JP5691268B2 - P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell - Google Patents

P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell Download PDF

Info

Publication number
JP5691268B2
JP5691268B2 JP2010155173A JP2010155173A JP5691268B2 JP 5691268 B2 JP5691268 B2 JP 5691268B2 JP 2010155173 A JP2010155173 A JP 2010155173A JP 2010155173 A JP2010155173 A JP 2010155173A JP 5691268 B2 JP5691268 B2 JP 5691268B2
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
forming composition
layer forming
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010155173A
Other languages
Japanese (ja)
Other versions
JP2012019051A (en
Inventor
修一郎 足立
修一郎 足立
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
香 岡庭
香 岡庭
洋一 町井
洋一 町井
岩室 光則
光則 岩室
鉄也 佐藤
鉄也 佐藤
木沢 桂子
桂子 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010155173A priority Critical patent/JP5691268B2/en
Priority to PCT/JP2011/065386 priority patent/WO2012005253A1/en
Priority to KR1020127031636A priority patent/KR20130086146A/en
Priority to CN2011800271169A priority patent/CN102934205A/en
Priority to TW100124039A priority patent/TW201212107A/en
Publication of JP2012019051A publication Critical patent/JP2012019051A/en
Application granted granted Critical
Publication of JP5691268B2 publication Critical patent/JP5691268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池セルのp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法に関するものであり、更に詳しくは、半導体基板である結晶シリコンの内部応力を低減し、結晶粒界のダメージ抑制、結晶欠陥増長抑制及び反り抑制可能なp型拡散層形成技術に関するものである。   The present invention relates to a solar cell p-type diffusion layer forming composition, a p-type diffusion layer manufacturing method, and a solar cell manufacturing method. More specifically, the present invention relates to the internal stress of crystalline silicon as a semiconductor substrate. The present invention relates to a technique for forming a p-type diffusion layer that can be reduced to suppress damage at crystal grain boundaries, to suppress crystal defect growth, and to suppress warpage.

従来の結晶シリコン太陽電池セルの製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、テクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って、基板に一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、表面のみならず、側面、裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチングを行う。また、裏面のn型拡散層はp型拡散層へ変換する必要があり、裏面にアルミペーストを印刷し、これを焼成して、n型層をp型層にするのと同時に、オーミックコンタクトを得ている。
The manufacturing process of the conventional crystalline silicon solar cell will be described.
First, a p-type silicon substrate having a textured structure is prepared so as to promote the light confinement effect and achieve high efficiency, and then 800 to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen. A few tens of minutes is performed to form an n-type diffusion layer uniformly on the substrate. In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the surface but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer on the side surface. In addition, the n-type diffusion layer on the back surface needs to be converted into a p + -type diffusion layer. At the same time as printing the aluminum paste on the back surface and baking it to make the n-type layer into a p + -type layer, ohmic Getting contact.

しかしながら、アルミペーストは導電率が低く、シート抵抗を下げるためには、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このよう厚いアルミ層を形成すると、シリコンとアルミニウムでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶欠陥増長及び反りの原因となる場合があった。   However, the aluminum paste has a low electrical conductivity, and in order to reduce the sheet resistance, the aluminum layer usually formed on the entire back surface must have a thickness of about 10 to 20 μm after firing. Furthermore, when such a thick aluminum layer is formed, the coefficient of thermal expansion differs greatly between silicon and aluminum, so that a large internal stress is generated in the silicon substrate during the firing and cooling processes, causing damage to crystal grain boundaries and crystal defects. In some cases, it could cause an increase in length and warpage.

この問題を解決するために、ペースト組成物の塗布量を減らし、裏面電極層を薄くする方法がある。しかしながら、ペースト組成物の塗布量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不十分となる。その結果、所望のBSF(Back Surface Field)効果(p型層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。 In order to solve this problem, there is a method of reducing the coating amount of the paste composition and thinning the back electrode layer. However, when the application amount of the paste composition is reduced, the amount of aluminum diffusing from the surface of the p-type silicon semiconductor substrate becomes insufficient. As a result, the desired BSF (Back Surface Field) effect (the effect of improving the collection efficiency of the generated carriers due to the presence of the p + -type layer) cannot be achieved, resulting in a problem that the characteristics of the solar cell deteriorate.

そこで、例えば、アルミニウム粉末と、有機質ビヒクルと、熱膨張率がアルミニウムよりも小さく、かつ、溶融温度、軟化温度および分解温度のいずれかがアルミニウムの融点よりも高い無機化合物粉末とを含むペースト組成物が提案されている(例えば、特許文献1参照)。   Therefore, for example, a paste composition comprising aluminum powder, an organic vehicle, and an inorganic compound powder having a thermal expansion coefficient smaller than that of aluminum and any one of a melting temperature, a softening temperature and a decomposition temperature higher than the melting point of aluminum. Has been proposed (see, for example, Patent Document 1).

特開2003−223813号公報Japanese Patent Laid-Open No. 2003-223813

しかしながら、特許文献1に記載のペースト組成物を用いた場合でも、充分に反りを抑制することができない場合があった。
本発明は、以上の従来の問題点に鑑みなされたものであり、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつp型拡散層を形成することが可能なp型拡散層形成組成物であって、且つ分散安定性に優れるp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法の提供を課題とする。
However, even when the paste composition described in Patent Document 1 is used, there is a case where warpage cannot be sufficiently suppressed.
The present invention has been made in view of the above-described conventional problems, and in the manufacturing process of a solar battery cell using a crystalline silicon substrate, the p-type is suppressed while suppressing internal stress in the silicon substrate and warping of the substrate. A p-type diffusion layer-forming composition capable of forming a diffusion layer and having excellent dispersion stability, a method for producing a p-type diffusion layer, and a method for producing a solar battery cell Offering is an issue.

前記課題を解決する手段は以下の通りである。
<1> アクセプタ元素を含むガラス粉末と、重量平均分子量が5000以上500000以下であるバインダーと、溶剤と、を含有するp型拡散層形成組成物であり、
前記p型拡散層形成組成物を半導体基板上に塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法に用いられるp型拡散層形成組成物
Means for solving the problems are as follows.
<1> A p-type diffusion layer forming composition containing a glass powder containing an acceptor element, a binder having a weight average molecular weight of 5,000 to 500,000, and a solvent ,
Applying the p-type diffusion layer forming composition onto a semiconductor substrate, heat-treating the semiconductor substrate applied with the p-type diffusion layer forming composition to form a p-type diffusion layer on the semiconductor substrate, removing the glass formed on the surface of the p-type diffusion layer, and a p-type diffusion layer forming composition used in a method for producing a p-type diffusion layer .

<2> 前記ガラス粉末は、ガラス成分物質とアクセプタ元素含有物質とを含み、前記アクセプタ元素含有物質の該ガラス粉末における含有比率が1質量%以上90質量%以下である、前記<1>に記載のp型拡散層形成組成物。 <2> The glass powder includes a glass component substance and an acceptor element-containing substance, and a content ratio of the acceptor element-containing substance in the glass powder is 1% by mass or more and 90% by mass or less. A p-type diffusion layer forming composition.

<3> pH(25℃)が2〜13の範囲である前記<1>又は<2>に記載のp型拡散層形成組成物。 <3> The p-type diffusion layer forming composition according to <1> or <2>, wherein the pH (25 ° C.) is in the range of 2 to 13.

<4> 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)から選択される少なくとも1種である前記<1>〜<3>のいずれか1項に記載のp型拡散層形成組成物。 <4> The p-type according to any one of <1> to <3>, wherein the acceptor element is at least one selected from B (boron), Al (aluminum), and Ga (gallium). Diffusion layer forming composition.

