JP5729093B2 - The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell. - Google Patents

The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell. Download PDF

Info

Publication number
JP5729093B2
JP5729093B2 JP2011080657A JP2011080657A JP5729093B2 JP 5729093 B2 JP5729093 B2 JP 5729093B2 JP 2011080657 A JP2011080657 A JP 2011080657A JP 2011080657 A JP2011080657 A JP 2011080657A JP 5729093 B2 JP5729093 B2 JP 5729093B2
Authority
JP
Japan
Prior art keywords
thin film
compound semiconductor
semiconductor thin
polymer gel
gel electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011080657A
Other languages
Japanese (ja)
Other versions
JP2012216670A (en
Inventor
雅人 栗原
雅人 栗原
デール フィリップ
デール フィリップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011080657A priority Critical patent/JP5729093B2/en
Publication of JP2012216670A publication Critical patent/JP2012216670A/en
Application granted granted Critical
Publication of JP5729093B2 publication Critical patent/JP5729093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、化合物半導体薄膜の評価装置、化合物半導体薄膜の評価方法、及び太陽電池の製造方法に関する。   The present invention relates to a compound semiconductor thin film evaluation apparatus, a compound semiconductor thin film evaluation method, and a solar cell manufacturing method.

近年普及が進んでいるバルク結晶型のシリコン太陽電池に替わって、化合物半導体薄膜を光吸収層として用いる太陽電池の開発が進んでいる。中でも、Ib族とIIIb族とVIb族とを含むp型の化合物半導体薄膜を光吸収層として備える太陽電池は、高いエネルギー変換効率を示し、光による劣化の影響を受け難いことから、次世代の太陽電池として期待されている。具体的には、Cu、In及びSeからなるCuInSe(以下、「CIS」と記す。)、又はCISにおいてIIIb族であるInの一部をGaで置換したCu(In1−a,Ga)Se(以下、「CIGS」と記す。)を光吸収層とする太陽電池において、高い変換効率が得られている(下記特許文献1、2参照)。また、化合物半導体の光吸収特性を、電解液を用いてその光応答により評価する方法が知られている(下記特許文献3参照)。 In place of the bulk crystal silicon solar cells that have been spreading in recent years, solar cells using compound semiconductor thin films as light absorption layers have been developed. Among them, a solar cell including a p-type compound semiconductor thin film including a group Ib, a group IIIb, and a group VIb as a light absorption layer exhibits high energy conversion efficiency and is not easily affected by deterioration due to light. It is expected as a solar cell. Specifically, CuInSe 2 (hereinafter referred to as “CIS”) composed of Cu, In, and Se, or Cu (In 1−a , Ga a ) in which part of In that is a group IIIb in CIS is replaced with Ga. ) High conversion efficiency is obtained in solar cells using Se 2 (hereinafter referred to as “CIGS”) as a light absorption layer (see Patent Documents 1 and 2 below). In addition, a method for evaluating the light absorption characteristics of a compound semiconductor by using its electrolytic response with an electrolytic solution is known (see Patent Document 3 below).

特表2009−515343号公報Special table 2009-515343 特表平10−513606号公報Japanese National Patent Publication No. 10-513606 PCT/EP2010/055657PCT / EP2010 / 055657

化合物半導体薄膜を光吸収層に用いた太陽電池の工業的な製造では、化合物半導体薄膜の形成工程において、ピンホールや、副生成物からなる低抵抗部位等の欠陥が化合物半導体薄膜に形成される。これらの欠陥は太陽電池の不良の原因となり、太陽電池の歩留を低下させる。しかし、従来、太陽電池の製造中に化合物半導体薄膜を形成した時点で欠陥の有無を短時間で検査することは困難であった。   In the industrial production of solar cells using a compound semiconductor thin film as a light absorbing layer, defects such as pinholes and low-resistance sites consisting of by-products are formed in the compound semiconductor thin film in the formation process of the compound semiconductor thin film. . These defects cause defects in the solar cell and reduce the yield of the solar cell. However, conventionally, it has been difficult to inspect for the presence of defects in a short time when a compound semiconductor thin film is formed during the production of a solar cell.

実験室レベルでの化合物半導体薄膜の評価方法としては、電解液中で光を点滅させながら光吸収層の光応答特性を電気化学的に測定する方法がある。しかし、このような評価方法を例えば10cm角の比較的大きな光吸収層に適用する場合、光吸収層の表面全体に一様な光を当て難く、また光吸収層全体を収容できる大きな電解液槽が必要となることが問題であった。そのため、実験室レベルの評価方法を、太陽電池の工業的な製造の途中で実施することは困難であった。また、実験室レベルの評価方法では、光吸収層の全面に光を照射するため、光吸収層全体の平均的な情報しか得られない。また、電解液槽を用いる評価方法では、光吸収層において光を当てる場所だけを移動させて光吸収層の全領域を網羅しようとしても、光吸収層全体が電解液に浸かっているので、暗電流の局所的な評価を行えない。そのため、短絡不良が発見された場合であっても、その原因である欠陥の箇所を特定することが困難であった。   As a method for evaluating a compound semiconductor thin film at a laboratory level, there is a method of electrochemically measuring the light response characteristics of a light absorption layer while blinking light in an electrolytic solution. However, when such an evaluation method is applied to, for example, a relatively large light absorption layer of 10 cm square, it is difficult to apply uniform light to the entire surface of the light absorption layer, and a large electrolytic bath that can accommodate the entire light absorption layer Was a problem. Therefore, it has been difficult to carry out the laboratory-level evaluation method during the industrial production of solar cells. Further, in the laboratory level evaluation method, light is irradiated on the entire surface of the light absorption layer, so that only average information of the entire light absorption layer can be obtained. Further, in the evaluation method using the electrolytic solution tank, even if an attempt is made to cover the entire region of the light absorption layer by moving only the place where light is applied in the light absorption layer, the entire light absorption layer is immersed in the electrolyte solution. Local evaluation of current cannot be performed. Therefore, even if a short circuit failure is found, it is difficult to identify the location of the defect that is the cause.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、化合物半導体薄膜の部分的な欠陥の検出と化合物半導体薄膜全体の検査が可能となる化合物半導体薄膜の評価装置及び評価方法、並びに、太陽電池の製造の途中で、化合物半導体薄膜の部分的な欠陥の検出と化合物半導体薄膜全体の検査が可能となる太陽電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and includes an evaluation apparatus and an evaluation method for a compound semiconductor thin film capable of detecting a partial defect in the compound semiconductor thin film and inspecting the entire compound semiconductor thin film, And it aims at providing the manufacturing method of the solar cell which can detect the partial defect of a compound semiconductor thin film, and the test | inspection of the whole compound semiconductor thin film in the middle of manufacture of a solar cell.

上記目的を達成するために、本発明に係る化合物半導体薄膜の評価装置は、開口部が形成された遮光性の外装体と、開口部の内側に位置し、開口部を塞ぐ、透光性の高分子ゲル電解質層と、高分子ゲル電解質層に浸潤した電解液と、外装体の内側に位置し、外装体の内側を向く高分子ゲル電解質層の表面へ光を照射する光源と、外装体の内側を向く高分子ゲル電解質層の表面の一部に接触する対極と、外装体の内側を向く高分子ゲル電解質層の表面の一部に接触する参照極と、対極及び参照極が電気的に接続されたポテンショスタットと、を備える。   In order to achieve the above object, a compound semiconductor thin film evaluation apparatus according to the present invention includes a light-shielding exterior body in which an opening is formed, and a translucent material positioned inside the opening to close the opening. A polymer gel electrolyte layer, an electrolyte infiltrated into the polymer gel electrolyte layer, a light source for irradiating light on the surface of the polymer gel electrolyte layer located inside the exterior body and facing the interior of the exterior body, and the exterior body The counter electrode that contacts part of the surface of the polymer gel electrolyte layer facing the inside, the reference electrode that contacts part of the surface of the polymer gel electrolyte layer facing the inside of the exterior body, and the counter electrode and reference electrode are electrically And a potentiostat connected to the main body.

本発明に係る化合物半導体薄膜の評価方法では、作用極である導電層上に形成された化合物半導体薄膜の表面の一部のみを、電解液が浸潤した透光性の高分子ゲル電解質層で覆って、化合物半導体薄膜と高分子ゲル電解質層とを密着させ、化合物半導体薄膜と反対側を向く高分子ゲル電解質層の表面の一部に、対極及び参照極を接触させ、対極及び参照極を接触させた高分子ゲル電解質層を、遮光性の外装体の内側に閉じ込め、外装体の内側に配置した光源を発光させながら、作用極と対極との間に電圧を加えた時に、参照極を基準とする作用極の電位と、作用極と対極との間の電流と、を測定し、光源を発光させずに、作用極と対極との間に電圧を加えた時に、参照極を基準とする作用極の電位と、作用極と対極との間の電流と、を測定する、部分検査工程を備え、部分検査工程を繰り返して化合物半導体薄膜全体を検査する。   In the method for evaluating a compound semiconductor thin film according to the present invention, only a part of the surface of the compound semiconductor thin film formed on the conductive layer that is the working electrode is covered with a light-transmitting polymer gel electrolyte layer infiltrated with an electrolyte solution. The compound semiconductor thin film and the polymer gel electrolyte layer are brought into close contact with each other, the counter electrode and the reference electrode are brought into contact with a part of the surface of the polymer gel electrolyte layer facing away from the compound semiconductor thin film, and the counter electrode and the reference electrode are brought into contact with each other. When the applied polymer gel electrolyte layer is confined inside the light-shielding exterior body and a voltage is applied between the working electrode and the counter electrode while the light source placed inside the exterior body emits light, the reference electrode is used as a standard. Measure the potential of the working electrode and the current between the working electrode and the counter electrode, and when the voltage is applied between the working electrode and the counter electrode without causing the light source to emit light, the reference electrode is used as a reference. Measure the potential of the working electrode and the current between the working electrode and the counter electrode. , Comprising a partial inspection step, by repeating the partial inspection step to inspect the entire compound semiconductor thin film.

上記本発明に係る化合物半導体薄膜の評価装置によれば、上記本発明に係る半導体薄膜の評価方法を容易に実施することが可能である。   According to the compound semiconductor thin film evaluation apparatus of the present invention, the semiconductor thin film evaluation method of the present invention can be easily implemented.

上記本発明に係る化合物半導体薄膜の評価方法によれば、電気化学的な測定によって、化合物半導体薄膜の部分的な欠陥を検出できると共に、化合物半導体薄膜全体を検査することが可能である。   According to the method for evaluating a compound semiconductor thin film according to the present invention, it is possible to detect a partial defect of the compound semiconductor thin film and to inspect the entire compound semiconductor thin film by electrochemical measurement.

上記本発明に係る化合物半導体薄膜の評価装置及び評価方法では、電解液がユーロピウム塩の水溶液であることが好ましい。化合物半導体薄膜がCIGSを含む場合、ユーロピウム塩の水溶液は電解液として好適である。   In the compound semiconductor thin film evaluation apparatus and evaluation method according to the present invention, the electrolytic solution is preferably an aqueous solution of a europium salt. When the compound semiconductor thin film contains CIGS, an aqueous solution of europium salt is suitable as the electrolytic solution.

本発明に係る太陽電池の製造方法では、導電層上に化合物半導体薄膜を形成する工程と、化合物半導体薄膜に対して、上記本発明に係る化合物半導体薄膜の評価方法を実施した後、化合物半導体薄膜の表面に別の薄膜を形成する工程と、を備える。   In the method for manufacturing a solar cell according to the present invention, the step of forming the compound semiconductor thin film on the conductive layer, and the compound semiconductor thin film evaluation method according to the present invention are performed on the compound semiconductor thin film, and then the compound semiconductor thin film Forming another thin film on the surface.

上基本発明に係る太陽電池の製造方法によれば、太陽電池の製造の途中で、化合物半導体薄膜の部分的な欠陥を検出し、化合物半導体薄膜全体の検査することが可能となる。   According to the method for manufacturing a solar cell according to the above basic invention, it is possible to detect a partial defect in the compound semiconductor thin film and inspect the entire compound semiconductor thin film during the manufacturing of the solar cell.

本発明によれば、化合物半導体薄膜の部分的な欠陥の検出と化合物半導体薄膜全体の検査が可能となる化合物半導体薄膜の評価装置及び評価方法、並びに、太陽電池の製造の途中で化合物半導体薄膜の部分的な欠陥の検出と化合物半導体薄膜全体の検査が可能となる太陽電池の製造方法を提供することができる。   According to the present invention, an evaluation apparatus and an evaluation method for a compound semiconductor thin film capable of detecting a partial defect in the compound semiconductor thin film and inspecting the entire compound semiconductor thin film, and a compound semiconductor thin film in the course of manufacturing a solar cell. It is possible to provide a method of manufacturing a solar cell that can detect a partial defect and inspect the entire compound semiconductor thin film.

図1は、本発明の一実施形態に係る化合物半導体薄膜の評価装置の斜視図である。FIG. 1 is a perspective view of a compound semiconductor thin film evaluation apparatus according to an embodiment of the present invention. 図2は、図1に示す評価装置のII―II線断面図である。2 is a cross-sectional view taken along the line II-II of the evaluation apparatus shown in FIG. 図3は、図1及び図2に示す評価装置のIII−III線断面図である。3 is a cross-sectional view of the evaluation apparatus shown in FIGS. 1 and 2 taken along the line III-III. 図4Aは、本発明の一実施形態に係る化合物半導体薄膜の評価装置を用いた、本発明の一実施形態に係る化合物半導体薄膜の評価方法を示す図である。図4Bは、図4Aに示す評価装置、化合物半導体薄膜、導電層及び基板のB−B線断面図である。図4Cは、図4Bに示す領域Cの拡大図である。FIG. 4A is a diagram illustrating a method for evaluating a compound semiconductor thin film according to an embodiment of the present invention, using the compound semiconductor thin film evaluation apparatus according to an embodiment of the present invention. 4B is a cross-sectional view of the evaluation apparatus, the compound semiconductor thin film, the conductive layer, and the substrate shown in FIG. 4A taken along line BB. FIG. 4C is an enlarged view of region C shown in FIG. 4B. 図5は、本発明の一実施形態に係る太陽電池の製造方法により得られた太陽電池の断面図である。FIG. 5 is a cross-sectional view of a solar cell obtained by the method for manufacturing a solar cell according to one embodiment of the present invention. 図6は、本発明の比較例に係る化合物半導体薄膜の評価方法を示す模式図である。FIG. 6 is a schematic diagram showing a method for evaluating a compound semiconductor thin film according to a comparative example of the present invention.

以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、図面において、同一又は同等の要素については同一の符号を付す。また、上下左右の位置関係は図面に示す通りである。また、説明が重複する場合にはその説明を省略する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent elements are denoted by the same reference numerals. Also, the positional relationship between the top, bottom, left and right is as shown in the drawing. Further, when the description overlaps, the description is omitted.

(化合物半導体薄膜の評価装置)
図1〜4に示すように、本実施形態に係る化合物半導体薄膜の評価装置2は、遮光性の外装体4、透明な高分子ゲル電解質層6、電解液保持層12、対極8、参照極10、透明隔離板14、ピン20、光フィルタ16、光源18、及びポテンショスタット60を備える。
(Evaluation equipment for compound semiconductor thin films)
As shown in FIGS. 1 to 4, the compound semiconductor thin film evaluation apparatus 2 according to this embodiment includes a light-shielding exterior body 4, a transparent polymer gel electrolyte layer 6, an electrolyte solution holding layer 12, a counter electrode 8, and a reference electrode. 10, a transparent separator 14, a pin 20, an optical filter 16, a light source 18, and a potentiostat 60.

遮光性の外装体4は、中空の箱状の構造を有する。外装体4の底には開口部が形成されている。   The light-shielding exterior body 4 has a hollow box-like structure. An opening is formed at the bottom of the exterior body 4.

平板状の高分子ゲル電解質層6は、外装体4の開口部の内側に位置し、開口部を塞いでいる。すなわち、高分子ゲル電解質層6は、評価装置2の平坦な底面を構成する。高分子ゲル電解質層6には、電解液が浸潤している。   The flat polymer gel electrolyte layer 6 is located inside the opening of the outer package 4 and closes the opening. That is, the polymer gel electrolyte layer 6 constitutes a flat bottom surface of the evaluation device 2. The polymer gel electrolyte layer 6 is infiltrated with an electrolytic solution.

