JP5660605B2 - Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid - Google Patents

Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid Download PDF

Info

Publication number
JP5660605B2
JP5660605B2 JP2010234730A JP2010234730A JP5660605B2 JP 5660605 B2 JP5660605 B2 JP 5660605B2 JP 2010234730 A JP2010234730 A JP 2010234730A JP 2010234730 A JP2010234730 A JP 2010234730A JP 5660605 B2 JP5660605 B2 JP 5660605B2
Authority
JP
Japan
Prior art keywords
pressure
carbon dioxide
organic fluid
mixing
viscosity organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010234730A
Other languages
Japanese (ja)
Other versions
JP2012086145A (en
JP2012086145A5 (en
Inventor
慎一朗 川▲崎▼
慎一朗 川▲崎▼
鈴木 明
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010234730A priority Critical patent/JP5660605B2/en
Publication of JP2012086145A publication Critical patent/JP2012086145A/en
Publication of JP2012086145A5 publication Critical patent/JP2012086145A5/ja
Application granted granted Critical
Publication of JP5660605B2 publication Critical patent/JP5660605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、高圧二酸化炭素の連続混合による高粘度有機性流体の加工方法及びその装置に関するものであり、更に詳しくは、本発明は、高圧二酸化炭素連続混合による、塗料又は溶融樹脂を含む高粘度有機性流体の加工方法であって、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させるための、上記高粘度有機性流体と高圧二酸化炭素の連続混合プロセス及び装置に関するものである。本発明は、多量の有機溶媒を使用する既存法による高粘度有機性流体の加工技術に代替することが可能で、有機溶媒の使用を劇的に低減することを実現可能とする新しい高粘度有機性流体の加工技術であって、有機溶媒の排出が少ない、低環境負荷型の、高圧二酸化炭素連続混合による新しい高粘度有機性流体の加工方法及びその装置に関する新技術・新製品を提供するものである。   The present invention relates to a processing method and apparatus for a high-viscosity organic fluid by continuous mixing of high-pressure carbon dioxide, and more specifically, the present invention relates to a high-viscosity containing paint or molten resin by continuous mixing of high-pressure carbon dioxide. A method for processing an organic fluid, which relates to a process and apparatus for continuously mixing the high-viscosity organic fluid and high-pressure carbon dioxide to suppress intermittent supply of high-pressure carbon dioxide and stabilize the supply flow rate It is. The present invention is a new high-viscosity organic material that can replace the existing high-viscosity organic fluid processing technology that uses a large amount of organic solvent and can dramatically reduce the use of organic solvent. New technology and new products related to processing methods and equipment for high-viscosity organic fluids by low pressure, low environmental load, high-pressure carbon dioxide continuous mixing. It is.

従来、ポリマーをコーティングする方法として、噴霧技術が広く用いられており、該コーティング技術は、最終的な製品形態によって、製膜技術、若しくは微粒化技術に区分される。ポリマーの多くは、単体では流動性が乏しいため、真溶剤と言われる有機溶媒に溶解して、高粘度有機性流体として流動性を確保している。この状態でも、有機性流体は、粘度が高いことが多いため、更に、希釈溶剤として、同様に、有機溶媒を加えて、噴霧可能な粘度まで低下させて、連続噴霧をしている。この技術の代表例が、スプレー塗装や、スプレー塗工である。   Conventionally, a spraying technique is widely used as a method for coating a polymer, and the coating technique is classified into a film forming technique or a atomizing technique depending on a final product form. Many of the polymers have poor fluidity as a single substance, and are dissolved in an organic solvent called a true solvent to ensure fluidity as a high viscosity organic fluid. Even in this state, since the organic fluid often has a high viscosity, an organic solvent is similarly added as a diluting solvent to reduce the viscosity to a sprayable level, and continuous spraying is performed. Typical examples of this technique are spray coating and spray coating.

近年、有機溶媒の代替として、超臨界条件を含む高圧COを、高粘度有機性流体に混合し、有機性流体の粘性を低下させて、高圧条件から、塗装、若しくは塗工するプロセスが提案されている(特許文献1、非特許文献1)。本方式では、高圧COが、有機溶媒と同様な溶媒特性を有することから、スプレー塗装や、スプレー塗工では、塗料及び高圧COを連続的に供給し、塗料に対して、約30%程度の高圧COを混合・溶解して、塗料粘度を低下させ、高圧環境から、大気圧へ噴霧する、低環境負荷型の塗装装置を提案している。ここで示す塗料とは、一般的な塗装で用いられる塗料の他、有機及び無機を含む有機ポリマー単独、若しくはそれらのオリゴマーや有機溶媒で希釈されたものを広く含むものである。 In recent years, as a replacement for organic solvents, a process has been proposed in which high-pressure CO 2 containing supercritical conditions is mixed with high-viscosity organic fluids to reduce the viscosity of organic fluids, and paint or coat from high-pressure conditions. (Patent Document 1, Non-Patent Document 1). In this system, high-pressure CO 2 has the same solvent characteristics as an organic solvent. Therefore, in spray coating and spray coating, paint and high-pressure CO 2 are continuously supplied, and about 30% of the paint. We have proposed a low environmental load type coating device that mixes and dissolves high-pressure CO 2 to a degree to lower the viscosity of the paint and sprays it from a high-pressure environment to atmospheric pressure. The paint shown here includes, in addition to paints used in general painting, a wide range of organic polymers including organic and inorganic substances alone or those diluted with oligomers or organic solvents thereof.

また、同様に、樹脂を溶融させた高粘度有機性流体を、高圧供給し、溶融樹脂を含む高粘度有機性流体中に、高圧COを溶解して、粘性を低下させ、高圧環境から、大気圧へ噴霧して、樹脂の微粒子を製造するプロセスが提案されている(特許文献2、非特許文献2−4)。この方法は、PGSSTM(Particle from Gas−Saturated Solutions)と称されており、初期は、オートクレーブ中で、高圧COを飽和溶解させた溶融樹脂を、大気圧へ噴霧する方式が提案されていたが、近年、溶融樹脂及び高圧COを、それぞれ、連続的に供給する方式が報告されている(非特許文献5)。 Similarly, a high-viscosity organic fluid obtained by melting a resin is supplied at a high pressure, and high-pressure CO 2 is dissolved in the high-viscosity organic fluid containing the molten resin to reduce the viscosity. A process for producing fine particles of resin by spraying to atmospheric pressure has been proposed (Patent Document 2, Non-Patent Document 2-4). This method is called PGSS (Particle from Gas-Saturated Solutions). Initially, a method of spraying a molten resin in which high-pressure CO 2 was saturated in an autoclave to atmospheric pressure was proposed. However, in recent years, there has been reported a system for continuously supplying a molten resin and high-pressure CO 2 (Non-Patent Document 5).

これらの技術は、両技術ともに、高圧COを、粘性低下媒体として、塗料又は溶融樹脂を含む高粘度有機性流体中に溶解させ、高圧環境から、大気圧へ噴霧するプロセスである。これらのプロセスでは、噴霧ノズルから大気放出の過程で、減圧を生じ、ほとんどのCOは、液体中から脱離する。また、大気中に噴出された液滴中にも、COは溶解しており、これらが気化することによる微細化効果も生じると考えられる。 Both of these techniques are processes in which high-pressure CO 2 is dissolved in a high-viscosity organic fluid containing paint or molten resin as a viscosity-reducing medium and sprayed from a high-pressure environment to atmospheric pressure. In these processes, decompression occurs in the process of atmospheric release from the spray nozzle, and most of the CO 2 is desorbed from the liquid. Further, CO 2 is also dissolved in the droplets ejected into the atmosphere, and it is considered that the effect of miniaturization is caused by the vaporization of these.

しかしながら、これらのプロセスは、両技術ともに、既存法では、多量の有機溶媒を使用するプロセスであり、これらのプロセスが、高圧COによる噴霧プロセスへの転換が可能となれば、有機溶媒の使用量を劇的に低減することができると考えられ、また、特に、スプレー塗装やスプレー塗工は、非常に多くの分野で使用されているため、広範囲における適用と展開が期待されると考えられることから、当技術分野においては、そのような有機溶媒の使用量を劇的に低減することを可能にする、高圧COによる噴霧、製膜、又は微粒化に関する新しいプロセス技術を開発することが強く要請されていた。 However, these processes are processes that use a large amount of an organic solvent in the existing methods in both technologies. If these processes can be converted into a spraying process using high-pressure CO 2 , the use of an organic solvent is required. The amount can be drastically reduced, and in particular, since spray coating and spray coating are used in so many fields, it is expected to be widely applied and deployed. Thus, it is possible in the art to develop new process technologies for spraying, film formation, or atomization with high pressure CO 2 that can dramatically reduce the amount of such organic solvents used. It was strongly requested.