<5> 前記ガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する前記<1>〜<4>のいずれか1項に記載のp型拡散層形成組成物。 <5> The glass powder is at least one acceptor element-containing material selected from B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O. And at least one glass component material selected from BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 , and MoO 3. The p-type diffusion layer forming composition according to any one of <4>.

<6> 前記<1>〜<5>のいずれか1項に記載のp型拡散層形成組成物を半導体基板上に塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法。 <6> A step of applying the p-type diffusion layer forming composition according to any one of <1> to <5> on a semiconductor substrate, and a semiconductor substrate coated with the p-type diffusion layer forming composition A method for producing a p-type diffusion layer , comprising: a step of forming a p-type diffusion layer on the semiconductor substrate by heat treatment; and a step of removing glass formed on a surface of the p-type diffusion layer.

<7> 半導体基板上に、前記<1>〜<5>のいずれか1項に記載のp型拡散層形成組成を塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有する太陽電池セルの製造方法。 <7> on the semiconductor substrate, wherein <1> a step of applying a p-type diffusion layer forming composition according to any one of to <5>, the semiconductor substrate coated with the p-type diffusion layer forming composition A method of manufacturing a solar cell , comprising: a step of heat-treating a p-type diffusion layer on the semiconductor substrate; and a step of removing glass formed on a surface of the p-type diffusion layer .

本発明によれば、結晶シリコン基板を用いた太陽電池セルの製造工程において、シリコン基板中の内部応力、基板の反りの発生を抑制しつつp型拡散層を形成することが可能なp型拡散層形成組成物であって、且つ分散安定性に優れるp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法の提供することができる。   According to the present invention, in a manufacturing process of a solar battery cell using a crystalline silicon substrate, a p-type diffusion layer capable of forming a p-type diffusion layer while suppressing the occurrence of internal stress and substrate warpage in the silicon substrate. A p-type diffusion layer-forming composition that is a layer-forming composition and excellent in dispersion stability, a method for producing a p-type diffusion layer, and a method for producing a solar battery cell can be provided.

まず、本発明のp型拡散層形成組成物について説明し、次にp型拡散層形成組成物を用いるp型拡散層及び太陽電池セルの製造方法について説明する。
尚、本明細書において「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
尚、本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。
First, the p-type diffusion layer forming composition of the present invention will be described, and then a p-type diffusion layer using the p-type diffusion layer forming composition and a method for producing a solar cell will be described.
In the present specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included.
In the present specification, “to” indicates a range including the numerical values described before and after that as a minimum value and a maximum value, respectively.

本発明のp型拡散層形成組成物は、少なくともアクセプタ元素を含むガラス粉末(以下、単に「ガラス粉末」と称する場合がある)と、重量平均分子量が5000以上500000以下であるバインダーの少なくとも1種と、溶剤の少なくとも1種と、を含有し、更に塗布性などを考慮してその他の添加剤を必要に応じて含有してもよい。
ここで、p型拡散層形成組成物とはアクセプタ元素を含有し、例えば、シリコン基板に塗布した後に熱拡散処理(焼成)することでこのアクセプタ元素を熱拡散させてp型拡散層を形成することが可能な材料をいう。本発明のp型拡散層形成組成物を用いることで、p型拡散層形成工程とオーミックコンタクト形成工程とを分離でき、オーミックコンタクト形成のための電極材の選択肢が広がるとともに、電極の構造の選択肢も広がる。例えば銀等の低抵抗材を電極に用いれば薄い膜厚で低抵抗が達成できる。また、電極も全面に形成する必要はなく、櫛型等の形状のように部分的に形成してもよい。以上のように薄膜あるいは櫛型形状等の部分的形状にすることで、シリコン基板中の内部応力、基板の反りの発生をより効果的に抑えながらp型拡散層を形成することが可能となる。
The p-type diffusion layer forming composition of the present invention includes at least one kind of glass powder containing at least an acceptor element (hereinafter sometimes simply referred to as “glass powder”) and a binder having a weight average molecular weight of 5,000 to 500,000. And at least one solvent, and may further contain other additives as required in consideration of coating properties and the like.
Here, the p-type diffusion layer forming composition contains an acceptor element. For example, the p-type diffusion layer is formed by thermally diffusing the acceptor element by applying thermal diffusion treatment (baking) after being applied to a silicon substrate. A material that can be used. By using the p-type diffusion layer forming composition of the present invention, the p + -type diffusion layer forming step and the ohmic contact forming step can be separated, and the choice of electrode material for forming the ohmic contact is widened. The options also expand. For example, if a low resistance material such as silver is used for the electrode, a low resistance can be achieved with a thin film thickness. Further, the electrodes need not be formed on the entire surface, and may be partially formed like a comb shape. As described above, by forming a partial shape such as a thin film or a comb shape, it is possible to form a p-type diffusion layer while more effectively suppressing internal stress in the silicon substrate and generation of warpage of the substrate. .

したがって、本発明のp型拡散層形成組成物を適用すれば、従来広く採用されている方法、つまりアルミペーストを印刷し、これを焼成してn型層をp型層にするのと同時にオーミックコンタクトを得る方法では発生してしまう基板中の内部応力及び基板の反りの発生が抑制される。 Therefore, when the p-type diffusion layer forming composition of the present invention is applied, a method widely used in the past, that is, printing an aluminum paste and firing it to convert the n-type layer into a p + -type layer simultaneously. In the method of obtaining the ohmic contact, the generation of internal stress in the substrate and the warpage of the substrate that are generated is suppressed.

更に、本発明のp型拡散層形成粗組成物は、これに含まれるガラス粉末中のアクセプタ元素含有物質の含有比率が、1質量%以上90質量%以下であることが好ましい。これにより、表面抵抗値が低下し、太陽電池セルとしての性能の向上が可能となる。アクセプタ元素含有物質の詳細は後述する。   Furthermore, in the p-type diffusion layer forming crude composition of the present invention, the content ratio of the acceptor element-containing substance in the glass powder contained therein is preferably 1% by mass or more and 90% by mass or less. Thereby, a surface resistance value falls and the performance as a photovoltaic cell can be improved. Details of the acceptor element-containing material will be described later.

本発明に係るアクセプタ元素を含むガラス粉末について、詳細に説明する。
アクセプタ元素とは、シリコン基板中にドーピングさせることによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、例えばB(ほう素)、Al(アルミニウム)及びGa(ガリウム)等が挙げられる。
The glass powder containing the acceptor element according to the present invention will be described in detail.
An acceptor element is an element that can form a p-type diffusion layer by doping into a silicon substrate. As the acceptor element, a Group 13 element can be used, and examples thereof include B (boron), Al (aluminum), and Ga (gallium).

アクセプタ元素をガラス粉末に導入するために用いるアクセプタ元素含有物質としては、B、Al、及びGaが挙げられ、B、Al及びGaから選択される少なくとも1種を用いることが好ましい。 Examples of the acceptor element-containing material used for introducing the acceptor element into the glass powder include B 2 O 3 , Al 2 O 3 , and Ga 2 O 3 , and B 2 O 3 , Al 2 O 3, and Ga 2 O. It is preferable to use at least one selected from 3 .

また、ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。更に以下に記す成分を含むことが好ましい。
ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、V、SnO、ZrO、MoO、La、Nb、Ta、Y、TiO、GeO、TeO及びLu等が挙げられ、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種を用いることが好ましい。
Further, the glass powder can control the melting temperature, softening point, glass transition point, chemical durability, and the like by adjusting the component ratio as necessary. Furthermore, it is preferable to contain the components described below.
Examples of glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, V 2 O 5 , SnO, and ZrO 2. , MoO 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , GeO 2 , TeO 2, and Lu 2 O 3, etc., SiO 2 , K 2 O, Na It is preferable to use at least one selected from 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 , and MoO 3 .

