JP5708301B2 - Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode - Google Patents

Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode Download PDF

Info

Publication number
JP5708301B2
JP5708301B2 JP2011143546A JP2011143546A JP5708301B2 JP 5708301 B2 JP5708301 B2 JP 5708301B2 JP 2011143546 A JP2011143546 A JP 2011143546A JP 2011143546 A JP2011143546 A JP 2011143546A JP 5708301 B2 JP5708301 B2 JP 5708301B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
water
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011143546A
Other languages
Japanese (ja)
Other versions
JP2013012357A (en
Inventor
安田 直弘
直弘 安田
智一 佐々木
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2011143546A priority Critical patent/JP5708301B2/en
Publication of JP2013012357A publication Critical patent/JP2013012357A/en
Application granted granted Critical
Publication of JP5708301B2 publication Critical patent/JP5708301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、例えばリチウムイオン二次電池等の二次電池に設けられる二次電池用負極、当該二次電池用負極を製造するための負極用スラリー組成物、当該二次電池用負極の製造方法、並びに当該二次電池用負極を備えた二次電池に関する。   The present invention relates to, for example, a negative electrode for a secondary battery provided in a secondary battery such as a lithium ion secondary battery, a slurry composition for negative electrode for producing the negative electrode for secondary battery, and a method for producing the negative electrode for secondary battery. The present invention also relates to a secondary battery including the secondary battery negative electrode.

リチウムイオン二次電池等の二次電池の性能の向上のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、水や有機溶媒等の溶媒にバインダー(結着剤)となる重合体を分散または溶解させた液状の組成物に、電極活物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー組成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。電極については、電極活物質及び集電体そのものの検討の他、電極活物質などを集電体に結着するためのバインダー、並びに各種の添加剤の検討も行われている(例えば特許文献1〜6参照)。   In order to improve the performance of secondary batteries such as lithium ion secondary batteries, improvement of electrodes, electrolytic solutions and other battery members has been studied. Of these, the electrode is usually a liquid composition in which a polymer serving as a binder (binder) is dispersed or dissolved in a solvent such as water or an organic solvent, an electrode active material, and optionally conductive carbon or the like. The conductive agent is mixed to obtain a slurry composition, and this slurry composition is applied to a current collector and dried. Regarding the electrode, in addition to studying the electrode active material and the current collector itself, studies have been made on binders and various additives for binding the electrode active material and the like to the current collector (for example, Patent Document 1). To 6).

例えば、特許文献1や特許文献2には、炭素材活物質及び水分散エマルジョン樹脂と水溶性高分子から構成される結合剤を含む非水系二次電池の負極用スラリーが記載されている。水溶性高分子としては、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸ナトリウムなどが記載されている。これによれば、電池の塗膜強度や塗膜密度が良好になる旨記載されている。   For example, Patent Document 1 and Patent Document 2 describe a slurry for a negative electrode of a non-aqueous secondary battery including a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer. As the water-soluble polymer, polyvinyl alcohol, carboxymethyl cellulose, sodium polyacrylate, and the like are described. According to this, it is described that the coating film strength and the coating film density of the battery are improved.

特許文献3には、フッ素含有不飽和単量体0.02〜13重量%、脂肪族共役ジエン系単量体10〜38重量%、エチレン系不飽和カルボン酸単量体0.1〜10重量%およびこれらと共重合可能な他の単量体49〜88.88重量%から構成される単量体を乳化重合して得られた共重合体ラテックスからなる二次電池電極用バインダーが記載されている。これによれば、配合安定性、耐ブロッキング性、耐粉落ち適性、結着力に優れる旨記載されている。   Patent Document 3 includes 0.02 to 13% by weight of a fluorine-containing unsaturated monomer, 10 to 38% by weight of an aliphatic conjugated diene monomer, and 0.1 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer. And a binder for a secondary battery electrode comprising a copolymer latex obtained by emulsion polymerization of a monomer composed of 49 to 88.88% by weight of other monomers copolymerizable therewith. ing. According to this, it is described that it is excellent in blending stability, blocking resistance, suitability for dust removal, and binding power.

さらに、特許文献4には、(メタ)アクリル酸フッ化アルキルなどのフッ素原子含有単量体由来の単量体単位を有する重合体からなる二次電池電極用バインダーが記載されている。そして、塗布性を向上させたり、充放電特性を向上させるために、セルロース系ポリマー、ポリアクリル酸塩などを加えることができる旨記載されている。これによれば、活物質との結着性が持続的に良好な電極が得られる旨記載されている。   Furthermore, Patent Document 4 describes a secondary battery electrode binder made of a polymer having a monomer unit derived from a fluorine atom-containing monomer such as alkyl fluoride (meth) acrylate. And it describes that a cellulose polymer, polyacrylate, etc. can be added in order to improve applicability | paintability or to improve charging / discharging characteristics. According to this, it is described that an electrode having a good binding property with the active material can be obtained.

特許文献5には、二次電池電極のバインダーとして、リン等の各種の窒素族及びカルコゲン元素を含む基を有する重合体を用いることが記載されている。   Patent Document 5 describes that a polymer having a group including various nitrogen groups such as phosphorus and a chalcogen element is used as a binder of a secondary battery electrode.

特開2003−308841号公報JP 2003-308441 A 特開2003−217573号公報JP 2003-217573 A 特開2010−146870号公報JP 2010-146870 A 特開2002−42819号公報JP 2002-42819 A 国際公開第2006/101182号International Publication No. 2006/101182

二次電池においては、充放電に伴って、負極に含まれる電極活物質の粒子が膨張及び収縮することがある。このような膨張及び収縮が繰り返されると、次第に負極が膨らみ、二次電池が変形する可能性がある。そこで、前記のような負極の膨らみを抑制しうる技術の開発が望まれる。   In the secondary battery, the particles of the electrode active material contained in the negative electrode may expand and contract with charge / discharge. When such expansion and contraction are repeated, the negative electrode gradually expands and the secondary battery may be deformed. Therefore, development of a technique capable of suppressing the swelling of the negative electrode as described above is desired.

また、従来の二次電池には、例えば60℃という高温環境や、−25℃という低温環境で保存すると容量が低下するものがあった。そこで、二次電池をこのような環境で保存した場合でも当該二次電池の容量の低下を抑制しうる技術の開発も望まれている。
さらに、従来の二次電池においては、高温環境での充放電の繰り返しによる容量の低下を、より少なくする技術の開発も望まれている。また、上記の性能を向上させるため、二次電池用の電極の製造において、集電体と、集電体上に形成された電極活物質層との密着性を高めることが望まれ、且つ、均質な製品を効率的に製造することも望まれている。
Further, some of the conventional secondary batteries have a reduced capacity when stored in a high temperature environment of 60 ° C. or a low temperature environment of −25 ° C., for example. Therefore, it is desired to develop a technology that can suppress a decrease in the capacity of the secondary battery even when the secondary battery is stored in such an environment.
Furthermore, in the conventional secondary battery, it is desired to develop a technique for reducing a decrease in capacity due to repeated charge and discharge in a high temperature environment. Further, in order to improve the above performance, it is desired to improve the adhesion between the current collector and the electrode active material layer formed on the current collector in the production of an electrode for a secondary battery, and It is also desirable to efficiently produce a homogeneous product.

従って、本発明の目的は、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量が低下し難く、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる二次電池用負極、前記の二次電池用負極を効率的に製造できる負極用スラリー組成物及び二次電池用負極の製造方法、並びに、前記の二次電池用負極を備えた二次電池を提供することにある。   Therefore, the object of the present invention is to suppress the swelling of the negative electrode associated with charging / discharging, the capacity is difficult to decrease when stored in either a high temperature environment or a low temperature environment, and the capacity is decreased due to repeated charging / discharging in a high temperature environment. A negative electrode for a secondary battery capable of realizing a small number of secondary batteries, a slurry composition for a negative electrode capable of efficiently producing the negative electrode for a secondary battery, a method for producing a negative electrode for a secondary battery, and the negative electrode for a secondary battery It is providing the secondary battery provided with.

本発明者は前記の課題を解決するべく検討した結果、二次電池用負極の電極活物質層に、バインダーに加えて添加する重合体として、スルホン酸基含有単量体単位と、リン酸基含有単量体単位とをそれぞれ特定の比率で含む水溶性重合体を添加することにより、上記課題を解決しうることを見出し、本発明を完成させた。
すなわち、本発明によれば、以下の〔1〕〜〔7〕が提供される。
As a result of studying to solve the above problems, the present inventor, as a polymer added to the electrode active material layer of the secondary battery negative electrode in addition to the binder, a sulfonic acid group-containing monomer unit, and a phosphate group The present inventors have found that the above-mentioned problems can be solved by adding a water-soluble polymer containing a monomer unit in a specific ratio.
That is, according to the present invention, the following [1] to [7] are provided.

〔1〕 負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
前記水溶性重合体が、スルホン酸基含有単量体単位0.5重量%〜20重量%、及びリン酸基含有単量体単位5〜30重量%を含む共重合体である、二次電池用負極。
〔2〕 前記リン酸基含有単量体が、リン酸基含有(メタ)アクリル酸エステルである、〔1〕に記載の二次電池用負極。
〔3〕 前記スルホン酸基含有単量体が、アミド基とスルホン酸基と重合性基とを含有する単量体、またはスルホン酸基及び重合性基を有しそれら以外に官能基をもたない単量体である、〔1〕又は〔2〕に記載の二次電池用負極。
〔4〕 前記水溶性重合体の1%水溶液粘度が、0.1〜20000mPa・sである、〔1〕〜〔3〕のいずれか1項に記載の二次電池用負極。
〔5〕 正極、負極、電解液、及びセパレーターを備える二次電池であって、
前記負極が、〔1〕〜〔4〕のいずれか一項に記載の二次電池用負極である、二次電池。
〔6〕 負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
前記水溶性重合体が、スルホン酸基含有単量体単位0.5重量%〜20重量%、及びリン酸基含有単量体単位5〜30重量%を含む共重合体である、負極用スラリー組成物。
〔7〕 〔6〕記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
[1] A negative electrode for a secondary battery comprising a negative electrode active material, a binder and a water-soluble polymer,
A secondary battery in which the water-soluble polymer is a copolymer containing 0.5% by weight to 20% by weight of a sulfonic acid group-containing monomer unit and 5-30% by weight of a phosphate group-containing monomer unit. Negative electrode.
[2] The negative electrode for a secondary battery according to [1], wherein the phosphate group-containing monomer is a phosphate group-containing (meth) acrylic ester.
[3] The sulfonic acid group-containing monomer is a monomer containing an amide group, a sulfonic acid group, and a polymerizable group, or has a sulfonic acid group and a polymerizable group, and has a functional group in addition thereto. The negative electrode for a secondary battery according to [1] or [2], which is a monomer that is not present.
[4] The negative electrode for a secondary battery according to any one of [1] to [3], wherein the 1% aqueous solution viscosity of the water-soluble polymer is 0.1 to 20000 mPa · s.
[5] A secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator,
The secondary battery whose said negative electrode is a negative electrode for secondary batteries as described in any one of [1]-[4].
[6] A negative electrode slurry composition comprising a negative electrode active material, a binder, a water-soluble polymer and water,
Slurry for negative electrode, wherein the water-soluble polymer is a copolymer containing 0.5% to 20% by weight of sulfonic acid group-containing monomer units and 5 to 30% by weight of phosphoric acid group-containing monomer units. Composition.
[7] A method for producing a negative electrode for a secondary battery, comprising applying the slurry composition for a negative electrode according to [6] to a surface of a current collector and drying.

本発明の二次電池用負極によれば、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難くすることができ、且つ、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる。さらに、本発明の二次電池用負極は、ピンホールの発生量が少なく且つ集電体と負極活物質層との密着性が高いものとして容易に製造し得るので、上記の性能を満たしながら容易に製造しうる負極である。
本発明の二次電池は、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難く、且つ高温環境での充放電の繰り返しによる容量の低下が少ない。
本発明の負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。特に、スラリーの安定性が高いため、スラリー中に分散している粒子の偏在などの発生が少なく、その結果、性能の高い電池を容易に製造することができる。
本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。
According to the negative electrode for a secondary battery of the present invention, swelling of the negative electrode accompanying charge / discharge can be suppressed, the capacity can be made difficult to decrease when stored in either a high temperature environment or a low temperature environment, and in a high temperature environment. Thus, a secondary battery can be realized in which the capacity is less reduced by repeated charging and discharging. Furthermore, the negative electrode for a secondary battery of the present invention can be easily manufactured with a small amount of pinholes and high adhesion between the current collector and the negative electrode active material layer. It is a negative electrode which can be manufactured.
The secondary battery of the present invention can suppress the swelling of the negative electrode accompanying charging / discharging, hardly reduces the capacity when stored in either a high temperature environment or a low temperature environment, and the capacity decreases due to repeated charging / discharging in a high temperature environment. Less is.
If the slurry composition for negative electrodes of this invention is used, the negative electrode for secondary batteries of this invention can be manufactured. In particular, since the slurry has high stability, there is little occurrence of uneven distribution of particles dispersed in the slurry, and as a result, a battery with high performance can be easily manufactured.
According to the method for producing a negative electrode for a secondary battery of the present invention, the negative electrode for a secondary battery of the present invention can be produced.

以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。なお、本明細書において、「(メタ)アクリル」は「アクリル」又は「メタクリル」を意味する。また、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。さらに、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。   Hereinafter, the present invention will be described in detail with reference to embodiments and examples, but the present invention is not limited to the following embodiments and examples, and the claims of the present invention and equivalents thereof. Any change can be made without departing from the scope described above. In the present specification, “(meth) acryl” means “acryl” or “methacryl”. Further, “positive electrode active material” means an electrode active material for positive electrode, and “negative electrode active material” means an electrode active material for negative electrode. Furthermore, the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode, and the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.

[1.二次電池用負極]
本発明の二次電池用負極(以下、適宜「本発明の負極」という。)は、負極活物質、バインダー及び水溶性重合体を含む。通常、本発明の負極は、集電体と、前記集電体の表面に形成された負極活物質層とを備え、電極活物質層が前記の負極活物質、バインダー及び水溶性重合体を含む。
[1. Negative electrode for secondary battery]
The negative electrode for a secondary battery of the present invention (hereinafter appropriately referred to as “the negative electrode of the present invention”) includes a negative electrode active material, a binder, and a water-soluble polymer. Usually, the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on a surface of the current collector, and the electrode active material layer includes the negative electrode active material, a binder, and a water-soluble polymer. .

[1−1.負極活物質]
負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
[1-1. Negative electrode active material]
The negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of the secondary battery.
For example, when the secondary battery of the present invention is a lithium ion secondary battery, a material that can occlude and release lithium is usually used as the negative electrode active material. Examples of the material that can occlude and release lithium include a metal-based active material, a carbon-based active material, and an active material that combines these materials.

金属系活物質とは、金属を含む活物質であり、通常は、リチウムの挿入(ドープともいう)が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上である活物質をいう。なお、当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。   The metal-based active material is an active material containing a metal, and usually contains an element capable of inserting lithium (also referred to as dope) in the structure, and the theoretical electric capacity per weight when lithium is inserted is 500 mAh. An active material that is greater than / g. The upper limit of the theoretical electric capacity is not particularly limited, but may be, for example, 5000 mAh / g or less. As the metal-based active material, for example, lithium metal, a single metal that forms a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.

リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Ti等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素(Si)、スズ(Sn)、鉛(Pb)及びチタン(Ti)が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素(Si)、スズ(Sn)又はチタン(Ti)の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。   Examples of the single metal forming the lithium alloy include single metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, and Ti. Can be mentioned. Moreover, as a single metal alloy which forms a lithium alloy, the compound containing the said single metal is mentioned, for example. Among these, silicon (Si), tin (Sn), lead (Pb), and titanium (Ti) are preferable, and silicon, tin, and titanium are more preferable. Accordingly, a single metal of silicon (Si), tin (Sn), or titanium (Ti), an alloy containing these single metals, or a compound of these metals is preferable.