特開平1−258770号公報JP-A-1-258770 Weidner,E.,Knez,Z and Novak,Z.,1994,欧州特許第940079号(日本特許第3510262号)Weidner, E .; , Knez, Z and Novak, Z. , 1994, European Patent No. 940079 (Japanese Patent No. 3510262)

鈴木ら、「塗装工学」、Vol.44、No.7、230−237 (2009)Suzuki et al., “Paint Engineering”, Vol. 44, no. 7, 230-237 (2009) Sencar−Bozic,P.,Srcic,S.,Knez,Z.and Kerc,J.,“Improvement of nifedipine dissolution characteristics using supercritical CO2”,Int.J.Pharm.148,123−130(1997)Sencar-Bozic, P.A. Srcic, S .; , Knez, Z. and Kerc, J.A. , “Improvement of Nifdition Dissolution charactaristics using supercritical CO2,” Int. J. et al. Pharm. 148, 123-130 (1997) Kerc,J.,Srcic,S.,Knez,Z.and Sencar−Bozic,P.,“Micronization of drugs using supercritical carbon dioxide”,Int.J.Pharm.182,33−39(1999)Kerc, J .; Srcic, S .; , Knez, Z. and Sencar-Bozic, P.A. "Micronization of drugs using supercritical carbon dioxide", Int. J. et al. Pharm. 182, 33-39 (1999) Weidner,E.,“high pressure micronization for food applications”,J.Supercrit.Fluids 47,556−565(2009)Weidner, E .; , “High pressure micronization for food applications”, J. et al. Supercrit. Fluids 47, 556-565 (2009) Weidner,E.,Petermann,M.and Knez,Z.,“Multifunctional composites by high−pressure spray processes”,Curr.Opin.Solid State Mat.Sci.7,385−390(2003)Weidner, E .; Petermann, M .; and Knez, Z .; , “Multifunctional composites by high-pressure spray processes”, Curr. Opin. Solid State Mat. Sci. 7,385-390 (2003)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、多量の有機溶媒を使用する既存法による高粘度有機性流体の加工技術に代替することが可能で、有機溶媒の使用を劇的に低減することを実現可能とする新しい高粘度有機性流体の加工技術を開発することを目標として、鋭意研究を重ねた結果、高圧二酸化炭素連続混合による新しい高粘度有機性流体の加工方法を確立することに成功し、本発明を完成するに至った。   In such a situation, in view of the above-described conventional technology, the present inventors can replace high-viscosity organic fluid processing technology by an existing method using a large amount of organic solvent. As a result of intensive research aimed at developing a processing technology for new high-viscosity organic fluids that makes it possible to dramatically reduce their use, new high-viscosity organic fluids by continuous high-pressure carbon dioxide mixing The present inventors have succeeded in establishing a processing method and completed the present invention.

本発明は、高圧二酸化炭素連続混合による、塗料又は溶融樹脂を含む高粘度有機性流体の加工方法を提供することを目的とするものである。また、本発明は、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させるための、上記高粘度有機性流体と高圧二酸化炭素の連続混合プロセス及び装置を提供することを目的とするものである。更に、本発明は、上記高粘度有機性流体を、上記高圧二酸化炭素の連続混合により、高圧環境から噴霧するプロセス、製膜するプロセス、並びに微粒化するプロセスを提供することを目的とするものである。   An object of this invention is to provide the processing method of the high-viscosity organic fluid containing a coating material or molten resin by continuous mixing of high-pressure carbon dioxide. Another object of the present invention is to provide a continuous mixing process and apparatus for the high-viscosity organic fluid and high-pressure carbon dioxide for suppressing intermittent supply of high-pressure carbon dioxide and stabilizing the supply flow rate. It is what. Another object of the present invention is to provide a process for spraying the high viscosity organic fluid from a high pressure environment by continuous mixing of the high pressure carbon dioxide, a process for forming a film, and a process for atomization. is there.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合部において混合器にて混合する高圧プロセスを含む高粘度有機性流体の加工方法において、
高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を設け、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させることを特徴とする高圧二酸化炭素の連続混合による高粘度有機性流体の加工方法。
(2)上記高圧プロセスにおいて、
1次圧力調節弁の設定圧力を、混合部の圧力の1から5MPaの範囲の高い圧力に設定する、前記(1)に記載の高粘度有機性流体の加工方法。
(3)上記高圧プロセスにおいて、
1次圧力制御弁から混合器までの配管内容積を、最小化する、前記(1)又は(2)に記載の高粘度有機性流体との加工方法。
(4)上記高圧プロセスにおいて、
1次圧力調節弁の下流に、メタリングニードルバルブ、若しくはキャピラリーチューブの圧力損失を付与する機構を設け、高圧二酸化炭素の供給流量が低流量条件の場合に、1次圧力調節弁の制御性を向上させる、前記(1)から(3)のいずれかに記載の高粘度有機性流体の加工方法。
(5)連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合部において混合器にて混合する高圧プロセスを含む高粘度有機性流体の加工方法において、
高粘度有機性流体の供給ラインで、混合部よりも上流に、2次圧力調節弁を設け、実質的に高粘度有機性流体の流量を調節することで、混合器の圧力を一定に制御することを特徴とする高圧二酸化炭素の連続混合による高粘度有機性流体の加工方法。
(6)上記高圧プロセスにおいて、
高粘度有機性流体の供給ラインで、混合部よりも上流に設置した2次圧力調節弁の上流に、リリーフバルブを設け、高圧ポンプ吐出圧力の上昇を回避する、前記(5)に記載の高粘度有機性流体の加工方法。
(7)上記高圧プロセスにおいて、
溶融樹脂を含む高粘度有機性流体の場合に、混合前高圧二酸化炭素の1次圧力制御弁を有し、高粘度有機性流体と高圧二酸化炭素を混合した後のラインに、混合後流体の1次圧力制御弁を設ける、前記(1)から(4)のいずれかに記載の高粘度有機性流体と高圧二酸化炭素の連続混合方法。
(8)上記加工プロセスにおいて、
高粘度有機性流体を、高圧環境から噴霧・微粒化するプロセスで、高粘度有機性流体を加工する、前記(1)から(7)のいずれかに記載の高粘度有機性流体の加工方法。
(9)上記加工プロセスにおいて、
高粘度有機性流体を、製膜するプロセスで、高粘度有機性流体を加工する、前記(1)から(7)のいずれかに記載の高粘度有機性流体の加工方法。
(10)上記高圧プロセスにおいて、
高粘度有機性流体と高圧二酸化炭素とを、連続混合する混合器が、マイクロ流路を用いた高圧マイクロミキサーである、前記(1)から(9)のいずれかに記載の高粘度有機性流体の加工方法。
(11)上記高圧プロセスにおいて、
高圧マイクロミキサーが、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、又はスワールミキサーである、前記(10)に記載の高粘度有機性流体の加工方法。
(12)連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を混合器にて混合する高圧混合部を有する連続混合装置であって、
高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を有し、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、供給流量を安定化させるようにしたことを特徴とする高粘度有機性流体と高圧二酸化炭素の連続混合装置。
(13)上記装置において、
1次圧力制御弁から混合器までの配管内容積が、最小化されている、前記(12)に記載の連続混合装置。
(14)上記装置において、
1次圧力調節弁の下流に、メタリングニードルバルブ、若しくはキャピラリーチューブの圧力損失を付与する機構が設けられている、前記(12)に記載の連続混合装置。
(15)連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を混合器にて混合する混合部を有する連続混合装置であって、
高粘度有機性流体の供給ラインで、混合部よりも上流に、2次圧力調節弁を有し、実質的に高粘度有機性流体の流量を調節することで、混合器の圧力を一定に制御するようにしたことを特徴とする高粘度有機性流体と高圧二酸化炭素の連続混合装置。
(16)上記装置において、
高粘度有機性流体の供給ラインで、混合部よりも上流に設置した2次圧力調節弁の上流に、リリーフバルブを設け、高圧ポンプ吐出圧力上昇を回避するようにした、前記(15)に記載の連続混合装置。
(17)上記装置において、
高圧二酸化炭素を混合した後のラインに、混合後流体の1次圧力制御弁を設けた、前記(12)から(16)に記載の連続混合装置。
(18)上記装置において、
高圧二酸化炭素を連続混合する混合器が、マイクロ流路を用いた高圧マイクロミキサーである、前記(12)から(17)のいずれかに記載の連続混合装置。
(19)上記装置において、
高圧マイクロミキサーが、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、又はスワールミキサーである、前記(18)に記載の連続混合装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A high-viscosity organic material comprising a high-pressure process in which high-pressure organic fluid containing paint or molten resin and high-pressure carbon dioxide, which is continuously supplied, are mixed in a mixer in a mixing unit. In the method of processing a fluid,
In the high-pressure carbon dioxide supply line, a primary pressure control valve is provided upstream of the mixing unit, and the set pressure of the primary pressure control valve is set to the pressure of the mixing unit, and the fluctuating pressure value generated in the line after the mixing unit is set. By setting the pressure higher than the applied pressure, the intermittent supply of high-pressure carbon dioxide is suppressed, and the supply flow rate is stabilized. Processing method.
(2) In the high pressure process,
The processing method of the high-viscosity organic fluid according to (1), wherein the set pressure of the primary pressure control valve is set to a high pressure in the range of 1 to 5 MPa of the pressure of the mixing unit.
(3) In the above high pressure process,
The processing method with the high-viscosity organic fluid according to (1) or (2), wherein the internal volume of the pipe from the primary pressure control valve to the mixer is minimized.
(4) In the high pressure process,
A mechanism that gives a pressure loss of the metering needle valve or capillary tube downstream of the primary pressure control valve is provided, and the controllability of the primary pressure control valve is improved when the supply flow rate of high-pressure carbon dioxide is low. The processing method of the high-viscosity organic fluid according to any one of (1) to (3), which is improved.
(5) A high-viscosity organic fluid comprising a high-pressure process in which high-pressure organic fluid containing paint or molten resin and high-pressure carbon dioxide, which is continuously supplied, are mixed in a mixer in a mixing section. In the method of processing a fluid,
In the high viscosity organic fluid supply line, a secondary pressure control valve is provided upstream of the mixing section, and the flow rate of the high viscosity organic fluid is substantially adjusted to control the pressure of the mixer to be constant. A method for processing a high viscosity organic fluid by continuous mixing of high pressure carbon dioxide.
(6) In the above high pressure process,
The high-viscosity organic fluid supply line is provided with a relief valve upstream of the secondary pressure control valve installed upstream of the mixing section to avoid an increase in high-pressure pump discharge pressure. Viscosity organic fluid processing method.
(7) In the above high pressure process,
In the case of a high-viscosity organic fluid containing a molten resin, it has a primary pressure control valve for high-pressure carbon dioxide before mixing, and the line after mixing the high-viscosity organic fluid and high-pressure carbon dioxide has a 1 The continuous mixing method of the high-viscosity organic fluid and high-pressure carbon dioxide according to any one of (1) to (4), wherein a secondary pressure control valve is provided.
(8) In the above processing process,
The processing method of the high-viscosity organic fluid according to any one of (1) to (7), wherein the high-viscosity organic fluid is processed in a process of spraying and atomizing the high-viscosity organic fluid from a high-pressure environment.
(9) In the above processing process,
The processing method of the high-viscosity organic fluid according to any one of (1) to (7), wherein the high-viscosity organic fluid is processed by a process of forming a film of the high-viscosity organic fluid.
(10) In the above high pressure process,
The high-viscosity organic fluid according to any one of (1) to (9), wherein the mixer for continuously mixing the high-viscosity organic fluid and the high-pressure carbon dioxide is a high-pressure micromixer using a microchannel. Processing method.
(11) In the high pressure process,
The method for processing a high-viscosity organic fluid according to (10), wherein the high-pressure micromixer is a multistage division type high-pressure micromixer, a center collision micromixer, a T-shaped micromixer, or a swirl mixer.
(12) A continuous mixing apparatus having a high-pressure mixing unit that mixes a high-viscosity organic fluid containing paint or molten resin continuously supplied with high pressure and high-pressure carbon dioxide supplied continuously in a mixer. ,
The high pressure carbon dioxide supply line has a primary pressure control valve upstream of the mixing section, and the set pressure of the primary pressure control valve is changed to the pressure of the mixing section and the fluctuating pressure value generated in the line after the mixing section By setting the pressure higher than the pressure added, the intermittent supply of high-pressure carbon dioxide is suppressed and the supply flow rate is stabilized. Continuous mixing device.
(13) In the above device,
The continuous mixing apparatus according to (12), wherein a volume in the pipe from the primary pressure control valve to the mixer is minimized.
(14) In the above device,
The continuous mixing device according to (12), wherein a mechanism for imparting a pressure loss of the metering needle valve or the capillary tube is provided downstream of the primary pressure control valve.
(15) A continuous mixing apparatus having a mixing unit that mixes a high-viscosity organic fluid containing paint or molten resin continuously supplied with high pressure and high-pressure carbon dioxide supplied continuously in a mixer,
In the high-viscosity organic fluid supply line, there is a secondary pressure control valve upstream of the mixing section, and the pressure of the mixer is controlled to be constant by adjusting the flow rate of the high-viscosity organic fluid substantially. A continuous mixing apparatus for high-viscosity organic fluid and high-pressure carbon dioxide, characterized in that
(16) In the above device,
In the high viscosity organic fluid supply line, the relief valve is provided upstream of the secondary pressure control valve installed upstream of the mixing unit, so as to avoid an increase in the discharge pressure of the high pressure pump. Continuous mixing equipment.
(17) In the above device,
The continuous mixing apparatus according to (12) to (16) above, wherein a primary pressure control valve for a fluid after mixing is provided in a line after mixing high-pressure carbon dioxide.
(18) In the above device,
The continuous mixing apparatus according to any one of (12) to (17), wherein the mixer for continuously mixing high-pressure carbon dioxide is a high-pressure micromixer using a microchannel.
(19) In the above device,
The continuous mixing apparatus according to (18), wherein the high-pressure micromixer is a multi-channel divided type high-pressure micromixer, a center collision micromixer, a T-shaped micromixer, or a swirl mixer.