アクセプタ元素を含むガラス粉末の具体例としては、B−SiO系、B−ZnO系、B−PbO系、Al−SiO系、B−Al系、Ga−SiO系、Ga−B系、B単独系などのガラスが挙げられる。
上記では1成分ガラスあるいは2成分を含む複合ガラスを例示したが、B−SiO−NaO等必要に応じて3種類以上の複合ガラスでもよい。
Specific examples of the glass powder containing an acceptor element include B 2 O 3 —SiO 2 , B 2 O 3 —ZnO, B 2 O 3 —PbO, Al 2 O 3 —SiO 2 , and B 2 O 3. -al 2 O 3 system, Ga 2 O 3 -SiO 2 system, Ga 2 O 3 -B 2 O 3 system, and a glass such as B 2 O 3 alone system.
In the above, the single component glass or the composite glass containing two components is exemplified, but three or more types of composite glass such as B 2 O 3 —SiO 2 —Na 2 O may be used as necessary.

また、ガラス粉末は、必要に応じて成分比率を調整することによって、溶融温度、軟化点、ガラス転移点、化学的耐久性等を制御することが可能である。   Further, the glass powder can control the melting temperature, softening point, glass transition point, chemical durability, and the like by adjusting the component ratio as necessary.

ガラス粉末中のアクセプタ元素含有物質の含有比率は、アクセプタ元素のシリコン基板中へのドーピング濃度、ガラス粉末の溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して、1質量%以上90質量%以下であることが好ましい。   The content ratio of the acceptor element-containing substance in the glass powder is 1% by mass or more in consideration of the doping concentration of the acceptor element in the silicon substrate, the melting temperature of the glass powder, the softening point, the glass transition point, and the chemical durability. It is preferable that it is 90 mass% or less.

ガラス粉末中のアクセプタ元素含有物質の含有比率を1質量%以上とすることで、アクセプタ元素のシリコン基板中へのドーピング濃度が充分に得られ、p型拡散層が充分に形成される。またアクセプタ元素含有物質の含有比率が90質量%以下であることで、アクセプタ元素含有物質が熱拡散処理中に揮散してしまうことを抑制し、アクセプタ元素の拡散が側面及び裏面にも及び、p型拡散層形成組成物を塗布した面のみならず、所望の部位以外の側面、裏面にもp型拡散層が形成される恐れがある。   By setting the content ratio of the acceptor element-containing substance in the glass powder to 1% by mass or more, the doping concentration of the acceptor element into the silicon substrate is sufficiently obtained, and the p-type diffusion layer is sufficiently formed. Further, the content ratio of the acceptor element-containing substance is 90% by mass or less, so that the acceptor element-containing substance is prevented from being volatilized during the thermal diffusion treatment, and the acceptor element diffusion extends to the side surface and the back surface. There is a possibility that the p-type diffusion layer is formed not only on the surface coated with the mold diffusion layer forming composition but also on the side surface and the back surface other than the desired part.

更に、ガラス粉末中のアクセプタ元素含有物質の含有比率は、2質量%以上80質量%以下であることが好ましく、10質量%以上70質量%以下であることがより好ましい。   Furthermore, the content ratio of the acceptor element-containing substance in the glass powder is preferably 2% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 70% by mass or less.

特に、p型拡散層が充分に形成されるアクセプタ元素の量を勘案しつつ、p型拡散層形成組成物にアクセプタ元素を一定量以上添加しても形成したp型拡散層を有する表面のシート抵抗は一定値以上には低下しなくなる点と、アクセプタ元素含有物質の揮散の影響を抑える必要がある点を考慮すると、ガラス粉末中のアクセプタ元素含有物質の含有比率は30質量%以上70質量%以下であることがいっそう好ましい。   In particular, the surface sheet having a p-type diffusion layer formed even when a certain amount or more of the acceptor element is added to the p-type diffusion layer-forming composition while taking into account the amount of the acceptor element in which the p-type diffusion layer is sufficiently formed Considering that the resistance does not decrease beyond a certain value and that it is necessary to suppress the volatilization of the acceptor element-containing substance, the content ratio of the acceptor element-containing substance in the glass powder is 30% by mass or more and 70% by mass. It is even more preferable that:

また、ガラス粉末中のガラス成分物質の含有比率は、溶融温度、軟化点、ガラス転移点、化学的耐久性を考慮して適宜設定することが望ましく、一般には、0.1質量%以上95質量%以下であることが好ましく、0.5質量%以上90質量%以下であることがより好ましい。   In addition, the content ratio of the glass component substance in the glass powder is preferably set as appropriate in consideration of the melting temperature, the softening point, the glass transition point, and the chemical durability, and is generally 0.1% by mass to 95% by mass. % Or less, more preferably 0.5% by mass or more and 90% by mass or less.

具体的には、B−SiO系ガラスの場合には、Bの含有比率は、1質量%以上90質量%以下であることが好ましく、3質量%以上80質量%以下であることがより好ましい。 Specifically, in the case of B 2 O 3 —SiO 2 glass, the content ratio of B 2 O 3 is preferably 1% by mass to 90% by mass, and preferably 3% by mass to 80% by mass. It is more preferable that

ガラス粉末の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃〜1000℃であることが好ましく、300℃〜900℃であることがより好ましい。   The softening point of the glass powder is preferably 200 ° C. to 1000 ° C., more preferably 300 ° C. to 900 ° C., from the viewpoints of diffusibility during the diffusion treatment and dripping.

ガラス粉末の粒径は、50μm以下であることが望ましい。50μm以下の粒径を有するガラス粉末を用いた場合には、平滑な塗膜が得られやすい。更に、ガラス粉末の粒径は10μm以下であることがより望ましい。   The particle size of the glass powder is desirably 50 μm or less. When glass powder having a particle size of 50 μm or less is used, a smooth coating film is easily obtained. Further, the particle size of the glass powder is more preferably 10 μm or less.

アクセプタ元素を含むガラス粉末は、以下の手順で作製される。
最初に原料を秤量し、るつぼに充填する。るつぼの材質としては白金、白金−ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられるが、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
次に、電気炉でガラス組成に応じた温度で加熱し均一な融液とする。このとき融液が均一となるよう攪拌することが望ましい。
続いて均一になった融液をジルコニア基板やカーボン基板等の上に流し出して融液をガラス化する。
最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
The glass powder containing an acceptor element is produced by the following procedure.
First, weigh the ingredients and fill the crucible. Examples of the material for the crucible include platinum, platinum-rhodium, iridium, alumina, quartz, carbon, and the like, which are appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
Next, it heats with the temperature according to a glass composition with an electric furnace, and is set as a uniform melt. At this time, it is desirable to stir the melt uniformly.
Subsequently, the melt that has become uniform is poured onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt.
Finally, the glass is crushed into powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.

p型拡散層形成組成物中のアクセプタ元素を含むガラス粉末の含有比率は、塗布性、アクセプタ元素の拡散性等を考慮し決定される。一般には、p型拡散層形成組成物中のガラス粉末の含有比率は、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましい。   The content ratio of the glass powder containing the acceptor element in the p-type diffusion layer forming composition is determined in consideration of applicability, acceptor element diffusibility, and the like. Generally, the content ratio of the glass powder in the p-type diffusion layer forming composition is preferably 0.1% by mass or more and 95% by mass or less, and more preferably 1% by mass or more and 90% by mass or less.

本発明のp型拡散層形成組成物は、重量平均分子量が5000以上500000以下のバインダーの少なくとも1種と、溶剤の少なくとも1種とを含有する。これらは前記ガラス粉末の分散媒となる。   The p-type diffusion layer forming composition of the present invention contains at least one binder having a weight average molecular weight of 5000 to 500,000 and at least one solvent. These serve as a dispersion medium for the glass powder.