高分子ゲル電解質層6は、それに浸潤した電解液に溶解した電解質に由来するイオンの伝導性を有するものであれば、特に限定されない。   The polymer gel electrolyte layer 6 is not particularly limited as long as it has conductivity of ions derived from the electrolyte dissolved in the electrolyte solution infiltrated therein.

具体的な高分子ゲル電解質層6としては、例えば、水を吸収して膨潤する性質を有する高吸水性高分子をホストとし、電解液を含浸させてゲル化したものを用いればよい。高吸水性高分子としては、セルロースアセテート、ポリビニルアルコール、ポリNビニルピロリドン、ポリアクリルアミド、セルロース、カルボキシメチルセルロース、ニトロセルロース、シアノエチルセルロース、セルロースサルフェート、ヘパリン、ペクチン、アルギン酸、ヒドロキシメチルセルロース、イソプロピルセルロース、ポリアクリル酸、ポリエチレンオキシド、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)等の高分子を、熱処理や架橋によって水に対して不溶化したものが挙げられる。また、上記の水溶性高分子のうち2種以上の高分子を架橋して得られた共重合体を用いてもよい。例えば、水溶性高分子がポリビニルアルコールの場合、架橋剤としてほう酸を添加することにより、ポリビニルアルコール同士が2次架橋して擬固体化状態となり、高分子ゲル電解質層の強度が高まる。   As a specific polymer gel electrolyte layer 6, for example, a highly water-absorbing polymer having a property of absorbing water to swell can be used as a host, and a gel formed by impregnating an electrolytic solution can be used. Examples of superabsorbent polymers include cellulose acetate, polyvinyl alcohol, poly N vinyl pyrrolidone, polyacrylamide, cellulose, carboxymethyl cellulose, nitrocellulose, cyanoethyl cellulose, cellulose sulfate, heparin, pectin, alginic acid, hydroxymethyl cellulose, isopropyl cellulose, polyacrylic. Examples thereof include polymers, such as acid, polyethylene oxide, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), which are insolubilized in water by heat treatment or crosslinking. Moreover, you may use the copolymer obtained by bridge | crosslinking 2 or more types of polymers among said water-soluble polymer. For example, when the water-soluble polymer is polyvinyl alcohol, by adding boric acid as a cross-linking agent, the polyvinyl alcohol is secondarily cross-linked to become a quasi-solid state, and the strength of the polymer gel electrolyte layer is increased.

水によって殆ど膨潤しない非水溶性高分子であっても、水溶性高分子と適当な分率で共重合させ、水中での膨潤度を向上させることにより、高分子ゲル電解質層6として用いることができる。非水溶性高分子としては、ポリビニリデンフロライド、ポリテトラフルオロエチレン等が挙げられる。   Even a water-insoluble polymer that hardly swells with water can be used as the polymer gel electrolyte layer 6 by copolymerizing with a water-soluble polymer at an appropriate fraction to improve the degree of swelling in water. it can. Examples of the water-insoluble polymer include polyvinylidene fluoride and polytetrafluoroethylene.

光架橋性のモノマーを溶解させた水溶性高分子溶液を製膜後、膜に光を照射して架橋構造を形成して、高吸水性高分子を得ることができる。このような高吸水性高分子を高分子ゲル電解質層6として用いてもよい。このような高分子としては、光架橋性ポリビニルアルコールや光架橋性ポリエチレンオキシド、光架橋性ポリエチレングリコール等が挙げられる。   After forming a water-soluble polymer solution in which a photocrosslinkable monomer is dissolved, a highly water-absorbing polymer can be obtained by irradiating the film with light to form a crosslinked structure. Such a superabsorbent polymer may be used as the polymer gel electrolyte layer 6. Examples of such a polymer include photocrosslinkable polyvinyl alcohol, photocrosslinkable polyethylene oxide, and photocrosslinkable polyethylene glycol.

イオン性高分子でコーティングされた水溶性高分子を、高分子ゲル電解質層6として用いてもよい。水溶性高分子をイオン性高分子でコーティングすることにより、水溶性高分子のイオン伝導性が向上し、化合物半導体薄膜の欠陥の検出精度が向上する。イオン性高分子としては、ポリビニルスルホン酸、ポリスチレンスルホン酸及びナフィオン等が挙げられる。   A water-soluble polymer coated with an ionic polymer may be used as the polymer gel electrolyte layer 6. By coating the water-soluble polymer with the ionic polymer, the ion conductivity of the water-soluble polymer is improved, and the defect detection accuracy of the compound semiconductor thin film is improved. Examples of the ionic polymer include polyvinyl sulfonic acid, polystyrene sulfonic acid, and Nafion.

透光性の電解液からなる電解液保持層12は、外装体4の内側を向く高分子ゲル電解質層6の表面に配置されている。評価装置2が電解液保持層12を備える場合、電解液保持層12がない場合に比べて、作用極上に形成された化合物半導体薄膜と対極8との間に、多量の電解質が存在するので、作用極と対極との間に大きな電流を流したり、長時間電流を発生させたり、電流が流れ易くなって欠陥の検出精度が向上したりする。なお、電解液保持層12がない場合であっても、高分子ゲル電解質層6に電解液が浸潤していれば、本発明の効果は達成されるので、電解液保持層12は必須ではない。   The electrolyte solution holding layer 12 made of a translucent electrolyte solution is disposed on the surface of the polymer gel electrolyte layer 6 facing the inside of the outer package 4. When the evaluation device 2 includes the electrolyte solution holding layer 12, a large amount of electrolyte exists between the compound semiconductor thin film formed on the working electrode and the counter electrode 8 as compared with the case where the electrolyte solution holding layer 12 is not provided. A large current is allowed to flow between the working electrode and the counter electrode, a current is generated for a long time, or the current can easily flow, thereby improving the defect detection accuracy. Even in the case where the electrolyte solution holding layer 12 is not provided, the effect of the present invention can be achieved if the electrolyte solution is infiltrated into the polymer gel electrolyte layer 6, and therefore the electrolyte solution holding layer 12 is not essential. .

電解液はユーロピウム塩の水溶液であることが好ましい。化合物半導体薄膜がCIGS薄膜である場合、ユーロピウム塩の水溶液は電解液として好適である。Eu2+/Eu3+の酸化還元電位は暗時におけるCIGSの伝導帯エッジに近く、CIGS/CdSの固体状態のpnジャンクションに対応させることができる。ユーロピウム塩以外の電解質として、バナジウム塩を用いてもよい。すなわち、V2+/V3+の酸化還元電位を利用して、本発明に係る化合物半導体薄膜の評価方法を実施することもできる。 The electrolytic solution is preferably an aqueous solution of europium salt. When the compound semiconductor thin film is a CIGS thin film, an aqueous solution of a europium salt is suitable as an electrolytic solution. The redox potential of Eu 2+ / Eu 3+ is close to the conduction band edge of CIGS in the dark, and can correspond to the solid state pn junction of CIGS / CdS. As an electrolyte other than the europium salt, a vanadium salt may be used. That is, the evaluation method for a compound semiconductor thin film according to the present invention can be carried out using the redox potential of V 2+ / V 3+ .

対極8は、外装体4の内側を向く高分子ゲル電解質層6の表面の一部接触している。図3に示すように、対極8は、四角形状の高分子ゲル電解質層6の四辺に沿った枠状の構造を有する。対極8は例えば、Pt等の金属から構成される。   The counter electrode 8 is in partial contact with the surface of the polymer gel electrolyte layer 6 facing the inside of the outer package 4. As shown in FIG. 3, the counter electrode 8 has a frame-like structure along the four sides of the rectangular polymer gel electrolyte layer 6. The counter electrode 8 is made of a metal such as Pt, for example.

参照極10は、外装体の内側を向く高分子ゲル電解質層6の表面の一部に接触している。図3に示すように、参照極10は、四角形状の高分子ゲル電解質層6の4つの角にそれぞれ位置する。参照極10は、例えば、Ag/AgClから構成される。参照極10は、それに接続されたピン20によって外装体4固定されている。ピン20は、参照極10とポテンショスタット60とを電気的に接続する配線の機能を有していてもよい。なお、ピン20は、本発明において必須ではない。   The reference electrode 10 is in contact with a part of the surface of the polymer gel electrolyte layer 6 facing the inside of the exterior body. As shown in FIG. 3, the reference electrode 10 is located at each of the four corners of the rectangular polymer gel electrolyte layer 6. The reference electrode 10 is made of, for example, Ag / AgCl. The reference electrode 10 is fixed to the exterior body 4 by pins 20 connected thereto. The pin 20 may have a wiring function for electrically connecting the reference electrode 10 and the potentiostat 60. The pin 20 is not essential in the present invention.

対極8は参照極10と離間している。また、対極8及び参照極10は高分子ゲル電解質層6の全面を被覆せず、その一部だけを被覆する。換言すれば、光源18からの光が対極8及び参照極10によって完全に遮断されてはならない。これらの条件を満たす限りにおいて、対極8及び参照極10の位置及び形状は、特に限定されない。   The counter electrode 8 is separated from the reference electrode 10. Further, the counter electrode 8 and the reference electrode 10 do not cover the entire surface of the polymer gel electrolyte layer 6 but only a part thereof. In other words, the light from the light source 18 must not be completely blocked by the counter electrode 8 and the reference electrode 10. As long as these conditions are satisfied, the positions and shapes of the counter electrode 8 and the reference electrode 10 are not particularly limited.

透明隔離板14によって、高分子ゲル電解質層6、電解液保持層12、対極8及び参照極10と、光フィルタ16及び光源18とを隔離する。   The transparent separator 14 separates the polymer gel electrolyte layer 6, the electrolyte solution holding layer 12, the counter electrode 8 and the reference electrode 10, the optical filter 16 and the light source 18.

光フィルタ16は、例えば、光源18が発する光のうち、化合物半導体薄膜の価電子帯の電子を伝導帯へ励起させる所定の波長領域の光だけ(例えば、単色光)を透過させる機能を有する。遮光する光の波長領域に応じて光フィルタ16を交換してもよい。光フィルタ16の交換によって、所定の波長領域に対する化合物半導体薄膜の応答特性を調べることができる。また、光源18が発する光の一部又は全てを遮断する機能を有するシャッターを光フィルタ16と置き換えてもよい。光フィルタ16に隣接する位置に、シャッターを併設してもよい。なお、所定の波長領域の光だけを発光する光源18を選択した場合、評価装置2が光フィルタ16やシャッターを備えなくても、本発明の効果を達成できる。よって、光フィルタ16やシャッターは、本発明において必須ではない。   The optical filter 16 has a function of transmitting, for example, only light (for example, monochromatic light) in a predetermined wavelength region that excites electrons in the valence band of the compound semiconductor thin film to the conduction band among the light emitted from the light source 18. The optical filter 16 may be replaced according to the wavelength region of light to be shielded. By exchanging the optical filter 16, the response characteristic of the compound semiconductor thin film with respect to a predetermined wavelength region can be examined. Further, a shutter having a function of blocking part or all of the light emitted from the light source 18 may be replaced with the optical filter 16. A shutter may be provided at a position adjacent to the optical filter 16. When the light source 18 that emits only light in a predetermined wavelength region is selected, the effects of the present invention can be achieved even if the evaluation device 2 does not include the optical filter 16 or the shutter. Therefore, the optical filter 16 and the shutter are not essential in the present invention.

光源18は、外装体4の内側の上面に設置されている。光源18は、外装体4の内側を向く高分子ゲル電解質層6の表面に向けて光を照射する。光源18は、化合物半導体薄膜の価電子帯の電子を伝導帯へ励起させる所定の波長領域の光を発する。この限りにおいて、光源18は特に限定されない。例えば、光源18として、LEDや平板状の有機ELを用いてもよい。   The light source 18 is installed on the upper surface inside the exterior body 4. The light source 18 irradiates light toward the surface of the polymer gel electrolyte layer 6 facing the inside of the exterior body 4. The light source 18 emits light in a predetermined wavelength region that excites electrons in the valence band of the compound semiconductor thin film to the conduction band. As long as this is the case, the light source 18 is not particularly limited. For example, an LED or a flat organic EL may be used as the light source 18.

対極8は、配線8Lを介してポテンショスタット60に電気的に接続される。参照極10は、配線10Lを介してポテンショスタット60に電気的に接続される。   The counter electrode 8 is electrically connected to the potentiostat 60 via the wiring 8L. The reference electrode 10 is electrically connected to the potentiostat 60 via the wiring 10L.

(化合物半導体薄膜の評価方法)
以下では、本実施形態に係る化合物半導体薄膜の評価方法として、上述の評価装置2を用いた化合物半導体薄膜の評価方法を説明する。
(Method for evaluating compound semiconductor thin film)
Below, the evaluation method of the compound semiconductor thin film using the above-mentioned evaluation apparatus 2 is demonstrated as an evaluation method of the compound semiconductor thin film which concerns on this embodiment.

図4Bに示すように、基板44の表面に、作用極42である導電層が形成されている。作用極42の表面には、化合物半導体薄膜40が形成されている。作用極42は、配線42Lを介して、ポテンショスタット60に電気的に接続されている。なお、基板44は、化合物半導体薄膜40の評価方法において必須ではない。   As shown in FIG. 4B, a conductive layer as the working electrode 42 is formed on the surface of the substrate 44. A compound semiconductor thin film 40 is formed on the surface of the working electrode 42. The working electrode 42 is electrically connected to the potentiostat 60 via the wiring 42L. The substrate 44 is not essential in the method for evaluating the compound semiconductor thin film 40.

[部分検査工程]
部分検査工程では、図4Cに示すように、評価装置2の底面に位置する高分子ゲル電解質層6を化合物半導体薄膜40の表面に密着させる。高分子ゲル電解質層6を化合物半導体薄膜40に密着させると、高分子ゲル電解質層6に浸潤した過剰な電解液が、化合物半導体薄膜40と高分子ゲル電解質層6との界面46に染み出す。なお、高分子ゲル電解質層6の面積は、評価対象である化合物半導体薄膜40の面積より小さい。したがって、高分子ゲル電解質層6は、化合物半導体薄膜40の表面の一部のみを被覆する。
[Partial inspection process]
In the partial inspection process, as shown in FIG. 4C, the polymer gel electrolyte layer 6 located on the bottom surface of the evaluation device 2 is brought into close contact with the surface of the compound semiconductor thin film 40. When the polymer gel electrolyte layer 6 is brought into close contact with the compound semiconductor thin film 40, excess electrolyte infiltrated into the polymer gel electrolyte layer 6 oozes out to the interface 46 between the compound semiconductor thin film 40 and the polymer gel electrolyte layer 6. The area of the polymer gel electrolyte layer 6 is smaller than the area of the compound semiconductor thin film 40 to be evaluated. Therefore, the polymer gel electrolyte layer 6 covers only a part of the surface of the compound semiconductor thin film 40.

図4Cに示すように、高分子ゲル電解質層6は、遮光性の外装体4の内側に閉じ込められている。したがって、外装体4の内側に配置した光源18を発光させると、高分子ゲル電解質層6で被覆された化合物半導体薄膜40に、光源18からの光だけが照射される。つまり、化合物半導体薄膜40に対して、外装体4の外側からの光が遮断される。光源18からの光が化合物半導体薄膜40に照射されると、化合物半導体薄膜40の価電子帯の電子が伝導体へ励起する。そして光源18の発光時に、作用極42と対極8との間に電圧を加え、参照極10に対する作用極42の電位を負の値に調整すると、対極8から化合物半導体薄膜40へ電解液中のイオンが移動し、化合物半導体薄膜40の表面で還元される。その結果、作用極42と対極8との間に電流(光電流)が流れる。例えば、電解液がEu塩の水溶液である場合、対極8から化合物半導体薄膜40へ移動したEu3+が、化合物半導体薄膜40の表面で還元され、Eu2+が生成する。
As shown in FIG. 4C, the polymer gel electrolyte layer 6 is confined inside the light-shielding exterior body 4. Therefore, when the light source 18 disposed inside the exterior body 4 emits light, only the light from the light source 18 is irradiated onto the compound semiconductor thin film 40 covered with the polymer gel electrolyte layer 6. That is, light from the outside of the outer package 4 is blocked from the compound semiconductor thin film 40. When the compound semiconductor thin film 40 is irradiated with light from the light source 18, electrons in the valence band of the compound semiconductor thin film 40 are excited to the conductor. When the light source 18 emits light, a voltage is applied between the working electrode 42 and the counter electrode 8, and the potential of the working electrode 42 with respect to the reference electrode 10 is adjusted to a negative value. Ions move and are reduced on the surface of the compound semiconductor thin film 40. As a result, a current (photocurrent) flows between the working electrode 42 and the counter electrode 8. For example, when the electrolytic solution is an aqueous solution of Eu salt, Eu 3+ moved from the counter electrode 8 to the compound semiconductor thin film 40 is reduced on the surface of the compound semiconductor thin film 40 to generate Eu 2+ .

部分検査工程では、上述の方法により、参照極10に対する作用極42の電位と、その電位に対応する光電流を測定する。より具体的な光電流の測定方法としては、参照極10に対する作用極42の電位を変化させる電位走査法、または参照極10に対する作用極42の電位を一定値に維持する定電位法等が挙げられる。光電流の測定中は、通常の電気化学的測定法のように、光源18を点滅させてもよい。
In the partial inspection step, the potential of the working electrode 42 with respect to the reference electrode 10 and the photocurrent corresponding to the potential are measured by the method described above. More specific photocurrent measurement methods include a potential scanning method in which the potential of the working electrode 42 with respect to the reference electrode 10 is changed, or a constant potential method in which the potential of the working electrode 42 with respect to the reference electrode 10 is maintained at a constant value. It is done. During the measurement of the photocurrent, the light source 18 may be blinked as in a normal electrochemical measurement method.

部分検査工程では、高分子ゲル電解質層6を化合物半導体薄膜40に密着させた状態で、光源を発光させずに作用極42と対極8との間に電圧を加えた時に、参照極10に対する作用極42の電位と、作用極42と対極8との間の電流(暗電流)を測定する。   In the partial inspection process, when the voltage is applied between the working electrode 42 and the counter electrode 8 without causing the light source to emit light while the polymer gel electrolyte layer 6 is in close contact with the compound semiconductor thin film 40, the action on the reference electrode 10 is performed. The potential of the pole 42 and the current (dark current) between the working electrode 42 and the counter electrode 8 are measured.

化合物半導体薄膜40に対する評価装置2の位置を変えながら、以上の部分検査工程を繰り返すことにより、化合物半導体薄膜40の表面の全領域を検査できる。化合物半導体薄膜40に形成されたピンホールは、光電流や暗電流を低下させる。化合物半導体薄膜40に形成された低抵抗部位は、光電流や暗電流を増加させる。低抵抗部位の比表面積が大きい場合、低抵抗部位が二重層容量として暗電流を増加させることがある。つまり、ピンホールや低抵抗部位が存在する領域では、他の領域とは値の異なる光電流や暗電流が測定される。しがって、各部分検査工程において測定した光電流や暗電流を互いに比較することにより、化合物半導体薄膜40において、ピンホールや低抵抗部位等の欠陥が形成された部分を特定できる。   The entire region of the surface of the compound semiconductor thin film 40 can be inspected by repeating the above partial inspection process while changing the position of the evaluation apparatus 2 with respect to the compound semiconductor thin film 40. The pinhole formed in the compound semiconductor thin film 40 reduces photocurrent and dark current. The low resistance portion formed in the compound semiconductor thin film 40 increases photocurrent and dark current. When the specific surface area of the low resistance portion is large, the low resistance portion may increase the dark current as a double layer capacity. That is, in a region where a pinhole or a low resistance region exists, a photocurrent or dark current having a value different from that of other regions is measured. Therefore, by comparing the photocurrent and dark current measured in each partial inspection step with each other, it is possible to specify a portion where a defect such as a pinhole or a low resistance portion is formed in the compound semiconductor thin film 40.

(太陽電池の製造方法)
以下では、p型の化合物半導体薄膜の一種であるCIGS薄膜を光吸収層として備える太陽電池の製造方法について説明する。
(Method for manufacturing solar cell)
Below, the manufacturing method of a solar cell provided with the CIGS thin film which is 1 type of a p-type compound semiconductor thin film as a light absorption layer is demonstrated.

図4B、5に示すように、基板であるソーダライムガラス44上に、導電層(作用極)である裏面電極層42を形成する。裏面電極層42は、通常、Moから構成される金属層である。裏面電極層42の形成方法としては、例えばMoターゲットのスパッタリング等が挙げられる。   As shown in FIGS. 4B and 5, a back electrode layer 42 as a conductive layer (working electrode) is formed on soda lime glass 44 as a substrate. The back electrode layer 42 is usually a metal layer made of Mo. Examples of the method for forming the back electrode layer 42 include sputtering of a Mo target.

ソーダライムガラス44上に裏面電極層42を形成した後、CIGS薄膜40を裏面電極層42上に形成する。CIGS薄膜40の形成方法としては、電解析出法、一段階同時蒸着法(ワンステップ法)、三段階同時蒸着法(NREL法)、固相セレン化法又は気相セレン化法等が挙げられる。CIGS薄膜40の形成工程では、CIGS薄膜40中にピンホールや金属質の低抵抗部位等の欠陥が形成される場合がある。   After the back electrode layer 42 is formed on the soda lime glass 44, the CIGS thin film 40 is formed on the back electrode layer 42. Examples of the method of forming the CIGS thin film 40 include electrolytic deposition, one-step simultaneous vapor deposition (one-step), three-step simultaneous vapor deposition (NREL), solid-phase selenization, or vapor-phase selenization. . In the process of forming the CIGS thin film 40, defects such as pinholes and metallic low-resistance portions may be formed in the CIGS thin film 40 in some cases.

CIGS薄膜40を裏面電極層42上に形成した後、上述した本実施形態に係る化合物半導体薄膜の評価方法を用いて、CIGS薄膜40を検査する。これによりCIGS薄膜40の形成工程においてCIGS薄膜40中に形成された欠陥の箇所を特定できると共に、CIGS薄膜40全体を検査することが可能となる。   After the CIGS thin film 40 is formed on the back electrode layer 42, the CIGS thin film 40 is inspected using the compound semiconductor thin film evaluation method according to this embodiment described above. This makes it possible to specify the location of defects formed in the CIGS thin film 40 in the process of forming the CIGS thin film 40 and to inspect the entire CIGS thin film 40.

CIGS薄膜40を検査した後、CIGS薄膜40上に、別の薄膜(n型化合物半導体薄膜61)を形成し、n型化合物半導体薄膜上に半絶縁層63を形成し、半絶縁層63上に窓層65を形成し、窓層65上に上部電極67を形成する。これにより、太陽電池102が得られる。なお、窓層65上にMgFから構成される反射防止層を形成してもよい。 After the CIGS thin film 40 is inspected, another thin film (n-type compound semiconductor thin film 61) is formed on the CIGS thin film 40, a semi-insulating layer 63 is formed on the n-type compound semiconductor thin film, and the semi-insulating layer 63 is formed on the semi-insulating layer 63. A window layer 65 is formed, and an upper electrode 67 is formed on the window layer 65. Thereby, the solar cell 102 is obtained. Note that an antireflection layer made of MgF 2 may be formed on the window layer 65.

n型化合物半導体薄膜61としては、CdS薄膜、ZnO(SSe)薄膜n型のCIGS薄膜等が挙げられる。CdS薄膜又はZnO(SSe)薄膜は、化学溶液成長法、スパッタ法、蒸着法等によって形成することができる。n型のCIGS薄膜は、上述したp型のCIGS薄膜40と同様の方法で形成することができる。半絶縁層63としては、例えばi−ZnO層等が挙げられる。窓層65としては、例えばZnO:B又はZnO:Al等が挙げられる。上部電極67は例えばAl又はNi等の金属から構成される。半絶縁層63、窓層65及び上部電極67は、例えばスパッタリング又はMOCVD等によって形成することができる。 Examples of the n-type compound semiconductor thin film 61 include a CdS thin film, a ZnO (S 2 , Se) thin film , and an n-type CIGS thin film. The CdS thin film or the ZnO (S 2 , Se) thin film can be formed by a chemical solution growth method, a sputtering method, a vapor deposition method, or the like. The n-type CIGS thin film can be formed by the same method as the p-type CIGS thin film 40 described above. Examples of the semi-insulating layer 63 include an i-ZnO layer. Examples of the window layer 65 include ZnO: B or ZnO: Al. The upper electrode 67 is made of a metal such as Al or Ni. The semi-insulating layer 63, the window layer 65, and the upper electrode 67 can be formed by sputtering or MOCVD, for example.

本実施形態では、上述のように、太陽電池の製造中に化合物半導体薄膜40を形成した時点で欠陥の有無を検査することが可能となる。つまり、本実施形態では、太陽電池の非破壊検査が可能となる。更に換言すれば、本実施形態では、化合物半導体薄膜40を評価するために、完成した太陽電池102を破壊して化合物半導体薄膜40を露出させる必要がない。また、本実施形態では、化合物半導体薄膜40より面積が小さい高分子ゲル電解質層6に覆われた領域に対する部分評価工程を複数回実施して、化合物半導体薄膜全体を検査できる。そのため、本実施形態では、従来の評価方法のように、化合物半導体薄膜全体を収容する大きな電解液槽を必要としない。そのため、本実施形態の評価方法は、太陽電池の工業的な製造の途中で容易に実施することができる。   In the present embodiment, as described above, the presence or absence of defects can be inspected when the compound semiconductor thin film 40 is formed during the production of the solar cell. That is, in this embodiment, a nondestructive inspection of a solar cell is possible. In other words, in this embodiment, in order to evaluate the compound semiconductor thin film 40, it is not necessary to destroy the completed solar cell 102 and expose the compound semiconductor thin film 40. Moreover, in this embodiment, the partial evaluation process with respect to the area | region covered with the polymer gel electrolyte layer 6 whose area is smaller than the compound semiconductor thin film 40 is implemented in multiple times, and the whole compound semiconductor thin film can be test | inspected. Therefore, in this embodiment, unlike the conventional evaluation method, a large electrolytic bath that accommodates the entire compound semiconductor thin film is not required. Therefore, the evaluation method of this embodiment can be easily implemented during the industrial production of solar cells.

本実施形態では、比較的大きな化合物半導体薄膜40を評価する場合であっても、化合物半導体薄膜40の一部を評価対象として評価装置2の外装体4に閉じ込めることにより、評価対象となる領域全体に光を均一に当てることができる。また、本実施形態では、電気化学的な測定により、化合物半導体薄膜全体の平均的な光応答特性のみならず、化合物半導体薄膜の局所的な光応答特性を測定することが可能であるため、化合物半導体薄膜の局所的な欠陥を検出することができる。   In the present embodiment, even when a relatively large compound semiconductor thin film 40 is evaluated, the entire region to be evaluated is confined by enclosing a part of the compound semiconductor thin film 40 as an evaluation target in the exterior body 4 of the evaluation apparatus 2. The light can be evenly applied to. Further, in this embodiment, it is possible to measure not only the average photoresponse characteristics of the entire compound semiconductor thin film but also the local photoresponse characteristics of the compound semiconductor thin film by electrochemical measurement. Local defects in the semiconductor thin film can be detected.

以上、本発明の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although one suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment.

例えば、本発明に係る化合物半導体薄膜の評価方法、及び太陽電池の製造方法は、化合物半導体薄膜がCIGS薄膜ではない場合にも適用することができる。例えば、化合物半導体薄膜がGaAs系半導体薄膜、SiGe系半導体薄膜、CIS系半導体薄膜、CuZnSnS系半導体薄膜、CdTe系半導体薄膜、CdS系半導体薄膜、InP系半導体薄膜、ZnO系半導体薄膜、又はCuAlO系半導体薄膜等である場合にも、上述した本実施形態と同様の効果を達成することができる。 For example, the method for evaluating a compound semiconductor thin film and the method for manufacturing a solar cell according to the present invention can be applied even when the compound semiconductor thin film is not a CIGS thin film. For example, the compound semiconductor thin film is a GaAs based semiconductor thin film, a SiGe based semiconductor thin film, a CIS based semiconductor thin film, a Cu 2 ZnSnS 4 based semiconductor thin film, a CdTe based semiconductor thin film, a CdS based semiconductor thin film, an InP based semiconductor thin film, a ZnO based semiconductor thin film, or Even in the case of a CuAlO 2 -based semiconductor thin film or the like, the same effects as those of the above-described embodiment can be achieved.

また、非親水性の高分子ゲル電解質層及び非水電解液を用いても良い。この場合も、上述した実施形態と同様の効果を達成できる。   A non-hydrophilic polymer gel electrolyte layer and a non-aqueous electrolyte may be used. Also in this case, the same effect as the above-described embodiment can be achieved.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
図4A及び4Bに示すように、ソーダライムガラス44上に、作用極としてMo裏面電極層42を形成した。Mo裏面電極層42の形成にはスパッタリングを用いた。Mo裏面電極層42上に、化合物半導体薄膜としてCu0.75In0.7Ga0.30Se薄膜40を形成した。Cu0.75In0.7Ga0.30Se薄膜40の形成には、電解析出法を用いた。Mo裏面電極層42の表面積は10cm×10cmとした。Cu0.75In0.7Ga0.30Se薄膜40の表面積は、Mo裏面電極層42とほぼ同等とした。このように、ソーダライムガラス基板44、Mo裏面電極層42及びCu0.75In0.7Ga0.30Se薄膜40を備える3つのサンプル1〜3を作製した。
Example 1
As shown in FIGS. 4A and 4B, a Mo back electrode layer 42 was formed on the soda lime glass 44 as a working electrode. Sputtering was used to form the Mo back electrode layer 42. A Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 was formed as a compound semiconductor thin film on the Mo back electrode layer 42. For the formation of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40, electrolytic deposition was used. The surface area of the Mo back electrode layer 42 was 10 cm × 10 cm. The surface area of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 was made substantially the same as that of the Mo back electrode layer 42. Thus, to prepare three samples 1 to 3 comprising a soda lime glass substrate 44, Mo back electrode layer 42 and Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40.

図1〜3に示す評価装置2を用いて、図4A、4B及び4Cに示すように、サンプル1〜3それぞれのCu0.75In0.7Ga0.30Se薄膜40に対して、上述した部分検査工程を実施した。また、それぞれのCu0.75In0.7Ga0.30Se薄膜40の表面全域を網羅するように評価装置2を移動させ、部分検査工程を複数回行った。 Using the evaluation apparatus 2 shown in FIGS. 1 to 3, as shown in FIGS. 4A, 4B and 4C, the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 of each of the samples 1 to 3 The partial inspection process described above was performed. Also, moving the evaluation device 2 so as to cover the entire surface of each of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 was performed several times a partial inspection process.

高分子ゲル電解質層6としては、ポリビニルアルコール(PVA)からなる層を用いた。高分子ゲル電解質層6の寸法は、1cm×1cmとした。高分子ゲル電解質層6には、電解液として、0.2MのEu(NO)水溶液を浸潤させた。また、電解質保持層12として、0.2MのEu(NO)水溶液を用いた。枠状の対極8として、0.6cm×0.6cmのPt電極を用いた。参照極10としては、Ag/AgCl極を用いた。光源18としては、LEDを用いた。 As the polymer gel electrolyte layer 6, a layer made of polyvinyl alcohol (PVA) was used. The dimension of the polymer gel electrolyte layer 6 was 1 cm × 1 cm. The polymer gel electrolyte layer 6 was infiltrated with 0.2 M Eu (NO 3 ) 3 aqueous solution as an electrolytic solution. Further, a 0.2 M Eu (NO 3 ) 3 aqueous solution was used as the electrolyte holding layer 12. A 0.6 cm × 0.6 cm Pt electrode was used as the frame-shaped counter electrode 8. As the reference electrode 10, an Ag / AgCl electrode was used. As the light source 18, an LED was used.

部分検査工程では、定電位法により、Mo裏面電極層42とPt極8との間の光電流密度と、暗電流密度を測定した。定電位法では、光源18を20Hzの周波数で点滅させ、Ag/AgCl極10に対してMo裏面電極層42の電位を−0.3Vに固定し、0.5秒間通電した。   In the partial inspection step, the photocurrent density and dark current density between the Mo back electrode layer 42 and the Pt electrode 8 were measured by a constant potential method. In the constant potential method, the light source 18 was blinked at a frequency of 20 Hz, the potential of the Mo back electrode layer 42 was fixed to −0.3 V with respect to the Ag / AgCl electrode 10, and the current was applied for 0.5 seconds.

サンプル1及び2のCu0.75In0.7Ga0.30Se薄膜40では、全領域にわたって良好で一様な光電流密度と低いレベルの暗電流が測定された。サンプル3のCu0.75In0.7Ga0.30Se薄膜40では、ある領域での部分検査工程において、光応答不良(他の領域に比べて小さい光電流)が確認された。この光応答不良は、Cu0.75In0.7Ga0.30Se薄膜40に形成されたピンホールに起因するものと考えられる。また別の領域では、他の領域に比べて大きな暗電流密度が認められた。この大きな暗電流密度は、Cu0.75In0.7Ga0.30Se薄膜40の表面に形成された低抵抗部位と高分子ゲル電解質層6との界面に発生した電気二重層によって、界面における電気容量が増大したことに起因する、と考えられる。このように、実施例1では、Cu0.75In0.7Ga0.30Se薄膜40の表面全体の光応答特性のみならず、光応答特性の不良箇所とその要因が特定できた。 For the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 of Samples 1 and 2, a good and uniform photocurrent density and a low level of dark current were measured over the entire region. In the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 of Sample 3, photoresponse failure (small photocurrent compared to other regions) was confirmed in the partial inspection process in a certain region. This poor optical response is considered to be caused by pinholes formed in the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40. In other areas, a larger dark current density was observed than in other areas. This large dark current density is caused by the electric double layer generated at the interface between the low resistance portion formed on the surface of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 and the polymer gel electrolyte layer 6. This is thought to be due to the increase in the capacitance at the interface. As described above, in Example 1, not only the optical response characteristics of the entire surface of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 but also the defective part of the optical response characteristics and the cause thereof could be specified.

(比較例1)
比較例1では、実施例1で用いたサンプル1〜3のCu0.75In0.7Ga0.30Se薄膜40を、図6に示す評価装置で個別に評価した。なお、図6に示す評価装置の全体は、室温のもとで暗箱の中に設置されたものである。
(Comparative Example 1)
In Comparative Example 1, the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 of Samples 1 to 3 used in Example 1 was individually evaluated with the evaluation apparatus shown in FIG. In addition, the whole evaluation apparatus shown in FIG. 6 is installed in the dark box under room temperature.

比較例1の評価装置として、10mLの電解液54が満たされた電解質槽52(ビーカー)と、電解質槽52中に配置され、ポテンショガルバノスタット60に電気的に接続された参照極56及び対極58と、を備える装置を用いた。電解液54としては、0.2MのEu(NO)水溶液を用いた。参照極56としては、通常のAg/AgCl電極を用いた。対極58としては、Ptスパイラル電極を用いた。 As an evaluation apparatus of Comparative Example 1, an electrolyte tank 52 (beaker) filled with 10 mL of an electrolyte solution 54, a reference electrode 56 and a counter electrode 58 which are arranged in the electrolyte tank 52 and electrically connected to the potentiogalvanostat 60. The apparatus provided with these was used. As the electrolytic solution 54, a 0.2M Eu (NO 3 ) 3 aqueous solution was used. A normal Ag / AgCl electrode was used as the reference electrode 56. As the counter electrode 58, a Pt spiral electrode was used.

比較例1では、電解液54中に配置させたサンプルが備えるMo裏面電極層42をポテンショスタット60に電気的に接続した。電解液54中に配置させたサンプルが備えるCu0.75In0.7Ga0.30Se薄膜40を光源50に対向させた。光源50としては、LEDを用いた。 In Comparative Example 1, the Mo back electrode layer 42 included in the sample disposed in the electrolytic solution 54 was electrically connected to the potentiostat 60. The Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 included in the sample disposed in the electrolytic solution 54 was opposed to the light source 50. An LED was used as the light source 50.

比較例1では、暗箱の内部において、定電位法により、Mo裏面電極層42とPt極8との間の光電流密度と、暗電流密度を測定した。定電位法では、光源50を20Hzの周波数で点滅させ、Cu0.75In0.7Ga0.30Se薄膜40の表面全体に光を照射した。また定電位法では、Ag/AgCl極56に対してMo裏面電極層42の電位を−0.3Vに固定し、0.5秒間通電した。 In Comparative Example 1, the photocurrent density between the Mo back electrode layer 42 and the Pt electrode 8 and the dark current density were measured by a constant potential method inside the dark box. In the constant potential method, the light source 50 was blinked at a frequency of 20 Hz, and the entire surface of the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 was irradiated with light. In the constant potential method, the potential of the Mo back electrode layer 42 was fixed to −0.3 V with respect to the Ag / AgCl electrode 56, and the current was applied for 0.5 seconds.

比較例1では、サンプル1〜3の光応答特性に有意な差異を確認することができなかった。比較例1では、サンプル1〜3の局所的な光応答特性を評価することができなかった。そのため、比較例1では、サンプル3のCu0.75In0.7Ga0.30Se薄膜40における光応答特性の異常を検出することができなかった。 In Comparative Example 1, a significant difference in the photoresponse characteristics of Samples 1 to 3 could not be confirmed. In Comparative Example 1, the local photoresponse characteristics of Samples 1 to 3 could not be evaluated. Therefore, in Comparative Example 1, it was not possible to detect an abnormality in the light response characteristics in the Cu 0.75 In 0.7 Ga 0.30 Se 2 thin film 40 of Sample 3.

2・・・化合物半導体薄膜の評価装置、4・・・外装体、6・・・高分子ゲル電解質層、8,58・・・対極、10、56・・・参照極、12・・・電解液保持層、14・・透明隔離板、16・・・光フィルタ、18,50・・・光源、20・・・ピン、40・・・化合物半導体薄膜(CIGS薄膜)、42・・・作用極(導電層又はMo裏面電極層)、44・・・基板(ソーダライムガラス)、52・・・電解液槽、54・・・電解液、62・・・絶縁性PTFEテープ、60・・・ポテンショスタット、61・・・n型化合物半導体薄膜、63・・・半絶縁層、65・・・窓層(透明導電層)、67・・・上部電極(取り出し電極)、102・・・太陽電池。
DESCRIPTION OF SYMBOLS 2 ... Evaluation apparatus of a compound semiconductor thin film, 4 ... Exterior body, 6 ... Polymer gel electrolyte layer, 8, 58 ... Counter electrode, 10, 56 ... Reference electrode, 12 ... Electrolysis Liquid retaining layer, 14 ..Transparent separator, 16... Optical filter, 18, 50... Light source, 20... Pin, 40 ... compound semiconductor thin film (CIGS thin film), 42. (Conductive layer or Mo back electrode layer), 44 ... substrate (soda lime glass), 52 ... electrolytic bath, 54 ... electrolytic solution, 62 ... insulating PTFE tape, 60 ... potentiometer Stat, 61 ... n-type compound semiconductor thin film, 63 ... semi-insulating layer, 65 ... window layer (transparent conductive layer), 67 ... upper electrode (extraction electrode), 102 ... solar cell.

Claims (5)

開口部が形成された遮光性の外装体と、
前記開口部の内側に位置し、前記開口部を塞ぐ、平坦な底面を構成する平板状かつ四角形状の透光性の高分子ゲル電解質層と、
前記高分子ゲル電解質層に浸潤した電解液と、
前記外装体の内側に位置し、前記外装体の内側を向く前記高分子ゲル電解質層の表面へ光を均一に照射する光源と、
前記外装体の内側を向く前記高分子ゲル電解質層の表面の一部に接触し、前記高分子ゲル電解質層の四辺に沿い、かつ枠状の対極と、
前記外装体の内側を向く前記高分子ゲル電解質層の表面の一部に接触する参照極と、
前記高分子ゲル電解質層、前記対極および前記参照極と、前記光源を隔離する透明隔離板と、
前記対極及び前記参照極が電気的に接続されたポテンショスタットと、
を備える、
化合物半導体薄膜の評価装置。
A light-shielding exterior body in which an opening is formed;
A flat and square translucent polymer gel electrolyte layer that is located inside the opening and that covers the opening and forms a flat bottom surface;
An electrolyte solution infiltrated into the polymer gel electrolyte layer;
A light source that is located inside the exterior body and uniformly irradiates light onto the surface of the polymer gel electrolyte layer facing the inside of the exterior body;
A part of the surface of the polymer gel electrolyte layer facing the inside of the outer package , and along the four sides of the polymer gel electrolyte layer , and a frame-shaped counter electrode;
A reference electrode in contact with a part of the surface of the polymer gel electrolyte layer facing the inside of the exterior body;
The polymer gel electrolyte layer, the counter electrode and the reference electrode, and a transparent separator for isolating the light source,
A potentiostat in which the counter electrode and the reference electrode are electrically connected;
Comprising
Evaluation equipment for compound semiconductor thin films.
前記電解液が、ユーロピウム塩の水溶液である、
請求項1に記載の化合物半導体薄膜の評価装置。
The electrolyte is an aqueous solution of a europium salt;
The apparatus for evaluating a compound semiconductor thin film according to claim 1.
作用極である導電層上に形成された化合物半導体薄膜の表面の一部のみを、電解液が浸潤した平坦な底面を構成する平板状かつ、四角形状の透光性の高分子ゲル電解質層で覆って、前記化合物半導体薄膜と前記高分子ゲル電解質層とを密着させ、
前記化合物半導体薄膜と反対側を向く前記高分子ゲル電解質層の表面の一部に、前記高分子ゲル電解質層の四辺に沿い、かつ枠状の対極、及び参照極を接触させ、
前記対極及び前記参照極を接触させた前記高分子ゲル電解質層を、遮光性の外装体の内側に閉じ込め、
前記外装体の内側に前記高分子ゲル電解質層、前記対極および前記参照極と透明隔離板によって隔離するように配置した光源を発光させ、均一に光照射しながら、前記作用極と前記対極との間に電圧を加えた時に、前記参照極を基準とする前記作用極の電位と、前記作用極と前記対極との間の電流と、を測定し、
前記光源を発光させずに、前記作用極と前記対極との間に電圧を加えた時に、前記参照極を基準とする前記作用極の電位と、前記作用極と前記対極との間の電流と、を測定する、部分検査工程を備え、
前記部分検査工程を繰り返して前記化合物半導体薄膜全体を検査する、
化合物半導体薄膜の評価方法。
Only a part of the surface of the compound semiconductor thin film formed on the conductive layer, which is the working electrode, is a flat and square translucent polymer gel electrolyte layer that forms a flat bottom surface infiltrated with the electrolyte. Covering and adhering the compound semiconductor thin film and the polymer gel electrolyte layer,
A part of the surface of the polymer gel electrolyte layer facing the opposite side to the compound semiconductor thin film , along the four sides of the polymer gel electrolyte layer , and a frame-shaped counter electrode and a reference electrode are contacted,
The polymer gel electrolyte layer in contact with the counter electrode and the reference electrode is confined inside a light-shielding exterior body,
A light source arranged so as to be separated from the polymer gel electrolyte layer, the counter electrode and the reference electrode by a transparent separator on the inner side of the outer package, and emitting light uniformly, while the working electrode and the counter electrode Measuring a potential of the working electrode relative to the reference electrode and a current between the working electrode and the counter electrode when a voltage is applied between them;
When a voltage is applied between the working electrode and the counter electrode without causing the light source to emit light, a potential of the working electrode with respect to the reference electrode, and a current between the working electrode and the counter electrode, A partial inspection process,
Inspecting the entire compound semiconductor thin film by repeating the partial inspection step,
Evaluation method of compound semiconductor thin film.
前記電解液が、ユーロピウム塩の水溶液である、
請求項3に記載の化合物半導体薄膜の評価方法。
The electrolyte is an aqueous solution of a europium salt;
The method for evaluating a compound semiconductor thin film according to claim 3.
導電層上に化合物半導体薄膜を形成する工程と、
前記化合物半導体薄膜に対して、請求項3又は4に記載の化合物半導体薄膜の評価方法を実施した後、前記化合物半導体薄膜の表面に別の薄膜を形成する工程と、
を備える、
太陽電池の製造方法。
Forming a compound semiconductor thin film on the conductive layer;
A step of forming another thin film on the surface of the compound semiconductor thin film after performing the method for evaluating a compound semiconductor thin film according to claim 3 or 4 on the compound semiconductor thin film;
Comprising
A method for manufacturing a solar cell.
JP2011080657A 2011-03-31 2011-03-31 The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell. Active JP5729093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080657A JP5729093B2 (en) 2011-03-31 2011-03-31 The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080657A JP5729093B2 (en) 2011-03-31 2011-03-31 The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell.

Publications (2)

Publication Number Publication Date
JP2012216670A JP2012216670A (en) 2012-11-08
JP5729093B2 true JP5729093B2 (en) 2015-06-03

Family

ID=47269183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080657A Active JP5729093B2 (en) 2011-03-31 2011-03-31 The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell.

Country Status (1)

Country Link
JP (1) JP5729093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022265943A2 (en) * 2021-06-10 2022-12-22 Arizona Board Of Regents On Behalf Of The University Of Arizona Device and methods for characterization of semiconductor films

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157642A (en) * 1988-12-12 1990-06-18 Hideaki Takahashi Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JPH09309173A (en) * 1996-03-21 1997-12-02 Showa Denko Kk Ion conductive laminated matter, its manufacture, and use thereof
JP2776382B2 (en) * 1996-09-30 1998-07-16 日本電気株式会社 Insulating film pinhole inspection method and apparatus
JP2002063813A (en) * 2000-08-22 2002-02-28 Daiso Co Ltd Gel-form electrolyte made of ether compound, and electrochemical element using the same
JP2003028821A (en) * 2001-07-13 2003-01-29 Mitsubishi Heavy Ind Ltd Lining material measuring cell and lining material diagnostic apparatus
JP5484771B2 (en) * 2008-09-26 2014-05-07 日産自動車株式会社 Positive electrode for lithium ion battery
LU91561B1 (en) * 2009-04-30 2010-11-02 Univ Luxembourg Electrical and opto-electrical characterisation oflarge-area semiconductor devices.

Also Published As

Publication number Publication date
JP2012216670A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
dos Reis Benatto et al. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules
Segbefia et al. Moisture ingress in photovoltaic modules: A review
Zheng et al. Designing nanobowl arrays of mesoporous TiO 2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells
JP4926150B2 (en) Thin film solar cell manufacturing method and thin film solar cell manufacturing apparatus
US6221685B1 (en) Method of producing photovoltaic element
JP5729093B2 (en) The evaluation apparatus of a compound semiconductor thin film, the evaluation method of a compound semiconductor thin film, and the manufacturing method of a solar cell.
Segbefia et al. Moisture induced degradation in field-aged multicrystalline silicon photovoltaic modules
US9245810B2 (en) Electrical and opto-electrical characterization of large-area semiconductor devices
Pern et al. Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures: part III
US20130314093A1 (en) Method and system employing a solution contact for measurement
Pern et al. Thickness effect of Al-doped ZnO window layer on damp-heat stability of CuInGaSe 2 solar cells
Gossla et al. Leakage current and performance loss of thin film solar modules
KR101241714B1 (en) Solar cell and method for repairing the same
US20130249580A1 (en) Apparatus and method for evaluating characteristics of a photovoltaic device
CN104181401A (en) Testing device and testing method for light dark conductivity of HIT exclusive single-layer membrane
WO2011024750A1 (en) Method and device for evaluating solar cells
KR102156113B1 (en) method to determine lateral collection length of charge carriers
Theelen et al. In-situ analysis of the degradation of Cu (In, Ga) Se 2 solar cells
Li et al. Cell metallic contact resistance of field-retrieved PV modules
US20130213814A1 (en) Film inspection method
Kyranaki Corrosion in crystalline silicon photovoltaic modules and the influence on performance
JP2014036163A (en) Method of evaluating thin-film solar cell, and method of manufacturing the same
CN217086584U (en) Thin film solar cell including an intermediate electrode
Segbefia Solar cell degradation: the role of moisture ingress
TW201005976A (en) Method and apparatus for manufacturing solar battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5729093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150