次に、本発明について更に詳細に説明する。
本発明は、連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合部において混合器にて混合する高圧プロセスを含む高粘度有機性流体の加工方法において、高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を設け、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させることを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention provides a high-viscosity process including a high-pressure process in which a high-viscosity organic fluid containing paint or molten resin that is continuously supplied at high pressure and high-pressure carbon dioxide that is also continuously supplied are mixed in a mixer in a mixer. In the organic fluid processing method, a primary pressure control valve is provided upstream of the mixing unit in the high-pressure carbon dioxide supply line, and the set pressure of the primary pressure control valve is set to the pressure of the mixing unit after the mixing unit. By setting the pressure higher than the pressure obtained by adding the fluctuating pressure value generated in this line, intermittent supply of high-pressure carbon dioxide is suppressed, and the supply flow rate is stabilized.

また、本発明は、連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合器にて混合する高圧混合部を有する連続混合装置であって、高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を有し、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、供給流量を安定化させるようにしたことを特徴とするものである。   In addition, the present invention provides a continuous mixing having a high-pressure mixing unit that mixes a high-viscosity organic fluid containing paint or molten resin continuously supplied with high pressure and high-pressure carbon dioxide supplied continuously in a mixer. A high pressure carbon dioxide supply line having a primary pressure control valve upstream of the mixing unit, and the set pressure of the primary pressure regulating valve is set to the pressure of the mixing unit and the line after the mixing unit By setting the pressure higher than the pressure obtained by adding the fluctuating pressure value generated in step 5, the intermittent supply of high-pressure carbon dioxide is suppressed, and the supply flow rate is stabilized.

ここで、本発明を開発するに至った背景について具体的に説明すると、一般に、塗料又は溶融樹脂を含む高粘度有機性流体は、COに比べて、高粘度である。このような高粘度有機性流体の多くは、任意の温度、例えば、塗装では、常温から40℃程度、溶融樹脂の微粒化では、100〜300℃程度、における圧力を変化させた場合の密度変化は、COに比べて、非常に小さいものである。更に、COの供給量は、高粘度有機性流体の供給量に対して、30wt%程度と低いのが通常である。このように、高粘度有機性流体及び二酸化炭素のような、粘度差、流量差を有する高粘度有機性流体及び二酸化炭素の2種類の流体混合においては、基本的問題として、安定的に、連続的に流体混合を行うことは困難であった。 Here, the background that led to the development of the present invention will be specifically described. Generally, a high-viscosity organic fluid containing a paint or a molten resin has a higher viscosity than CO 2 . Many of such high-viscosity organic fluids have density changes when the pressure is changed at an arbitrary temperature, for example, from room temperature to about 40 ° C. for coating and from about 100 to 300 ° C. for atomization of molten resin. Is very small compared to CO 2 . Furthermore, the supply amount of CO 2 is usually as low as about 30 wt% with respect to the supply amount of the high viscosity organic fluid. As described above, in the mixing of two kinds of fluids of high viscosity organic fluid and carbon dioxide such as high viscosity organic fluid and carbon dioxide, the basic problem is stable and continuous. In general, it was difficult to perform fluid mixing.

ここで、具体例に則して更に説明するために、図1に、スプレー塗装に関して、高粘度有機性流体と高圧COの混合プロセスの一例として、二酸化炭素塗装に用いる、既存の装置概略を示す。図1より、塗料は、塗料ポンプから供給し、塗料加熱器において、所定の温度まで加熱する。プロセス圧力P4の制御は、噴霧ノズル穴径、流体流量、及び粘度によって決定される。COは、COポンプで供給し、同様に、加熱器において、所定の温度まで加熱する。それぞれの流体は、ミキサーMX−1で混合される。塗料流量に対してCO流量は30wt%程度である。塗装の既往の報告では、このミキサーとして、スタティックミキサーを用いている(特許文献1)。 Here, in order to further explain in accordance with a specific example, FIG. 1 shows an outline of an existing apparatus used for carbon dioxide coating as an example of a mixing process of a high-viscosity organic fluid and high-pressure CO 2 with respect to spray coating. Show. As shown in FIG. 1, the paint is supplied from a paint pump and heated to a predetermined temperature in a paint heater. Control of the process pressure P4 is determined by the spray nozzle hole diameter, fluid flow rate, and viscosity. CO 2 is supplied by a CO 2 pump, and is similarly heated to a predetermined temperature in a heater. Each fluid is mixed by the mixer MX-1. The CO 2 flow rate is about 30 wt% with respect to the paint flow rate. In the past reports of painting, a static mixer is used as this mixer (Patent Document 1).

図2に、溶融樹脂を含む高粘度有機流体へのCO混合、噴霧・微粒化技術に用いる、既存の装置概略を示す。図2より、ペレット状の樹脂を、樹脂ホッパーに投入し、エクストルーダーで加熱溶融させる。溶融樹脂を含む高粘度有機性流体を、ギアポンプで、高圧条件にて定量供給する。溶融樹脂を含む高粘度有機性流体の通るラインは、CO混合後も含めて、ヒートトレースされている。COは、COポンプで供給し、任意の温度まで加熱した後、溶融樹脂を含む高粘度有機性流体と、ミキサーMX−1で混合する。溶融樹脂を含む高粘度有機性流体流量に対して、CO流量は、30wt%程度である。このプロセスは、混合後流体を、大気圧に噴霧し、微粒子を得るプロセスを有している。本プロセスのミキサーにも、既往の報告では、スタティックミキサーが用いられている(非特許文献5)。 FIG. 2 shows an outline of an existing apparatus used for the CO 2 mixing, spraying and atomizing technology to a high viscosity organic fluid containing a molten resin. As shown in FIG. 2, the pellet-shaped resin is put into a resin hopper and heated and melted with an extruder. A high-viscosity organic fluid containing a molten resin is quantitatively supplied with a gear pump under high-pressure conditions. The line through which the high-viscosity organic fluid containing the molten resin passes is heat traced, including after CO 2 mixing. CO 2 is supplied by a CO 2 pump, heated to an arbitrary temperature, and then mixed with a high-viscosity organic fluid containing a molten resin by a mixer MX-1. The CO 2 flow rate is about 30 wt% with respect to the high viscosity organic fluid flow rate containing the molten resin. This process has a process of obtaining fine particles by spraying the fluid after mixing to atmospheric pressure. In the past reports, a static mixer is also used for the mixer of this process (Non-Patent Document 5).