バインダーとしては、例えば、ジメチルアミノエチル(メタ)アクリレートポリマー、ポリビニルアルコール、ポリアクリルアミド類、ポリビニルアミド類、ポリビニルピロリドン、ポリ(メタ)アクリル酸類、ポリエチレンオキサイド類、ポリスルホン酸、アクリルアミドアルキルスルホン酸、セルロースエーテル類、セルロース誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ゼラチン、澱粉及び澱粉誘導体、アルギン酸ナトリウム類、キサンタン、グア及びグア誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、アクリル酸樹脂、アクリル酸エステル樹脂、ブタジエン樹脂、スチレン樹脂、及びこれらの共重合体、並びに二酸化珪素などを適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。   Examples of the binder include dimethylaminoethyl (meth) acrylate polymer, polyvinyl alcohol, polyacrylamides, polyvinylamides, polyvinylpyrrolidone, poly (meth) acrylic acids, polyethylene oxides, polysulfonic acid, acrylamide alkyl sulfonic acid, and cellulose ether. , Cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate, xanthan, gua and gua derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, Acrylic resin, acrylic ester resin, butadiene resin, styrene resin, and their Coalescence, and can appropriately select such as silicon dioxide. These are used singly or in combination of two or more.

本発明のp型拡散層形成組成物においては、これに含まれるバインダーの重量平均分子量が5000以上500000以下である。これにより、p型拡散層形成組成物をシリコン基板上に均一に塗布可能な粘度に調整することができる。バインダーの分子量が5000より小さいと、p型拡散層形成組成物の粘度が増加してしまう場合がある。これは例えば、ガラス粒子に吸着させたときの立体的な反発作用が不足し、粒子同士が凝集してしまうためと考えることができる。   In the p-type diffusion layer forming composition of the present invention, the binder contained therein has a weight average molecular weight of 5,000 to 500,000. Thereby, the viscosity which can apply | coat a p-type diffused layer formation composition on a silicon substrate uniformly can be adjusted. If the molecular weight of the binder is less than 5000, the viscosity of the p-type diffusion layer forming composition may increase. This can be considered, for example, because the three-dimensional repulsion when adsorbed on glass particles is insufficient and the particles aggregate.

一方、バインダーの重量平均分子量が500000より大きいと、バインダー同士が溶剤中で凝集してしまい、結果としてp型拡散層形成組成物の粘度が増加する場合がある。
これに加え、バインダーの重量平均分子量が大きくなると、バインダーの燃焼温度が高くなり、熱拡散処理においてバインダーが完全に燃焼されず、アクセプタ元素の拡散が進行しづらくなる他、バインダー中の不純物がシリコン基板に拡散してしまう可能性がある。
On the other hand, when the weight average molecular weight of the binder is larger than 500,000, the binders aggregate in the solvent, and as a result, the viscosity of the p-type diffusion layer forming composition may increase.
In addition to this, when the weight average molecular weight of the binder is increased, the combustion temperature of the binder is increased, the binder is not completely combusted in the thermal diffusion process, and the diffusion of the acceptor element is difficult to proceed. There is a possibility of diffusing to the substrate.

以上を考慮すると、バインダーの分子量は6000以上450000以下が好ましく、6500以上400000以下がより好ましい。
尚、バインダーの重量平均分子量は、GPCを用いる通常の方法で測定される。
Considering the above, the molecular weight of the binder is preferably 6000 or more and 450,000 or less, and more preferably 6500 or more and 400,000 or less.
In addition, the weight average molecular weight of a binder is measured by the normal method using GPC.

溶剤としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−iso−プロピルケトン、メチル−n−ブチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ−iso−ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、γ−ブチロラクトン、γ−バレロラクトン等のケトン系溶剤、ジエチルエーテル、メチルエチルエーテル、メチル−n−ジ−n−プロピルエーテル、ジ−iso−プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル等のエーテル系溶剤、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル等のエステル系溶媒、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール−n−ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート等のエーテルアセテート系溶剤、アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤、水等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。   Examples of the solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, Ketone solvents such as diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, γ-butyrolactone, γ-valerolactone , Diethyl ether, methyl ethyl ether, methyl-n-di-n-propyl ether, di-iso-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol Dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di -N-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, Ethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl ether , Tetraethylene glycol methyl-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene Glycol diethyl ether, Propylene glycol methyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol Propylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether , Tetradipropylene glycol methyl ethyl ether, tetra Ether solvents such as propylene glycol methyl-n-butyl ether, dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether, methyl acetate, ethyl acetate, n-acetate Propyl, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethyl acetate Ethylhexyl, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol monomethyl ether acetate, diethylene acetate Recall monoethyl ether, diethylene glycol acetate mono-n-butyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i propionate i -Ester solvents such as amyl, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propio , Ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether Cetate, ether acetate solvents such as diethylene glycol-n-butyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate, acetonitrile, N -Aprotic such as methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide Polar solvent, methanol, ethanol, n-propanol, i-propanol, n -Butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2 -Methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene Coal, alcohol solvents such as diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n -Glycols such as butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether mono Ether-based solvents, and water. These are used singly or in combination of two or more.

p型拡散層形成組成物中のバインダーおよび溶剤の含有比率は、塗布性、アクセプタ元素含有物質濃度等を考慮し適宜選択される。
本発明においてバインダーの含有比率としては例えば、p型拡散層形成組成物に対して0.01〜5質量%とすることができ、分散安定性の観点から、0.1〜3質量%であることが好ましい。また溶剤の含有比率としては、p型拡散層形成組成物に対して1〜60質量%とすることができ、分散安定性の観点から、5〜40質量%であることが好ましい。
The content ratio of the binder and the solvent in the p-type diffusion layer forming composition is appropriately selected in consideration of coating properties, acceptor element-containing substance concentration, and the like.
In the present invention, the content ratio of the binder may be, for example, 0.01 to 5% by mass with respect to the p-type diffusion layer forming composition, and is 0.1 to 3% by mass from the viewpoint of dispersion stability. It is preferable. Moreover, as a content rate of a solvent, it can be set to 1-60 mass% with respect to a p-type diffused layer formation composition, and it is preferable that it is 5-40 mass% from a viewpoint of dispersion stability.

p型拡散層形成組成物の粘度は、塗布性を考慮して、10mPa・S以上1000000mPa・S以下であることが好ましく、50mPa・S以上500000mPa・S以下であることがより好ましい。   The viscosity of the p-type diffusion layer forming composition is preferably 10 mPa · S or more and 1000000 mPa · S or less, more preferably 50 mPa · S or more and 500000 mPa · S or less in consideration of applicability.

またp型拡散層形成組成物に、pH調整剤を少量添加することで、溶剤中のガラス粒子の分散性をさらに高めることも可能である。具体的には、pHを調整することで、ゼータ電位(粒子表面電位の近似)を変化させ、ガラス粒子間に静電反発を付与することができる。   It is also possible to further increase the dispersibility of the glass particles in the solvent by adding a small amount of a pH adjusting agent to the p-type diffusion layer forming composition. Specifically, by adjusting the pH, the zeta potential (approximation of the particle surface potential) can be changed, and electrostatic repulsion can be imparted between the glass particles.

pH調整剤としては、例えば、希塩酸、希硫酸、希硝酸、酒石酸、クエン酸、フマル酸、リンゴ酸、フィチン酸、コハク酸、グルコン酸、乳酸、水酸化ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。   Examples of the pH adjuster include dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid, tartaric acid, citric acid, fumaric acid, malic acid, phytic acid, succinic acid, gluconic acid, lactic acid, sodium hydroxide, potassium carbonate, sodium bicarbonate, carbonate Sodium etc. are mentioned. These are used singly or in combination of two or more.

