JP5733710B2 - Optical amplifier and optical amplification system using the same - Google Patents

Optical amplifier and optical amplification system using the same Download PDF

Info

Publication number
JP5733710B2
JP5733710B2 JP2008141704A JP2008141704A JP5733710B2 JP 5733710 B2 JP5733710 B2 JP 5733710B2 JP 2008141704 A JP2008141704 A JP 2008141704A JP 2008141704 A JP2008141704 A JP 2008141704A JP 5733710 B2 JP5733710 B2 JP 5733710B2
Authority
JP
Japan
Prior art keywords
laser
optical
amplification system
optical amplifier
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008141704A
Other languages
Japanese (ja)
Other versions
JP2009290030A (en
Inventor
尾松 孝茂
尾松  孝茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2008141704A priority Critical patent/JP5733710B2/en
Publication of JP2009290030A publication Critical patent/JP2009290030A/en
Application granted granted Critical
Publication of JP5733710B2 publication Critical patent/JP5733710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光増幅器及びそれを用いた光増幅システムに関する。   The present invention relates to an optical amplifier and an optical amplification system using the same.

レーザーアブレーション微細加工やレーザーディスプレイの用途として、パルスレーザーが用いられている。   Pulsed lasers are used for laser ablation fine processing and laser display applications.

レーザーアブレーション微細加工として用いる際には高精度で加工を行うことが必要であり、またレーザーディスプレイとして用いる際には、広範囲で色度分布を有することが必要となる。   When used as laser ablation fine processing, it is necessary to perform processing with high accuracy, and when used as a laser display, it is necessary to have a chromaticity distribution in a wide range.

ピコ秒パルスレーザー光の光パワーを大きくし、高出力高強度ピコ秒パルスレーザーを構築するために、ピコ秒レーザー発振器(マスターレーザー)とNdドープバナデート光増幅器とを組み合わせたいわゆるMOPA(Master oscillator
power amplifier)システムが用いられている。このシステムでは、マスターレーザーから出射された信号光を光増幅器に入射させることで増幅するシステムであるが、光増幅器の利得帯域幅が信号光のスペクトル幅を狭窄するため、増幅された信号光のパルス幅は一般に広がってしまう。
In order to increase the optical power of the picosecond pulse laser beam and to construct a high output high intensity picosecond pulse laser, a so-called MOPA (Master oscillator) combining a picosecond laser oscillator (master laser) and an Nd-doped vanadate optical amplifier.
a power amplifier) system is used. In this system, the signal light emitted from the master laser is amplified by being incident on the optical amplifier. However, since the gain bandwidth of the optical amplifier narrows the spectrum width of the signal light, the amplified signal light is amplified. The pulse width generally increases.

しかしながら、上記のNd:YVO結晶やNd:GdVO結晶等のNdドープバナデート光増幅器を用いた光増幅器では、利得帯域幅が狭いため5ps以下のパルス幅を持つレーザー光のパルス幅を保ったまま増幅して高出力なレーザーを得ることは難しいという問題があった。したがって、より広い波長範囲にわたって利得を示す増幅器を構築することが重要な課題であった。 However, in an optical amplifier using an Nd-doped vanadate optical amplifier such as the above Nd: YVO 4 crystal or Nd: GdVO 4 crystal, the gain bandwidth is narrow, so that the pulse width of laser light having a pulse width of 5 ps or less is maintained. There was a problem that it was difficult to obtain a high-power laser by amplifying it as it was. Therefore, it has been an important task to construct an amplifier that exhibits gain over a wider wavelength range.

そこで、本発明は上記課題を解決し、高出力ピコ秒レーザーを実現することが可能な光増幅システム及びそれに用いられる増幅器を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above problems and provide an optical amplification system capable of realizing a high-power picosecond laser and an amplifier used therefor.

本発明者らは、上記課題について鋭意検討をおこなっていたところ、Gd及びYを有するNdイオンドープバナデート混晶を光増幅器に用いることで、目的を達成できることを発見し、本発明を完成させるに至った。   The inventors of the present invention have made extensive studies on the above problems, and found that the object can be achieved by using an Nd ion-doped vanadate mixed crystal having Gd and Y in an optical amplifier, thereby completing the present invention. It came to.

特に、前記の混晶はNd:Gd1−xVOで表わされ、Xが0.3以上0.7以下であることが望ましいことを実証し、本発明に至った。用いている。 In particular, the mixed crystal is represented by Nd: Gd x Y 1-x VO 4 , and it has been demonstrated that X is preferably 0.3 or more and 0.7 or less, and the present invention has been achieved. Used.