金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiO(0<x≦3、0<y≦5)、Si、SiO、SiO(0<x≦2)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられる。中でも、低電位でリチウムの挿入及び脱離(脱ドープともいう)が可能なSiOが好ましい。例えば、SiOは、ケイ素を含む高分子材料を焼成して得ることができる。SiOの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。 The metallic active material may further contain one or more nonmetallic elements. For example, SiC, SiO x C y (0 <x ≦ 3, 0 <y ≦ 5), Si 3 N 4 , Si 2 N 2 O, SiO x (0 <x ≦ 2), SnO x (0 <x ≦ 2), LiSiO, LiSnO and the like. Among these, SiO x C y capable of inserting and detaching lithium (also referred to as dedoping) at a low potential is preferable. For example, SiO x C y can be obtained by firing a polymer material containing silicon. Among SiO x C y , the range of 0.8 ≦ x ≦ 3 and 2 ≦ y ≦ 4 is preferably used in view of the balance between capacity and cycle characteristics.

リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複合酸化物が用いられる。   Lithium metal, elemental metal forming lithium alloy and oxides, sulfides, nitrides, silicides, carbides and phosphides of the alloys include oxides, sulfides, nitrides and silicides of lithium-insertable elements Products, carbides, phosphides and the like. Among these, an oxide is particularly preferable. For example, a lithium-containing metal composite oxide containing an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, and vanadium oxide and a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .

リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であり、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる元素を表す。)、LiMnで示されるリチウムマンガン複合酸化物(x、y、z及びMは、リチウムチタン複合酸化物における定義と同様である。)が挙げられる。中でも、Li4/3Ti5/3、LiTi、Li4/5Ti11/5、Li4/3Mn5/3が好ましい。 As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, 0 ≦ z ≦ 1.6, and M represents an element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.), Li x Mn y M A lithium manganese composite oxide represented by z O 4 (x, y, z and M are the same as defined in the lithium titanium composite oxide). Among these, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 , Li 4/5 Ti 11/5 O 4 , and Li 4/3 Mn 5/3 O 4 are preferable.

これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する活物質は充放電に伴って大きく(例えば5倍程度に)膨張及び収縮するが、本発明の負極においては、ケイ素を含有する活物質の膨張及び収縮による電池性能の低下を、本発明に係る水溶性重合体によって防ぐことができる。   Among these, as the metal-based active material, an active material containing silicon is preferable. By using an active material containing silicon, the electric capacity of the secondary battery can be increased. In general, an active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge. However, in the negative electrode of the present invention, battery performance due to expansion and contraction of an active material containing silicon is increased. The decrease can be prevented by the water-soluble polymer according to the present invention.

ケイ素を含有する活物質の中でも、SiC及びSiOが好ましく、SiOがさらに好ましい。これらのSi及びCを組み合わせて含む活物質においては、高電位でSi(ケイ素)へのLiの挿入及び脱離が起こり、低電位でC(炭素)へのLiの挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。 Of the active materials containing silicon, SiC and SiO x C y are preferable, and SiO x C y is more preferable. In an active material containing a combination of these Si and C, when Li is inserted into and desorbed from Si (silicon) at a high potential, and Li is inserted into and desorbed from C (carbon) at a low potential Guessed. For this reason, since expansion and contraction are suppressed as compared with other metal-based active materials, the charge / discharge cycle characteristics of the secondary battery can be improved.

炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、例えば炭素質材料と黒鉛質材料が挙げられる。
炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。なお、前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。
The carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and examples thereof include a carbonaceous material and a graphite material.
The carbonaceous material is generally a carbon material with low graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower. In addition, although the minimum of the said heat processing is not specifically limited, For example, it is good also as 500 degreeC or more.

炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。   Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon, and the like.

易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとは、ピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、又は(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。   Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like. MCMB is carbon fine particles obtained by separating and extracting mesophase microspheres generated in the process of heating pitches at around 400 ° C. The mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres. Pyrolytic vapor-grown carbon fibers are (1) a method of pyrolyzing acrylic polymer fibers, etc., (2) a method of spinning by spinning a pitch, or (3) using nanoparticles such as iron as a catalyst. Carbon fiber obtained by catalytic vapor deposition (catalytic CVD) method in which hydrocarbons are vapor-phase pyrolyzed.

難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。   Examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.

黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。なお、前記の熱処理温度の上限は、特に限定されないが、例えば5000℃以下としてもよい。   The graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher. In addition, although the upper limit of the said heat processing temperature is not specifically limited, For example, it is good also as 5000 degrees C or less.

黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。   Examples of the graphite material include natural graphite and artificial graphite. Examples of artificial graphite include artificial graphite mainly heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated mesophase pitch-based carbon fiber at 2000 ° C. or higher, etc. Is mentioned.

前記の炭素系活物質の中でも、炭素質材料が好ましい。炭素質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。   Among the carbon-based active materials, a carbonaceous material is preferable. By using the carbonaceous material, the resistance of the secondary battery can be reduced, and a secondary battery having excellent input / output characteristics can be manufactured.

なお、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   In addition, a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

負極活物質の好ましい態様として、金属系活物質及び炭素系活物質を組み合わせた活物質を挙げることができる。この場合、特に金属系活物質としてのSiOCと、炭素系活物質としての黒鉛質材料との組み合わせを、特に好ましい態様として挙げることができる。この場合のSiOCと黒鉛質材料との割合は、SiOC/黒鉛=5/95〜50/50重量比とすることができる。かかる割合の組み合わせとすることにより、電池容量を大きくすることができ、且つ膨張収縮が比較的少ないためサイクル特性が損なわれないという利点がある。   As a preferable embodiment of the negative electrode active material, an active material obtained by combining a metal-based active material and a carbon-based active material can be given. In this case, in particular, a combination of SiOC as a metal-based active material and a graphite material as a carbon-based active material can be mentioned as a particularly preferable embodiment. In this case, the ratio between SiOC and the graphite material can be SiOC / graphite = 5/95 to 50/50 weight ratio. By combining such ratios, there is an advantage that the battery capacity can be increased and the cycle characteristics are not impaired because the expansion and contraction is relatively small.

負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。   The negative electrode active material is preferably sized in the form of particles. When the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.

負極活物質の粒子の体積平均粒子径は、二次電池の他の構成要件との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。   The volume average particle diameter of the particles of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the secondary battery, and is usually 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and usually 100 μm or less. , Preferably 50 μm or less, more preferably 20 μm or less.

負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは30μm以下である。なお、50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。   The 50% cumulative volume diameter of the particles of the negative electrode active material is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, preferably from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. 30 μm or less. The 50% cumulative volume diameter can be obtained as a particle diameter at which the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50% by measuring the particle size distribution by a laser diffraction method.

負極活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。 The tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.

負極活物質の比表面積は、出力密度向上の観点から、通常2m/g以上、好ましくは3m/g以上、より好ましくは5m/g以上であり、通常20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下である。なお、負極活物質の比表面積は、例えばBET法により測定できる。 The specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less. In addition, the specific surface area of a negative electrode active material can be measured by BET method, for example.

[1−2.バインダー]
バインダーは、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、バインダーが負極活物質を結着することにより、負極活物質層からの負極活物質の脱離を防いでいる。また、バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。
[1-2. binder]
The binder is a component that binds the electrode active material to the surface of the current collector in the negative electrode. In the negative electrode of the present invention, the binder binds the negative electrode active material, thereby preventing the negative electrode active material from being detached from the negative electrode active material layer. Further, the binder usually binds particles other than the negative electrode active material contained in the negative electrode active material layer, and also plays a role of maintaining the strength of the negative electrode active material layer.

バインダーとしては、負極活物質を保持する性能に優れ、集電体に対する密着性が高いものを用いることが好ましい。通常、バインダーとしては重合体を用いる。この際、前記の重合体は、単独重合体でもよく、共重合体でもよい。中でも、バインダーとしての重合体は、脂肪族共役ジエン系単量体単位を含む重合体が好ましい。脂肪族共役ジエン系単量体単位は剛性が低く柔軟な繰り返し単位であるので、脂肪族共役ジエン系単量体単位を含む重合体をバインダーとして用いることにより、負極活物質層と集電体との十分な密着性を得ることができる。   As the binder, it is preferable to use a binder that is excellent in performance of holding the negative electrode active material and has high adhesion to the current collector. Usually, a polymer is used as the binder. In this case, the polymer may be a homopolymer or a copolymer. Among them, the polymer as the binder is preferably a polymer containing an aliphatic conjugated diene monomer unit. Since the aliphatic conjugated diene monomer unit is a low-rigidity and flexible repeating unit, by using a polymer containing the aliphatic conjugated diene monomer unit as a binder, the negative electrode active material layer, the current collector, Sufficient adhesion can be obtained.

脂肪族共役ジエン系単量体単位は、脂肪族共役ジエン系単量体を重合して得られる繰り返し単位である。脂肪族共役ジエン系単量体の例を挙げると、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類、などが挙げられる。中でも、1,3−ブタジエンが好ましい。
なお、脂肪族共役ジエン系単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、脂肪族共役ジエン系単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
The aliphatic conjugated diene monomer unit is a repeating unit obtained by polymerizing an aliphatic conjugated diene monomer. Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-butadiene. Substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Of these, 1,3-butadiene is preferred.
In addition, one kind of aliphatic conjugated diene monomer may be used alone, or two or more kinds may be used in combination at any ratio. Therefore, the polymer as the binder may contain only one type of aliphatic conjugated diene monomer unit, or may contain two or more types in combination at any ratio.

バインダーとしての重合体100重量部において、脂肪族共役ジエン系単量体単位の比率は、通常20重量部以上、好ましくは30重量部以上であり、通常70重量部以下、好ましくは60重量部以下、より好ましくは55重量%以下である。脂肪族共役ジエン系単量体単位の比率を前記範囲の下限値以上にすることによって、負極の柔軟性を高めることができ、また、上限値以下とすることによって負極活物質層と集電体との十分な密着性を得たり、電極の耐電解液性を高めたりすることができる。   In 100 parts by weight of the polymer as the binder, the ratio of the aliphatic conjugated diene monomer unit is usually 20 parts by weight or more, preferably 30 parts by weight or more, and usually 70 parts by weight or less, preferably 60 parts by weight or less. More preferably, it is 55% by weight or less. By setting the ratio of the aliphatic conjugated diene monomer unit to the lower limit value or more of the above range, the flexibility of the negative electrode can be increased, and by setting the ratio to the upper limit value or less, the negative electrode active material layer and the current collector It is possible to obtain sufficient adhesion to the electrode and to improve the resistance of the electrode to electrolyte.

バインダーとしての重合体は、芳香族ビニル系単量体単位を含むことが好ましい。芳香族ビニル系単量体単位は安定であり、当該芳香族ビニル系単量体単位を含む重合体の電解液への溶解性を低下させて負極活物質層を安定化させることができる。   The polymer as the binder preferably contains an aromatic vinyl monomer unit. The aromatic vinyl monomer unit is stable, and the negative electrode active material layer can be stabilized by reducing the solubility of the polymer containing the aromatic vinyl monomer unit in the electrolytic solution.

芳香族ビニル系単量体単位は、芳香族ビニル系単量体を重合して得られる繰り返し単位である。芳香族ビニル系単量体の例を挙げると、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられる。中でも、スチレンが好ましい。したがって、バインダーとしての重合体がブタジエン等の脂肪族共役ジエン系単量体単位を含むことが好ましいことと組み合わせると、バインダーとしての重合体は、脂肪族共役ジエン系単量体単位及び芳香族ビニル系単量体単位を含む重合体であることが好ましく、例えばスチレン・ブタジエン共重合体が好ましい。
なお、芳香族ビニル系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、芳香族ビニル系単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
The aromatic vinyl monomer unit is a repeating unit obtained by polymerizing an aromatic vinyl monomer. Examples of aromatic vinyl monomers include styrene, α-methylstyrene, vinyl toluene, divinyl benzene and the like. Of these, styrene is preferred. Therefore, when combined with the fact that the polymer as the binder preferably contains an aliphatic conjugated diene monomer unit such as butadiene, the polymer as the binder is an aliphatic conjugated diene monomer unit and an aromatic vinyl. A polymer containing a monomer unit is preferred, and for example, a styrene / butadiene copolymer is preferred.
In addition, an aromatic vinyl-type monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as a binder may contain only one type of aromatic vinyl monomer, or may contain two or more types in combination at any ratio.

芳香族ビニル系単量体を用いる場合、バインダーとしての重合体には、残留単量体として未反応の脂肪族共役ジエン系単量体及び未反応の芳香族ビニル系単量体が含まれることがある。その場合、バインダーとしての重合体が含む未反応の脂肪族共役ジエン系単量体の量は、好ましくは50ppm以下、より好ましくは10ppm以下であり、バインダーとしての重合体が含む未反応の芳香族ビニル系単量体の量は、好ましくは1000ppm以下、より好ましくは200ppm以下である。バインダーとしての重合体が含む脂肪族共役ジエン系単量体の量を前記範囲に抑えると、本発明に係る負極用スラリー組成物を集電体の表面に塗布及び乾燥させて負極を製造する際に、負極の表面に発泡による荒れが生じたり、臭気による環境負荷を引き起こしたりすることを防止できる。また、バインダーとしての重合体が含む芳香族ビニル系単量体の量を前記範囲に抑えると、乾燥条件に応じて生じる環境負荷及び負極表面の荒れを抑制でき、更にはバインダーとしての重合体の耐電解液性を高めることができる。   When an aromatic vinyl monomer is used, the polymer as a binder includes an unreacted aliphatic conjugated diene monomer and an unreacted aromatic vinyl monomer as residual monomers. There is. In that case, the amount of the unreacted aliphatic conjugated diene monomer contained in the polymer as the binder is preferably 50 ppm or less, more preferably 10 ppm or less, and the unreacted aromatic contained in the polymer as the binder. The amount of the vinyl monomer is preferably 1000 ppm or less, more preferably 200 ppm or less. When the amount of the aliphatic conjugated diene monomer contained in the polymer as a binder is kept within the above range, the negative electrode slurry composition according to the present invention is applied to the surface of the current collector and dried to produce a negative electrode. Furthermore, it is possible to prevent the surface of the negative electrode from being roughened by foaming or causing an environmental load due to odor. Moreover, when the amount of the aromatic vinyl monomer contained in the polymer as the binder is kept within the above range, it is possible to suppress the environmental load and the roughness of the negative electrode surface that occur according to the drying conditions, and further, the polymer as the binder. Electrolytic solution resistance can be improved.

バインダーとしての重合体100重量部において、芳香族ビニル系単量体単位の比率は、通常30重量部以上、好ましくは35重量部以上であり、通常79.5重量部以下、好ましくは69重量部以下である。芳香族ビニル系単量体単位の比率を前記範囲の下限値以上とすることによって、本発明の二次電池用負極の耐電解液性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリー組成物を集電体に塗布した際に負極活物質層と集電体との十分な密着性を得ることができる。   In 100 parts by weight of the polymer as the binder, the ratio of the aromatic vinyl monomer units is usually 30 parts by weight or more, preferably 35 parts by weight or more, and usually 79.5 parts by weight or less, preferably 69 parts by weight. It is as follows. By setting the ratio of the aromatic vinyl monomer unit to the lower limit value or more of the above range, the electrolytic solution resistance of the secondary battery negative electrode of the present invention can be improved, and by setting the ratio to the upper limit value or less. When the negative electrode slurry composition according to the present invention is applied to a current collector, sufficient adhesion between the negative electrode active material layer and the current collector can be obtained.

バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位は、負極活物質及び集電体への吸着性を高めるカルボキシル基(−COOH基)を含み、強度が高い繰り返し単位であるので、負極活物質層からの負極活物質の脱離を安定して防止でき、また、負極の強度を向上させることができる。   The polymer as the binder preferably contains an ethylenically unsaturated carboxylic acid monomer unit. The ethylenically unsaturated carboxylic acid monomer unit includes a carboxyl group (—COOH group) that enhances the adsorptivity to the negative electrode active material and the current collector, and is a repeating unit having high strength. Desorption of the negative electrode active material can be stably prevented, and the strength of the negative electrode can be improved.

エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。エチレン性不飽和カルボン酸単量体の例を挙げると、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物等が挙げられる。中でも、本発明に係る負極用スラリー組成物の安定性の観点から、アクリル酸、メタクリル酸及びイタコン酸からなる群より選ばれる単量体を、単独又は組み合わせて用いることが好ましい。
なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
The ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer. Examples of the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof. Especially, it is preferable to use the monomer chosen from the group which consists of acrylic acid, methacrylic acid, and itaconic acid individually or in combination from a stability viewpoint of the slurry composition for negative electrodes which concerns on this invention.
In addition, an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.

バインダーとしての重合体100重量部において、エチレン性不飽和カルボン酸単量体単位の比率は、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常10重量部以下、好ましくは8重量部以下、より好ましくは7重量部以下である。エチレン性不飽和カルボン酸単量体単位の比率を前記範囲の下限値以上とすることによって、本発明に係る負極用スラリー組成物の安定性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリーの粘度が過度に高くなることを防止して取り扱い易くすることができる。   In 100 parts by weight of the polymer as the binder, the ratio of the ethylenically unsaturated carboxylic acid monomer units is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more. It is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 7 parts by weight or less. By setting the ratio of the ethylenically unsaturated carboxylic acid monomer unit to be equal to or higher than the lower limit of the above range, the stability of the slurry composition for negative electrode according to the present invention can be increased, and the lower limit is set to the upper limit. Thus, the viscosity of the negative electrode slurry according to the present invention can be prevented from becoming excessively high, and can be easily handled.

バインダーとしての重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体としては、例えば、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The polymer as the binder may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired. Examples of the monomer corresponding to the arbitrary repeating unit include a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, an unsaturated monomer containing a hydroxyalkyl group, and an unsaturated carboxylic acid. And acid amide monomers. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリルなどが挙げられる。中でも、アクリロニトリル、メタクリロニトリルが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile and the like. Of these, acrylonitrile and methacrylonitrile are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2−エチルヘキシルアクリレート等が挙げられる。中でも、メチルメタクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nate, monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like. Of these, methyl methacrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

ヒドロキシアルキル基を含有する不飽和単量体としては、例えば、β−ヒドロキシエチルアクリレート、β−ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ジ−(エチレングリコール)マレエート、ジ−(エチレングリコール)イタコネート、2−ヒドロキシエチルマレエート、ビス(2−ヒドロキシエチル)マレエート、2−ヒドロキシエチルメチルフマレートなどが挙げられる。中でも、β−ヒドロキシエチルアクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the unsaturated monomer containing a hydroxyalkyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate and the like. Among these, β-hydroxyethyl acrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N,N−ジメチルアクリルアミド等が挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like. Of these, acrylamide and methacrylamide are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

さらに、バインダーとしての重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を用いてもよい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Further, as the polymer as the binder, for example, monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride may be used. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

バインダーとしての重合体の重量平均分子量は、好ましくは10000以上、より好ましくは20000以上であり、好ましくは1000000以下、より好ましくは500000以下である。バインダーとしての重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活物質の分散性を良好にし易い。なお、非水溶性重合体の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって、テトラヒドロフランを展開溶媒としたポリスチレン換算の値として求めればよい。   The weight average molecular weight of the polymer as a binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less. When the weight average molecular weight of the polymer as the binder is in the above range, the strength of the negative electrode of the present invention and the dispersibility of the negative electrode active material are easily improved. In addition, what is necessary is just to obtain | require the weight average molecular weight of a water-insoluble polymer as a polystyrene conversion value which used tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).

バインダーのガラス転移温度は、好ましくは−75℃以上、より好ましくは−55℃以上、特に好ましくは−35℃以上であり、通常40℃以下、好ましくは30℃以下、より好ましくは20℃以下、特に好ましくは15℃以下である。バインダーのガラス転移温度が上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。   The glass transition temperature of the binder is preferably −75 ° C. or higher, more preferably −55 ° C. or higher, particularly preferably −35 ° C. or higher, and usually 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 20 ° C. or lower. Especially preferably, it is 15 degrees C or less. When the glass transition temperature of the binder is within the above range, characteristics such as flexibility, binding property and winding property of the negative electrode, and adhesion between the negative electrode active material layer and the current collector are highly balanced, which is preferable.

通常、バインダーは、非水溶性の重合体となる。したがって、本発明の負極用スラリー組成物においては、バインダーは溶媒である水には溶解せず、粒子となって分散している。なお、重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。   Usually, the binder is a water-insoluble polymer. Therefore, in the negative electrode slurry composition of the present invention, the binder is not dissolved in water as a solvent but is dispersed as particles. In addition, a polymer being water-insoluble means that an insoluble content becomes 90% by weight or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C. On the other hand, a polymer being water-soluble means that at 25 ° C., 0.5 g of the polymer is dissolved in 100 g of water and the insoluble content is less than 0.5% by weight.

バインダーが粒子として存在する場合、当該バインダーの粒子の個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。バインダーの個数平均粒径が上記範囲にあることで、得られる負極の強度および柔軟性を良好にできる。なお、粒子の存在は、透過型電子顕微鏡法やコールターカウンター、レーザー回折散乱法などによって容易に測定することができる。   When the binder is present as particles, the number average particle size of the binder particles is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less. When the number average particle diameter of the binder is in the above range, the strength and flexibility of the obtained negative electrode can be improved. The presence of particles can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering method, or the like.

バインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造される。
単量体組成物中の各単量体の比率は、通常、バインダーとしての重合体における繰り返し単位(例えば、脂肪族共役ジエン系単量体単位、芳香族ビニル系単量体単位、エチレン性不飽和カルボン酸単量体単位等)の比率と同様にする。即ち、通常、ある組成の単量体組成物を重合することにより、かかる組成で、それぞれの単量体に基づく単位を有する重合体を得ることができる。このことは、後述する水溶性重合体の製造においても同様である。
The binder is produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
The ratio of each monomer in the monomer composition is usually the repeating unit in the polymer as a binder (for example, an aliphatic conjugated diene monomer unit, an aromatic vinyl monomer unit, an ethylenic monomer). The ratio of saturated carboxylic acid monomer units and the like). That is, usually, by polymerizing a monomer composition having a certain composition, a polymer having a unit based on each monomer can be obtained with such a composition. The same applies to the production of the water-soluble polymer described later.

水系溶媒としては、バインダーの粒子の分散が可能なものであれば格別限定されることはなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。なお、以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点(単位℃)であり、小数点以下は四捨五入または切り捨てられた値である。   The aqueous solvent is not particularly limited as long as the binder particles can be dispersed. Usually, the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower. Preferably, it is selected from 300 ° C. or lower aqueous solvents. Examples of the aqueous solvent will be given below. In the following examples, the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is rounded off or rounded down.

水系溶媒としては、例えば、水(100);ダイアセトンアルコール(169)、γ−ブチロラクトン(204)等のケトン類;エチルアルコール(78)、イソプロピルアルコール(82)、ノルマルプロピルアルコール(97)等のアルコール類;プロピレングリコールモノメチルエーテル(120)、メチルセロソルブ(124)、エチルセロソルブ(136)、エチレングリコールターシャリーブチルエーテル(152)、ブチルセロソルブ(171)、3−メトキシー3メチル−1−ブタノール(174)、エチレングリコールモノプロピルエーテル(150)、ジエチレングリコールモノブチルピルエーテル(230)、トリエチレングリコールモノブチルエーテル(271)、ジプロピレングリコールモノメチルエーテル(188)等のグリコールエーテル類;1,3−ジオキソラン(75)、1,4−ジオキソラン(101)、テトラヒドロフラン(66)等のエーテル類;などが挙げられる。中でも水は可燃性がなく、バインダーの粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、バインダーの粒子の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。   Examples of the aqueous solvent include water (100); ketones such as diacetone alcohol (169) and γ-butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97). Alcohols: propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether (1 Glycol ethers such as 8); 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66); and the like. Among these, water is particularly preferable from the viewpoint that it is not flammable and a dispersion of binder particles can be easily obtained. In addition, water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range where the dispersed state of the binder particles can be ensured.

重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が不要であり、そのまま本発明に係る負極用スラリー組成物の製造に供することができることなど、製造効率の観点から、中でも乳化重合法が特に好ましい。   The polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. As the polymerization method, any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. It is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and it can be used for production of the negative electrode slurry composition according to the present invention. From the viewpoint of production efficiency, the emulsion polymerization method is particularly preferable.

乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、(発行元:丸善(株)、日本化学会編)に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。   The emulsion polymerization method is usually performed by a conventional method. For example, the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container This is a method in which a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization. Or after emulsifying the said composition, it is the method of putting into a sealed container and starting reaction similarly.

重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,3,5−トリメチルヘキサノイルパーオキサイド等の有機過酸化物;α,α’−アゾビスイソブチロニトリル等のアゾ化合物;過硫酸アンモニウム;過硫酸カリウムなどが挙げられる。なお、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the polymerization initiator include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide. Peroxides; azo compounds such as α, α′-azobisisobutyronitrile; ammonium persulfate; potassium persulfate and the like. In addition, a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合に際しては、シード粒子を採用してシード重合を行ってもよい。   An emulsifier, a dispersant, a polymerization initiator, and the like are generally used in these polymerization methods, and the amount used is usually an amount generally used. In the polymerization, seed polymerization may be performed using seed particles.

重合温度および重合時間は、重合方法及び重合開始剤の種類などにより任意に選択でき、通常、重合温度は約30℃以上、重合時間は0.5時間〜30時間程度である。
また、アミン類などの添加剤を重合助剤として用いてもよい。
The polymerization temperature and the polymerization time can be arbitrarily selected depending on the polymerization method and the kind of the polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours.
Further, additives such as amines may be used as a polymerization aid.

さらに、これらの方法によって得られるバインダーの粒子の水系分散液を、例えばアルカリ金属(例えば、Li、Na、K、Rb、Cs)の水酸化物、アンモニア、無機アンモニウム化合物(例えばNHClなど)、有機アミン化合物(例えばエタノールアミン、ジエチルアミンなど)などを含む塩基性水溶液と混合して、pHを通常5〜10、好ましくは5〜9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活物質との結着性(ピール強度)を向上させるので、好ましい。 Further, an aqueous dispersion of binder particles obtained by these methods is used, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl). , It may be mixed with a basic aqueous solution containing an organic amine compound (eg, ethanolamine, diethylamine, etc.) and the pH may be adjusted to a range of usually 5 to 10, preferably 5 to 9. Among these, pH adjustment with an alkali metal hydroxide is preferable because it improves the binding property (peel strength) between the current collector and the negative electrode active material.

上述したバインダーの粒子は、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種類の単量体成分を常法により重合し、引き続き、他の少なくとも1種の単量体成分を重合し、常法により重合させる方法(二段重合法)などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。   The binder particles described above may be composite polymer particles composed of two or more types of polymers. The composite polymer particles are prepared by polymerizing at least one monomer component by a conventional method, then polymerizing at least one other monomer component, and polymerizing by a conventional method (two-stage polymerization method), etc. Can also be obtained. In this way, by polymerizing the monomer stepwise, it is possible to obtain core-shell structured particles having a core layer present inside the particle and a shell layer covering the core layer.

バインダーの量は、負極活物質100重量部に対して、通常0.1重量部以上、好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、通常10重量部以下、好ましくは5重量部以下、特に好ましくは2重量部以下である。バインダー量が前記下限を下回ると密着性が低下しうるため好ましくない。バインダー量が前記上限を上回ると低温出力特性が低下しうるため好ましくない。   The amount of the binder is usually 0.1 parts by weight or more, preferably 0.2 parts by weight or more, particularly preferably 0.5 parts by weight or more, and usually 10 parts by weight or less, based on 100 parts by weight of the negative electrode active material. The amount is preferably 5 parts by weight or less, particularly preferably 2 parts by weight or less. If the amount of the binder is less than the lower limit, the adhesiveness can be lowered, which is not preferable. If the amount of the binder exceeds the above upper limit, the low temperature output characteristics can be lowered, which is not preferable.

[1−3.水溶性重合体]
本発明に係る水溶性重合体は、スルホン酸基含有単量体単位、及びリン酸基含有単量体単位を、特定の構成比率で含む。本発明の負極が、かかる特定の水溶性重合体を含むことにより、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量が低下し難く、高温環境での充放電の繰り返しによる容量の低下が少ない二次電池を実現できる。また、本発明に係る水溶性重合体を用いることにより、本発明の負極用スラリー組成物を、集電体に塗布する際の塗工性に優れたものとすることができ、負極における負極活物質層と集電体との密着性も向上させることができ、さらにスラリーの保存安定性も向上させることができる。
[1-3. Water-soluble polymer]
The water-soluble polymer according to the present invention includes a sulfonic acid group-containing monomer unit and a phosphoric acid group-containing monomer unit in a specific constituent ratio. By including such a specific water-soluble polymer, the negative electrode of the present invention can suppress the swelling of the negative electrode accompanying charging and discharging, and the capacity is not easily reduced when stored in either a high temperature environment or a low temperature environment. Thus, a secondary battery can be realized in which the capacity is less reduced by repeated charging and discharging. Further, by using the water-soluble polymer according to the present invention, the slurry composition for negative electrode of the present invention can be made excellent in coating property when applied to a current collector, and the negative electrode active in the negative electrode can be improved. The adhesion between the material layer and the current collector can also be improved, and the storage stability of the slurry can also be improved.

特定の理論に拘束されるものではないが、このように優れた効果を奏することができる理由は、例えば以下のような理由によるものと考えられる。即ち、負極においては、とりわけSiOCを含む負極活物質を用いた場合は特に、負極活物質の分散性を高めて界面抵抗を下げることが求められる。ここで、バインダーに加えて用いられる水溶性重合体として、リン酸基を含むものを用いると、分散性が向上しうるが、リン酸基を多く含む場合、得られる電池の耐久性が低下しうる。ここで、リン酸基に加えスルホン酸基を含むものを併せて用いることにより、耐久性を向上させながら、且つスルホン酸基に基づく分散性の向上の効果も得ることができる。これらに加え、リン酸基に基づくプロトン伝導性の向上等といったたの効果もあいまって、結果的に、上記のような効果を得ることができるものと考えられる。   Although not limited by a specific theory, the reason why such an excellent effect can be obtained is considered to be, for example, as follows. That is, in the negative electrode, particularly when a negative electrode active material containing SiOC is used, it is required to increase the dispersibility of the negative electrode active material and reduce the interface resistance. Here, as the water-soluble polymer used in addition to the binder, dispersibility can be improved by using a water-soluble polymer containing a phosphate group, but if it contains a lot of phosphate groups, the durability of the resulting battery is lowered. sell. Here, by using together those containing a sulfonic acid group in addition to a phosphoric acid group, the effect of improving the dispersibility based on the sulfonic acid group can be obtained while improving the durability. In addition to these, other effects such as improvement of proton conductivity based on the phosphate group are combined, and as a result, it is considered that the above effects can be obtained.

スルホン酸基含有単量体単位は、スルホン酸基(−SOH)含有単量体を重合して得られる繰り返し単位である。スルホン酸基含有単量体の例としては、スルホン酸基及び重合性基を有しそれら以外に官能基をもたない単量体またはその塩、アミド基とスルホン酸基と重合性基とを含有する単量体またはその塩、並びに、ヒドロキシル基とスルホン酸基とを含有する単量体またはその塩、並びにこれらの組み合わせなどが挙げられる。 The sulfonic acid group-containing monomer unit is a repeating unit obtained by polymerizing a sulfonic acid group (—SO 3 H) -containing monomer. Examples of the sulfonic acid group-containing monomer include a monomer having a sulfonic acid group and a polymerizable group and a functional group other than those or a salt thereof, an amide group, a sulfonic acid group, and a polymerizable group. Examples thereof include a monomer or a salt thereof, a monomer or a salt thereof containing a hydroxyl group and a sulfonic acid group, and a combination thereof.

スルホン酸基及び重合性基を有しそれら以外に官能基をもたない単量体としては、例えば、イソプレン及びブタジエン等のジエン化合物の共役二重結合の1つをスルホン化した単量体、ビニルスルホン酸、スチレンスルホン酸、アリルスルホン酸、アリルアルキルエーテルスルホン酸、スルホエチルメタクリレート、スルホプロピルメタクリレート、スルホブチルメタクリレートなどが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。   Examples of the monomer having a sulfonic acid group and a polymerizable group and having no functional group other than those include a monomer obtained by sulfonating one of conjugated double bonds of a diene compound such as isoprene and butadiene, Examples thereof include vinyl sulfonic acid, styrene sulfonic acid, allyl sulfonic acid, allyl alkyl ether sulfonic acid, sulfoethyl methacrylate, sulfopropyl methacrylate, and sulfobutyl methacrylate. Moreover, as the salt, lithium salt, sodium salt, potassium salt etc. are mentioned, for example.

アミド基とスルホン酸基と重合性基とを含有する単量体としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the monomer containing an amide group, a sulfonic acid group, and a polymerizable group include 2-acrylamido-2-methylpropanesulfonic acid (AMPS). Moreover, as the salt, lithium salt, sodium salt, potassium salt etc. are mentioned, for example. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

ヒドロキシル基とスルホン酸基と重合性基とを含有する単量体としては、例えば、3−アリロキシ−2−ヒドロキシプロパンスルホン酸(HAPS)などが挙げられる。また、その塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などが挙げられる。   Examples of the monomer containing a hydroxyl group, a sulfonic acid group, and a polymerizable group include 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS). Moreover, as the salt, lithium salt, sodium salt, potassium salt etc. are mentioned, for example.

これらの中でも、アミド基とスルホン酸基と重合性基とを含有する単量体またはスルホン酸基及び重合性基を有しそれら以外に官能基をもたない単量体が好ましく、アミド基とスルホン酸基と重合性基とを含有する単量体がより好ましく、特に、2−アクリルアミド−2−メチルプロパンスルホン酸を用いることが、負極のピール強度、スラリー安定性、及び電池の低温出力特性を向上する能力が特に高いため好ましい。   Among these, a monomer containing an amide group, a sulfonic acid group, and a polymerizable group or a monomer having a sulfonic acid group and a polymerizable group and having no other functional group is preferable. A monomer containing a sulfonic acid group and a polymerizable group is more preferable, and in particular, 2-acrylamido-2-methylpropanesulfonic acid is used, and the peel strength of the negative electrode, slurry stability, and low-temperature output characteristics of the battery Since the ability to improve is especially high, it is preferable.

なお、スルホン酸基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、スルホン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。   In addition, a sulfonic acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of sulfonic acid group-containing monomer unit, or may contain two or more types in combination at any ratio.

本発明に係る水溶性重合体において、スルホン酸基含有単量体単位の比率は、0.5重量%以上であり、好ましくは1重量%以上であり、20重量%以下であり、好ましくは10重量%以下であり、より好ましくは5重量%以下である。スルホン酸基含有単量体単位の量を上記範囲の下限値以上とすることにより二次電池の耐久性を向上させることができる。また、上限値以下とすることにより、二次電池の低温特性の低下を防止できる。   In the water-soluble polymer according to the present invention, the ratio of the sulfonic acid group-containing monomer unit is 0.5% by weight or more, preferably 1% by weight or more, and 20% by weight or less, preferably 10%. % By weight or less, more preferably 5% by weight or less. The durability of the secondary battery can be improved by setting the amount of the sulfonic acid group-containing monomer unit to be not less than the lower limit of the above range. Moreover, the fall of the low temperature characteristic of a secondary battery can be prevented by setting it as an upper limit or less.

リン酸基含有単量体単位は、リン酸基含有単量体を重合して得られる繰り返し単位である。リン酸基含有単量体が有しうるリン酸基としては、基−O−P(=O)(−OR)−OR基を有する単量体(R及びRは、独立に、水素原子、又は任意の有機基である。)、又はこの塩を挙げることができる。R及びRとしての有機基の具体例としては、オクチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。
リン酸基含有単量体としては、例えば、リン酸基及びアリロキシ基を含む化合物、及びリン酸基含有(メタ)アクリル酸エステルを挙げることができる。リン酸基含有(メタ)アクリル酸エステルを用いることにより、分散性およびイオン伝導性を向上させることができ、ひいては出力特性および高温保存特性を向上させることができるため好ましい。
リン酸基及びアリロキシ基を含む化合物としては、3−アリロキシ−2−ヒドロキシプロパンリン酸を挙げることができる。
リン酸基含有(メタ)アクリル酸エステルとしては、ジオクチル−2−メタクリロイロキシエチルホスフェート、ジフェニル−2−メタクリロイロキシエチルホスフェート、モノメチル−2−メタクリロイロキシエチルホスフェート、ジメチル−2−メタクリロイロキシエチルホスフェート、モノエチル−2−メタクリロイロキシエチルホスフェート、ジエチル−2−メタクリロイロキシエチルホスフェート、モノイソプロピル−2−メタクリロイロキシエチルホスフェート、ジイソプロピル−2−メタクリロイロキシエチルホスフェート、モノn−ブチル−2−メタクリロイロキシエチルホスフェート、ジn−ブチル−2−メタクリロイロキシエチルホスフェート、モノブトキシエチル−2−メタクリロイロキシエチルホスフェート、ジブトキシエチル−2−メタクリロイロキシエチルホスフェート、モノ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェート、ジ(2−エチルヘキシル)−2−メタクリロイロキシエチルホスフェートなどが挙げられる。
The phosphate group-containing monomer unit is a repeating unit obtained by polymerizing a phosphate group-containing monomer. As the phosphoric acid group that the phosphoric acid group-containing monomer may have, a monomer having a group —O—P (═O) (— OR 1 ) —OR 2 group (R 1 and R 2 are independently , Hydrogen atom, or any organic group), or a salt thereof. Specific examples of the organic group as R 1 and R 2 include an aliphatic group such as an octyl group and an aromatic group such as a phenyl group.
As a phosphate group containing monomer, the compound containing a phosphate group and an allyloxy group, and a phosphate group containing (meth) acrylic acid ester can be mentioned, for example. Use of a phosphoric acid group-containing (meth) acrylic acid ester is preferable because dispersibility and ion conductivity can be improved, and as a result, output characteristics and high-temperature storage characteristics can be improved.
Examples of the compound containing a phosphate group and an allyloxy group include 3-allyloxy-2-hydroxypropane phosphate.
Examples of phosphoric acid group-containing (meth) acrylic acid esters include dioctyl-2-methacryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, monomethyl-2-methacryloyloxyethyl phosphate, dimethyl-2-methacryloyloxy Ethyl phosphate, monoethyl-2-methacryloyloxyethyl phosphate, diethyl-2-methacryloyloxyethyl phosphate, monoisopropyl-2-methacryloyloxyethyl phosphate, diisopropyl-2-methacryloyloxyethyl phosphate, mono n-butyl-2 -Methacryloyloxyethyl phosphate, di-n-butyl-2-methacryloyloxyethyl phosphate, monobutoxyethyl-2-methacryloyloxyethyl phosphate, dibu Kishiechiru-2-methacryloyloxyethyl phosphate, mono (2-ethylhexyl) -2-methacryloyloxyethyl phosphate, and di (2-ethylhexyl) -2-methacryloyloxyethyl phosphate.

なお、リン酸基含有単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、リン酸基含有単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。   In addition, a phosphate group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of phosphoric acid group-containing monomer unit, or may contain two or more types in combination at any ratio.

本発明に係る水溶性重合体において、リン酸基含有単量体単位の比率は、5重量%以上であり、好ましくは10重量%以上であり、30重量%以下であり、好ましくは25重量%以下である。リン酸含有単量体単位の量を上記範囲の下限値以上とすることにより、集電体と負極活物質層との密着性の向上等の、リン酸基含有単量体単位に基づく効果を得ることができる。また、上限値以下とすることにより、水溶性重合体の重合に際し適切な重合度を得ることができ、耐久性の低下等の不所望な効果の発現を防止できる。   In the water-soluble polymer according to the present invention, the proportion of the phosphate group-containing monomer unit is 5% by weight or more, preferably 10% by weight or more, 30% by weight or less, preferably 25% by weight. It is as follows. By making the amount of the phosphoric acid-containing monomer unit more than the lower limit of the above range, the effects based on the phosphoric acid group-containing monomer unit, such as improved adhesion between the current collector and the negative electrode active material layer, can be obtained. Can be obtained. Moreover, by setting it as the upper limit value or less, an appropriate degree of polymerization can be obtained in the polymerization of the water-soluble polymer, and an undesirable effect such as a decrease in durability can be prevented.

本発明に係る水溶性重合体は、スルホン酸基含有単量体単位及びリン酸基含有単量体単位に加えて、これら以外の任意の単位を含みうる。水溶性重合体中の任意の単位の割合は、60〜94.5重量%となる。任意の単位としては、スルホン酸基含有単量体及びリン酸基含有単量体と共重合することができる任意の単量体に基づく単位を採用しうる。   The water-soluble polymer according to the present invention may contain any other unit in addition to the sulfonic acid group-containing monomer unit and the phosphoric acid group-containing monomer unit. The ratio of arbitrary units in the water-soluble polymer is 60 to 94.5% by weight. As an arbitrary unit, a unit based on an arbitrary monomer that can be copolymerized with a sulfonic acid group-containing monomer and a phosphoric acid group-containing monomer can be adopted.

任意の単位としては、(i)(メタ)アクリル酸エステル単量体単位、(ii)エチレン性不飽和カルボン酸単量体単位、及び(iii)その他の単位を挙げることができる。特に好ましいものとしては、(i)(メタ)アクリル酸エステル単量体単位及び(ii)エチレン性不飽和カルボン酸単量体単位を挙げることができる。   Arbitrary units can include (i) (meth) acrylic acid ester monomer units, (ii) ethylenically unsaturated carboxylic acid monomer units, and (iii) other units. Particularly preferred are (i) (meth) acrylic acid ester monomer units and (ii) ethylenically unsaturated carboxylic acid monomer units.

(i)(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して得られる繰り返し単位である。かかる任意の単位を与える(メタ)アクリル酸エステル単量体としては、スルホン酸基含有単量体及びリン酸基含有単量体以外の、任意の(メタ)アクリル酸エステルを採用しうる。具体的には例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。   (i) The (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a (meth) acrylic acid ester monomer. As the (meth) acrylic acid ester monomer giving such an arbitrary unit, any (meth) acrylic acid ester other than the sulfonic acid group-containing monomer and the phosphoric acid group-containing monomer can be adopted. Specifically, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, Acrylic acid alkyl esters such as decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl methacrylate, hexyl methacrylate , Heptyl methacrylate, octyl methacrylate DOO, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n- tetradecyl methacrylate, and methacrylic acid alkyl esters such as stearyl methacrylate.

なお、(メタ)アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、(メタ)アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。   In addition, a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.

本発明に係る水溶性重合体において、(メタ)アクリル酸エステル単量体単位の比率は、特に限定されず、スルホン酸基含有単量体及びリン酸基含有単量体、並びに、含まれる場合はさらに他の任意の単位の残余とすることができる。即ち、水溶性重合体中、50〜94.5重量%の範囲内とすることができる。特に、70重量%以上とすることが好ましく、また90重量%以下とすることが好ましい。(メタ)アクリル酸エステル単量体単位の割合をこの範囲とすることにより、負極活物質層に良好な柔軟性を付与することができる。   In the water-soluble polymer according to the present invention, the ratio of the (meth) acrylic acid ester monomer unit is not particularly limited, and includes a sulfonic acid group-containing monomer and a phosphoric acid group-containing monomer, and Can be the remainder of any other unit. That is, it can be in the range of 50 to 94.5% by weight in the water-soluble polymer. In particular, it is preferably 70% by weight or more, and preferably 90% by weight or less. By setting the ratio of the (meth) acrylic acid ester monomer unit within this range, good flexibility can be imparted to the negative electrode active material layer.

(ii)エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。
エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2−エチルアクリル酸、イソクロトン酸、α−アセトキシアクリル酸、β−trans−アリールオキシアクリル酸、α−クロロ−β−E−メトキシアクリル酸、β−ジアミノアクリル酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。
(ii) The ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
Examples of the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof. Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like. Examples of ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, β-diaminoacrylic acid and the like can be mentioned. Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like. Examples of the acid anhydride of the ethylenically unsaturated dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like. Examples of derivatives of ethylenically unsaturated dicarboxylic acids include methyl maleate such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; diphenyl maleate, nonyl maleate, Examples thereof include maleic acid esters such as decyl maleate, dodecyl maleate, octadecyl maleate and fluoroalkyl maleate. Among these, ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to water of the obtained water-soluble polymer can be improved more.

なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。   In addition, an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.

本発明に係る水溶性重合体がエチレン性不飽和カルボン酸単量体単位を含む場合、その比率は、水溶性重合体全量に対して通常20重量%以上、好ましくは25重量%以上であり、通常60重量%以下、好ましくは50重量%以下である。エチレン性不飽和カルボン酸単量体単位の量を上記範囲の下限値以上とすることにより水溶性重合体の負極活物質への吸着性を高めて負極活物質の分散性及び集電体への密着性を高めることができる。また、上限値以下とすることにより水溶性重合体の柔軟性を高めることができるので、負極の柔軟性を向上させて負極が欠けたり割れたりすることを防止して、耐久性を向上させることができる。   When the water-soluble polymer according to the present invention contains an ethylenically unsaturated carboxylic acid monomer unit, the ratio is usually 20% by weight or more, preferably 25% by weight or more, based on the total amount of the water-soluble polymer. Usually, it is 60 wt% or less, preferably 50 wt% or less. By making the amount of the ethylenically unsaturated carboxylic acid monomer unit more than the lower limit of the above range, the adsorptivity of the water-soluble polymer to the negative electrode active material is improved, and the dispersibility of the negative electrode active material and the current collector are increased. Adhesion can be increased. In addition, since the flexibility of the water-soluble polymer can be increased by setting it to the upper limit or less, the flexibility of the negative electrode is improved to prevent the negative electrode from being chipped or cracked, thereby improving the durability. Can do.

(iii)その他の単位は、スルホン酸基含有単量体及びリン酸基含有単量体並びに含まれる場合は前述した他の任意の単位の単量体と共重合可能な単量体を重合して得られる繰り返し単位である。かかる単位を与える単量体の例としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の、2つ以上の炭素−炭素二重結合を有するカルボン酸エステル単量体;スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N−メチロールアクリルアミド等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル化合物単量体;エチレン、プロピレン等のオレフィン類単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類単量体;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類単量体;N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物単量体などが挙げられる。これらの単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   (iii) The other unit is obtained by polymerizing a sulfonic acid group-containing monomer and a phosphoric acid group-containing monomer and, if included, a monomer copolymerizable with the monomer of any other unit described above. Is a repeating unit obtained. Examples of monomers that provide such units include carboxylic acid ester monomers having two or more carbon-carbon double bonds, such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate; Styrene monomers such as chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, divinyl benzene; acrylamide, N- Amide monomers such as methylolacrylamide; α, β-unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; Olefin monomers such as ethylene and propylene; Halogen atoms such as vinyl chloride and vinylidene chloride Monomers; vinyl ester monomers such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; vinyl ether monomers such as methyl vinyl ether, ethyl vinyl ether and butyl biether; methyl vinyl ketone and ethyl vinyl Examples thereof include vinyl ketone monomers such as ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic compound-containing vinyl compound monomers such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole. These monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

本発明に係る水溶性重合体において、(iii)その他の単位の割合は、好ましくは0重量%〜10重量%、より好ましくは0重量%〜5重量%である。   In the water-soluble polymer according to the present invention, the ratio of (iii) other units is preferably 0 wt% to 10 wt%, more preferably 0 wt% to 5 wt%.

水溶性重合体の重量平均分子量は、通常はバインダーとなる重合体よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは250000以下、特に好ましくは100000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより水溶性重合体の強度を高くして負極活物質を覆う安定な保護層を形成できるので、例えば負極活物質の分散性及び二次電池の高温保存特性などを改善できる。また、上記範囲の上限値以下とすることにより水溶性重合体を柔らかくできるので、例えば負極の膨らみの抑制、負極活物質層の集電体への密着性の改善などが可能となる。なお、水溶性重合体の重量平均分子量は、GPCによって、アセトニトリルの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を展開溶媒としたポリエチレンオキサイド換算の値として求めればよい。   The weight average molecular weight of the water-soluble polymer is usually smaller than that of the polymer to be a binder, preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more, preferably 500000 or less, more preferably 250,000 or less. Particularly preferably, it is 100,000 or less. By making the weight average molecular weight of the water-soluble polymer more than the lower limit of the above range, it is possible to increase the strength of the water-soluble polymer and form a stable protective layer covering the negative electrode active material. In addition, the high temperature storage characteristics of the secondary battery can be improved. Moreover, since the water-soluble polymer can be softened by setting it to the upper limit value or less of the above range, for example, it is possible to suppress swelling of the negative electrode and improve adhesion of the negative electrode active material layer to the current collector. In addition, what is necessary is just to obtain | require the weight average molecular weight of a water-soluble polymer as a value of polyethylene oxide conversion which used GPC as the developing solvent the solution which dissolved 0.85 g / ml sodium nitrate in 10 volume% aqueous solution of acetonitrile.

水溶性重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性重合体のガラス転移温度が上記範囲であることにより、負極の密着性と柔軟性とを両立させることができる。なお、水溶性重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。   The glass transition temperature of the water-soluble polymer is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. When the glass transition temperature of the water-soluble polymer is in the above range, both the adhesion and flexibility of the negative electrode can be achieved. The glass transition temperature of the water-soluble polymer can be adjusted by combining various monomers.

水溶性重合体は、1重量%水溶液とした場合の粘度が、好ましくは0.1mPa・s以上、より好ましくは0.5mPa・s以上、特に好ましくは1mPa・s以上であり、好ましくは20000mPa・s以下、より好ましくは15000mPa・s以下、特に好ましくは10000mPa・s以下である。前記の粘度を上記範囲の下限値以上とすることにより水溶性重合体の強度を高くして負極の耐久性を向上させることができ、また、上限値以下とすることにより負極用スラリー組成物の塗工性を良好にして、集電体と負極活物質層との密着強度を向上させることができる。前記の粘度は、例えば、水溶性重合体の分子量によって調整できる。なお、前記の粘度は、E型粘度計を用いて25℃、回転数60rpmで測定した時の値である。   The water-soluble polymer has a viscosity of 0.1 mPa · s or more, more preferably 0.5 mPa · s or more, particularly preferably 1 mPa · s or more, preferably 20000 mPa · s when a 1% by weight aqueous solution is used. s or less, more preferably 15000 mPa · s or less, particularly preferably 10,000 mPa · s or less. By making the viscosity above the lower limit of the above range, the strength of the water-soluble polymer can be increased to improve the durability of the negative electrode, and by making the viscosity below the upper limit, It is possible to improve the coating property and improve the adhesion strength between the current collector and the negative electrode active material layer. The viscosity can be adjusted by, for example, the molecular weight of the water-soluble polymer. In addition, the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using an E-type viscosity meter.

水溶性重合体の製造方法としては、例えば、上述したスルホン酸基含有単量体、リン酸基含有単量体、エチレン性不飽和カルボン酸単量体及び(メタ)アクリル酸エステル単量体を含む単量体組成物を、水系溶媒中で重合して製造してもよい。水系溶媒及び重合方法は、例えば、バインダーの製造と同様にしてもよい。これにより、通常は水系溶媒に水溶性重合体が溶解した水溶液が得られる。こうして得られた水溶液から水溶性重合体を取り出してもよいが、通常は、水系溶媒に溶解した状態の水溶性重合体を用いて負極用スラリー組成物を製造し、その負極用スラリー組成物を用いて負極を製造する。   As a method for producing a water-soluble polymer, for example, the above-mentioned sulfonic acid group-containing monomer, phosphoric acid group-containing monomer, ethylenically unsaturated carboxylic acid monomer and (meth) acrylic acid ester monomer are used. The monomer composition may be produced by polymerization in an aqueous solvent. The aqueous solvent and the polymerization method may be the same as in the production of the binder, for example. Thereby, an aqueous solution in which a water-soluble polymer is usually dissolved in an aqueous solvent is obtained. The water-soluble polymer may be taken out from the aqueous solution thus obtained. Usually, a negative electrode slurry composition is produced using the water-soluble polymer dissolved in an aqueous solvent, and the negative electrode slurry composition is prepared. To produce a negative electrode.

水溶性重合体を水系溶媒中に含む前記の水溶液は通常は酸性であるので、必要に応じて、pH7〜pH13にアルカリ化してもよい。これにより水溶液の取り扱い性を向上させることができ、また、負極用スラリー組成物の塗工性を改善することができる。pH7〜pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ金属水溶液;水酸化カルシウム水溶液、水酸化マグネシウム水溶液等のアルカリ土類金属水溶液;アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。なお、前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Since the aqueous solution containing a water-soluble polymer in an aqueous solvent is usually acidic, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry composition for negative electrodes can be improved. Examples of the method for alkalinizing to pH 7 to pH 13 include alkaline metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned. In addition, the said alkaline aqueous solution may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

水溶性重合体の量は、通常はバインダーよりも少なく、負極活物質100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.5重量部以上であり、好ましくは20重量部以下、より好ましくは10重量部以下、特に好ましくは5重量部以下である。水溶性重合体の量が前記下限を下回ると、耐久性が低下しうるため好ましくない。水溶性重合体の量が前記上限を上回ると、低温出力特性が低下しうるため好ましくない。   The amount of the water-soluble polymer is usually less than the binder and is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, particularly preferably 0.5 parts by weight with respect to 100 parts by weight of the negative electrode active material. It is at least 20 parts by weight, preferably at most 20 parts by weight, more preferably at most 10 parts by weight, particularly preferably at most 5 parts by weight. If the amount of the water-soluble polymer is less than the lower limit, the durability may be lowered, which is not preferable. If the amount of the water-soluble polymer exceeds the upper limit, the low-temperature output characteristics can be lowered, which is not preferable.

[1−4.負極活物質層に含まれていてもよい成分]
本発明の負極において、負極活物質層には、上述した負極活物質、バインダー、水溶性重合体以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。これらは、電池反応に影響を及ぼさないものであれば特に限られない。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[1-4. Components that may be contained in the negative electrode active material layer]
In the negative electrode of the present invention, the negative electrode active material layer may contain other components in addition to the above-described negative electrode active material, binder, and water-soluble polymer. Examples of the component include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, and an electrolyte solution additive. These are not particularly limited as long as they do not affect the battery reaction. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

粘度調整剤は、本発明の負極用スラリー組成物の粘度を調整して負極用スラリー組成物の分散性及び塗工性を改善するために用いられる成分である。通常、負極用スラリー組成物に含まれていた粘度調整剤は、負極活物質層に残留することになる。   A viscosity modifier is a component used in order to adjust the viscosity of the slurry composition for negative electrodes of this invention, and to improve the dispersibility and coating property of a slurry composition for negative electrodes. Usually, the viscosity modifier contained in the negative electrode slurry composition remains in the negative electrode active material layer.

粘度調整剤としては、水溶性の多糖類を使用することが好ましい。多糖類としては、例えば、天然系高分子、セルロース系半合成系高分子などが挙げられる。なお、粘度調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   As the viscosity modifier, it is preferable to use a water-soluble polysaccharide. Examples of polysaccharides include natural polymers and cellulose semisynthetic polymers. In addition, a viscosity modifier may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

天然系高分子として、例えば、植物もしくは動物由来の多糖類及びたんぱく質等が挙げられる。また、場合により微生物等による発酵処理、熱による処理などがされた天然系高分子も例示できる。これらの天然系高分子は、植物系天然系高分子、動物系天然系高分子及び微生物系天然系高分子等として分類することができる。   Examples of natural polymers include polysaccharides and proteins derived from plants or animals. In addition, natural polymers that have been subjected to fermentation treatment with microorganisms, heat treatment, or the like can also be exemplified. These natural polymers can be classified as plant natural polymers, animal natural polymers, microbial natural polymers, and the like.

植物系天然系高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチン等が挙げられる。また、動物系天然系高分子としては、例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等が挙げられる。さらに、微生物系天然系高分子としては、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等が挙げられる。   Examples of plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, Derived from wheat and the like), glycyrrhizin and the like. Examples of animal-based natural polymers include collagen, casein, albumin, gelatin, and the like. Furthermore, examples of the microbial natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.

セルロース系半合成系高分子は、ノニオン性、アニオン性及びカチオン性に分類することができる。   Cellulosic semisynthetic polymers can be classified into nonionic, anionic and cationic.

ノニオン性セルロース系半合成系高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース;などが挙げられる。   Nonionic cellulose semisynthetic polymers include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, and microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropyl And hydroxyalkylcelluloses such as methylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose;

アニオン性セルロース系半合成系高分子としては、上記のノニオン性セルロース系半合成系高分子を各種誘導基により置換したアルキルセルロース並びにそのナトリウム塩及びアンモニウム塩などが挙げられる。具体例を挙げると、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩等が挙げられる。   Examples of the anionic cellulose semisynthetic polymer include alkyl celluloses obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups, and sodium salts and ammonium salts thereof. Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.

カチオン性セルロース系半合成系高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム−4)、塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−10)、塩化O−[2−ヒドロキシ−3−(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−24)等が挙げられる。   Examples of the cationic cellulose semisynthetic polymer include low nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethyl cellulose (polyquaternium- 10), O- [2-hydroxy-3- (lauryldimethylammonio) propyl] chloride ethyl chloride (polyquaternium-24), and the like.

これらの中でも、カチオン性、アニオン性また両性の特性を取りうることから、セルロース系半合成系高分子、そのナトリウム塩及びそのアンモニウム塩が好ましい。さらにその中でも、負極活物質の分散性の観点から、アニオン性のセルロース系半合成系高分子が特に好ましい。   Among these, cellulose-based semisynthetic polymers, sodium salts thereof, and ammonium salts thereof are preferable because they can have cationic, anionic, and amphoteric characteristics. Among them, an anionic cellulose semisynthetic polymer is particularly preferable from the viewpoint of dispersibility of the negative electrode active material.

また、セルロース系半合成系高分子のエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.0以下、より好ましくは0.8以下である。ここで、エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基(3個)の、カルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0〜3の値を取りうる。エーテル化度が上記範囲にある場合は、セルロース系半合成系高分子が負極活物質の表面に吸着しつつ水への相溶性も見られることから分散性に優れ、負極活物質を一次粒子レベルまで微分散できる。   The degree of etherification of the cellulose semisynthetic polymer is preferably 0.5 or more, more preferably 0.6 or more, preferably 1.0 or less, more preferably 0.8 or less. Here, the degree of etherification refers to the degree of substitution of hydroxyl groups (three) per anhydroglucose unit in cellulose with a substitution product such as a carboxymethyl group. The degree of etherification can theoretically take a value of 0-3. When the degree of etherification is in the above range, the cellulosic semi-synthetic polymer adsorbs on the surface of the negative electrode active material and is compatible with water, so it has excellent dispersibility, and the negative electrode active material is at the primary particle level. Can be finely dispersed.

さらに、粘度調整剤として高分子(重合体を含む)を使用する場合、ウベローデ粘度計より求められる極限粘度から算出される粘度調整剤の平均重合度は、好ましくは500以上、より好ましくは1000以上であり、好ましくは2500以下、より好ましくは2000以下、特に好ましくは1500以下である。粘度調整剤の平均重合度は本発明の負極用スラリー組成物の流動性及び負極活物質層の膜均一性、並びに工程上のプロセスへ影響することがある。平均重合度を前記の範囲にすることにより、本発明の負極用スラリー組成物の経時の安定性を向上させて、凝集物がなく厚みムラのない塗布が可能になる。   Further, when a polymer (including a polymer) is used as the viscosity modifier, the average degree of polymerization of the viscosity modifier calculated from the intrinsic viscosity obtained from an Ubbelohde viscometer is preferably 500 or more, more preferably 1000 or more. It is preferably 2500 or less, more preferably 2000 or less, and particularly preferably 1500 or less. The average degree of polymerization of the viscosity modifier may affect the fluidity of the negative electrode slurry composition of the present invention, the film uniformity of the negative electrode active material layer, and the process in the process. By making the average degree of polymerization within the above range, the stability of the negative electrode slurry composition of the present invention over time can be improved, and coating without agglomerates and without thickness unevenness becomes possible.

粘度調整剤の量は、負極活物質の量100重量部に対して、好ましくは0重量部以上であり、好ましくは0.5重量部以下である。粘度調整剤の量を前記の範囲にすることにより、本発明の負極用スラリー組成物の粘度を取り扱い易い好適な範囲にすることができる。
本発明の負極では、水溶性重合体が粘度を高めるため、水溶性重合体以外の増粘剤を多量に加えなくても、粘度を好ましい範囲に調整しうる。そのため、増粘剤を多量に添加することによる不具合を回避することが可能となる。例えば、増粘剤を多量に添加することによる導電性の低下を回避することができる。また、増粘剤がスラリー中に溶け残ることによるピンホールの発生を低減することができる。
The amount of the viscosity modifier is preferably 0 part by weight or more and preferably 0.5 part by weight or less with respect to 100 parts by weight of the negative electrode active material. By making the quantity of a viscosity modifier into the said range, the viscosity of the slurry composition for negative electrodes of this invention can be made into the suitable range which is easy to handle.
In the negative electrode of the present invention, since the water-soluble polymer increases the viscosity, the viscosity can be adjusted within a preferable range without adding a large amount of a thickener other than the water-soluble polymer. Therefore, it is possible to avoid problems caused by adding a large amount of thickener. For example, a decrease in conductivity due to the addition of a large amount of thickener can be avoided. Moreover, generation | occurrence | production of the pinhole by a thickener remaining undissolved in a slurry can be reduced.

導電剤は、負極活物質同士の電気的接触を向上させる成分である。導電剤を含むことにより、本発明の二次電池の放電レート特性を改善することができる。   The conductive agent is a component that improves electrical contact between the negative electrode active materials. By including the conductive agent, the discharge rate characteristics of the secondary battery of the present invention can be improved.

導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどを使用することができる。なお、導電剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   As the conductive agent, for example, acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, conductive carbon such as carbon nanotube, and the like can be used. In addition, a electrically conductive agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

導電剤の量は、負極活物質の量100重量部に対して、好ましくは1〜20重量部、より好ましくは1〜10重量部である。   The amount of the conductive agent is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.

補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示す二次電池を実現できる。   As the reinforcing material, for example, various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. By using the reinforcing material, a tough and flexible negative electrode can be obtained, and a secondary battery exhibiting excellent long-term cycle characteristics can be realized.

補強材の量は、負極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強剤の量を上記範囲とすることにより、二次電池は高い容量と高い負荷特性を示すことができる。   The amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the reinforcing agent in the above range, the secondary battery can exhibit high capacity and high load characteristics.

レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、負極用スラリー組成物の塗布時に発生するはじきを防止したり、負極の平滑性を向上させたりすることができる。   Examples of the leveling agent include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By using a leveling agent, it is possible to prevent the repelling that occurs during the application of the negative electrode slurry composition or to improve the smoothness of the negative electrode.

レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。レベリング剤が上記範囲であることにより負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤を含有させることにより負極用スラリー組成物において負極活物質等の分散性を向上することができ、さらにそれにより得られる負極の平滑性を向上させることができる。   The amount of the leveling agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent. Moreover, by containing a surfactant, the dispersibility of the negative electrode active material and the like in the negative electrode slurry composition can be improved, and the smoothness of the negative electrode obtained thereby can be improved.

電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。電解液添加剤を用いることにより、例えば電解液の分解を抑制することができる。
電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
Examples of the electrolytic solution additive include vinylene carbonate. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed.
The amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.

また、負極活物質層は、例えば、フュームドシリカやフュームドアルミナなどのナノ微粒子を含んでいてもよい。ナノ微粒子を含む場合には負極用スラリー組成物のチキソ性を調整することができるので、それにより得られる本発明の負極のレベリング性を向上させることができる。
ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部〜10重量部である。ナノ微粒子が上記範囲であることにより、負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
Moreover, the negative electrode active material layer may contain nanoparticles, such as fumed silica and fumed alumina, for example. When the nanoparticle is included, the thixotropy of the negative electrode slurry composition can be adjusted, so that the leveling property of the negative electrode of the present invention obtained thereby can be improved.
The amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the nanoparticles are in the above range, the stability and productivity of the negative electrode slurry composition can be improved, and high battery characteristics can be realized.

[1−5.集電体及び負極活物質層]
本発明の負極は、上述した負極活物質、バインダー及び水溶性重合体、並びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は、集電体の少なくとも片面に設けられていればよいが、両面に設けられていることが好ましい。
[1-5. Current collector and negative electrode active material layer]
The negative electrode of the present invention includes a negative electrode active material layer containing the above-described negative electrode active material, binder and water-soluble polymer, and other components used as necessary. This negative electrode active material layer is usually provided on the surface of the current collector. At this time, the negative electrode active material layer may be provided on at least one side of the current collector, but is preferably provided on both sides.

負極用の集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい。負極用の集電体の材料としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては銅が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The current collector for the negative electrode is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because of its heat resistance. Examples of the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. Among these, copper is particularly preferable as the current collector used for the secondary battery negative electrode. In addition, the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

集電体の形状は特に制限されないが、厚さ0.001mm〜0.5mm程度のシート状のものが好ましい。
集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
The shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
In order to increase the adhesive strength with the negative electrode active material layer, the current collector is preferably used after roughening the surface in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, usually, a polishing cloth with an abrasive particle fixed thereto, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.

通常は前記の集電体の表面に、負極活物質層が設けられる。
負極活物質層の厚みは、通常5μm以上、好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
Usually, a negative electrode active material layer is provided on the surface of the current collector.
The thickness of the negative electrode active material layer is usually 5 μm or more, preferably 30 μm or more, and is usually 300 μm or less, preferably 250 μm or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.

負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示す負極を実現できる。   The content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85% by weight or more, more preferably 88% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less. By making the content rate of a negative electrode active material into the said range, the negative electrode which shows a softness | flexibility and a binding property, while showing a high capacity | capacitance is realizable.

[2.二次電池用負極の製造方法]
本発明の二次電池用負極の製造方法(以下、適宜「本発明の負極の製造方法」という。)は特に制限されないが、例えば、本発明の負極用スラリー組成物を用意し、その負極用スラリー組成物を集電体の表面に塗布し、乾燥させることを含む製造方法によって製造してもよい。
[2. Manufacturing method of negative electrode for secondary battery]
The method for producing the negative electrode for secondary battery of the present invention (hereinafter referred to as “the method for producing the negative electrode of the present invention” as appropriate) is not particularly limited. For example, the slurry composition for negative electrode of the present invention is prepared, You may manufacture by the manufacturing method including apply | coating a slurry composition to the surface of an electrical power collector, and making it dry.

本発明の負極用スラリー組成物は、負極活物質、バインダー、水溶性重合体及び水を含むスラリー状の組成物である。また、本発明の負極用スラリー組成物は、必要に応じて負極活物質、バインダー、水溶性重合体及び水以外の成分を含んでいてもよい。負極活物質、バインダー及び水溶性重合体、並びに必要に応じて含まれる成分の量は、通常は負極活物質層に含まれる各成分の量と同様にする。このような本発明の負極用スラリー組成物では、通常、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体が負極活物質の表面に吸着することによって、負極活物質が水溶性重合体の安定な層で覆われて、負極活物質の溶媒中での分散性が向上している。このため、本発明の負極用スラリー組成物は、集電体に塗布する際の塗工性が良好である。   The negative electrode slurry composition of the present invention is a slurry-like composition containing a negative electrode active material, a binder, a water-soluble polymer, and water. Moreover, the slurry composition for negative electrodes of this invention may contain components other than a negative electrode active material, a binder, a water-soluble polymer, and water as needed. The amount of the negative electrode active material, the binder, the water-soluble polymer, and the components included as necessary is usually the same as the amount of each component included in the negative electrode active material layer. In such a slurry composition for negative electrode of the present invention, a part of the water-soluble polymer is usually dissolved in water, but another part of the water-soluble polymer is adsorbed on the surface of the negative electrode active material. Thus, the negative electrode active material is covered with a stable layer of a water-soluble polymer, and the dispersibility of the negative electrode active material in the solvent is improved. For this reason, the slurry composition for negative electrodes of this invention has the favorable coating property at the time of apply | coating to a collector.

水は、負極用スラリー組成物において溶媒又は分散媒として機能し、負極活物質を分散させたり、バインダーを粒子状に分散させたり、水溶性重合体を溶解させたりする。この際、溶媒として水以外の液体を水と組み合わせて用いてもよい。バインダー及び水溶性重合体を溶解する液体を組み合わせると、バインダー及び水溶性重合体が表面に吸着することにより負極活物質の分散が安定化するので、好ましい。   Water functions as a solvent or a dispersion medium in the negative electrode slurry composition, and the negative electrode active material is dispersed, the binder is dispersed in the form of particles, and the water-soluble polymer is dissolved. At this time, a liquid other than water may be used as a solvent in combination with water. It is preferable to combine a binder and a liquid that dissolves the water-soluble polymer because the dispersion of the negative electrode active material is stabilized by adsorbing the binder and the water-soluble polymer to the surface.

水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン、ε−カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N−メチルピロリドン、N,N−ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN−メチルピロリドン(NMP)が好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment. Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, γ-butyrolactone, Esters such as ε-caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N- Examples include amides such as methylpyrrolidone and N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

水及び前記の液体の量は、本発明の負極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明の負極用スラリー組成物の固形分の濃度が、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下となる量に調整して用いられる。   The amount of water and the liquid is preferably adjusted so that the viscosity of the slurry composition for negative electrode of the present invention is suitable for coating. Specifically, the concentration of the solid content of the slurry composition for negative electrode of the present invention is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 80% by weight. It is used by adjusting to the following amount.

本発明の負極用スラリー組成物は、上記の負極活物質、バインダー、水溶性重合体及び水並びに必要に応じて用いられる成分を混合して製造してもよい。混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。   The slurry composition for negative electrode of the present invention may be produced by mixing the negative electrode active material, the binder, the water-soluble polymer, water, and components used as necessary. The mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.

本発明の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることにより、集電体の表面に負極活物質層を形成して、本発明の負極を製造することができる。   The negative electrode slurry of the present invention can be produced by applying the slurry composition for negative electrode on the surface of the current collector and drying it to form a negative electrode active material layer on the surface of the current collector.

本発明の負極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。   The method for applying the negative electrode slurry composition of the present invention to the surface of the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.

乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常5分〜30分であり、乾燥温度は通常40℃〜180℃である。   Examples of the drying method include drying with warm air, hot air, and low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 ° C to 180 ° C.

また、集電体の表面に負極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5%以上、より好ましくは7%以上であり、好ましくは30%以下、より好ましくは20%以下である。空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値以下とすることにより高い充電効率及び放電効率が得られる。   Further, after applying and drying the negative electrode slurry composition on the surface of the current collector, it is preferable to subject the negative electrode active material layer to a pressure treatment using, for example, a die press or a roll press, if necessary. . By the pressure treatment, the porosity of the negative electrode active material layer can be lowered. The porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less. By setting the porosity to the lower limit value or more of the above range, a high volume capacity can be easily obtained, the negative electrode active material layer can be made difficult to peel from the current collector, and by setting the porosity to the upper limit value or less, high charging efficiency can be achieved. And discharge efficiency is obtained.

さらに、負極活物質層が硬化性の重合体を含む場合は、負極活物質層の形成後に前記重合体を硬化させることが好ましい。   Furthermore, when a negative electrode active material layer contains a curable polymer, it is preferable to harden the said polymer after formation of a negative electrode active material layer.

[3.二次電池]
本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極として、本発明の負極を備える。
本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境及び低温環境のいずれで保存した場合でも容量を低下し難くしたりできる。また、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活物質層の集電体への密着性を高めたりすることもできる。
[3. Secondary battery]
The secondary battery of the present invention includes the negative electrode of the present invention. Usually, the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and includes the negative electrode of the present invention as the negative electrode.
Since the negative electrode of the present invention is provided, the secondary battery of the present invention can suppress swelling of the negative electrode associated with charge / discharge, and can make it difficult to reduce the capacity when stored in either a high temperature environment or a low temperature environment. In addition, the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery of the present invention can be improved, and the adhesion of the negative electrode active material layer to the current collector can be improved.

[3−1.正極]
正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用のバインダーを含む正極活物質層とを備える。
[3-1. Positive electrode]
The positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.

正極の集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。   The current collector of the positive electrode is not particularly limited as long as it is an electrically conductive and electrochemically durable material. As the current collector for the positive electrode, for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.

正極活物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。   For example, when the secondary battery of the present invention is a lithium ion secondary battery, a material capable of inserting and removing lithium ions is used as the positive electrode active material. Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.

無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.

遷移金属酸化物としては、例えば、MnO、MnO、V、V13、TiO、Cu、非晶質VO−P、MoO、V、V13等が挙げられ、中でもサイクル安定性と容量からMnO、V、V13、TiOが好ましい。
遷移金属硫化物としては、例えば、TiS、TiS、非晶質MoS、FeS等が挙げられる。
Examples of the transition metal oxide include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
Examples of the transition metal sulfide include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.

リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。
スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)又はMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include a lithium composite oxide of Al and a lithium composite oxide of Ni—Co—Al.
Examples of the lithium-containing composite metal oxide having a spinel structure include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
Examples of the lithium-containing composite metal oxide having an olivine type structure include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti). Olivine type lithium phosphate compound represented by the formula: at least one selected from the group consisting of Al, Si, B and Mo, wherein X represents a number satisfying 0 ≦ X ≦ 2.

有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子が挙げられる。   Examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.

また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があるが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
なお、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Moreover, you may use the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound. For example, a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material. Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
Furthermore, you may use as a positive electrode active material what carried out the element substitution of the said compound partially. Moreover, you may use the mixture of said inorganic compound and organic compound as a positive electrode active material.
In addition, a positive electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

正極活物質の粒子の平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及びバインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。   The average particle diameter of the positive electrode active material particles is usually 1 μm or more, preferably 2 μm or more, and usually 50 μm or less, preferably 30 μm or less. By making the average particle diameter of the positive electrode active material particles in the above range, the amount of the binder when preparing the positive electrode active material layer can be reduced, and the decrease in the capacity of the secondary battery can be suppressed. In order to form the positive electrode active material layer, a positive electrode slurry composition containing a positive electrode active material and a binder is usually prepared. The viscosity of the positive electrode slurry composition is adjusted to an appropriate viscosity that is easy to apply. And a uniform positive electrode can be obtained.

正極活物質層における正極活物質の含有割合は、好ましくは90重量%以上、より好ましくは95重量%以上であり、好ましくは99.9重量%以下、より好ましくは99重量%以下である。正極活物質の含有量を上記範囲とすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との結着性を向上させることができる。   The content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less. By setting the content of the positive electrode active material in the above range, the capacity of the secondary battery can be increased, and the flexibility of the positive electrode and the binding property between the current collector and the positive electrode active material layer can be improved.

正極用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体を用いることができる。なお、バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Examples of the positive electrode binder include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives. Resins; Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used. In addition, a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、正極活物質層には、必要に応じて、正極活物質及びバインダー以外の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   In addition, the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。   The thickness of the positive electrode active material layer is usually 5 μm or more, preferably 10 μm or more, and usually 300 μm or less, preferably 250 μm or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.

正極は、例えば、前述の負極と同様の要領で製造してもよい。   The positive electrode may be manufactured, for example, in the same manner as the above-described negative electrode.

[3−2.電解液]
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[3-2. Electrolyte]
As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent may be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. One of these may be used alone, or two or more of these may be used in combination at any ratio.

支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重量%以上であり、また、通常30重量%以下、好ましくは20重量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。   The amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.

電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); Examples include esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide. In addition, a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Moreover, you may make an electrolyte solution contain an additive as needed. As the additive, for example, carbonate compounds such as vinylene carbonate (VC) are preferable. In addition, an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、LiNなどの無機固体電解質;などを挙げることができる。 Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.

[3−3.セパレーター]
セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
[3-3. separator]
As the separator, a porous substrate having a pore portion is usually used. Examples of separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon. Examples of these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers. Or a polymer film for a gel polymer electrolyte; a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.

[3−4.二次電池の製造方法]
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
[3-4. Secondary battery manufacturing method]
The manufacturing method of the secondary battery of the present invention is not particularly limited. For example, the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed. Furthermore, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.

以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではない。なお、以下の実施例の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the Example shown below. In the following description of Examples, “%” and “parts” representing amounts are based on weight unless otherwise specified. Further, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.

〔評価方法〕
1.密着強度
実施例および比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、試験台に固定されたセロハンテープに貼付した。貼付に際しては、負極活物質層側の表面を下にして、負極活物質層側の表面とセロハンテープの粘着面とを接触させた。セロハンテープとしてはJIS Z1522に規定されるものを用いた。
その後、集電体の一端を垂直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
〔Evaluation method〕
1. Adhesive strength The negative electrodes produced in Examples and Comparative Examples were cut into rectangles having a length of 100 mm and a width of 10 mm to obtain test pieces. This test piece was affixed to the cellophane tape fixed to the test stand. In pasting, the surface on the negative electrode active material layer side was brought into contact with the adhesive surface of the cellophane tape with the surface on the negative electrode active material layer side facing down. As the cellophane tape, one specified in JIS Z1522 was used.
Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated | required, and the said average value was made into peel strength. The higher the peel strength, the greater the binding force of the negative electrode active material layer to the current collector, that is, the higher the adhesion strength.

2.スラリー安定性
実施例および比較例で製造した負極用スラリー組成物を容器に入れ、25℃にて、粘度を測定した。粘度の測定は、容器に入っているスラリーの上部から20%部分以内に、E型粘度計の回転部が浸漬するよう設置し、回転数6rpmで測定した。
その後、負極用スラリー組成物を、5℃で72時間静置したのち、25℃に戻し、再び前記と同様に粘度を測定した。静置前後の粘度を比較して、粘度変化率が10%増加未満であればA、10%〜30%増加であればB、30%以上であればCとした。
2. Slurry Stability The negative electrode slurry compositions produced in the examples and comparative examples were placed in a container, and the viscosity was measured at 25 ° C. Viscosity was measured by setting the rotating part of the E-type viscometer so as to be immersed within 20% from the upper part of the slurry contained in the container, and measuring at 6 rpm.
Then, after leaving the slurry composition for negative electrodes at 5 degreeC for 72 hours, it returned to 25 degreeC and measured the viscosity again similarly to the above. Comparing the viscosities before and after standing, it was set as A if the rate of viscosity change was less than 10% increase, B if it was increased 10% to 30%, and C if it was 30% or more.

3.塗工性
実施例および比較例で製造した負極用スラリー組成物を、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極を得た。得られた負極を10×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。
3. Coating property Apply the slurry composition for negative electrode manufactured in Examples and Comparative Examples on a 20 μm thick copper foil as a current collector so that the film thickness after drying is about 150 μm, and then dry. It was. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode. The obtained negative electrode was cut out with a size of 10 × 10 cm, and the number of pinholes having a diameter of 0.1 mm or more was visually measured. The smaller the number of pinholes, the better the coatability.

4.耐久性
(1)高温保存特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、4.2Vに充電し、60℃で7日間保存した後、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量Cを測定した。高温保存特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温保存特性に優れることを示す。
4). Durability (1) High-temperature storage characteristics After leaving the lithium-ion secondary battery of the laminate type cell produced in Examples and Comparative Examples for 24 hours, the battery was charged and discharged at a charge / discharge rate of 4.2 V and 0.1 C. The operation was performed and the initial capacity C0 was measured. Furthermore, after charging to 4.2 V and storing at 60 ° C. for 7 days, charge and discharge operations were performed at a charge and discharge rate of 4.2 V and 0.1 C, and the capacity C 1 after high temperature storage was measured. The high-temperature storage characteristics were evaluated by a capacity change rate ΔC S represented by ΔC S = C 1 / C 0 × 100 (%). As the value of the capacitance change rate [Delta] C S is high, the better the high-temperature storage characteristics.

(2)高温サイクル特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、60℃の環境下で充放電を繰り返し、100サイクル後の容量Cを測定した。高温サイクル特性は、ΔC=C/C×100(%)で示す容量変化率ΔCにて評価した。この容量変化率ΔCの値が高いほど、高温サイクル特性に優れることを示す。
(2) High-temperature cycle characteristics After the lithium-ion secondary batteries of the laminate type cells produced in Examples and Comparative Examples were allowed to stand for 24 hours, charge / discharge operations were performed at a charge / discharge rate of 4.2 V and 0.1 C. The initial capacity C 0 was measured. Furthermore, charge / discharge was repeated under an environment of 60 ° C., and the capacity C 2 after 100 cycles was measured. The high temperature cycle characteristics were evaluated by a capacity change rate ΔC C represented by ΔC C = C 2 / C 0 × 100 (%). It shows that it is excellent in high temperature cycle characteristics, so that the value of this capacity | capacitance change rate (DELTA) CC is high.

(3)極板膨らみ特性
前記の「(1)高温保存特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極の極板の厚みd1を測定した。リチウムイオン二次電池のセルの作製前における負極の極板の厚みをd0として、負極の極板膨らみ率(d1−d0)/d0を算出した。この値が低いほど、極板膨らみ特性に優れることを示す。
(3) Electrode Swelling Characteristics After the evaluation of the “(1) High temperature storage characteristics”, the cell of the lithium ion secondary battery was disassembled, and the thickness d1 of the negative electrode plate was measured. The negative electrode plate swell ratio (d1-d0) / d0 was calculated with d0 being the thickness of the negative electrode plate before the production of the lithium ion secondary battery cell. It shows that it is excellent in the electrode plate swelling characteristic, so that this value is low.

5.低温出力特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行った。その後、−25℃の環境下で、充放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=4.2V−V10で示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
5. Low temperature output characteristics After the lithium ion secondary batteries of the laminate type cells produced in Examples and Comparative Examples were allowed to stand for 24 hours, charge / discharge operations were performed at a charge / discharge rate of 4.2 V and 0.1 C. Then, charging / discharging operation was performed in -25 degreeC environment, and voltage V10 10 seconds after the discharge start was measured. Low-temperature output characteristics were evaluated by the voltage change [Delta] V shown by ΔV = 4.2V-V 10. It shows that it is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.

6.水溶性重合体の1%水溶液の粘度
実施例および比較例で製造した水溶性重合体を10%アンモニア水およびイオン交換水により、水溶性重合体の1%水溶液を調製した。この水溶液の粘度を、E型粘度計により測定した。
6). Viscosity of 1% aqueous solution of water-soluble polymer A 1% aqueous solution of a water-soluble polymer was prepared from 10% aqueous ammonia and ion-exchanged water for the water-soluble polymers produced in Examples and Comparative Examples. The viscosity of this aqueous solution was measured with an E-type viscometer.

〔実施例1〕
(1−1.水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、ブチルアクリレート77.5部、モノメチル−2−メタクリロイロキシエチルホスフェート20部、2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)2.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.0部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。
この混合物に、10%アンモニア水を添加してpH8に調整し、所望の水溶性重合体を含む水溶液を得た。
得られた水溶液を用いて、上述した要領で水溶性重合体の1%水溶液を調製し、その粘度を測定した。結果を表1に示す。
[Example 1]
(1-1. Production of water-soluble polymer)
In a 5 MPa pressure vessel with a stirrer, 77.5 parts of butyl acrylate, 20 parts of monomethyl-2-methacryloyloxyethyl phosphate, 2.5 parts of 2-acrylamido-2-methylpropanesulfonic acid (AMPS), dodecylbenzenesulfonic acid as an emulsifier 1.0 part of sodium, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 60 ° C. to initiate polymerization. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing a water-soluble polymer.
To this mixture, 10% aqueous ammonia was added to adjust to pH 8 to obtain an aqueous solution containing the desired water-soluble polymer.
Using the obtained aqueous solution, a 1% aqueous solution of a water-soluble polymer was prepared as described above, and the viscosity was measured. The results are shown in Table 1.

(1−2.バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33部、メタクリル酸1.5部、スチレン65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、バインダーを含む混合物を得た。
この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダー(SBR−1)を含む水系分散液を得た。
(1-2. Production of binder)
In a 5 MPa pressure vessel with a stirrer, 33 parts of 1,3-butadiene, 1.5 parts of methacrylic acid, 65.5 parts of styrene, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and as a polymerization initiator After adding 0.5 part of potassium persulfate and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a binder.
A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion liquid containing the desired binder (SBR-1).

(1−3.負極用スラリー組成物の製造)
上記(1−1)で得られた水溶性重合体を含む水溶液を水で希釈して濃度を5%に調整した。
ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m/gの人造黒鉛(体積平均粒子径:24.5μm)90部及びSiOC(体積平均粒子径:12μm)10部と、上記の水溶性重合体の5%水溶液を固形分相当で1部とをそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
(1-3. Production of slurry composition for negative electrode)
The aqueous solution containing the water-soluble polymer obtained in the above (1-1) was diluted with water to adjust the concentration to 5%.
In a planetary mixer with a disper, 90 parts of artificial graphite (volume average particle diameter: 24.5 μm) having a specific surface area of 4 m 2 / g and 10 parts of SiOC (volume average particle diameter: 12 μm) as a negative electrode active material, A 1% portion of a 5% aqueous solution of a polymer was added in an amount corresponding to the solid content, adjusted to a solid content concentration of 55% with ion-exchanged water, and then mixed at 25 ° C for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.

上記混合液に、上記(1−2)で得られたバインダーを含む水系分散液を固形分相当で1部、及びイオン交換水を入れ、最終固形分濃度42%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
得られた負極用スラリー組成物について、上述した要領で塗工性及びスラリー安定性の評価を行った。結果を表1に示す。
Into the mixed solution, 1 part of the aqueous dispersion containing the binder obtained in (1-2) above is added in an amount corresponding to the solid content, and ion-exchanged water, and adjusted so as to have a final solid content concentration of 42%. Mix for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
About the obtained slurry composition for negative electrodes, the applicability | paintability and slurry stability were evaluated in the way mentioned above. The results are shown in Table 1.

(1−4.負極の製造)
上記(1−3)で得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
得られた負極について、上述した要領で密着強度の評価を行った。結果を表1に示す。
(1-4. Production of negative electrode)
The slurry composition for negative electrode obtained in (1-3) above was applied on a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 150 μm. , Dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode active material layer thickness of 80 μm.
About the obtained negative electrode, the adhesive strength was evaluated in the way mentioned above. The results are shown in Table 1.

(1−5.正極の製造)
正極用のバインダーとして、ガラス転移温度Tgが−40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2−エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られる共重合体である。
(1-5. Production of positive electrode)
As a binder for the positive electrode, a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of −40 ° C. and a number average particle size of 0.20 μm was prepared. The acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by weight of 2-ethylhexyl acrylate, 20% by weight of acrylonitrile, and 2% by weight of methacrylic acid.

正極活物質として体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部と、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で1部と、バインダーとして上記のアクリレート重合体の40%水分散体を固形分相当で5部とを混合し、これにイオン交換水を全固形分濃度が40%となるように加え、プラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。 100 parts of LiFePO 4 having a volume average particle size of 0.5 μm and an olivine crystal structure as a positive electrode active material, and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a solid component as a solid content 1 part at a time and a 40% aqueous dispersion of the above acrylate polymer as a binder are mixed with 5 parts at a solid content, and ion-exchanged water is added to this so that the total solid content concentration is 40%. The slurry composition for positive electrodes was prepared by mixing with a planetary mixer.

上記の正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が200μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。   The slurry composition for positive electrode was applied on a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 200 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.

(1−6.セパレーターの用意)
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cmの正方形に切り抜いた。
(1-6. Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut into a square of 5 × 5 cm 2 .

(1−7.リチウムイオン二次電池)
電池の外装として、アルミ包材外装を用意した。上記(1−5)で得られた正極を、4×4cmの正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、上記(1−6)で得られた正方形のセパレーターを配置した。さらに、上記(1−4)で得られた負極を、4.2×4.2cmの正方形に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。そして、アルミ包材の中に、電解液を空気が残らないように注入した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
得られたリチウムイオン二次電池について、上述した要領で高温保存特性、高温サイクル特性及び極板膨らみ特性によって耐久性を評価し、更に、低温出力特性を評価した。結果を表1に示す。
(1-7. Lithium ion secondary battery)
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode obtained in the above (1-5) was cut into a square of 4 × 4 cm 2 and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior. On the surface of the positive electrode active material layer of the positive electrode, the square separator obtained in (1-6) above was disposed. Furthermore, the negative electrode obtained in the above (1-4) was cut into a square of 4.2 × 4.2 cm 2 and arranged on the separator so that the surface on the negative electrode active material layer side faces the separator. And electrolyte solution was inject | poured in the aluminum packaging material so that air might not remain. Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and a lithium ion secondary battery was manufactured. In addition, as an electrolytic solution, LiPF 6 was added at 1 mol / liter in a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at EC: DEC = 1: 2 (volume ratio at 20 ° C.). A solution dissolved at a concentration was used.
About the obtained lithium ion secondary battery, durability was evaluated by the high temperature storage characteristic, the high temperature cycling characteristic, and the electrode plate swelling characteristic in the above-mentioned way, and also the low temperature output characteristic was evaluated. The results are shown in Table 1.

〔実施例2〜4〕
工程(1−3)の負極用スラリーの製造において、負極活物質としての人造黒鉛及びSiOCの割合を表1に示すとおり変更した他は、実施例1と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表1に示す。
[Examples 2 to 4]
In the production of the slurry for negative electrode in the step (1-3), a water-soluble polymer is contained in the same manner as in Example 1 except that the ratio of artificial graphite and SiOC as the negative electrode active material is changed as shown in Table 1. An aqueous solution, a negative electrode slurry composition, a negative electrode and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 1.

〔実施例5〜14及び比較例1〜6〕
工程(1−1)の水溶性重合体の製造において、各単量体の種類及び割合を表1〜4に示す通り変更した他は、実施例1と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表1〜4に示す。
[Examples 5 to 14 and Comparative Examples 1 to 6]
In manufacture of the water-soluble polymer of a process (1-1), except having changed the kind and ratio of each monomer as shown in Tables 1-4, it contains a water-soluble polymer like Example 1. An aqueous solution, a negative electrode slurry composition, a negative electrode and a lithium ion secondary battery were prepared and evaluated. The results are shown in Tables 1-4.

〔実施例15及び16〕
工程(1−3)の負極用スラリーの製造において、水溶性重合体の5%水溶液の添加量(固形分相当)を、表3に示す通り変更した他は、実施例1と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表3に示す。
Examples 15 and 16
In the production of the slurry for negative electrode in the step (1-3), the addition amount (corresponding to the solid content) of the 5% aqueous solution of the water-soluble polymer was changed as shown in Table 3 in the same manner as in Example 1, An aqueous solution containing a water-soluble polymer, a slurry composition for negative electrode, a negative electrode and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 3.

〔実施例17〕
工程(1−3)の負極用スラリーの製造工程中の、負極活物質及び水溶性重合体の5%水溶液を混合する工程で、これらに加えてさらに、カルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH−12」)を固形分相当で0.5部を加えた他は、実施例1と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表3に示す。
Example 17
In the step of mixing the negative electrode active material and the 5% aqueous solution of the water-soluble polymer in the production process of the negative electrode slurry in the step (1-3), in addition to these, a 1% aqueous solution of carboxymethyl cellulose (Daiichi Kogyo) “BSH-12” manufactured by Pharmaceutical Co., Ltd.) was added in the same manner as in Example 1 except that 0.5 part corresponding to the solid content was added, an aqueous solution containing a water-soluble polymer, a slurry composition for negative electrode, a negative electrode, and lithium An ion secondary battery was created and evaluated. The results are shown in Table 3.

〔実施例18〕
(18−1.バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン57.0部、メタクリル酸1.5部、スチレン41.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、バインダーを含む混合物を得た。
この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダー(SBR−2)を含む水系分散液を得た。
Example 18
(18-1. Production of Binder)
In a 5 MPa pressure vessel with a stirrer, 57.0 parts of 1,3-butadiene, 1.5 parts of methacrylic acid, 41.5 parts of styrene, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water and a polymerization initiator After adding 0.5 part of potassium persulfate and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a binder.
A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing a desired binder (SBR-2).

(18−2.リチウムイオン二次電池等の製造)
バインダーを含む水系分散液として、(1−2)で得たものに代えて、上記(18−1)で得たものを用いた他は、実施例1の(1−1)及び(1−3)〜(1−7)と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表3に示す。
(18-2. Manufacture of lithium ion secondary batteries, etc.)
As the aqueous dispersion containing the binder, instead of the one obtained in (1-2), the one obtained in (18-1) above was used, except that (1-1) and (1- In the same manner as 3) to (1-7), an aqueous solution containing a water-soluble polymer, a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 3.

〔実施例19〕
(19−1.バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33.2部、イタコン酸3.8部、スチレン63部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、バインダーを含む混合物を得た。
この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダー(SBR−3)を含む水系分散液を得た。
Example 19
(19-1. Production of binder)
In a 5 MPa pressure vessel with a stirrer, 33.2 parts of 1,3-butadiene, 3.8 parts of itaconic acid, 63 parts of styrene, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water and persulfuric acid as a polymerization initiator After adding 0.5 part of potassium and stirring sufficiently, it heated to 50 degreeC and superposition | polymerization was started. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a binder.
A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion liquid containing the desired binder (SBR-3).

(19−2.リチウムイオン二次電池等の製造)
バインダーを含む水系分散液として、(1−2)で得たものに代えて、上記(19−1)で得たものを用いた他は、実施例1の(1−1)及び(1−3)〜(1−7)と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表3に示す。
(19-2. Manufacture of lithium ion secondary batteries, etc.)
As an aqueous dispersion containing a binder, instead of the one obtained in (1-2), the one obtained in (19-1) above was used, except that (1-1) and (1- In the same manner as 3) to (1-7), an aqueous solution containing a water-soluble polymer, a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 3.

〔実施例20〕
(20−1.バインダーの製造)
撹拌機を備えた反応器に、イオン交換水70部およびドデシルベンゼンスルホン酸ナトリウム0.3部をそれぞれ供給し、十分攪拌混合し、気相部を窒素ガスで置換し、70℃に昇温した。
一方、別の容器で、イオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、重合性モノマーとして、2−エチルヘキシルアクリレート76部、アクリロニトリル20部、及びメタクリル酸4部を混合して、モノマー混合物を得た。このモノマー混合物を4時間かけて前記反応器に連続的に添加して、重合を行った。反応開始は、モノマー混合物を添加開始する際に、過硫酸カリウム0.5部を3%過硫酸カリウム水溶液として、前記反応器に添加することによって行った。また、モノマー混合物の添加中は、60℃で反応を行った。モノマー混合物の添加終了後、さらに80℃で3時間撹拌して反応を終了し、アクリレート系重合体バインダー(ACR)を含む水系分散液を得た。重合転化率は98.5%であった。
Example 20
(20-1. Production of binder)
70 parts of ion-exchanged water and 0.3 part of sodium dodecylbenzenesulfonate were respectively supplied to a reactor equipped with a stirrer and mixed sufficiently, and the gas phase part was replaced with nitrogen gas, and the temperature was raised to 70 ° C. .
On the other hand, in another container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate, and 76 parts of 2-ethylhexyl acrylate, 20 parts of acrylonitrile, and 4 parts of methacrylic acid were mixed as a polymerizable monomer. A monomer mixture was obtained. This monomer mixture was continuously added to the reactor over 4 hours to conduct polymerization. The reaction was started by adding 0.5 part of potassium persulfate as a 3% aqueous solution of potassium persulfate to the reactor when the addition of the monomer mixture was started. Moreover, reaction was performed at 60 degreeC during addition of a monomer mixture. After the addition of the monomer mixture was completed, the reaction was further terminated by stirring at 80 ° C. for 3 hours to obtain an aqueous dispersion containing an acrylate polymer binder (ACR). The polymerization conversion rate was 98.5%.

(20−2.リチウムイオン二次電池等の製造)
バインダーを含む水系分散液として、(1−2)で得たものに代えて、上記(20−1)で得たものを用いた他は、実施例1の(1−1)及び(1−3)〜(1−7)と同様にして、水溶性重合体を含む水溶液、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表3に示す。
(20-2. Manufacture of lithium ion secondary batteries, etc.)
As the aqueous dispersion containing the binder, instead of the one obtained in (1-2), the one obtained in (20-1) above was used, except that (1-1) and (1- In the same manner as 3) to (1-7), an aqueous solution containing a water-soluble polymer, a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 3.

〔比較例7〕
工程(1−3)の負極用スラリー組成物の製造において、(1−1)で得られた水溶性重合体を含む水溶液を添加しなかった他は、実施例1の(1−2)〜(1−7)と同様にして、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表4に示す。
[Comparative Example 7]
In the production of the slurry composition for negative electrode in the step (1-3), except that the aqueous solution containing the water-soluble polymer obtained in (1-1) was not added, (1-2) to In the same manner as (1-7), a slurry composition for negative electrode, a negative electrode and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 4.

〔比較例8〕
(C8−1.バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン16.5部、メタクリル酸0.75部、スチレン32.8部、ブチルアクリレート38.7部、モノメチル−2−メタクリロイロキシエチルホスフェート10部、2−アクリルアミド−2−メチルプロパンスルホン酸1.25部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、バインダーを含む混合物を得た。
この混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダー(SBR−4)を含む水系分散液を得た。
[Comparative Example 8]
(C8-1. Production of binder)
In a 5 MPa pressure vessel with a stirrer, 16.5 parts of 1,3-butadiene, 0.75 parts of methacrylic acid, 32.8 parts of styrene, 38.7 parts of butyl acrylate, 10 parts of monomethyl-2-methacryloyloxyethyl phosphate, 2 -1.25 parts of acrylamido-2-methylpropanesulfonic acid, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator were sufficiently stirred. Thereafter, the polymerization was started by heating to 50 ° C. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a binder.
A 5% aqueous sodium hydroxide solution was added to this mixture to adjust to pH 8, and then unreacted monomers were removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing the desired binder (SBR-4).

(C8−2.リチウムイオン二次電池等の製造)
工程(1−3)の負極用スラリー組成物の製造において、(1−1)で得られた水溶性重合体を含む水溶液を添加せず、且つ、バインダーとして、(1−2)で得たものに代えて、上記(C8−1)で得たものを用いた他は、実施例1の(1−3)〜(1−7)と同様にして、負極用スラリー組成物、負極及びリチウムイオン二次電池を作成して評価した。結果を表4に示す。
(C8-2. Manufacture of lithium ion secondary batteries, etc.)
In the production of the slurry composition for negative electrode in the step (1-3), the aqueous solution containing the water-soluble polymer obtained in (1-1) was not added, and the binder was obtained in (1-2) as a binder. Instead of the above, a slurry composition for a negative electrode, a negative electrode and lithium were used in the same manner as in (1-3) to (1-7) of Example 1 except that the product obtained in (C8-1) was used. An ion secondary battery was created and evaluated. The results are shown in Table 4.

Figure 0005708301
Figure 0005708301

Figure 0005708301
Figure 0005708301

Figure 0005708301
Figure 0005708301

Figure 0005708301
Figure 0005708301

表中の略語が示す事項は、下記の通りである。
S単位量:スルホン酸基含有単量体単位量
P単位量:リン酸基含有単量体単位量
AMPS:2−アクリルアミド−2−メチルプロパンスルホン酸
SSA:スチレンスルホン酸
4SBMA;4−スルホブチルメタクリレート
MAA:メタクリル酸
MM2MAOEPA:モノメチル−2−メタクリロイロキシエチルホスフェート
DO2MAOEPA:ジオクチル−2−メタクリロイロキシエチルホスフェート
DP2MAOEPA:ジフェニル−2−メタクリロイロキシエチルホスフェート
AA:アクリル酸
BA:ブチルアクリレート
MMA:メチルメタクリレート
SBR−1:バインダー、実施例1の(1−2)で調製したもの
SBR−2:バインダー、実施例18の(18−1)で調製したもの
SBR−3:バインダー、実施例19の(19−1)で調製したもの
ACR:バインダー、実施例20の(20−1)で調製したもの
SBR−4:バインダー、比較例例8の(C8−1)で調製したもの
The items indicated by the abbreviations in the table are as follows.
S unit amount: sulfonic acid group-containing monomer unit amount P unit amount: phosphoric acid group-containing monomer unit amount AMPS: 2-acrylamido-2-methylpropanesulfonic acid SSA: styrene sulfonic acid 4SBMA; 4-sulfobutyl methacrylate MAA: methacrylic acid MM2MAOEPA: monomethyl-2-methacryloyloxyethyl phosphate DO2MAOEPA: dioctyl-2-methacryloyloxyethyl phosphate DP2MAOEPA: diphenyl-2-methacryloyloxyethyl phosphate AA: acrylic acid BA: butyl acrylate MMA: methyl methacrylate SBR -1: Binder, prepared in (1-2) of Example 1 SBR-2: Binder, prepared in (18-1) of Example 18 SBR-3: Binder, Example 19 (19-1) as prepared in ACR: Binder, Example 20 (20-1) as prepared in SBR-4: binders, as prepared in the Comparative Example Example 8 (C8-1)

表1〜表4から分かる通り、実施例においては、充放電に伴う負極の膨らみを抑制でき、高温環境及び低温環境のいずれで保存した場合でも容量が低下し難い二次電池を実現でき、更に高温サイクル特性及び低温出力特性を向上させられるため、耐久性に優れた二次電池を実現できる。さらに、負極の製造時におけるピンホールの発生量が少なく、集電体と負極活物質層との密着性が高く、スラリーの安定性も高いので、上記の性能を満たしながら容易に製造しうる。
さらに、水溶性重合体ではなくバインダーがスルホン酸基含有単量体単位及びリン酸基含有単量体単位を有する重合体である比較例8に比べても、本願実施例は顕著に良好な効果を示した。
したがって、本発明により得られる二次電池は、実用上優れた性能を発揮する二次電池である。
As can be seen from Tables 1 to 4, in the examples, the swelling of the negative electrode accompanying charging and discharging can be suppressed, and a secondary battery can be realized in which the capacity is not easily lowered even when stored in either a high temperature environment or a low temperature environment. Since the high-temperature cycle characteristics and the low-temperature output characteristics can be improved, a secondary battery having excellent durability can be realized. Furthermore, since the amount of pinholes generated during the production of the negative electrode is small, the adhesiveness between the current collector and the negative electrode active material layer is high, and the stability of the slurry is also high, it can be easily produced while satisfying the above performance.
Furthermore, compared with Comparative Example 8 in which the binder is not a water-soluble polymer but a binder having a sulfonic acid group-containing monomer unit and a phosphoric acid group-containing monomer unit, the present embodiment has a remarkably good effect. showed that.
Therefore, the secondary battery obtained by the present invention is a secondary battery that exhibits practically excellent performance.

Claims (7)

負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
前記水溶性重合体が、スルホン酸基含有単量体単位0.5重量%〜13重量%、及びリン酸基含有単量体単位5〜30重量%を含む共重合体である、二次電池用負極。
A negative electrode for a secondary battery comprising a negative electrode active material, a binder and a water-soluble polymer,
A secondary battery in which the water-soluble polymer is a copolymer containing 0.5 to 13 % by weight of a sulfonic acid group-containing monomer unit and 5 to 30% by weight of a phosphate group-containing monomer unit. Negative electrode.
前記リン酸基含有単量体が、リン酸基含有(メタ)アクリル酸エステルである、請求項1に記載の二次電池用負極。   The negative electrode for secondary batteries according to claim 1, wherein the phosphate group-containing monomer is a phosphate group-containing (meth) acrylic ester. 前記スルホン酸基含有単量体が、アミド基とスルホン酸基と重合性基とを含有する単量体、またはスルホン酸基及び重合性基を有しそれら以外に官能基をもたない単量体である、請求項1又は2に記載の二次電池用負極。   The sulfonic acid group-containing monomer is a monomer containing an amide group, a sulfonic acid group, and a polymerizable group, or a monomer having a sulfonic acid group and a polymerizable group and having no other functional group. The negative electrode for secondary batteries of Claim 1 or 2 which is a body. 前記水溶性重合体の1%水溶液粘度が、0.1〜20000mPa・sである、請求項1〜3のいずれか1項に記載の二次電池用負極。   The negative electrode for secondary batteries according to any one of claims 1 to 3, wherein the 1% aqueous solution viscosity of the water-soluble polymer is 0.1 to 20000 mPa · s. 正極、負極、電解液、及びセパレーターを備える二次電池であって、
前記負極が、請求項1〜4のいずれか1項に記載の二次電池用負極である、二次電池。
A secondary battery comprising a positive electrode, a negative electrode, an electrolyte, and a separator,
The secondary battery whose said negative electrode is a negative electrode for secondary batteries of any one of Claims 1-4.
負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
前記水溶性重合体が、スルホン酸基含有単量体単位0.5重量%〜13重量%、及びリン酸基含有単量体単位5〜30重量%を含む共重合体である、負極用スラリー組成物。
A negative electrode slurry composition comprising a negative electrode active material, a binder, a water-soluble polymer and water,
Slurry for negative electrode, wherein the water-soluble polymer is a copolymer containing 0.5% by weight to 13 % by weight of sulfonic acid group-containing monomer units and 5-30% by weight of phosphoric acid group-containing monomer units. Composition.
請求項6記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
The manufacturing method of the negative electrode for secondary batteries including apply | coating the slurry composition for negative electrodes of Claim 6 on the surface of a collector, and making it dry.
JP2011143546A 2011-06-28 2011-06-28 Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode Active JP5708301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143546A JP5708301B2 (en) 2011-06-28 2011-06-28 Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143546A JP5708301B2 (en) 2011-06-28 2011-06-28 Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode

Publications (2)

Publication Number Publication Date
JP2013012357A JP2013012357A (en) 2013-01-17
JP5708301B2 true JP5708301B2 (en) 2015-04-30

Family

ID=47686080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143546A Active JP5708301B2 (en) 2011-06-28 2011-06-28 Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JP5708301B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052290B2 (en) * 2012-07-31 2016-12-27 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6023222B2 (en) * 2013-02-01 2016-11-09 株式会社日立製作所 Anode material for lithium ion secondary battery
JP6477463B2 (en) * 2013-05-23 2019-03-06 日本ゼオン株式会社 Secondary battery negative electrode slurry composition, secondary battery negative electrode, and secondary battery
WO2014188724A1 (en) * 2013-05-23 2014-11-27 日本ゼオン株式会社 Secondary-battery binder composition, slurry composition for secondary-battery electrode, secondary-battery negative electrode, and secondary battery
JP6327249B2 (en) * 2013-05-29 2018-05-23 日本ゼオン株式会社 Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
JP6337895B2 (en) * 2013-05-29 2018-06-06 日本ゼオン株式会社 Slurry composition for positive electrode of lithium ion secondary battery, method for producing positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6327251B2 (en) * 2013-06-04 2018-05-23 日本ゼオン株式会社 Porous membrane slurry composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
US9882216B2 (en) 2013-06-04 2018-01-30 Zeon Corporation Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
HUE039423T2 (en) 2013-07-10 2018-12-28 Zeon Corp Porous film composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN105324868B (en) 2013-07-10 2018-06-05 日本瑞翁株式会社 Lithium rechargeable battery bonding agent, separator for lithium ion secondary battery and lithium rechargeable battery
WO2015052809A1 (en) * 2013-10-10 2015-04-16 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
WO2015115201A1 (en) * 2014-01-29 2015-08-06 日本ゼオン株式会社 Electrode for electrochemical elements, and electrochemical element
JP6101223B2 (en) * 2014-02-25 2017-03-22 富士フイルム株式会社 Composite solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
JP6654844B2 (en) * 2014-10-08 2020-02-26 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP6365682B2 (en) * 2014-11-25 2018-08-01 株式会社豊田自動織機 Polymer compound, intermediate composition, negative electrode, power storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
WO2016132872A1 (en) * 2015-02-20 2016-08-25 富士フイルム株式会社 Solid electrolyte composition, cell electrode sheet and all-solid-state secondary cell in which said solid electrolyte composition is used, and method for manufacturing cell electrode sheet and all-solid-state secondary cell
CN107534152B (en) 2015-06-12 2020-11-13 昭和电工株式会社 Composition for binder for nonaqueous battery electrode, composition for nonaqueous battery electrode, and nonaqueous battery
JP2019016489A (en) * 2017-07-05 2019-01-31 株式会社クレハ Binder composition, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and dispersant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543442B2 (en) * 1998-09-18 2010-09-15 日本ゼオン株式会社 Polymer particles, polymer dispersion composition, slurry for battery electrode, electrode and battery
JP4736209B2 (en) * 2000-03-14 2011-07-27 住友化学株式会社 Aqueous herbicidal composition
KR100522216B1 (en) * 2000-10-19 2005-10-14 캐논 가부시끼가이샤 (composite) membranes of solid polyelectrolytes bearing phosphoric acid groups and processes for their production
JP2007126558A (en) * 2005-11-04 2007-05-24 Daicel Chem Ind Ltd Mud improving agent and mud improving method using the same
KR20080064590A (en) * 2007-01-05 2008-07-09 삼성에스디아이 주식회사 Anode for lithium battery and lithium battery employing the same

Also Published As

Publication number Publication date
JP2013012357A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5708301B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP5987471B2 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP5900354B2 (en) Secondary battery negative electrode slurry, secondary battery negative electrode and method for producing the same, and secondary battery
JP5991321B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode, negative electrode slurry composition, production method and secondary battery
JPWO2012115096A1 (en) Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP5761197B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
KR102178203B1 (en) Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2011096463A1 (en) Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP6011608B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode, secondary battery negative electrode slurry composition, production method and secondary battery
JPWO2016035286A1 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2012128182A1 (en) Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
WO2015115089A1 (en) Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102369485B1 (en) Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery
JP6115468B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode and secondary battery
JP6455015B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
JP6579250B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5708301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250