また、p型拡散層形成組成物のpHは、ガラス組成の等電位点(ゼータ電位が0となるpHで、粒子が凝集しやすくなる)、耐酸性、耐アルカリ性を考慮して適宜設定することが望ましく、一般には、pH(25℃)が2.0以上13.0以下であることが好ましく、3.0以上12.0以下であることがより好ましい。
尚、pHは25℃において、通常のpH測定装置を用いて測定される。
In addition, the pH of the p-type diffusion layer forming composition is appropriately set in consideration of the equipotential point of the glass composition (the pH at which the zeta potential becomes 0 and the particles easily aggregate), acid resistance, and alkali resistance. In general, the pH (25 ° C.) is preferably 2.0 or more and 13.0 or less, and more preferably 3.0 or more and 12.0 or less.
The pH is measured at 25 ° C. using a normal pH measuring device.

具体的には、B−SiO系ガラスの場合には、p型拡散層形成組成物のpH(25℃)は、3.0以上11.0以下であることが好ましく、5.0以上10.0以下であることがより好ましい。 Specifically, in the case of B 2 O 5 —SiO 2 glass, the pH (25 ° C.) of the p-type diffusion layer forming composition is preferably 3.0 or more and 11.0 or less. More preferably, it is 0 or more and 10.0 or less.

次に、本発明のp型拡散層及び太陽電池セルの製造方法について説明する。   Next, the manufacturing method of the p-type diffusion layer and solar battery cell of the present invention will be described.

まず、p型半導体基板である結晶シリコンにアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
詳細には、インゴットからスライスした際に発生するシリコン表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、テクスチャー構造を形成する。太陽電池セルは、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
First, an alkaline solution is applied to crystalline silicon that is a p-type semiconductor substrate to remove the damaged layer, and a texture structure is obtained by etching.
Specifically, the damaged layer on the silicon surface generated when slicing from the ingot is removed with 20% by mass caustic soda. Next, etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure. In the solar battery cell, by forming a texture structure on the light receiving surface (front surface) side, a light confinement effect is promoted and high efficiency is achieved.

次に、オキシ塩化リン(POCl)、窒素、酸素の混合ガス雰囲気において800〜900℃で数十分の処理を行って一様にn型拡散層を形成する。このとき、オキシ塩化リン雰囲気を用いた方法では、リンの拡散は側面及び裏面にも及び、n型拡散層は表面のみならず、側面、裏面にも形成される。そのために、側面のn型拡散層を除去するために、サイドエッチングが施される。 Next, tens of minutes of treatment is performed at 800 to 900 ° C. in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen, and oxygen to uniformly form an n-type diffusion layer. At this time, in the method using the phosphorus oxychloride atmosphere, the diffusion of phosphorus extends to the side surface and the back surface, and the n-type diffusion layer is formed not only on the surface but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer on the side surface.

そして、p型半導体基板の裏面すなわち受光面ではない面のn型拡散層の上に、上記p型拡散層形成組成物を塗布する。本発明では、塗布方法には制限がないが、例えば、印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などがある。
上記p型拡散層形成組成物の塗布量としては特に制限はないが、例えば、10g/m〜250g/mとすることができ、20g/m〜150g/mであることが好ましい。
Then, the p-type diffusion layer forming composition is applied onto the n-type diffusion layer on the back surface of the p-type semiconductor substrate, that is, the surface that is not the light receiving surface. In the present invention, the coating method is not limited, and examples thereof include a printing method, a spin method, a brush coating, a spray method, a doctor blade method, a roll coater method, and an ink jet method.
There is no particular restriction on the coating amount of the p-type diffusion layer forming composition, for example, be a 10g / m 2 ~250g / m 2 , it is preferably 20g / m 2 ~150g / m 2 .

なお、p型拡散層形成組成物の組成によっては、塗布後に、組成物中に含まれる溶剤を揮発させるための乾燥工程が必要な場合がある。この場合には、80〜300℃程度の温度で、ホットプレートを使用する場合は1〜10分、乾燥機などを用いる場合は10〜30分程度で乾燥させる。この乾燥条件は、p型拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。   Depending on the composition of the p-type diffusion layer forming composition, a drying step for volatilizing the solvent contained in the composition may be necessary after coating. In this case, drying is performed at a temperature of about 80 to 300 ° C. for about 1 to 10 minutes when using a hot plate, and about 10 to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the p-type diffusion layer forming composition and are not particularly limited to the above conditions in the present invention.

上記p型拡散層形成組成物を塗布した半導体基板を、600〜1200℃で熱拡散処理する。この熱拡散処理により、半導体基板中へアクセプタ元素が拡散し、p型拡散層が形成される。熱拡散処理には公知の連続炉、バッチ炉等が適用できる。また、熱拡散処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。
熱拡散処理時間は、p型拡散層形成組成物に含まれるアクセプタ元素の含有率などに応じて適宜選択することができる。例えば、1〜60分間とすることができ、2〜30分間であることがより好ましい。
The semiconductor substrate coated with the p-type diffusion layer forming composition is subjected to thermal diffusion treatment at 600 to 1200 ° C. By this thermal diffusion treatment, the acceptor element diffuses into the semiconductor substrate, and a p + -type diffusion layer is formed. A known continuous furnace, batch furnace, or the like can be applied to the thermal diffusion treatment. Further, the furnace atmosphere during the thermal diffusion treatment can be appropriately adjusted to air, oxygen, nitrogen or the like.
The thermal diffusion treatment time can be appropriately selected according to the content of the acceptor element contained in the p-type diffusion layer forming composition. For example, it can be 1 to 60 minutes, and more preferably 2 to 30 minutes.

形成されたp型拡散層の表面には、ガラス層が形成されているため、このガラス層をエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。 Since a glass layer is formed on the surface of the formed p + -type diffusion layer, the glass layer is removed by etching. As the etching, a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be applied.

また、従来の製造方法では、裏面にアルミペーストを印刷し、これを焼成してn型拡散層をp型拡散層にするのと同時に、オーミックコンタクトを得ている。しかしながら、アルミペーストは導電率が低く、シート抵抗を下げるために、通常裏面全面に形成したアルミ層は焼成後において10〜20μmほどの厚みを有していなければならない。さらに、このように厚いアルミ層を形成すると、シリコンとアルミでは熱膨張率が大きく異なることから、焼成および冷却の過程で、シリコン基板中に大きな内部応力を発生させ、反りの原因となる。
この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池セルの搬送や、タブ線と呼ばれる銅線との接続において、セルを破損させ易くしていた。近年では、スライス加工技術の向上から、結晶シリコン基板の厚みが薄型化されつつあり、更にセルが割れ易い傾向にある。
Further, in the conventional manufacturing method, an aluminum paste is printed on the back surface, and this is baked to change the n-type diffusion layer into a p + -type diffusion layer, and at the same time, an ohmic contact is obtained. However, the aluminum paste has a low electrical conductivity, and in order to reduce the sheet resistance, the aluminum layer usually formed on the entire back surface must have a thickness of about 10 to 20 μm after firing. Further, when such a thick aluminum layer is formed, the thermal expansion coefficient differs greatly between silicon and aluminum, so that a large internal stress is generated in the silicon substrate during the firing and cooling process, causing warpage.
This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases. In addition, the warp easily causes the cell to be damaged in the transportation of the solar battery cell in the module process and the connection with the copper wire called a tab wire. In recent years, due to the improvement of slicing technology, the thickness of the crystalline silicon substrate is being reduced, and the cells tend to be easily broken.

しかし本発明の製造方法によれば、上記本発明のp型拡散層形成組成物によってn型拡散層をp型拡散層に変換した後、別途このp型拡散層の上に電極を設ける。そのため裏面の電極に用いる材料はアルミニウムに限定されず、例えばAg(銀)やCu(銅)などを適用することができ、裏面の電極の厚さも従来のものよりも薄く形成することが可能となり、さらに全面に形成する必要もなくなる。そのため焼成および冷却の過程で発生するシリコン基板中の内部応力及び反りを低減できる。 However, according to the manufacturing method of the present invention, after the n-type diffusion layer is converted into the p + -type diffusion layer by the p-type diffusion layer forming composition of the present invention, an electrode is separately provided on the p + -type diffusion layer. . Therefore, the material used for the back electrode is not limited to aluminum. For example, Ag (silver) or Cu (copper) can be applied, and the thickness of the back electrode can be made thinner than the conventional one. Further, it is not necessary to form the entire surface. Therefore, it is possible to reduce internal stress and warpage in the silicon substrate that occur during the firing and cooling processes.

上記形成したn型拡散層の上に反射防止膜を形成する。反射防止膜は公知の技術を適用して形成される。例えば、反射防止膜がシリコン窒化膜の場合には、SiHとNHの混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
より具体的には、上記混合ガス流量比NH/SiHが0.05〜1.0、反応室の圧力が0.1〜2Torr、成膜時の温度が300〜550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。
An antireflection film is formed on the n-type diffusion layer formed as described above. The antireflection film is formed by applying a known technique. For example, when the antireflection film is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbits that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are combined to inactivate defects (hydrogen passivation).
More specifically, the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0, the pressure in the reaction chamber is 0.1 to 2 Torr, the temperature during film formation is 300 to 550 ° C., and plasma discharge Is formed under the condition of a frequency of 100 kHz or more.

表面(受光面)の反射防止膜上に、表面電極用金属ペーストをスクリーン印刷法で印刷塗布乾燥させ、表面電極を形成する。表面電極用金属ペーストは、金属粒子とガラス粒子とを必須成分とし、必要に応じて樹脂バインダー、その他の添加剤などを含む。   On the antireflection film on the surface (light receiving surface), the surface electrode metal paste is printed, applied and dried by a screen printing method to form a surface electrode. The metal paste for a surface electrode contains metal particles and glass particles as essential components, and includes a resin binder and other additives as necessary.

次いで、上記裏面のp型拡散層上にも裏面電極を形成する。前述のように、本発明では裏面電極の材質や形成方法は特に限定されない。例えば、アルミニウム、銀、又は銅などの金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極を形成してもよい。このとき、裏面にも、モジュール工程におけるセル間の接続のために、一部に銀電極形成用銀ペーストを設けてもよい。 Next, a back electrode is also formed on the p + -type diffusion layer on the back surface. As described above, in the present invention, the material and forming method of the back electrode are not particularly limited. For example, a back electrode paste containing a metal such as aluminum, silver, or copper may be applied and dried to form the back electrode. At this time, a silver paste for forming a silver electrode may be partially provided on the back surface for connection between cells in the module process.

上記電極を焼成して、太陽電池セルを完成させる。600〜900℃の範囲で数秒〜数分間焼成すると、表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜が溶融し、更にシリコン表面も一部溶融して、ペースト中の金属粒子(例えば銀粒子)がシリコン基板10と接触部を形成し凝固する。これにより、形成した表面電極とシリコン基板とが導通される。これはファイアースルーと称されている。   The said electrode is baked and a photovoltaic cell is completed. When baked for several seconds to several minutes in the range of 600 to 900 ° C., the antireflection film, which is an insulating film, is melted by the glass particles contained in the electrode metal paste on the surface side, and the silicon surface is also partially melted in the paste. The metal particles (for example, silver particles) form a contact portion with the silicon substrate 10 and solidify. Thereby, the formed surface electrode and the silicon substrate are electrically connected. This is called fire-through.

表面電極の形状について説明する。表面電極は、バスバー電極、及び該バスバー電極と交差しているフィンガー電極で構成される。
このような表面電極は、例えば、上述の金属ペーストのスクリーン印刷、又は電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着などの手段により形成することができる。バスバー電極とフィンガー電極とからなる表面電極は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。
The shape of the surface electrode will be described. The surface electrode includes a bus bar electrode and a finger electrode that intersects the bus bar electrode.
Such a surface electrode can be formed by means such as screen printing of the above-described metal paste, plating of the electrode material, or vapor deposition of the electrode material by electron beam heating in a high vacuum. A surface electrode composed of a bus bar electrode and a finger electrode is generally used as an electrode on the light receiving surface side and is well known, and known forming means for the bus bar electrode and the finger electrode on the light receiving surface side can be applied.

なお上述のp型拡散層及び太陽電池セルの製造方法では、p型半導体基板である結晶シリコンにn型拡散層を形成するのに、オキシ塩化リン(POCl)、窒素および酸素の混合ガスを用いているが、n型拡散層形成組成物を用いてn型拡散層を形成してもよい。n型拡散層形成組成物にはP(リン)やSb(アンチモン)などの第15族の元素がドナー元素として含有される。
n型拡散層の形成にn型拡散層形成組成物を用いる方法では、まず、p型半導体基板の表面である受光面にn型拡散層形成組成物を塗布し、裏面に本発明のp型拡散層形成組成物を塗布し、600〜1200℃で熱拡散処理する。この熱拡散処理により、表面ではp型半導体基板中へドナー元素が拡散してn型拡散層が形成され、裏面ではアクセプタ元素が拡散してp型拡散層が形成される。この工程以外は上記方法と同様の工程により、太陽電池セルが作製される。
In the above-described method for manufacturing a p-type diffusion layer and solar battery cell, a mixed gas of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen is used to form an n-type diffusion layer in crystalline silicon that is a p-type semiconductor substrate. Although used, the n-type diffusion layer may be formed using the n-type diffusion layer forming composition. The n-type diffusion layer forming composition contains a Group 15 element such as P (phosphorus) or Sb (antimony) as a donor element.
In the method using the n-type diffusion layer forming composition for forming the n-type diffusion layer, first, the n-type diffusion layer forming composition is applied to the light-receiving surface which is the surface of the p-type semiconductor substrate, and the p-type of the present invention is applied to the back surface. The diffusion layer forming composition is applied and subjected to thermal diffusion treatment at 600 to 1200 ° C. By this thermal diffusion treatment, the donor element diffuses into the p-type semiconductor substrate on the front surface to form an n-type diffusion layer, and the acceptor element diffuses on the back surface to form a p + -type diffusion layer. Except for this step, solar cells are produced by the same steps as the above method.

以下、本発明の実施例をさらに具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。
またバインダーの重量平均分子量は、市販品についてはカタログデータを採用し、不明なものについては、GPCを用いてポリエチレン換算の重量平均分子量として測定した。
Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified.
Further, the weight average molecular weight of the binder was measured as a weight average molecular weight in terms of polyethylene using GPC for a commercially available product and catalog data for unknown ones.

[実施例1]
−SiO系ガラス(B:10%)粉末20gとエチルセルロース(重量平均分子量140000)3g、酢酸2−(2−ブトキシエトキシ)エチル77gを混合してペースト化し、p型拡散層形成組成物1を調製した。
得られたp型拡散層形成組成物のpHを25℃で、pHメーターを用いて測定したところ、pH(25℃)は5.6であった。
[Example 1]
20 g of B 2 O 3 —SiO 2 glass (B 2 O 3 : 10%) powder, 3 g of ethyl cellulose (weight average molecular weight 140000) and 77 g of 2- (2-butoxyethoxy) ethyl acetate were mixed to make a paste, and p-type Diffusion layer forming composition 1 was prepared.
When the pH of the obtained p-type diffusion layer forming composition was measured at 25 ° C. using a pH meter, the pH (25 ° C.) was 5.6.