また、本発明の他の一つの切り口である光増幅システムは、励起光を発するレーザーダイオードと、上述した光増幅の機能を有するNd:Gd1−xVO結晶からなる光増増幅システムの構成を成す。その他、本発明を構成する手段の詳細については、以下の実施形態及び実施例で説明する。 An optical amplification system, which is another aspect of the present invention, is an optical amplification system comprising a laser diode that emits excitation light and the Nd: Gd x Y 1-x VO 4 crystal having the above-described optical amplification function. Consists of. In addition, details of the means constituting the present invention will be described in the following embodiments and examples.

以上、本発明により、従来よりも短いパルス幅(5ps以下)のピコ秒レーザー光が高出力で発生できる光増幅システム及びそれに用いられる増幅器を提供することができる。   As described above, according to the present invention, it is possible to provide an optical amplification system capable of generating a picosecond laser beam having a shorter pulse width (5 ps or less) than conventional ones at a high output and an amplifier used therefor.

以下、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態の記載にのみ限定されるものではないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, it goes without saying that the present invention can be implemented in many different forms, and is not limited to the description of the following embodiments.

図1は、本実施形態に係る光増幅システムの概略図である。図1で示すように、本実施形態に係る光増幅システム(以下「本光増幅システム」という。)は、マスターレーザー11と、光増幅器12と、位相共役鏡13とを有する。マスターレーザー11から出射された信号光は、光増幅器12で増幅される。光増幅器12から出射された増幅光は位相共役鏡13で反射され、光増幅器12へ再入射し、再び増幅される。この構成により、5ps以下の短いパルス幅を持つマスターレーザー11からの信号光はパルス幅が広がることなく増幅されて高出力化される。   FIG. 1 is a schematic diagram of an optical amplification system according to the present embodiment. As shown in FIG. 1, the optical amplification system according to the present embodiment (hereinafter referred to as “the present optical amplification system”) includes a master laser 11, an optical amplifier 12, and a phase conjugate mirror 13. The signal light emitted from the master laser 11 is amplified by the optical amplifier 12. The amplified light emitted from the optical amplifier 12 is reflected by the phase conjugate mirror 13, reenters the optical amplifier 12, and is amplified again. With this configuration, the signal light from the master laser 11 having a short pulse width of 5 ps or less is amplified without increasing the pulse width and the output is increased.

ここで、本発明では光増幅器12に用いる結晶として、Gd及びYを有するNdイオンドープバナデート混晶を使用する。図2に混晶の概念図を示す。Nd:GdVO及びNd:YVOは、同じ構造体を持ち、粒子半径が類似するため、Nd:Gd1−xVOとして両者の混晶の形で共存することができる。この混晶体を用いて、信号光を増幅することにより、本発明の目的を達成することができる。 Here, in the present invention, an Nd ion-doped vanadate mixed crystal having Gd and Y is used as the crystal used for the optical amplifier 12. FIG. 2 shows a conceptual diagram of a mixed crystal. Since Nd: GdVO 4 and Nd: YVO 4 have the same structure and have similar particle radii, they can coexist in the form of mixed crystals of both as Nd: Gd x Y 1-x VO 4 . The object of the present invention can be achieved by amplifying signal light using this mixed crystal.

図3は光増幅器に、それぞれNd:GdVO結晶、Nd:Gd0.40.6VO混晶、Nd:Gd0.60.4VO混晶を用いた際の、増幅光のスペクトルを示したものである。図3の横軸は波長(nm)、縦軸は強度(a.u.)を示す。 FIG. 3 shows amplification when an Nd: GdVO 4 crystal, an Nd: Gd 0.4 Y 0.6 VO 4 mixed crystal, and an Nd: Gd 0.6 Y 0.4 VO 4 mixed crystal are used for the optical amplifier, respectively. It shows the spectrum of light. 3, the horizontal axis represents wavelength (nm) and the vertical axis represents intensity (au).

図3からもわかるように、従来のNd:GdVO結晶の場合に比べ、Nd:Gd0.40.6VO混晶ではより広波長範囲にわたって強い蛍光(レーザー利得)が得られており、Nd:Gd0.60.4VO混晶ではさらに広い波長範囲で強い蛍光が観測されている。蛍光が見える波長範囲がレーザー利得帯域に対応する。 As can be seen from FIG. 3, compared with the conventional Nd: GdVO 4 crystal, the Nd: Gd 0.4 Y 0.6 VO 4 mixed crystal has a strong fluorescence (laser gain) over a wider wavelength range. In the Nd: Gd 0.6 Y 0.4 VO 4 mixed crystal, strong fluorescence is observed in a wider wavelength range. The wavelength range in which the fluorescence is visible corresponds to the laser gain band.

このように、本実施形態ではNd:Gd1−xVO混晶により、従来よりも広波長範囲で高出力を実現する。Xは0より大きく1未満の数値で調整が可能であるが、より好ましくは0.4以上0.6以下の数値となる。 As described above, in this embodiment, the Nd: Gd x Y 1-x VO 4 mixed crystal realizes a higher output in a wider wavelength range than in the past. X can be adjusted with a numerical value greater than 0 and less than 1, but more preferably a numerical value of 0.4 or more and 0.6 or less.

また、本実施形態における別の効果として、従来よりも熱伝導性を高めることが可能であり、さらにはNd:Gd1−xVO混晶におけるxを変化させることにより、使用用途に合わせて利得帯域や増幅器の増幅率をカスタマイズできることが挙げられる。 Further, as another effect in the present embodiment, it is possible to increase the thermal conductivity as compared with the conventional case, and further, by changing x in the Nd: Gd x Y 1-x VO 4 mixed crystal, it is possible to use it. In addition, the gain band and the amplification factor of the amplifier can be customized.

上記説明した光増幅システムを実際に作製し、その効果について確認を行った。以下に説明する。   The optical amplification system described above was actually fabricated and the effect was confirmed. This will be described below.

(実施例1)
図4に、本実施例として作製した光増幅システムの光学系を示す。信号光を発するマスターレーザー21として、Ybドープファイバーレーザー(平均出力パワー13mW、パルス繰返し周波数20MHz、パルス幅 <5ps、中心波長λ=1063nm)を用いた。また、信号光を増幅する光増幅器22は、20mm×5mm×2mmのNd:Gd0.60.4VOのスラブ型結晶23、レンズ24、及び励起半導体レーザーアレイ25(λ=808nm)で構成される。
Example 1
FIG. 4 shows an optical system of an optical amplification system manufactured as this example. A Yb-doped fiber laser (average output power 13 mW, pulse repetition frequency 20 MHz, pulse width <5 ps, center wavelength λ = 1063 nm) was used as the master laser 21 that emits signal light. The optical amplifier 22 that amplifies the signal light includes a 20 mm × 5 mm × 2 mm slab crystal 23 of Nd: Gd 0.6 Y 0.4 VO 4 , a lens 24, and a pumping semiconductor laser array 25 (λ = 808 nm). Consists of.

マスターレーザー21から光増幅器22の間には、半波長板26、29、32、偏光方向により光を反射又は透過する偏光ビームスプリッタ27、30、ファラデー回転子28、31、及びレンズ33、34、35が、図に示すように配置される。
光増幅器22から出射した光は、レンズ36を通過しプリズム37で反射された後、再び光増幅器22へと入射する。
Between the master laser 21 and the optical amplifier 22, half-wave plates 26, 29, and 32, polarizing beam splitters 27 and 30 that reflect or transmit light depending on the polarization direction, Faraday rotators 28 and 31, and lenses 33 and 34, 35 are arranged as shown.
The light emitted from the optical amplifier 22 passes through the lens 36 and is reflected by the prism 37, and then enters the optical amplifier 22 again.

その後、レンズ38、39、40、及び半波長板41を透過し、位相共役鏡(PCM)42で反射された後、再び光増幅器22へと入射する。位相共役鏡(PCM)42は、6mm×5mm×5mmのRh:BaTiO単結晶43及びレンズ44、45で構成される。再び光増幅器22へ入射した光は、同様の経路を経て、最終的にビームスプリッタ30を透過し出射する。 Thereafter, the light passes through the lenses 38, 39, 40 and the half-wave plate 41, is reflected by the phase conjugate mirror (PCM) 42, and then enters the optical amplifier 22 again. The phase conjugate mirror (PCM) 42 is composed of a 6 mm × 5 mm × 5 mm Rh: BaTiO 3 single crystal 43 and lenses 44 and 45. The light incident on the optical amplifier 22 again passes through the same path, and finally passes through the beam splitter 30 and exits.

このようにして、本実施例ではマスターレーザー21からの光が計4回、光増幅器22を透過することとなる。   Thus, in this embodiment, light from the master laser 21 is transmitted through the optical amplifier 22 a total of four times.

図5にレーザー出力の結果を示す。図5において、横軸は励起半導体レーザーアレイ25の出力パワー(W)を表し、縦軸は最終的に出射するレーザーの出力パワー(W)を表す。励起半導体レーザーアレイには3列のアレイが層状に積まれた(スタックされた)構造になっているものを用いており、光増幅器を4回透過する構成でのレーザー最大平均出力15.1W、ピークパワーに換算して186kWを達成することができた。出力レーザーのパルス幅は4psと5ps以下であった。なお図6に本実施例に係るレーザー出力のパルス幅を示す。   FIG. 5 shows the result of laser output. In FIG. 5, the horizontal axis represents the output power (W) of the excitation semiconductor laser array 25, and the vertical axis represents the output power (W) of the laser finally emitted. The pumped semiconductor laser array has a structure in which three rows of arrays are stacked (stacked), and the maximum laser average output of 15.1 W in a configuration that transmits the optical amplifier four times. 186 kW was achieved in terms of peak power. The pulse width of the output laser was 4 ps and 5 ps or less. FIG. 6 shows the pulse width of the laser output according to this embodiment.

以上、本実施例により、本発明の効果であるレーザーの高出力を確認することができた。
尚、本実施例では光増幅器を4回透過する構成を採ったが、1回透過の構成、例えば2回透過の構成についても、同様に本発明を利用することができる。
As described above, according to this example, it was possible to confirm the high output of the laser which is the effect of the present invention.
In the present embodiment, a configuration in which the optical amplifier is transmitted four times is employed. However, the present invention can be similarly applied to a one-time transmission configuration, for example, a two-time transmission configuration.

本発明は、光増幅器、光増幅システムとしてレーザー加工、波長変換用光源など産業上の利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability, such as an optical amplifier and an optical amplification system, such as laser processing and a light source for wavelength conversion.

実施形態1に係る光増幅システムの概略図である。1 is a schematic diagram of an optical amplification system according to Embodiment 1. FIG. 実施形態1に係る混晶の概念図である。1 is a conceptual diagram of a mixed crystal according to Embodiment 1. FIG. 実施形態1に係る増幅光のスペクトルである。2 is a spectrum of amplified light according to the first embodiment. 実施例1に係る光増幅システムを示す図である。1 is a diagram illustrating an optical amplification system according to a first embodiment. 実施例1に係るレーザー出力結果を示す図である。It is a figure which shows the laser output result which concerns on Example 1. FIG. 実施例1に係るレーザー出力のパルス幅を示す図である。FIG. 4 is a diagram showing a pulse width of a laser output according to Example 1.

符号の説明Explanation of symbols

11,21…マスターレーザー、12,22…光増幅器、13…位相共役鏡、23,43…Ndドープバナデート混結晶、25…励起半導体レーザーアレイからの励起出力光、26,29,32,41…半波長板、27,30…ビームスプリッタ、28,31…ファラデー回転子、24,33,34,35,36,38,39,40,44,45…レンズ、37…プリズム、42…位相共役鏡(PCM) DESCRIPTION OF SYMBOLS 11,21 ... Master laser, 12,22 ... Optical amplifier, 13 ... Phase conjugate mirror, 23, 43 ... Nd dope vanadate mixed crystal, 25 ... Excitation output light from excitation semiconductor laser array, 26, 29, 32, 41 ... half-wave plate, 27, 30 ... beam splitter, 28, 31 ... Faraday rotator, 24, 33, 34, 35, 36, 38, 39, 40, 44, 45 ... lens, 37 ... prism, 42 ... phase conjugate Mirror (PCM)

Claims (2)

励起光を発するレーザーダイオードと、
前記励起光によりパルス光を増幅するパルスレーザー増幅器と、
前記パルスレーザー増幅器から出射された増幅光を反射し、前記パルスレーザー増幅器へ入射する位相共役鏡と、を有し、
前記パルスレーザー増幅器は、Nd:Gd1−xVO(Xは0.4以上0.6以下である)で表わされるNdイオンドープバナデート混晶を用いた光増幅システム。
A laser diode that emits excitation light; and
A pulsed laser amplifier that amplifies pulsed light by the excitation light; and
A phase conjugate mirror that reflects the amplified light emitted from the pulse laser amplifier and enters the pulse laser amplifier;
The pulse laser amplifier is an optical amplification system using an Nd ion-doped vanadate mixed crystal represented by Nd: Gd x Y 1-x VO 4 (X is 0.4 or more and 0.6 or less).
前記位相共役鏡に前記増幅光を入射する前に前記パルスレーザー増幅器から出射された増幅光を反射し前記パルスレーザー増幅器へ入射する反射部材と、を有する請求項1に記載の光増幅システム。
The optical amplification system according to claim 1, further comprising: a reflecting member that reflects the amplified light emitted from the pulse laser amplifier before entering the amplified light into the phase conjugate mirror and enters the pulse laser amplifier.
JP2008141704A 2008-05-29 2008-05-29 Optical amplifier and optical amplification system using the same Expired - Fee Related JP5733710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141704A JP5733710B2 (en) 2008-05-29 2008-05-29 Optical amplifier and optical amplification system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141704A JP5733710B2 (en) 2008-05-29 2008-05-29 Optical amplifier and optical amplification system using the same

Publications (2)

Publication Number Publication Date
JP2009290030A JP2009290030A (en) 2009-12-10
JP5733710B2 true JP5733710B2 (en) 2015-06-10

Family

ID=41458944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141704A Expired - Fee Related JP5733710B2 (en) 2008-05-29 2008-05-29 Optical amplifier and optical amplification system using the same

Country Status (1)

Country Link
JP (1) JP5733710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101750821B1 (en) * 2015-04-24 2017-07-11 학교법인 한동대학교 Laser Amplifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943782A (en) * 1988-03-21 1990-07-24 Hughes Aircraft Company Four-pass phase conjugate optical amplifier system and method
JPH10270781A (en) 1997-03-27 1998-10-09 Sony Corp Method and device for generating laser light
JP2004289066A (en) 2003-03-25 2004-10-14 Orc Mfg Co Ltd Solid-state laser apparatus
JP4492922B2 (en) * 2003-08-25 2010-06-30 独立行政法人科学技術振興機構 Phase conjugate mirror for ultrashort pulse light and optical amplifier using it
JP2006186230A (en) 2004-12-28 2006-07-13 Osaka Univ Optical amplifier module, optical amplifier, and laser oscillator
JP4649614B2 (en) * 2005-12-22 2011-03-16 国立大学法人 千葉大学 Phase conjugate mirror
JP5117681B2 (en) 2006-02-21 2013-01-16 三菱電機株式会社 Regenerative amplifier and gain smoothing method

Also Published As

Publication number Publication date
JP2009290030A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US8248688B2 (en) Tandem photonic amplifier
El-Sherif et al. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator
US7920606B2 (en) Frequency-tripled fiber MOPA
JP2008004882A (en) Laser device, and optical amplifier
US8373924B2 (en) Frequency-tripled fiber MOPA
CN111541140B (en) Yb-YAG ultrashort pulse laser amplifier based on brightness cascade pump
JP2013222173A (en) Laser apparatus
JP5467629B2 (en) Photonic fiber trigger laser equipment
CN112688147B (en) Pre-chirp management femtosecond laser pulse amplification device and system
US20060251422A1 (en) Power and energy scaling of fiber lasers by using compact divisional wavelength multiplexing (WDM) devices
JP2010278205A (en) Mopa light source
CN114336254A (en) High-brightness main oscillation power amplification picosecond laser system
US8582611B2 (en) Frequency-tripled fiber-MOPA
KR102083267B1 (en) High power ultrashort laser device
US8194310B1 (en) All fiber pulse generator for pumping a non-linear converter
WO2024001392A1 (en) Solid-state laser based on nonlinear amplifying loop mirror
JP5733710B2 (en) Optical amplifier and optical amplification system using the same
US9728932B2 (en) Fiber coupled modular laser system
JP2008098496A (en) Chirp pulse amplifier, and amplification method
CN111193170B (en) Double-pulse bidirectional ring laser amplifier
EP2835881B1 (en) Optical amplifier arrangement
Creeden et al. Thulium fiber laser-pumped mid-IR OPO
US20240136784A1 (en) Divided-pulse laser regeneration amplification apparatus and method
JP2014139969A (en) Solid-state laser amplification device and multistage laser amplification device
US7274723B2 (en) Method for amplifying a solid-state laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131010

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5733710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees