つまり、全ての微粉炭をフレーク状の塊成炭である第1の塊成炭の製造に振り向ける)の嵩密度0.80(dry-t/m)を基準としたとき、粉砕粒度を粉砕粒度3に変更して強粉砕することにより、嵩密度が0.009(dry-t/m)低下した。そこで、振替率を0%から25%に引き上げて、一部の微粉炭をブリケット状の塊成炭である第2の塊成炭の製造に振り替えることにより嵩密度は基準値に上昇した。このように、粉砕粒度を細かくすることにより嵩密度が低下しても、ブリケットへの振替率を高めることにより、嵩密度を上昇させることができる。
For each of the pulverized particle sizes 1 to 4, a mixture of agglomerated coal and coarse coal was charged into a 30 cm square container from a height of 1 m. For this agglomerated coal, the transfer rate was also changed. In addition, the blended coal in the container was charged almost uniformly without segregation in particle size.
As a result, as shown in Table 1, it was found that the bulk density decreased as the pulverized particle size of the blended coal became finer. Furthermore, it was found that the bulk density increases almost linearly as the transfer rate increases. Bulk density 0.80 (dry-t / m 3 ) of pulverized particle size 2 transfer rate 0% (that is, all pulverized coal is directed to the production of the first agglomerated coal that is flaky agglomerated) , The bulk density was decreased by 0.009 (dry-t / m 3 ) by changing the pulverized particle size to the pulverized particle size 3 and performing strong pulverization. Therefore, the bulk density increased to the reference value by raising the transfer rate from 0% to 25% and transferring some of the pulverized coal to the production of the second agglomerated coal, which is briquette agglomerated coal. Thus, even if the bulk density is reduced by reducing the pulverization particle size, the bulk density can be increased by increasing the transfer rate to briquette.

表2は、表1に対応するものであり、ブリケット状の塊成炭(ピロー型)の体積を50ccに設定した点で表1と異なる。

Figure 0005741246
表1及び表2を比較参照して、塊成炭の体積を大きくすることにより、直線の傾きが大きくなることがわかった。したがって、塊成炭の体積を大きくすることにより、より少ない振替率で基準の嵩密度に到達することが証明された。なお、特許請求の範囲では、ブリケット状の塊成炭の体積の上限値を30ccに設定しているが、本実施例では、塊成炭の体積と嵩密度との関係を明らかにするために、前記上限値より体積が大きいブリケット状の塊成炭を用いている。 Table 2 corresponds to Table 1, and differs from Table 1 in that the volume of briquette agglomerated coal (pillow type) is set to 50 cc.
Figure 0005741246
By comparing and referring to Table 1 and Table 2, it was found that the slope of the straight line was increased by increasing the volume of the agglomerated coal. Therefore, it was proved that the standard bulk density was reached with a smaller transfer rate by increasing the volume of the agglomerated coal. In addition, although the upper limit of the volume of briquette-like agglomerated coal is set to 30 cc in the claims, in this example, in order to clarify the relationship between the volume of agglomerated coal and the bulk density The briquette agglomerated coal having a volume larger than the upper limit is used.

(実施例2)
次に、実施例2を示してブリケット状の塊成炭の体積の上限値を30ccに設定した理由を詳細に説明する。分級点を0.5mmに設定することにより、粉砕された配合炭を粗粒炭と微粉炭とに分級した。ホッパーには粗粒炭を60質量%、微粉炭をダブルロール成型機を用いて塊成化した塊成炭を40質量%装入した。ホッパー内の石炭の上面の各位置(図2の位置I〜V)で石炭をサンプリングし、塊成炭の割合を測定した。その結果を表3に示す。

Figure 0005741246
(Example 2)
Next, the reason why the upper limit value of the volume of briquetted agglomerated coal is set to 30 cc will be described in detail with reference to Example 2. By setting the classification point to 0.5 mm, the pulverized blended coal was classified into coarse coal and pulverized coal. The hopper was charged with 60% by mass of coarse coal and 40% by mass of agglomerated coal obtained by agglomerating pulverized coal using a double roll molding machine. Coal was sampled at each position on the upper surface of the coal in the hopper (positions I to V in FIG. 2), and the ratio of agglomerated coal was measured. The results are shown in Table 3.
Figure 0005741246

塊成炭Aは、体積が5ccのフレーク状の第1の塊成炭である。塊成炭Bは、体積が15ccでピロー型ブリケット状の第2の塊成炭である。塊成炭Cは、体積が25ccでピロー型ブリケット状の第2の塊成炭である。塊成炭Dは、体積が35ccでピロー型ブリケット状の第2の塊成炭である。塊成炭Eは、体積が50ccのピロー型ブリケット状の第2の塊成炭である。   The agglomerated coal A is a flaky first agglomerated coal having a volume of 5 cc. The agglomerated coal B is a second agglomerated coal having a volume of 15 cc and having a pillow briquette shape. The agglomerated coal C is a second agglomerated coal with a volume of 25 cc and a pillow briquette shape. The agglomerated coal D is a second agglomerated coal having a volume of 35 cc and having a pillow-type briquette. The agglomerated coal E is a pillow-type briquette second agglomerated coal having a volume of 50 cc.

粒度偏析を調べるために、標準偏差により各塊成炭A〜Eの粒度偏析(各領域I〜Vにおける塊成炭の比率)を評価した。その結果を表4に示す。

Figure 0005741246
In order to examine the particle size segregation, the particle size segregation (the ratio of the agglomerated coal in each region I to V) of each agglomerated coal A to E was evaluated by the standard deviation. The results are shown in Table 4.
Figure 0005741246

塊成炭B及びCでは従来使用している塊成炭Aと塊成炭比率の標準偏差が同等であるが、塊成炭D〜Eのように体積が30ccよりも大きくなると、体積の増加に応じて塊成炭比率の標準偏差が大きく増加した。したがって、粒度偏析を顕在化させないためには、第2の塊成炭の体積の上限値を30ccに設定する必要がある。   Although the standard deviation of the ratio of the agglomerated coal A and the agglomerated coal A used conventionally is the same in the agglomerated coals B and C, when the volume is larger than 30 cc like the agglomerated coals D to E, the volume increases. As a result, the standard deviation of the agglomerated coal ratio increased greatly. Therefore, in order not to reveal the particle size segregation, it is necessary to set the upper limit value of the volume of the second agglomerated coal to 30 cc.

符合の説明Explanation of sign

11 粉砕装置
12 乾燥分級装置
13 振り分け部
14 第1の塊成機
15 第2の塊成機
16 石炭塔
17 コークス炉
DESCRIPTION OF SYMBOLS 11 Crushing device 12 Drying classification device 13 Sorting part 14 1st agglomeration machine 15 2nd agglomeration machine 16 Coal tower 17 Coke oven

Claims (5)

配合炭全体の粉砕粒度が粒径3mm以下の累積%が85質量%以上となるように、前記配合炭を構成する各原料炭をそれぞれ個別の粉砕粒度で粉砕し、この粉砕後の前記配合炭を粗粒炭と微粉炭とに分級し、この分級された微粉炭を塊成化することにより、塊成炭と前記粗粒炭とからなるコークス炉装入用の装入炭を製造するコークス炉装入炭の製造方法において、
前記塊成炭は、第1の塊成機で塊成化された体積が10cc以下の第1の塊成炭と、第2の塊成機で塊成化された体積が10ccよりも大きく30cc以下の第2の塊成炭とからなり、
前記微粉炭のうち前記第2の塊成炭の製造に振り向ける前記微粉炭の比率が高くなる程、コークス炉に装入される装入炭の嵩密度が増加する相関特性に基づき、前記嵩密度が目標の嵩密度を満足するように前記比率を調整することを特徴とするコークス炉装入炭の製造方法。
Each raw coal constituting the blended coal is pulverized with individual pulverized particle sizes so that the cumulative percentage with a particle size of 3 mm or less of the pulverized particle size of the entire blended coal is 85% by mass or more. Coke is produced by classifying coal into coarse coal and pulverized coal, and agglomerating the classified pulverized coal to produce a charge coal for coke oven charging composed of the agglomerated coal and the coarse coal. In the manufacturing method of furnace charging coal,
The agglomerated coal has a first agglomerated volume of 10 cc or less agglomerated by the first agglomerator and a volume agglomerated by the second agglomerator is larger than 10 cc and 30 cc. Consisting of the following second agglomerated coal,
Based on the correlation characteristic that the bulk density of the charged coal charged into the coke oven increases as the ratio of the pulverized coal directed to the production of the second agglomerated coal among the pulverized coal increases. A method for producing a coke oven charging coal, wherein the ratio is adjusted so that the density satisfies a target bulk density.
前記配合炭は、前記原料炭として最大長さで1.5mm以上の粗大イナート組織の含有量が5〜7体積%の境界値を用いて、該含有量が境界値よりも高い高イナート含有炭を含み、該高イナート含有炭の前記個別の粉砕粒度は、粒径3mm以下の累積%が90質量%以上であることを特徴とする請求項1に記載のコークス炉装入炭の製造方法。   The blended coal uses a boundary value of 5 to 7% by volume of a coarse inert structure having a maximum length of 1.5 mm or more as the raw coal, and the content of the high inert coal is higher than the boundary value. 2. The method for producing coke oven charging coal according to claim 1, wherein the individual pulverized particle size of the high-inert coal is 90% by mass or more with a cumulative percentage of a particle size of 3 mm or less. 前記第1の塊成炭は、フレーク状であることを特徴とする請求項1又は2に記載のコークス炉装入炭の製造方法。   The method for producing a coke oven charging coal according to claim 1 or 2, wherein the first agglomerated coal has a flake shape. 前記第2の塊成炭は、ブリケット状であることを特徴とする請求項1乃至3のうちいずれか一つに記載のコークス炉装入炭の製造方法。   The method for producing coke oven charging coal according to any one of claims 1 to 3, wherein the second agglomerated coal has a briquette shape. 請求項1乃至4のうちいずれか一つに記載の製造方法により製造された前記装入炭をコークス炉で乾留することによりコークスを製造するコークスの製造方法。   A coke production method for producing coke by dry-distilling the charged coal produced by the production method according to any one of claims 1 to 4 in a coke oven.
JP2011140515A 2011-06-24 2011-06-24 Coke oven charging method and coke manufacturing method Active JP5741246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140515A JP5741246B2 (en) 2011-06-24 2011-06-24 Coke oven charging method and coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011140515A JP5741246B2 (en) 2011-06-24 2011-06-24 Coke oven charging method and coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2013006957A JP2013006957A (en) 2013-01-10
JP5741246B2 true JP5741246B2 (en) 2015-07-01

Family

ID=47674573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140515A Active JP5741246B2 (en) 2011-06-24 2011-06-24 Coke oven charging method and coke manufacturing method

Country Status (1)

Country Link
JP (1) JP5741246B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2015KN00248A (en) 2012-07-31 2015-06-12 Suncoke Technology & Dev Llc
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
WO2014105065A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
CN104902984B (en) 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 System and method for removing the mercury in emission
WO2014105063A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Systems and methods for maintaining a hot car in a coke plant
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
EP3090034B1 (en) 2013-12-31 2020-05-06 Suncoke Technology and Development LLC Methods for decarbonizing coking ovens, and associated systems and devices
CA2954063C (en) 2014-06-30 2022-06-21 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
UA123493C2 (en) 2014-08-28 2021-04-14 Санкоук Текнолоджі Енд Дівелепмент Ллк Method and system for optimizing coke plant operation and output
AU2015317909B2 (en) 2014-09-15 2020-11-05 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
EP3240862A4 (en) 2015-01-02 2018-06-20 Suncoke Technology and Development LLC Integrated coke plant automation and optimization using advanced control and optimization techniques
CA3203921A1 (en) 2015-12-28 2017-07-06 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
EP3465369A4 (en) 2016-06-03 2020-01-15 Suncoke Technology and Development LLC Methods and systems for automatically generating a remedial action in an industrial facility
JP6740833B2 (en) * 2016-09-20 2020-08-19 日本製鉄株式会社 Bulk density estimation method and compounding adjustment method for coke oven charging coal
WO2018217955A1 (en) 2017-05-23 2018-11-29 Suncoke Technology And Development Llc System and method for repairing a coke oven
BR112021012455B1 (en) 2018-12-28 2023-10-24 Suncoke Technology And Development Llc COKE OVEN
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
WO2020140079A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Decarbonizatign of coke ovens, and associated systems and methods
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
WO2020140086A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
CA3125585C (en) 2018-12-31 2023-10-03 Suncoke Technology And Development Llc Improved systems and methods for utilizing flue gas
CA3177017C (en) 2020-05-03 2024-04-16 John Francis Quanci High-quality coke products
WO2023081821A1 (en) 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849286B2 (en) * 1998-02-26 2006-11-22 Jfeスチール株式会社 Coke coking coal pretreatment method
JP4896571B2 (en) * 2006-04-17 2012-03-14 新日本製鐵株式会社 Coke coal pretreatment method

Also Published As

Publication number Publication date
JP2013006957A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5741246B2 (en) Coke oven charging method and coke manufacturing method
JP5365226B2 (en) Sizing method of sintered ore aggregate
JP4879706B2 (en) Method for producing blast furnace coke
JP5737002B2 (en) Method for producing blended coal for coke oven charging
JP6260260B2 (en) Coke production method
JP2006321935A (en) Method and facilities for producing coke
JP4896571B2 (en) Coke coal pretreatment method
JP4788167B2 (en) Method for producing metallurgical coke
JP2007002052A (en) Method for producing high strength-coke
JP5686052B2 (en) Coke production method
JP3971615B2 (en) Method for adjusting the particle size of coal for coke oven charging
JP2006307010A (en) Method of manufacturing cokes
JP2015166485A (en) Method for operating petroleum coke injection blast furnace
JP3580203B2 (en) Adjustment method of coal for charging coke oven
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
JP7403945B2 (en) Method for manufacturing coke oven charging coal
JP5942971B2 (en) Coke production method
JP5817680B2 (en) Method for producing sintered ore
JPS6040192A (en) Production of metallurgical coke
JP5768726B2 (en) Coke production method
JP6624181B2 (en) Raw material charging method for coke oven
JP7205362B2 (en) Method for producing sintered ore
JP2004307557A (en) Method for manufacturing high-strength coke
JP4102015B2 (en) Method for adjusting the particle size of coal for coke production
JP4830351B2 (en) Coke manufacturing method and manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350