スタティックミキサーは、流路を多段分割して混合を行うものであり、比較的高流量のケースには、広く用いられている。しかし、迅速混合性能は、それほど良くない。混合状態が不十分な場合、混合後流体において、例えば、上部をCOが、下部を有機性流体が2つの相を形成して流れることが見られ、あるいは、COが混合して、粘性が低下した有機性流体と、COの混合が悪くて、粘性が低下していない有機性流体が、交互に流れるような状態となる場合も見られる。この現象は、噴霧プロセスの場合においては、流体性状の不連続性に起因した間欠流となり、プロセス圧力の変動を生じ、その結果、安定した噴霧が行われない原因となる。 The static mixer performs mixing by dividing the flow path into multiple stages, and is widely used for relatively high flow rate cases. However, the rapid mixing performance is not so good. If the mixed state is insufficient, the mixture after the fluid, for example, the upper CO 2 is lower and the organic fluid is seen to flow to form two phases, or, CO 2 is mixed, the viscosity In some cases, an organic fluid having a reduced viscosity and an organic fluid in which the mixing of CO 2 is poor and the viscosity is not lowered flow alternately. In the case of a spraying process, this phenomenon becomes an intermittent flow due to discontinuity of fluid properties, resulting in fluctuations in the process pressure, and as a result, stable spraying is not performed.

図1の噴霧プロセスを例とした場合の、CO供給圧力P1、溶液供給圧力P2、プロセス圧力P4の関係について、図3に示す。高粘度有機性流体の粘度が高い場合は、COとの粘度差が大きくなるため、ミキサーの混合性能によって、プロセス圧力の変動は大きく影響を受ける。図3に示すように、プロセス圧力が変動した場合、高粘度である溶液供給圧力は、容易に変動に追従するが、COは低流量であり、かつ一定温度で圧力に対する密度変化量が大きいため、昇圧に時間を要する。例えば、35℃の条件で、12MPaから14MPaにプロセス圧力が変動した場合について、有機性流体をトルエンとして、COとの昇圧速度について、比較を行った。 FIG. 3 shows the relationship between the CO 2 supply pressure P - 1, the solution supply pressure P - 2, and the process pressure P - 4 when the spray process of FIG. 1 is taken as an example. When the viscosity of the high-viscosity organic fluid is high, the difference in viscosity from CO 2 becomes large. Therefore, the process pressure fluctuation is greatly affected by the mixing performance of the mixer. As shown in FIG. 3, when the process pressure fluctuates, the solution supply pressure having a high viscosity easily follows the fluctuation, but CO 2 has a low flow rate and a large amount of density change with respect to the pressure at a constant temperature. Therefore, it takes time to boost the voltage. For example, when the process pressure fluctuated from 12 MPa to 14 MPa under the condition of 35 ° C., the organic fluid was toluene and the pressure increase rate with CO 2 was compared.

温度35℃、一定で、12MPaから14MPaの間の密度変化は、トルエンが0.00151g/cc、COが0.03434g/ccであり、COは、トルエンの密度変化に対して、23倍大きいことが分かる。更に、CO供給流量は、トルエン流量に対して、30wt%程度である。よって、COは、トルエンに対して、同じ容積を、12MPaから14MPaまで昇圧する時間は、76倍必要になる。 The density change between 12 MPa and 14 MPa at a constant temperature of 35 ° C. is 0.00151 g / cc for toluene and 0.03434 g / cc for CO 2 , and CO 2 is 23 times the density change for toluene. You can see that it ’s big. Furthermore, the CO 2 supply flow rate is about 30 wt% with respect to the toluene flow rate. Therefore, CO 2 requires 76 times the time to increase the same volume from 12 MPa to 14 MPa with respect to toluene.

具体例に則して説明するために、トルエン、COそれぞれの混合器までの配管内容積を100cc、トルエン流量を30g/min、CO流量を9g/min(トルエン流量の30wt%)、とする。35℃で、12MPaから14MPaまでの昇圧時間は、トルエンが0.3s、COが22sとなる。従って、トルエンは、プロセス圧力変動にほぼ追従して、連続的に30g/minの流量が混合器以降にも供給される。しかし、COは、トルエンに対して、昇圧時間が長くかかるため、プロセス圧力変動に追従することができない。 In order to explain in accordance with a specific example, the internal volume of the pipes to the respective toluene and CO 2 mixers is 100 cc, the toluene flow rate is 30 g / min, the CO 2 flow rate is 9 g / min (30 wt% of the toluene flow rate), and To do. The pressurization time from 12 MPa to 14 MPa at 35 ° C. is 0.3 s for toluene and 22 s for CO 2 . Therefore, toluene substantially follows the process pressure fluctuation, and a flow rate of 30 g / min is continuously supplied to the mixer and the subsequent parts. However, CO 2 cannot follow process pressure fluctuations because it takes longer to pressurize with toluene.

すなわち、CO供給圧力が、プロセス圧力より低い区間は、COポンプから混合器までの容積の昇圧に、ポンプから供給されるCOは使用され、混合器以降に、COは流出しない。プロセス圧力が、CO供給圧力と同じ圧力まで下降した際に、COは、混合器以降に供給される。再度、プロセス圧力が上昇し始めると、CO昇圧速度が、プロセス圧力変動に追従できずに、混合器以降に、COは流れず、ポンプから混合器までの容積の昇圧に費やされる。 That, CO 2 supply pressure is lower than the process pressure interval, the boosting of the volume of the CO 2 pump to the mixer, CO 2 supplied from the pump is used, after the mixer, CO 2 does not flow out. When the process pressure drops to the same pressure as the CO 2 supply pressure, CO 2 is supplied after the mixer. When the process pressure starts to increase again, the CO 2 pressure increase rate cannot follow the process pressure fluctuation, and CO 2 does not flow after the mixer, and is consumed for increasing the volume from the pump to the mixer.

このような現象を生じることにより、混合器以降の流体は、COを溶解している領域と、COを溶解していない領域が、間欠的に形成され、プロセス圧力P4は、変動し、噴霧状態は不安定となる。そこで、本発明では、このような現象を回避するために、以下のような構成を採用することで、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させる新しい技術を確立した。 By causing such a phenomenon, in the fluid after the mixer, a region in which CO 2 is dissolved and a region in which CO 2 is not dissolved are formed intermittently, and the process pressure P - 4 varies. However, the spray state becomes unstable. Therefore, in the present invention, in order to avoid such a phenomenon, a new technique for suppressing intermittent supply of high-pressure carbon dioxide and stabilizing the supply flow rate by adopting the following configuration is established. did.

すなわち、本発明は、連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合部において混合器にて混合する高圧プロセスにおいて、高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を設け、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定することで、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させることを特徴とするものである。   That is, the present invention is a high-pressure process in which a high-viscosity organic fluid containing paint or molten resin that is continuously supplied at high pressure and high-pressure carbon dioxide that is also continuously supplied are mixed in a mixer in a mixer. In the high-pressure carbon dioxide supply line, a primary pressure control valve is provided upstream of the mixing unit, and the set pressure of the primary pressure control valve is set to the pressure of the mixing unit, and the fluctuating pressure value generated in the line after the mixing unit is set. By setting the pressure higher than the applied pressure, intermittent supply of high-pressure carbon dioxide is suppressed, and the supply flow rate is stabilized.

本発明では、上記高圧プロセスにおいて、1次圧力調節弁の設定圧力を、混合部の圧力の1から5MPa、好ましくは1から2MPaの範囲で高い圧力に制御すること、また、上記高圧プロセスにおいて、1次圧力制御弁から混合器までの配管内容積を、極力最小化すること、また、上記高圧プロセスにおいて、1次圧力調節弁の下流に、メタリングニードルバルブ、若しくはキャピラリーチューブなどの圧力損失を付与する機構を設け、特に、高圧二酸化炭素の供給流量が低流量条件の場合に、1次圧力調節弁の制御性を向上させること、が必要とされる。   In the present invention, in the high pressure process, the set pressure of the primary pressure control valve is controlled to a high pressure in the range of 1 to 5 MPa, preferably 1 to 2 MPa of the pressure in the mixing section, and in the high pressure process, Minimize the internal volume of the pipe from the primary pressure control valve to the mixer as much as possible, and in the high-pressure process, a pressure loss such as a metering needle valve or capillary tube is provided downstream of the primary pressure control valve. It is necessary to provide a mechanism for imparting, and particularly to improve the controllability of the primary pressure control valve when the supply flow rate of high-pressure carbon dioxide is low.

また、本発明は、連続的に高圧供給する、上記高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を、混合部において混合器にて混合する高圧プロセスにおいて、高粘度有機性流体の供給ラインで、混合部よりも上流に、2次圧力調節弁を設け、実質的に高粘度有機性流体の流量を調節することで、混合器の圧力を一定に制御することを特徴とするものである。   Further, the present invention provides a high-viscosity organic fluid in a high-pressure process in which the high-viscosity organic fluid that is continuously supplied at a high pressure and high-pressure carbon dioxide that is also continuously supplied are mixed in a mixer in a mixing section. In the supply line, a secondary pressure control valve is provided upstream of the mixing unit, and the flow rate of the high-viscosity organic fluid is substantially adjusted to control the pressure of the mixer to be constant. Is.

本発明では、上記高圧プロセスにおいて、高粘度有機性流体の供給ラインで、混合部よりも上流に設置した2次圧力調節弁の上流に、リリーフバルブを設け、高圧ポンプ吐出圧力の上昇を回避すること、また、上記高圧プロセスにおいて、溶融樹脂を含む高粘度有機性流体の場合に、混合前高圧二酸化炭素の1次圧力制御プロセスを有し、かつ高粘度有機性流体と高圧二酸化炭素を混合した後のラインに、混合後流体の1次圧力制御弁を設けることが必要とされ、また、上記高圧プロセスにおいて、高粘度有機性流体と高圧二酸化炭素の連続混合方法は、高粘度有機性流体を高圧環境から噴霧・微粒化するプロセス、又は製膜するプロセスに適用される。   In the present invention, in the high-pressure process, a relief valve is provided upstream of the secondary pressure control valve installed upstream of the mixing section in the high-viscosity organic fluid supply line to avoid an increase in discharge pressure of the high-pressure pump. In the high-pressure process, in the case of a high-viscosity organic fluid containing a molten resin, a primary pressure control process of high-pressure carbon dioxide before mixing is provided, and the high-viscosity organic fluid and high-pressure carbon dioxide are mixed. In the subsequent line, it is necessary to provide a primary pressure control valve for the fluid after mixing, and in the high pressure process described above, the continuous mixing method of the high viscosity organic fluid and high pressure carbon dioxide is a high viscosity organic fluid. It is applied to the process of spraying and atomizing from a high pressure environment, or the process of forming a film.

本発明において、塗料とは、一般的な塗装で用いられる任意の塗料、有機及び無機を含む有機ポリマー、及び、それらのオリゴマーや有機溶媒で希釈されたものを広く含むものであり、溶融樹脂とは、一般的な樹脂を高圧二酸化炭素に溶融させた有機性流体を広く含むものであることを意味する。また、本発明においては、上記高圧プロセスにおいて、高粘度有機性流体と高圧二酸化炭素を連続混合する混合器が、マイクロ流路を用いた高圧マイクロミキサーであること、また、高圧マイクロミキサーが、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、スワールミキサーであること、が好ましい。   In the present invention, the paint widely includes any paint used in general painting, organic polymers including organic and inorganic, and those diluted with oligomers or organic solvents thereof, and a molten resin and Means that an organic fluid obtained by melting a general resin in high-pressure carbon dioxide is widely included. In the present invention, in the high-pressure process, the mixer for continuously mixing the high-viscosity organic fluid and the high-pressure carbon dioxide is a high-pressure micromixer using a microchannel. It is preferably a multistage division type high pressure micromixer, a center collision type micromixer, a T-shaped micromixer, or a swirl mixer.

次に、上述のプロセスで使用する装置について具体的に説明すると、本発明は、連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を混合器にて混合する高圧混合部を有する連続混合装置であって、高圧二酸化炭素の供給ラインで、混合部よりも上流に、1次圧力制御弁を有し、該1次圧力調節弁の設定圧力を、混合部の圧力に混合部以降のラインで生じる変動圧力値を加えた圧力よりも大きな圧力に設定すること、それにより、高圧二酸化炭素の断続的な供給を抑制し、供給流量を安定化させるようにしたことを特徴とするものである。   Next, the apparatus used in the above-described process will be described in detail. The present invention relates to a high-viscosity organic fluid containing paint or molten resin that is continuously supplied with high pressure, and high-pressure carbon dioxide that is continuously supplied. Is a continuous mixing apparatus having a high pressure mixing section that mixes in a mixer, having a primary pressure control valve upstream of the mixing section in a high pressure carbon dioxide supply line, Set the set pressure to a pressure larger than the pressure of the mixing section plus the fluctuating pressure value generated in the line after the mixing section, thereby suppressing intermittent supply of high-pressure carbon dioxide and reducing the supply flow rate. It is characterized by being stabilized.

本発明では、上記装置において、1次圧力制御弁から混合器までの配管内容積が、最小化されていること、また、上記装置において、1次圧力調節弁の下流に、メタリングニードルバルブ、若しくはキャピラリーチューブなどの圧力損失を付与する機構が設けられていること、が必要とされる。   In the present invention, the internal volume of the pipe from the primary pressure control valve to the mixer is minimized in the apparatus, and the metering needle valve is disposed downstream of the primary pressure control valve in the apparatus. Alternatively, it is necessary to provide a mechanism for imparting pressure loss such as a capillary tube.

また、本発明は、連続的に高圧供給する、塗料又は溶融樹脂を含む高粘度有機性流体と、同じく連続的に供給する高圧二酸化炭素を混合器にて混合する混合部を有する連続混合装置であって、高粘度有機性流体の供給ラインで、混合部よりも上流に、2次圧力調節弁を有し、実質的に高粘度有機性流体の流量を調節することで、混合器の圧力を一定に制御するようにしたことを特徴とするものである。   Further, the present invention is a continuous mixing apparatus having a mixing section for mixing a high-viscosity organic fluid containing paint or molten resin continuously supplied with high pressure and high-pressure carbon dioxide supplied continuously in a mixer. The high-viscosity organic fluid supply line has a secondary pressure control valve upstream of the mixing section, and substantially adjusts the flow rate of the high-viscosity organic fluid to reduce the pressure of the mixer. It is characterized by being controlled to be constant.

本発明では、上記装置において、高粘度有機性流体の供給ラインで、混合部よりも上流に設置した2次圧力調節弁の上流に、リリーフバルブを設け、高圧ポンプ吐出圧力上昇を回避するようにしたこと、また、上記装置において、高圧二酸化炭素を混合した後のラインに、混合後流体の1次圧力制御弁を設けたこと、また、上記装置において、高圧二酸化炭素を連続混合する混合器が、マイクロ流路を用いた高圧マイクロミキサーであること、更に、上記装置において、高圧マイクロミキサーが、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、又はスワールミキサーであること、が必要とされる。   In the present invention, in the above apparatus, a relief valve is provided upstream of the secondary pressure control valve installed upstream of the mixing unit in the high viscosity organic fluid supply line so as to avoid an increase in the discharge pressure of the high pressure pump. In the above apparatus, a primary pressure control valve for the fluid after mixing is provided in the line after mixing the high pressure carbon dioxide, and in the above apparatus, a mixer for continuously mixing the high pressure carbon dioxide is provided. A high-pressure micromixer using a microchannel, and in the above apparatus, the high-pressure micromixer is a multistage divided-channel high-pressure micromixer, a center collision micromixer, a T-shaped micromixer, or a swirl mixer Is required.

本発明は、塗料又は溶融樹脂を含む高粘度有機性流体の加工方法、特に、塗料を含む高粘度有機性流体を、高圧二酸化炭素の連続混合により、高圧環境から大気中に連続噴霧するプロセス、及び、溶融樹脂を含む高粘度有機性流体を、高圧二酸化炭素の連続混合により、高圧環境から連続噴霧、連続製膜、又は連続微粒化するプロセスに適用される新しいプロセス及び装置を提供するものとして有用である。本発明は、高圧二酸化炭素の連続混合が可能なものであれば、塗料又は溶融樹脂の種類に制限されることなく、広く適用し得るものであり、それらの具体的条件及び装置の具体的形状、構造については、その実施に当り、適宜、設定、設計することが可能である。   The present invention relates to a method for processing a high-viscosity organic fluid containing a paint or a molten resin, in particular, a process of continuously spraying a high-viscosity organic fluid containing a paint from a high-pressure environment into the atmosphere by continuous mixing of high-pressure carbon dioxide. And a new process and apparatus applied to a process in which a high-viscosity organic fluid containing a molten resin is continuously sprayed, continuously formed, or continuously atomized from a high-pressure environment by continuous mixing of high-pressure carbon dioxide. Useful. The present invention can be widely applied without being limited to the type of paint or molten resin as long as continuous mixing of high-pressure carbon dioxide is possible. Specific conditions and specific shapes of the devices The structure can be set and designed as appropriate in implementing the structure.

本発明は、高圧二酸化炭素連続混合による高圧プロセスに特徴的部分を有するものであり、当該高圧プロセスに続く、噴霧操作、微粒化操作、及び製膜操作のプロセス自体は、従来法を適宜利用することが可能であり、噴霧、微粒化、及び製膜操作の過程で用いられる、あらゆる既存の手段あるいは新規の手段並びに条件を適宜使用することが可能である。本発明は、上記高圧プロセスに続く、噴霧、微粒化、及び製膜操作、並びに、これらの操作で製造される製品形態については、あらゆる操作、製品形態を対象として含むものであり、これらについては、特に制限されるものではない。   The present invention has a characteristic part in a high-pressure process by continuous high-pressure carbon dioxide mixing, and the process itself of the spraying operation, atomization operation, and film forming operation following the high-pressure process appropriately uses conventional methods. Any existing means or new means and conditions used in the course of spraying, atomization and film-forming operations can be used as appropriate. The present invention includes spraying, atomization, and film forming operations following the high-pressure process, and product forms produced by these operations, including all operations and product forms. There is no particular limitation.

本発明により、次のような効果が奏される。
(1)本発明により、高粘度有機性流体と、高圧二酸化炭素を混合するプロセスにおいて、粘度差及び流量差がある2流体を混合する際に、プロセスの圧力変動を生じても、昇圧速度の遅い二酸化炭素供給ラインに圧力区分を設けているため、安定的に、高圧二酸化炭素を供給することが可能となる。
(2)従って、プロセス圧力の変動を最小限にとどめることができ、プロセスの安定化が達成される。
(3)塗料又は溶融樹脂を含む高粘度有機性流体の加工方法において、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させることができる。
(4)多量の有機溶媒を使用する既存法による高粘度有機性流体の加工技術に代替することが可能で、有機溶媒の使用を劇的に低減することを実現可能とする新しい高粘度有機性流体の加工技術を提供することができる。
(5)有機溶媒の排出が少ない、低環境負荷型の、高圧二酸化炭素連続混合による新しい高粘度有機性流体の加工方法及びその装置に関する新技術・新製品を提供することができる。
(6)連続的に供給される高圧二酸化炭素は、低流量であっても、安定的に連続供給されるため、混合後の有機性流体性況が安定し、微粒化、噴霧、製膜のいずれであっても、性能が安定する。
The present invention has the following effects.
(1) According to the present invention, in the process of mixing a high-viscosity organic fluid and high-pressure carbon dioxide, when mixing two fluids having a difference in viscosity and a difference in flow rate, even if the pressure fluctuation of the process occurs, Since the pressure section is provided in the slow carbon dioxide supply line, high-pressure carbon dioxide can be stably supplied.
(2) Therefore, fluctuations in process pressure can be minimized, and process stabilization is achieved.
(3) In the processing method of the high-viscosity organic fluid containing paint or molten resin, intermittent supply of high-pressure carbon dioxide can be suppressed and the supply flow rate can be stabilized.
(4) A new high-viscosity organic material that can replace the existing high-viscosity organic fluid processing technology that uses a large amount of organic solvent and can dramatically reduce the use of organic solvent. Fluid processing techniques can be provided.
(5) It is possible to provide a new technology / new product relating to a new processing method and apparatus for a high-viscosity organic fluid that is low in environmental load and has low emission of organic solvent and is continuously mixed with high-pressure carbon dioxide.
(6) Since the high pressure carbon dioxide continuously supplied is stably supplied even at a low flow rate, the organic fluid condition after mixing is stable, and atomization, spraying, film formation In any case, the performance is stable.

既存の二酸化炭素塗装装置の概略を示す。The outline of the existing carbon dioxide coating equipment is shown. 既存の溶融樹脂へのCO混合、噴霧・微粒化技術の装置概略を示す。CO 2 mixture to an existing molten resin shows an apparatus outline of the spray-atomization technology. プロセス圧力の変動を示す。Shows process pressure variation. 二酸化炭素塗装装置の実施形態の概略を示す。An outline of an embodiment of a carbon dioxide painting device is shown. 既存法による運転トレンドを示す。The driving trend by the existing method is shown. 本発明による運転トレンドを示す。Fig. 2 shows a driving trend according to the invention. 溶融樹脂へのCO混合による噴霧・微粒化技術の実施形態の概略を示す。It shows a schematic embodiment of a spray-atomization technique by CO 2 mixed into the molten resin.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本発明の好適な実施形態の一例を、以下に示す。図4に、スプレー塗装に関する実施形態を示す。図4より、高圧二酸化炭素供給ラインに、1次圧力調節弁PCV−2を設け、かつ1次圧力調節弁PCV−2からミキサーMX−1までのラインの内容積を最小化した。PCV−2の設定圧力は、ミキサーでの圧力P−4に対して、1〜5MPa、より好ましくは1〜2MPa程度高圧とした。高粘度有機性流体と二酸化炭素の混合後流体の粘性変化や二酸化炭素の安定溶解性などに起因して、プロセス圧力P−4が変動する。その変動圧力幅以上の圧力差を、PCV−2上流に確保し、二酸化炭素供給ラインに、圧力区分を設けた。   An example of a preferred embodiment of the present invention is shown below. FIG. 4 shows an embodiment relating to spray coating. As shown in FIG. 4, the primary pressure control valve PCV-2 was provided in the high-pressure carbon dioxide supply line, and the internal volume of the line from the primary pressure control valve PCV-2 to the mixer MX-1 was minimized. The set pressure of PCV-2 was about 1 to 5 MPa, more preferably about 1 to 2 MPa higher than the pressure P-4 in the mixer. The process pressure P-4 varies due to the viscosity change of the fluid after mixing the high viscosity organic fluid and carbon dioxide, the stable solubility of carbon dioxide, and the like. A pressure difference equal to or greater than the fluctuating pressure width was secured upstream of PCV-2, and a pressure section was provided in the carbon dioxide supply line.

圧力変動によって、図3に示した変動は生じるものの、密度差が大きく、かつ低流量の二酸化炭素が昇圧をする必要がある容積を最小化し、圧力区分を設けることによって、PCV−2よりも、上流容積の昇圧時間を必要としないようにした。高圧二酸化炭素の粘性は低いため、PCV−2からミキサーまでの配管は、例えば、1/16インチなどの細管を用い、ミキサーに近接して、PCV−2を設置することにより、容積を最小化した。   Although the fluctuation shown in FIG. 3 is caused by the pressure fluctuation, the density difference is large, and the volume that the low flow rate of carbon dioxide needs to be pressurized is minimized, and by providing the pressure section, the PCV-2 is more effective. The pressure increase time of the upstream volume is not required. Since the viscosity of high-pressure carbon dioxide is low, the pipe from PCV-2 to the mixer is, for example, a thin tube of 1/16 inch, etc., and the volume is minimized by installing PCV-2 close to the mixer did.

また、高粘度有機性流体側の供給ラインには、PCV−4に示す2次圧力調節弁を設け、混合部の圧力を一定にする機能を有するようにした。噴霧プロセスにおいては、一定の圧力で噴霧をすることにより、噴霧状態を安定化させることができることが分かった。具体的には、高粘度有機性流体のみを供給して、PCV−4にて、混合部の圧力を10MPaに調整した。次に、COを供給すると、混合後の流量は増加するが、粘度が低下するため、圧力損失が低下した。従って、同じプロセス圧力、すなわち、噴霧圧力を得るためには、流量を増加させることになる。 The supply line on the high-viscosity organic fluid side is provided with a secondary pressure control valve shown in PCV-4 so as to have a function of keeping the pressure in the mixing unit constant. In the spraying process, it has been found that spraying can be stabilized by spraying at a constant pressure. Specifically, only the high-viscosity organic fluid was supplied, and the pressure of the mixing part was adjusted to 10 MPa with PCV-4. Next, when CO 2 was supplied, the flow rate after mixing increased, but the viscosity decreased, so the pressure loss decreased. Therefore, to obtain the same process pressure, i.e. the spray pressure, the flow rate is increased.

これは、高粘度有機性流体のラインに、2次圧力調節弁が設けてあるため、混合部の圧力を一定に保つために、流量を増減させていることになる。図示していないが、高粘度有機性流体及び高圧二酸化炭素は、質量流量を把握できる構成を有した方が好ましい。流量を把握できる手段は、限定するものではないが、コリオリ式質量流量計や、サーマル流量計、差圧計による流量計、面積式流量計などを用いた。   This is because the secondary pressure control valve is provided in the line of the high-viscosity organic fluid, so that the flow rate is increased or decreased in order to keep the pressure in the mixing unit constant. Although not shown, it is preferable that the high-viscosity organic fluid and the high-pressure carbon dioxide have a configuration capable of grasping the mass flow rate. A means for grasping the flow rate is not limited, but a Coriolis mass flow meter, a thermal flow meter, a differential pressure meter flow meter, an area flow meter, or the like was used.

また、ミキサーには、マイクロ流路を用いた高圧マイクロミキサーを用い、高粘度有機性流体と高圧二酸化炭素の安定的な迅速混合を行った。具体的には、高圧マイクロミキサーとして、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、スワールミキサーを用いた。   In addition, a high-pressure micromixer using microchannels was used as a mixer, and a high-speed organic fluid and high-pressure carbon dioxide were stably and rapidly mixed. Specifically, as the high-pressure micromixer, a multistage divided-channel high-pressure micromixer, a center collision micromixer, a T-shaped micromixer, and a swirl mixer were used.

図5に、既存法による二酸化炭素塗装装置の運転データを示す。図5に示すように、圧力上昇時に、混合後圧力P−よりも、混合前CO圧力P−の方が低い。この区間は、供給しているCOは、昇圧に費やされ、混合器以降に流通していない。混合器流入前のCO温度(CO背圧弁出口温度T−5)からも明らかなように、COが昇圧に費やされ、混合器以降に流通していない区間では、CO加熱器で加熱されるはずのCO温度上昇が抑制され、温度が低下していることが分かる。その際、COが溶解していない高粘度流体が流れるため、圧力損失が大きくなり、混合後の塗料粘度を測定している差圧データは上昇する。また、COが流通すると、粘度が低下するため、差圧も低下している。 In FIG. 5, the operation data of the carbon dioxide coating apparatus by the existing method are shown. As shown in FIG. 5, the pre-mixing CO 2 pressure P- 1 is lower than the post-mixing pressure P- 4 when the pressure rises. In this section, the supplied CO 2 is consumed for boosting and is not distributed after the mixer. As is clear from the CO 2 temperature before the mixer inflow (CO 2 back pressure valve outlet temperature T-5), the CO 2 heater is used in the section where CO 2 is consumed for pressure increase and does not flow after the mixer. It can be seen that the increase in the temperature of CO 2 that should be heated at is suppressed and the temperature is lowered. At that time, since a high-viscosity fluid in which CO 2 is not dissolved flows, the pressure loss increases, and the differential pressure data for measuring the viscosity of the paint after mixing increases. Further, when CO 2 flows, the viscosity decreases, so the differential pressure also decreases.

一方、図6に、本発明による二酸化炭素塗装装置の運転データを示す。混合前のCOラインに背圧弁を設けることにより、混合前CO圧力P−は、混合部圧力P−よりも高圧で、一定制御されている。CO温度T−5についても、一定温度を示し、安定して連続供給されていることが分かる。その結果、混合後塗料の粘度を示す差圧データが、既存法で見られたような大きな変動は生じていない。従って、混合後流体の性状は、安定化されたことが分かる。本実施例により、プロセス圧力の変動は生じなくなり、非常に安定した高圧プロセス操作が実現された。 On the other hand, FIG. 6 shows operation data of the carbon dioxide coating apparatus according to the present invention. By providing a back pressure valve in the CO 2 line before mixing, the CO 2 pressure P- 1 before mixing is higher than the mixing section pressure P- 4 and is controlled constantly. It can be seen that the CO 2 temperature T-5 also shows a constant temperature and is stably supplied continuously. As a result, the pressure difference data indicating the viscosity of the paint after mixing does not change as much as that found in the existing method. Therefore, it can be seen that the properties of the fluid after mixing are stabilized. According to this example, the process pressure was not changed, and a very stable high-pressure process operation was realized.

溶融樹脂を含む高粘度有機性流体へのCO混合、噴霧・微粒化技術に関する、本発明の実施形態を示す。図7に、本実施例に用いた装置概略を示す。図に示されるように、高圧COラインに、1次圧力調節弁PCV−2を設置した。PCV−2からミキサーMX−1の容積は、最小化した。具体的には、高圧二酸化炭素は、粘性が低く、圧力損失の問題も生じないと考えられるため、1/16インチの細管で施工した。混合器の下流に、オリフィスを設けて、前後差圧を測定し、溶融樹脂にCOが混合することによる粘度低下挙動を、オンラインで把握することができた。 CO 2 mixture to high viscosity organic fluid containing molten resin, to spray-atomization techniques, illustrates an embodiment of the present invention. FIG. 7 shows an outline of the apparatus used in this example. As shown in the figure, a primary pressure control valve PCV-2 was installed in the high-pressure CO 2 line. The volume of PCV-2 to mixer MX-1 was minimized. Specifically, high-pressure carbon dioxide has a low viscosity and is considered not to cause a problem of pressure loss. An orifice was provided downstream of the mixer, and the differential pressure across the front and back was measured, and it was possible to grasp on-line the viscosity lowering behavior caused by mixing CO 2 with the molten resin.

また、混合後流体の圧力を、一定に制御するために、1次圧力調節弁PCV−3を設けることができる。これは、必須ではないものの、前述の塗料を含む高粘度有機性流体よりも、溶融樹脂を含む高粘度有機性流体は高粘度であるため、混合後流体の圧力変動を、最小限に制御することに寄与する。図示していないが、溶融樹脂を含む高粘度有機性流体及び高圧二酸化炭素は、質量流量を把握できる構成を加えた方が好ましい。   Moreover, in order to control the pressure of the fluid after mixing to be constant, a primary pressure regulating valve PCV-3 can be provided. Although this is not essential, the high-viscosity organic fluid containing the molten resin is higher in viscosity than the high-viscosity organic fluid containing the above-mentioned paint, so that the pressure fluctuation of the mixed fluid is minimized. It contributes to that. Although not shown, it is preferable to add a configuration capable of grasping the mass flow rate of the high-viscosity organic fluid containing the molten resin and the high-pressure carbon dioxide.

流量を把握できる手段は、限定するものではなく、コリオリ式質量流量計やサーマル流量計、差圧計による流量計、面積式流量計などを用いた。また、ミキサーには、マイクロ流路を用いた高圧マイクロミキサーを用い、溶融樹脂を含む高粘度有機性流体と高圧二酸化炭素の安定的な迅速混合を行った。具体的には、高圧マイクロミキサーとして、流路多段分割型の高圧マイクロミキサーを用いた。本実施例により、プロセス圧力の変動は生じなくなり、非常に安定した高圧プロセス操作が実現された。   The means for grasping the flow rate is not limited, and a Coriolis mass flow meter, a thermal flow meter, a differential pressure meter flow meter, an area flow meter, or the like was used. In addition, a high-pressure micromixer using a micro-channel was used as a mixer, and a stable and rapid mixing of a high-viscosity organic fluid containing a molten resin and high-pressure carbon dioxide was performed. Specifically, as the high-pressure micromixer, a multistage divided-type high-pressure micromixer was used. According to this example, the process pressure was not changed, and a very stable high-pressure process operation was realized.

以上詳述したとおり、本発明は、高圧二酸化炭素の連続混合による高粘度有機性流体の加工方法及びその装置に係るものであり、本発明により、高粘度有機性流体と、高圧二酸化炭素を混合するプロセスにおいて、粘度差及び流量差がある2流体を混合する際に、プロセスの圧力変動を生じても、昇圧速度の遅い二酸化炭素供給ラインに圧力区分を設けているため、安定的に、高圧二酸化炭素を供給することが可能となる。従って、プロセス圧力の変動を最小限にとどめることができ、プロセスの安定化が達成される。塗料又は溶融樹脂を含む高粘度有機性流体の加工方法において、高圧二酸化炭素の断続的な供給を抑制し、その供給流量を安定化させることができる。多量の有機溶媒を使用する既存法による高粘度有機性流体の加工技術に代替することが可能で、有機溶媒の使用を劇的に低減することを実現可能とする新しい高粘度有機性流体の加工技術を提供することができる。有機溶媒の排出が少ない、低環境負荷型の、高圧二酸化炭素連続混合による新しい高粘度有機性流体の加工方法及びその装置に関する新技術・新製品を提供することができる。   As described above in detail, the present invention relates to a processing method and apparatus for a high-viscosity organic fluid by continuous mixing of high-pressure carbon dioxide. According to the present invention, a high-viscosity organic fluid and high-pressure carbon dioxide are mixed. When mixing two fluids that have a difference in viscosity and a difference in flow rate, even if pressure fluctuations in the process occur, a pressure section is provided in the carbon dioxide supply line with a slow pressure increase rate, so that the Carbon dioxide can be supplied. Therefore, process pressure fluctuations can be minimized and process stabilization is achieved. In the processing method of the high-viscosity organic fluid containing paint or molten resin, intermittent supply of high-pressure carbon dioxide can be suppressed and the supply flow rate can be stabilized. New high-viscosity organic fluid processing that can replace the existing high-viscosity organic fluid processing technology that uses a large amount of organic solvent and can dramatically reduce the use of organic solvent Technology can be provided. It is possible to provide new technologies and new products related to a new processing method and apparatus for a high-viscosity organic fluid that is low in environmental load and has low organic solvent emissions and is continuously mixed with high-pressure carbon dioxide.

Claims (13)

高圧二酸化炭素と、塗料又は溶融樹脂を含み高圧二酸化炭素よりも高粘度である高粘度有機性流体と、を高圧プロセスにて連続混合する連続混合装置であって、
当該高粘度有機性流体を高粘度有機性流体源から連続供給する高粘度有機性流体供給ラインと、
当該高圧二酸化炭素を高圧二酸化炭素源から連続供給する高圧二酸化炭素供給ラインと、
当該高粘度有機性流体と、当該高圧二酸化炭素と、を混合する高圧混合部と、
当該高圧混合部に近接して、当該高圧二酸化炭素供給ラインに設けられている高圧二酸化炭素用の1次圧力制御弁(PCV−2)と、
当該二酸化炭素供給ラインに設けられている高圧二酸化炭素ポンプと、
を具備し、
当該1次圧力制御弁の設定圧力は、当該高圧混合部での圧力に対して1〜5MPa高いことを特徴とする連続混合装置。
And high-pressure carbon dioxide, a continuous mixing device for mixing continuously at high pressure processes and high-viscosity organic fluid in the paint or molten resin at a high viscosity than unrealized high-pressure carbon dioxide,
A high-viscosity organic fluid supply line for continuously supplying the high-viscosity organic fluid from a high-viscosity organic fluid source ;
A high-pressure carbon dioxide supply line that continuously supplies the high-pressure carbon dioxide from a high-pressure carbon dioxide source ;
A high-pressure mixing section for mixing the high-viscosity organic fluid and the high-pressure carbon dioxide;
A primary pressure control valve (PCV-2) for high-pressure carbon dioxide provided in the high-pressure carbon dioxide supply line in the vicinity of the high-pressure mixing unit;
A high-pressure carbon dioxide pump provided in the carbon dioxide supply line;
Comprising
The continuous mixing apparatus, wherein the set pressure of the primary pressure control valve is 1 to 5 MPa higher than the pressure in the high pressure mixing section.
前記1次圧力制御弁の下流に設けられている、圧力損失を付与する機構をさらに具備する、請求項1に記載の連続混合装置。 The continuous mixing apparatus according to claim 1, further comprising a mechanism for providing a pressure loss, which is provided downstream of the primary pressure control valve. 前記圧力損失を付与する機構は、メタリングニードルバルブ若しくはキャピラリーチューブである、請求項2に記載の連続混合装置。 The continuous mixing apparatus according to claim 2, wherein the mechanism that imparts the pressure loss is a metering needle valve or a capillary tube. 前記混合部に近接して、前記高粘度有機性流体供給ラインに設けられている高粘度有機性流体用の2次圧力調節弁(PCV−4)をさらに具備する、請求項1〜3の何れか1項に記載の連続混合装置。 Any one of Claims 1-3 further equipped with the secondary pressure control valve (PCV-4) for the high-viscosity organic fluid provided in the said high-viscosity organic-fluid supply line in the vicinity of the said mixing part. The continuous mixing apparatus of Claim 1. 前記高粘度有機性流体用の2次圧力調節弁(PCV−4)の上流に設けられているリリーフバルブをさらに具備する、請求項4に記載の連続混合装置。 The continuous mixing apparatus according to claim 4, further comprising a relief valve provided upstream of the secondary pressure regulating valve (PCV-4) for the high viscosity organic fluid. 前記高圧混合部の下流に設けられている、混合後の流体の圧力を一定に制御する1次圧力調節弁(PCV−3)をさらに具備する、請求項1〜5の何れか1項に記載の連続混合装置。 6. The apparatus according to claim 1, further comprising a primary pressure regulating valve (PCV-3) that is provided downstream of the high-pressure mixing unit and controls the pressure of the fluid after mixing to be constant. Continuous mixing equipment. 前記高圧混合部は、マイクロ流路を用いた高圧マイクロミキサーである、請求項1〜6のいずれか1項に記載の連続混合装置。 The continuous mixing apparatus according to any one of claims 1 to 6, wherein the high-pressure mixing unit is a high-pressure micromixer using a microchannel. 前記高圧マイクロミキサーは、流路多段分割型の高圧マイクロミキサー、中心衝突型マイクロミキサー、T字型マイクロミキサー、又はスワールミキサーである、請求項7に記載の連続混合装置。 The continuous mixing apparatus according to claim 7, wherein the high-pressure micromixer is a multistage division type high-pressure micromixer, a center collision micromixer, a T-shaped micromixer, or a swirl mixer. 請求項1〜8のいずれか1項に記載の連続混合装置を用いて、高圧二酸化炭素と、塗料又は溶融樹脂を含み高圧二酸化炭素よりも高粘度である高粘度有機性流体と、を高圧プロセスにて連続混合する方法であって、
高粘度有機性流体源から、高粘度有機性流体を高粘度有機性流体供給ラインに供給し、
高圧二酸化炭素源から、高圧二酸化炭素ポンプの最高吐出圧力である設定圧力P1未満にて高圧二酸化炭素を高圧二酸化炭素供給ラインに供給し、高粘度有機性流体と混合する直前に、高圧二酸化炭素用の1次圧力制御弁(PCV−2)の設定圧力P2に制御され、
高圧混合部にて、高粘度有機性流体と高圧二酸化炭素とを混合し、
当該設定圧力P2は、混合部における圧力に対して1〜5MPa高く設定することを特徴とし、高圧二酸化炭素の供給流量を安定化させ、プロセス圧力の変動を抑制する連続混合方法。
Using a continuous mixing device according to any one of claims 1 to 8, the high-pressure and high-pressure carbon dioxide, the high-viscosity organic fluid with a paint or molten resin at a high viscosity than unrealized high-pressure carbon dioxide, the A method of continuous mixing in a process,
Supply high viscosity organic fluid from high viscosity organic fluid source to high viscosity organic fluid supply line,
High-pressure carbon dioxide is supplied from a high-pressure carbon dioxide source to the high-pressure carbon dioxide supply line at a pressure lower than the set pressure P1, which is the maximum discharge pressure of the high-pressure carbon dioxide pump. Is controlled to the set pressure P2 of the primary pressure control valve (PCV-2),
In the high-pressure mixing section, the high-viscosity organic fluid and high-pressure carbon dioxide are mixed,
The set pressure P2 is set to be 1 to 5 MPa higher than the pressure in the mixing section, and is a continuous mixing method that stabilizes the supply flow rate of high-pressure carbon dioxide and suppresses fluctuations in process pressure.
請求項4又は5に記載の連続混合装置を用い、前記高圧混合部における圧力は、高粘度有機性流体用の2次圧力調節弁(PCV−4)の設定圧力P4に制御される、請求項9に記載の連続混合方法。 The continuous mixing apparatus according to claim 4 or 5, wherein the pressure in the high-pressure mixing unit is controlled to a set pressure P4 of a secondary pressure regulating valve (PCV-4) for high viscosity organic fluid. The continuous mixing method according to 9. 高圧二酸化炭素の供給流量が低流量条件の場合に、高圧二酸化炭素用の1次圧力制御弁(PCV−2)の下流で圧力損失を付与し、高圧二酸化炭素用の1次圧力制御弁(PCV−2)の制御性を向上させる、請求項9又は10に記載の連続混合方法。 When the supply flow rate of high-pressure carbon dioxide is low, a pressure loss is applied downstream of the primary pressure control valve (PCV-2) for high-pressure carbon dioxide, and the primary pressure control valve (PCV for high-pressure carbon dioxide). The continuous mixing method according to claim 9 or 10, wherein the controllability of -2) is improved. 請求項5に記載の連続混合装置を用い、リリーバルブにより、高粘度有機性流体供給ラインにおける高圧ポンプ吐出圧力上昇を回避する、請求項9〜11の何れかに記載の連続混合方法。 Using the continuous mixing device according to claim 5, by Lilly off valve to avoid the high-pressure pump discharge pressure rise in the high-viscosity organic fluid supply line, continuous mixing method according to any of claims 9-11. 混合後の流体を噴霧ノズルから吐出させ、前記高粘度有機性流体を高圧環境から連続噴霧、連続成膜又は連続微粒化する、請求項9〜12のいずれかに記載の連続混合方法。 The continuous mixing method according to claim 9, wherein the fluid after mixing is discharged from a spray nozzle, and the high-viscosity organic fluid is continuously sprayed, continuously formed, or continuously atomized from a high-pressure environment.
JP2010234730A 2010-10-19 2010-10-19 Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid Active JP5660605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234730A JP5660605B2 (en) 2010-10-19 2010-10-19 Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234730A JP5660605B2 (en) 2010-10-19 2010-10-19 Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid

Publications (3)

Publication Number Publication Date
JP2012086145A JP2012086145A (en) 2012-05-10
JP2012086145A5 JP2012086145A5 (en) 2013-12-05
JP5660605B2 true JP5660605B2 (en) 2015-01-28

Family

ID=46258376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234730A Active JP5660605B2 (en) 2010-10-19 2010-10-19 Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid

Country Status (1)

Country Link
JP (1) JP5660605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696853B2 (en) 2016-03-09 2020-06-30 Nagase & Co., Ltd. Coating fluid composition, method for forming coating film, process for producing coating fluid composition, device for producing coating fluid composition, and composition for preparing coating fluid composition containing carbon dioxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089258B2 (en) * 2012-11-13 2017-03-08 株式会社リコー Particle manufacturing method and particle manufacturing apparatus
JP6516902B1 (en) * 2018-06-08 2019-05-22 長瀬産業株式会社 Painting apparatus and painting method
CN108855663B (en) * 2018-08-03 2020-11-13 大连理工大学 Coating spraying system and method using ionic liquid mixed with high-pressure carbon dioxide as mixed solvent

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2043640T3 (en) * 1987-12-21 1994-01-01 Union Carbide Corp SUPERCRITICAL FLUIDS AS THINNERS IN THE APPLICATION BY LIQUID SPRAY OF COATINGS.
ES2059857T3 (en) * 1989-03-22 1994-11-16 Union Carbide Chem Plastic PRE-COURSE COMPOSITIONS FOR COATING.
EP0420181A3 (en) * 1989-09-27 1992-04-22 Union Carbide Chemicals And Plastics Company, Inc. Method and apparatus for metering and mixing noncompressible and compressible fluids
JP3391083B2 (en) * 1994-03-15 2003-03-31 近畿コカ・コーラボトリング株式会社 Carbonated water production equipment
JPH1147681A (en) * 1997-08-05 1999-02-23 Kira Keshohin Kk Method for coating fine particles by using supercritical fluid, and coated material
JP4148658B2 (en) * 2001-04-18 2008-09-10 財団法人かがわ産業支援財団 Pattern formation method
JP3953321B2 (en) * 2001-12-28 2007-08-08 大和製罐株式会社 Liquid raw material processing equipment using supercritical carbon dioxide
JP4538625B2 (en) * 2004-03-01 2010-09-08 独立行政法人産業技術総合研究所 COATING METHOD AND APPARATUS USING CO2
JP4167993B2 (en) * 2004-03-05 2008-10-22 株式会社神戸製鋼所 Drug impregnation method
JP2007014889A (en) * 2005-07-08 2007-01-25 Shikoku Instrumentation Co Ltd Array-coating method and apparatus for microparticle by supercritical fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696853B2 (en) 2016-03-09 2020-06-30 Nagase & Co., Ltd. Coating fluid composition, method for forming coating film, process for producing coating fluid composition, device for producing coating fluid composition, and composition for preparing coating fluid composition containing carbon dioxide

Also Published As

Publication number Publication date
JP2012086145A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5608864B2 (en) Carbon dioxide coating method and apparatus
US8864044B2 (en) Carbon dioxide coating method and device therefor
EP0388927B1 (en) Methods and apparatus for obtaining a feathered spray
JP5429928B2 (en) Carbon dioxide coating method and apparatus
JP5660605B2 (en) Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid
AU692476B2 (en) Method for spraying polymeric compositions with compressed fluids and enhanced atomization
JP5429929B2 (en) Method and apparatus for coating one- and two-component paints using carbon dioxide
Liu et al. Evaluation of unsteadiness in effervescent sprays by analysis of droplet arrival statistics–The influence of fluids properties and atomizer internal design
JPH06218318A (en) Method for reducing emission of solvent from polymer composition and for enhancing spray therefrom
US5419487A (en) Methods for the spray application of water-borne coatings with compressed fluids
JPH06228473A (en) Method and apparatus for preventing formation of solid precipitate in coating material composition
JP5871266B2 (en) High pressure atomization method for molten resin and low viscosity produced by mixing carbon dioxide and method for producing resin fine particles
JP2012086145A5 (en)
Petermann Supercritical fluid-assisted sprays for particle generation
Kawasaki et al. Study on atomization mechanism in spray coating of organic paint mixed with high-pressure carbon dioxide as a diluting solvent
JP2807927B2 (en) Method and apparatus for distributing and mixing incompressible and compressible fluids
Ochowiak et al. The analysis of silica suspensions atomization
JP4718811B2 (en) Method for making liquid into fine particles and nozzle used therefor
JP6251442B1 (en) Coating method and coating apparatus
JP2003117442A (en) Method for atomizing liquid and nozzle used for the same
Chen et al. The Effect of Ambient Pressure and Gas–Liquid Ratio on the Spray Characteristics of an Effervescent Atomizer
JP2015098012A (en) Two-fluid nozzle
Ochowiak et al. The experimental analysis of the polyacrylamide solutions effervescent atomization
KR100213846B1 (en) Method and apparatus for proportioning and mixing non-compressible and compressible fluids
Asmuin Investigation Novel Matched Valve-Actuator With Atomiser Inserts Design For Two-Fluid With 50% Fill Rati

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5660605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250