[実施例2]
実施例1において、バインダーを重量平均分子量300000のエチルセルロースに代えたこと以外は、実施例1と同様にp型拡散層形成組成物2を調製した。pH(25℃)は5.6であった。
[Example 2]
In Example 1, p-type diffusion layer forming composition 2 was prepared in the same manner as in Example 1 except that the binder was changed to ethyl cellulose having a weight average molecular weight of 300,000. The pH (25 ° C.) was 5.6.

[実施例3]
実施例1において、ガラス粉末をB−ZnO系(B含有量:60%)に代えたこと以外は、実施例1と同様にp型拡散層形成組成物3を調製した。pH(25℃)は5.6であった。
[Example 3]
In Example 1, a p-type diffusion layer forming composition 3 was prepared in the same manner as in Example 1 except that the glass powder was replaced with a B 2 O 3 —ZnO system (B 2 O 3 content: 60%). . The pH (25 ° C.) was 5.6.

[実施例4]
実施例1において、バインダーをポリビニルアルコール(分子量250000)に代えたこと以外は、実施例1と同様にp型拡散層形成組成物4を調製した。pH(25℃)は5.6であった。
[Example 4]
In Example 1, p-type diffusion layer forming composition 4 was prepared in the same manner as in Example 1 except that the binder was changed to polyvinyl alcohol (molecular weight: 250,000). The pH (25 ° C.) was 5.6.

[実施例5]
実施例1において、クエン酸を用いてpH=3.8に調整したこと以外は実施例1と同様にp型拡散層形成組成物5を調製した。
[Example 5]
A p-type diffusion layer forming composition 5 was prepared in the same manner as in Example 1 except that in Example 1, the pH was adjusted to 3.8 using citric acid.

[実施例6]
実施例1において、炭酸水素ナトリウムを用いてpH=10.6に調整したこと以外は実施例1と同様にp型拡散層形成組成物6を調製した。
[Example 6]
In Example 1, p-type diffusion layer forming composition 6 was prepared in the same manner as in Example 1 except that the pH was adjusted to 10.6 using sodium hydrogen carbonate.

[実施例7]
実施例1において、バインダーを重量平均分子量8000のエチルセルロースに代えたこと以外は、実施例1と同様にp型拡散層形成組成物7を調製した。pH(25℃)は5.6であった。
[Example 7]
In Example 1, p-type diffusion layer forming composition 7 was prepared in the same manner as in Example 1 except that the binder was changed to ethyl cellulose having a weight average molecular weight of 8000. The pH (25 ° C.) was 5.6.

[実施例8]
実施例1において、バインダーを重量平均分子量450000のエチルセルロースに代えたこと以外は、実施例1と同様にp型拡散層形成組成物8を調製した。pH(25℃)は5.6であった。
[Example 8]
In Example 1, p-type diffusion layer forming composition 8 was prepared in the same manner as in Example 1 except that the binder was changed to ethyl cellulose having a weight average molecular weight of 450,000. The pH (25 ° C.) was 5.6.

[比較例1]
実施例1において、バインダーを重量平均分子量4500のエチルセルロースに代えたこと以外は、実施例1と同様にp型拡散層形成組成物C1を調製した。pH(25℃)は5.6であった。
[Comparative Example 1]
A p-type diffusion layer forming composition C1 was prepared in the same manner as in Example 1 except that in Example 1, the binder was changed to ethyl cellulose having a weight average molecular weight of 4500. The pH (25 ° C.) was 5.6.

[比較例2]
実施例1において、バインダーを重量平均分子量750000のエチルセルロースに代えたこと以外は、実施例1と同様にp型拡散層形成組成物C2を調製した。pH(25℃)は5.6であった。
[Comparative Example 2]
A p-type diffusion layer forming composition C2 was prepared in the same manner as in Example 1 except that in Example 1, the binder was changed to ethyl cellulose having a weight average molecular weight of 750,000. The pH (25 ° C.) was 5.6.

[評価]
−分散安定性−
上記方法により調製したp型拡散層形成組成物について、調製してから1時間以内に測定した初期粘度と、20℃で6時間放置した後に測定した経時粘度とから、経持粘度と初期粘度との差の初期粘度に対する比率((経時粘度−初期粘度)/初期粘度)として粘度変化率を求めた。尚、粘度は、回転式粘度計を用いて20℃で測定した。
併せて目視により、経時後のp型拡散層形成組成物の状態を観察した。
粘度変化および目視観察の結果を、下記評価基準に従って評価した。その結果を表1に示す。
[Evaluation]
-Dispersion stability-
About the p-type diffusion layer forming composition prepared by the above method, the initial viscosity measured within 1 hour after preparation and the time-lapse viscosity measured after standing at 20 ° C. for 6 hours The rate of change in viscosity was determined as the ratio of the difference between the initial viscosity and the initial viscosity ((viscosity with time−initial viscosity) / initial viscosity). The viscosity was measured at 20 ° C. using a rotary viscometer.
In addition, the state of the p-type diffusion layer forming composition after aging was visually observed.
The viscosity change and visual observation results were evaluated according to the following evaluation criteria. The results are shown in Table 1.

〜評価基準〜
A・・・粘度変化率が0.05未満で、ガラス粒子のゲル化及び凝集も認められなかった。
B・・・粘度変化率が0.05以上、0.10未満で、ガラス粒子のゲル化及び凝集も認められなかった。
C・・・粘度変化率が0.10以上、0.15未満で、ガラス粒子のゲル化及び凝集も認められなかった。
D・・・粘度変化率が0.15未満であったが、ガラス粒子がゲル化または凝集した。
E・・・粘度変化率が0.15以上であり、かつガラス粒子がゲル化または凝集した。
~Evaluation criteria~
A: Viscosity change rate was less than 0.05, and neither gelation nor aggregation of glass particles was observed.
B: Viscosity change rate was 0.05 or more and less than 0.10, and neither gelation nor aggregation of glass particles was observed.
C: Viscosity change rate was 0.10 or more and less than 0.15, and neither gelation nor aggregation of glass particles was observed.
D: Viscosity change rate was less than 0.15, but glass particles were gelled or aggregated.
E: Viscosity change rate was 0.15 or more, and glass particles were gelled or aggregated.

次に、実施例1〜実施例8で調製したp型拡散層形成組成物をスクリーン印刷によって塗布量が70g/mとなるように、p型シリコン基板表面に塗布し、150℃のホットプレート上で5分間乾燥させた。続いて、1000℃に設定した電気炉で10分間熱拡散処理を行い、その後ガラス層を除去するため基板をフッ酸に5分間浸漬し、流水洗浄を行い、その後、乾燥を行った。 Next, the p-type diffusion layer forming composition prepared in Examples 1 to 8 was applied to the surface of the p-type silicon substrate by screen printing so that the coating amount was 70 g / m 2, and a hot plate at 150 ° C. Dry for 5 minutes above. Subsequently, a thermal diffusion treatment was performed for 10 minutes in an electric furnace set at 1000 ° C., and then the substrate was immersed in hydrofluoric acid for 5 minutes to remove the glass layer, washed with running water, and then dried.

p型拡散層形成組成物を塗布した側の表面のシート抵抗及び裏面のシート抵抗を測定した。その結果を表1に示す。   The sheet resistance of the surface on the side where the p-type diffusion layer forming composition was applied and the sheet resistance of the back surface were measured. The results are shown in Table 1.

Figure 0005691268
Figure 0005691268

本発明のp型拡散層形成組成物を塗布し、熱拡散処理を行った結果、表面のシート抵抗は100Ω/□以下であり、B(ほう素)が拡散しp型拡散層が形成されていた。裏面のシート抵抗は1000000Ω/□以上で測定不能であり、p型拡散層は形成されていなかった。また、基板の反りは発生していなかった。   As a result of applying the p-type diffusion layer forming composition of the present invention and performing thermal diffusion treatment, the surface sheet resistance is 100Ω / □ or less, and B (boron) is diffused to form a p-type diffusion layer. It was. The sheet resistance on the back surface was 1000000 Ω / □ or more and could not be measured, and no p-type diffusion layer was formed. Further, the substrate was not warped.

Claims (7)

アクセプタ元素を含むガラス粉末と、重量平均分子量が5000以上500000以下であるバインダーと、溶剤と、を含有するp型拡散層形成組成物であり、
前記p型拡散層形成組成物を半導体基板上に塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法に用いられるp型拡散層形成組成物
A p-type diffusion layer forming composition containing a glass powder containing an acceptor element, a binder having a weight average molecular weight of 5,000 to 500,000, and a solvent ,
Applying the p-type diffusion layer forming composition onto a semiconductor substrate, heat-treating the semiconductor substrate applied with the p-type diffusion layer forming composition to form a p-type diffusion layer on the semiconductor substrate, removing the glass formed on the surface of the p-type diffusion layer, and a p-type diffusion layer forming composition used in a method for producing a p-type diffusion layer .
前記ガラス粉末は、ガラス成分物質とアクセプタ元素含有物質とを含み、前記アクセプタ元素含有物質の該ガラス粉末における含有比率が1質量%以上90質量%以下である、請求項1に記載のp型拡散層形成組成物。   The p-type diffusion according to claim 1, wherein the glass powder includes a glass component substance and an acceptor element-containing substance, and a content ratio of the acceptor element-containing substance in the glass powder is 1% by mass or more and 90% by mass or less. Layer forming composition. pH(25℃)が2〜13の範囲である請求項1又は請求項2に記載のp型拡散層形成組成物。   The p-type diffusion layer forming composition according to claim 1 or 2, wherein the pH (25 ° C) is in the range of 2 to 13. 前記アクセプタ元素が、B(ほう素)、Al(アルミニウム)及びGa(ガリウム)か
ら選択される少なくとも1種である請求項1〜請求項3のいずれか1項に記載のp型拡散層形成組成物。
The p-type diffusion layer forming composition according to any one of claims 1 to 3, wherein the acceptor element is at least one selected from B (boron), Al (aluminum), and Ga (gallium). object.
前記ガラス粉末が、B、Al及びGaから選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、TlO、SnO、ZrO、及びMoOから選択される少なくとも1種のガラス成分物質と、を含有する請求項1〜請求項4のいずれか1項に記載のp型拡散層形成組成物。 The glass powder includes at least one acceptor element-containing material selected from B 2 O 3 , Al 2 O 3 and Ga 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, And at least one glass component material selected from SrO, CaO, MgO, BeO, ZnO, PbO, CdO, Tl 2 O, SnO, ZrO 2 , and MoO 3 . The p-type diffusion layer forming composition according to any one of the above. 請求項1〜請求項5のいずれか1項に記載のp型拡散層形成組成物を半導体基板上に塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有するp型拡散層の製造方法。 The process of apply | coating the p-type diffused layer formation composition of any one of Claims 1-5 on a semiconductor substrate, and heat-processing the semiconductor substrate which apply | coated the said p-type diffused layer formation composition, A method for producing a p-type diffusion layer, comprising: forming a p-type diffusion layer on a semiconductor substrate; and removing a glass formed on a surface of the p-type diffusion layer. 半導体基板上に、請求項1〜請求項5のいずれか1項に記載のp型拡散層形成組成を塗布する工程と、前記p型拡散層形成組成物を塗布した半導体基板を熱処理して前記半導体基板にp型拡散層を形成する工程と、前記p型拡散層の表面に形成されるガラスを除去する工程と、を有する太陽電池セルの製造方法。 On a semiconductor substrate, and a heat treatment and applying a p-type diffusion layer forming composition according to any one of claims 1 to 5, the semiconductor substrate coated with the p-type diffusion layer forming composition The manufacturing method of the photovoltaic cell which has the process of forming a p-type diffused layer in the said semiconductor substrate, and the process of removing the glass formed in the surface of the said p-type diffused layer .
JP2010155173A 2010-07-07 2010-07-07 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell Expired - Fee Related JP5691268B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010155173A JP5691268B2 (en) 2010-07-07 2010-07-07 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
PCT/JP2011/065386 WO2012005253A1 (en) 2010-07-07 2011-07-05 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
KR1020127031636A KR20130086146A (en) 2010-07-07 2011-07-05 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
CN2011800271169A CN102934205A (en) 2010-07-07 2011-07-05 Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
TW100124039A TW201212107A (en) 2010-07-07 2011-07-07 Composition for forming impurity diffusion layer, method for producing impurity diffusion layer, and method for producing photovoltaic cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155173A JP5691268B2 (en) 2010-07-07 2010-07-07 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell

Publications (2)

Publication Number Publication Date
JP2012019051A JP2012019051A (en) 2012-01-26
JP5691268B2 true JP5691268B2 (en) 2015-04-01

Family

ID=45604094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155173A Expired - Fee Related JP5691268B2 (en) 2010-07-07 2010-07-07 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell

Country Status (1)

Country Link
JP (1) JP5691268B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355828A (en) * 1989-07-25 1991-03-11 Hitachi Chem Co Ltd Impurity diffusing liquid for semiconductor element and manufacture of impurity diffusion layer using same liquid
JP3380516B2 (en) * 1991-08-26 2003-02-24 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
DE19910816A1 (en) * 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
JP4726354B2 (en) * 2001-08-22 2011-07-20 東洋アルミニウム株式会社 Paste composition and solar cell using the same
JP5283824B2 (en) * 2006-01-18 2013-09-04 東京応化工業株式会社 Film-forming composition
JP5026008B2 (en) * 2006-07-14 2012-09-12 東京応化工業株式会社 Film-forming composition
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
WO2009060761A1 (en) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. Dopant host and process for producing the dopant host
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
US8053867B2 (en) * 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
JP5748388B2 (en) * 2008-09-01 2015-07-15 日本酢ビ・ポバール株式会社 Boron diffusion coating solution

Also Published As

Publication number Publication date
JP2012019051A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5447397B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2012084830A (en) N type diffusion layer formation composition, manufacturing method of n type diffusion layer, and manufacturing method of solar cell
JP5958485B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
WO2011162394A1 (en) IMPURITIES DIFFUSION LAYER FORMING COMPOSITION, n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, p-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING p-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL ELEMENTS
WO2012005253A1 (en) Composition for forming impurity diffusion layer, process for producing impurity diffusion layer, and process for producing solar cell element
JP2013026579A (en) Manufacturing method of p-type diffusion layer and manufacturing method of solar cell element
JP5803080B2 (en) P-type diffusion layer forming composition, p-type diffusion layer forming composition manufacturing method, p-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5703674B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5625538B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP2014099660A (en) Composition for forming p-type diffusion layer, process of manufacturing p-type diffusion layer, and process of manufacturing solar cell element
JP5625537B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JPWO2011132781A1 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell element manufacturing method
JP5691268B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5541359B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP5842432B2 (en) Method for manufacturing p-type diffusion layer and method for manufacturing solar cell element
JP5703673B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5691269B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5626340B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
JP2016027665A (en) Manufacturing method of p-type diffusion layer and manufacturing method of solar cell element
JP2013026476A (en) P-type diffusion layer forming composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP5834579B2 (en) Method for manufacturing p-type diffusion layer and method for manufacturing solar cell element
JP2013026471A (en) P-type diffusion layer formation composition, manufacturing method of p-type diffusion layer, and manufacturing method of solar cell element
JP2016021589A (en) P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2012231012A (en) P-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell element
JP2017054918A (en) Composition for n-type diffusion layer formation, method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar battery element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5691268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees