JP5645011B2 - Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer - Google Patents

Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer Download PDF

Info

Publication number
JP5645011B2
JP5645011B2 JP2010253919A JP2010253919A JP5645011B2 JP 5645011 B2 JP5645011 B2 JP 5645011B2 JP 2010253919 A JP2010253919 A JP 2010253919A JP 2010253919 A JP2010253919 A JP 2010253919A JP 5645011 B2 JP5645011 B2 JP 5645011B2
Authority
JP
Japan
Prior art keywords
light
signal
polarization
reference signal
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010253919A
Other languages
Japanese (ja)
Other versions
JP2012103200A (en
Inventor
昌弘 土屋
昌弘 土屋
清隆 笹川
清隆 笹川
敦史 菅野
敦史 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2010253919A priority Critical patent/JP5645011B2/en
Publication of JP2012103200A publication Critical patent/JP2012103200A/en
Application granted granted Critical
Publication of JP5645011B2 publication Critical patent/JP5645011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、直交する偏光成分が各々搬送波と側帯波で変調された信号の解析技術に関する。特に伝送路において上記偏光成分間に位相差が生じる場合、上記位相差を解析してその伝送路の影響を除去することで、上記搬送波及び側帯波の振幅及び位相を正しく測定する変調光解析装置に関するものである。さらにこの発明は、上記変調光解析装置を適用し電気光学効果または磁気光学効果を利用した電界や磁界の測定装置であって、伝送路から発生する誤差を補正して、より正しい測定値を得る電界あるいは磁界検出プローブ装置に関するものである。   The present invention relates to a technique for analyzing a signal in which orthogonal polarization components are modulated by carrier waves and sidebands, respectively. In particular, when a phase difference occurs between the polarization components in the transmission path, the modulated light analyzing apparatus that correctly measures the amplitude and phase of the carrier wave and the sideband wave by analyzing the phase difference and removing the influence of the transmission path. It is about. Furthermore, the present invention is an apparatus for measuring an electric field or a magnetic field using the electro-optic effect or magneto-optic effect by applying the modulated light analyzing apparatus, and corrects an error generated from a transmission line to obtain a more accurate measurement value. The present invention relates to an electric field or magnetic field detection probe apparatus.

偏光を変調して得られる搬送波とそれに直交する側帯波を含む光を伝送する系において、その伝送路では、直交する方位の屈折率の変動が生じることはよく知られている。例えば、偏波面保存光ファイバー(以下PMFと省略する)の遅軸と速軸に信号を伝搬するとき、PMFの曲げや揺動によって遅軸、速軸それぞれの屈折率が変動し、それぞれを伝搬する光の位相が相対的に変動する。より具体的には、例えば、電気光学効果を用いて電界あるいは磁界を測定する装置において、測定器のプローブ部と信号解析機能を有する変調光解析装置間を、固定されず設置位置が絶えず変化するPMFで接続したときこの問題は顕著で、測定値が数パーセント変動することが報告されている。また大気中の光の伝播においても、空気の流れで各地点の密度が変わることによって、屈折率が変動することは知られている。   It is well known that in a system for transmitting light including a carrier wave obtained by modulating polarization and sidebands orthogonal to the carrier wave, the refractive index fluctuates in the orthogonal direction in the transmission path. For example, when a signal is propagated to the slow axis and the fast axis of a polarization-preserving optical fiber (hereinafter abbreviated as PMF), the refractive index of the slow axis and the fast axis fluctuates due to bending and swinging of the PMF, and propagates through each. The phase of light varies relatively. More specifically, for example, in an apparatus that measures an electric field or a magnetic field using the electro-optic effect, the installation position constantly changes between the probe unit of the measuring instrument and the modulated light analysis apparatus having a signal analysis function. This problem is noticeable when connected by PMF, and it has been reported that the measured value fluctuates several percent. Also, in the propagation of light in the atmosphere, it is known that the refractive index fluctuates as the density of each point changes with the flow of air.

本発明は、電界あるいは磁界検出プローブ装置に関するものであるが、測定しようとする領域の電界、表面電位、あるいは磁界を殆ど乱すことなく測定しようとする際に用いる測定装置の1つとして、EO(電気光学)効果やMO(磁気光学)効果を用いた測定装置は、既によく知られている。   The present invention relates to an electric field or magnetic field detection probe apparatus. As one of measuring apparatuses used for measuring an electric field, a surface potential, or a magnetic field in a region to be measured with almost no disturbance, EO ( Measuring devices using the electro-optic) effect and the MO (magnet-optic) effect are already well known.

例えば、特許文献1(米国特許第3605013号明細書)には、ファラデイ効果を示す光ファイバーを用いた電流測定システムが開示されている。また、特許文献2(米国特許第4002975号明細書)には、電場あるいは磁場の強度に従って偏光方向の変わる光学結晶を用いた電圧測定が開示されている。   For example, Patent Document 1 (US Pat. No. 3,605,013) discloses a current measurement system using an optical fiber exhibiting a Faraday effect. Patent Document 2 (US Pat. No. 4,002975) discloses voltage measurement using an optical crystal whose polarization direction changes according to the intensity of an electric field or magnetic field.

また、特許文献3(特開2005−292068号公報)には、PMFなどの伝送路によって生ずる偏波間の位相変動を電気的に検出し機械的な手段によって調整する技術が開示されている。交流電界や交流磁界などの物理量が印加されている電気光学結晶、磁気光学結晶、圧光学(光弾性)結晶などの光学結晶に光を入射させ、光学結晶から出射された光を検出することにより交流電界、交流磁界、音圧などに相当する信号を得る計測システムが開示されている。これは、光学結晶の変位による感度の低下を抑制することを目的にするもので、光源からの光源出力直線偏光を光学結晶に伝送し、光学結晶を介して光源出力直線偏光を被測定物理量により偏光変調してサーキュレータにより偏光調整器に伝送し、偏光調整器によって偏光変調光を任意偏光に変換し、任意偏光を偏光分離手段により直交する分離直線偏光に分離し、分離した直線偏光をそれぞれ光検出器により電気信号に変換し、電気信号を差動増幅器により差動信号として出力し、差動信号をロックインアンプにより被測定物理量の振幅信号と位相信号として出力し、光検出器の光電流とロックインアンプからの振幅信号を制御信号処理部に入力し、制御信号処理部により光電流が等しくかつ振幅信号が最大となるように偏光調整器を制御して任意偏光を調節するものである。   Patent Document 3 (Japanese Patent Laid-Open No. 2005-292068) discloses a technique for electrically detecting a phase fluctuation between polarized waves caused by a transmission path such as a PMF and adjusting it by mechanical means. By making light incident on an optical crystal such as an electro-optic crystal, a magneto-optic crystal, or a piezoelectric (photoelastic) crystal to which a physical quantity such as an alternating electric field or an alternating magnetic field is applied, and detecting the light emitted from the optical crystal A measurement system for obtaining a signal corresponding to an AC electric field, an AC magnetic field, a sound pressure, and the like is disclosed. This is intended to suppress the decrease in sensitivity due to the displacement of the optical crystal, and the light source output linearly polarized light from the light source is transmitted to the optical crystal, and the light source output linearly polarized light is measured by the measured physical quantity through the optical crystal. Polarization modulation and transmission to the polarization adjuster by the circulator, polarization-modulated light is converted to arbitrary polarization by the polarization adjuster, the arbitrary polarization is separated into orthogonal linear polarization by the polarization separation means, and the separated linearly polarized light is light The detector converts it into an electrical signal, the electrical signal is output as a differential signal by a differential amplifier, the differential signal is output as an amplitude signal and a phase signal of a physical quantity to be measured by a lock-in amplifier, and the photocurrent of the photodetector And the amplitude signal from the lock-in amplifier are input to the control signal processing unit, and the polarization signal is controlled by the control signal processing unit so that the photocurrents are equal and the amplitude signal is maximized. It is intended to regulate any polarization Te.

米国特許第3605013号明細書US Pat. No. 3,605,013 米国特許第4002975号明細書U.S. Pat. No. 4,200,275 特開2005−292068号公報JP 2005-292068 A

偏光成分として変調された信号が伝送されるとき、伝送路の屈性率楕円体が変化する場合がある。この場合は、直交する偏波面の偏光成分間に位相差が発生することが知られている。この位相差の変動よって、伝送されたデータにエラーが生ずるという不具合がある。この問題は、特に、偏波面保持光ファイバーの速軸と遅軸を伝搬する光間に位相差が発生する問題として知られている。   When a signal modulated as a polarization component is transmitted, the refractive index ellipsoid of the transmission path may change. In this case, it is known that a phase difference occurs between polarization components of orthogonal polarization planes. There is a problem that an error occurs in the transmitted data due to the fluctuation of the phase difference. This problem is particularly known as a problem that a phase difference occurs between the light propagating along the fast axis and the slow axis of the polarization maintaining optical fiber.

そこで、本発明の変調光解析装置では、偏光を受光する側の光学的な演算と光電変換手段の出力を電気的に演算とを行うことで、偏光を変調して送出する系に何ら制約をつけずに、伝送路での位相差の変動による測定値の変動を抽出する。   Therefore, in the modulated light analyzing apparatus of the present invention, there is no restriction on the system for modulating and transmitting the polarized light by performing optical computation on the side receiving the polarized light and electrically computing the output of the photoelectric conversion means. Without variation, the fluctuation of the measured value due to the fluctuation of the phase difference in the transmission line is extracted.

また、本発明の電界あるいは磁界検出プローブ装置は、上記の変調光解析装置を活用して、電気光学効果または磁気光学効果を利用した電界または磁界センサーを構成する。これは、大きさ、重量ともに片手で把持できる程度のプローブ部が光検出系と光ファイバーで結ばれたもので、プローブ部の揺動にたいして、測定値が変動しないようにした電界磁界測定用光学プローブを実現するものである。   Moreover, the electric field or magnetic field detection probe apparatus of the present invention uses the above-described modulated light analysis apparatus to constitute an electric field or magnetic field sensor using the electro-optic effect or the magneto-optic effect. This is an optical magnetic field measurement optical probe in which the measured value does not fluctuate with respect to the swinging of the probe part because the probe part that can be grasped with one hand in both size and weight is connected to the optical detection system with an optical fiber. Is realized.

本発明の変調光解析装置は、
搬送波とそれに直交する偏波面をもつ側帯波とを含む楕円偏光を解析対象の入射光とし、
上記入射光を第1、第2の偏光に分岐するための第1の光分岐手段と、
第1の偏光を入射光とし、その搬送波および側帯波の各々の偏波面に対して±π/4ラジアンのいずれかの方位で交叉し、2つの互いに直交する偏光成分に分離するための第1の偏光分岐手段と、
上記の互いに直交する2つの偏光成分の其々の強度を測定するための第1、第2の光電変換手段と、
第2の偏光に適用してその偏光成分間に位相差を与える1/4波長板と、
前記1/4波長板を出た第2の偏光を入射光とし、その搬送波および側帯波偏波面に対して±π/4ラジアンのいずれかの方位で交叉し、互いに直交する2つの偏光成分に分離するための第2の偏光分岐手段と、
第2の偏光分岐手段で分離され互いに直交する2つの上記偏光成分の其々の強度を測定するための第3、第4の光電変換手段と、
第1、第2、第3、第4の光電変換手段の全ての出力を入力して、前記入射光の搬送波または側帯波のそれぞれの強度、または、その位相の一部またはすべてを算出する信号処理回路と、
解析対象の上記入射光を解析する周波数を指定するための第1の参照信号を発生する第1の信号発生器と、を具備し、
前記信号処理回路は、第1、第2の光電変換手段の各々の出力間の差である第1の差信号の指定された上記周波数における強度と、第3、第4の光電変換手段の出力間の差である第2の差信号の指定された上記周波数における強度との第1の比から、解析対象の上記入射光の搬送波と側帯波の位相差を算出することを特徴とする。
The modulated light analyzer of the present invention is
The elliptically polarized light including the carrier wave and the sideband having the plane of polarization orthogonal to the carrier wave is set as the incident light to be analyzed.
First light branching means for branching the incident light into first and second polarized light;
The first polarized light is incident light, crosses in any direction of ± π / 4 radians with respect to the polarization planes of the carrier wave and the sideband wave, and is separated into two mutually orthogonal polarization components. Polarization splitting means of
First and second photoelectric conversion means for measuring the respective intensities of the two polarization components orthogonal to each other;
A quarter-wave plate that applies to the second polarization and provides a phase difference between the polarization components;
The second polarized light exiting the ¼ wavelength plate is made incident light, crossed in any direction of ± π / 4 radians with respect to the carrier wave and the sideband polarization plane, and converted into two polarization components orthogonal to each other. A second polarization splitting means for separating;
Third and fourth photoelectric conversion means for measuring the intensity of each of the two polarization components separated by the second polarization branching means and orthogonal to each other;
A signal for inputting all the outputs of the first, second, third and fourth photoelectric conversion means and calculating the intensity of each carrier wave or sideband of the incident light, or a part or all of the phase thereof. A processing circuit;
A first signal generator for generating a first reference signal for designating a frequency for analyzing the incident light to be analyzed;
The signal processing circuit includes the intensity at the specified frequency of the first difference signal, which is the difference between the outputs of the first and second photoelectric conversion means, and the outputs of the third and fourth photoelectric conversion means. The phase difference between the carrier wave of the incident light to be analyzed and the sideband wave is calculated from a first ratio of the second difference signal, which is a difference between them, to the intensity at the specified frequency.

また、本発明の変調光解析装置における信号処理装置は、上記の特徴に加えて、
第1の差信号と、第1の参照信号の周波数成分のπ/2または−π/2ラジアンに相当する移相を施した第2の差信号、との和信号を生成し、更に前記和信号と前記第1の参照信号との積を前記参照信号の整数周期にわたり積算して得られる第1の積算値と、上記和信号と、第1の参照信号をπ/2または−π/2ラジアン移相した信号との積を上記周期にわたり積算して得られる第2の積算値とを求め、
第1の積算値の平方値と第2の積算値の平方値との和から解析対象の上記搬送波の強度と上記側帯波の強度の積を求め、
上記信号処理回路は、第1の比と、第1の積算値と第2の積算値との比とから、第1の参照信号と解析対象の上記入射光の側帯波に含まれ第1の参照信号と同じ周波数の信号との位相差を算出することを特徴とする。
In addition to the above features, the signal processing device in the modulated light analysis device of the present invention includes:
Generating a sum signal of the first difference signal and a second difference signal having a phase shift corresponding to π / 2 or −π / 2 radians of the frequency component of the first reference signal; A first integrated value obtained by integrating a product of the signal and the first reference signal over an integer period of the reference signal, the sum signal, and the first reference signal by π / 2 or −π / 2. A second integrated value obtained by integrating the product with the signal shifted in radians over the above period, and
From the sum of the square value of the first integrated value and the square value of the second integrated value, the product of the intensity of the carrier wave to be analyzed and the intensity of the sideband is obtained.
The signal processing circuit is included in the first reference signal and the sideband of the incident light to be analyzed based on the first ratio and the ratio between the first integrated value and the second integrated value. The phase difference between the reference signal and a signal having the same frequency is calculated.

また、本発明は、上記の変調光解析装置を用いた電界あるいは磁界検出プローブ装置であって、
直線偏光を出力する光源と、
電界あるいは磁界によって屈折率の変化する電気または磁気光学結晶と、
請求項1記載の変調光解析装置と、
前記直線偏光を前記電気または磁気光学結晶へ導くとともに前記電気または磁気光学結晶を透過あるいは反射した出力を上記変調光解析装置へ導くための偏波面保存光ファイバーを含む光路と、
を具備し、
上記電気または磁気光学結晶に印加された電界あるいは磁界の周波数、強度、参照信号と搬送波の相対位相の少なくとも1つを測定する機能を有することを特徴とする。
Further, the present invention is an electric field or magnetic field detection probe device using the above modulated light analysis device,
A light source that outputs linearly polarized light;
An electric or magneto-optic crystal whose refractive index changes with an electric or magnetic field;
The modulated light analyzer according to claim 1;
An optical path including a polarization-preserving optical fiber for guiding the linearly polarized light to the electric or magneto-optical crystal and guiding an output transmitted or reflected by the electric or magneto-optical crystal to the modulated light analyzer;
Comprising
It has a function of measuring at least one of the frequency and intensity of the electric field or magnetic field applied to the electro- or magneto-optical crystal, and the relative phase of the reference signal and the carrier wave.

また、本発明の電界あるいは磁界検出プローブ装置は、上記の構成に加えて、
上記光源からの直線偏光を変調する手段と、
第2の参照信号を発生する第2の信号発生器と、
を具備し、
上記直線偏光は第2の信号参照によって変調されて上記電気または磁気光学結晶への入射光であり、
上記電気または磁気光学結晶は、上記入射光に含まれる前記第2の参照信号による変調成分と、被測定電界または磁界との周波数混合を行ってその出力光に第1の周波数に相当する中間周波数成分を発生し、変調光解析装置は第1の周波数成分に対して解析処理を行う光ヘテロダイン法を用いることを特徴とする。
Further, the electric field or magnetic field detection probe device of the present invention has the above configuration,
Means for modulating linearly polarized light from the light source;
A second signal generator for generating a second reference signal;
Comprising
The linearly polarized light is light incident on the electro- or magneto-optic crystal modulated by a second signal reference;
The electro-optic or magneto-optic crystal performs frequency mixing of the modulation component by the second reference signal included in the incident light and the electric field or magnetic field to be measured, and the output light has an intermediate frequency corresponding to the first frequency. The modulated light analyzing apparatus uses an optical heterodyne method for performing analysis processing on the first frequency component.

また、上記の構成に加えて、
上記光路は、
第2の光分岐手段と、
双方向性光路とを備え、
第2の光分岐手段は、上記光源から入射する上記直線偏光を上記双方向性光路を介して上記電気または磁気光学結晶に送り、前記電気または磁気光学結晶からのからの戻り光を上記双方向性光路を介して上記偏光解析装置に出射するものであって、上記双方向性光路は偏波面保持光ファイバーを含むことを特徴とする。
In addition to the above configuration,
The optical path is
A second light branching means;
With a bidirectional light path,
The second light branching means sends the linearly polarized light incident from the light source to the electric or magneto-optical crystal via the bidirectional optical path, and returns light from the electric or magneto-optical crystal to the bidirectional In this case, the bidirectional optical path includes a polarization-maintaining optical fiber.

本発明により、光路の偏波面ごとの屈折率変動によって生ずる信号の変動を受動的に補償し受信信号の安定化を行うことができる。また、上記の変調光解析装置を用いた電界あるいは磁界測定プローブ装置では、測定端子と変調光解析装置をPMFを用いて光を伝送した場合に発生するPMFの揺動などによる測定の劣化を保障することができる。更にヘテロダイン法を用いた上記の電界あるいは磁界測定プローブ装置においては、偏光解析装置は信号の検出と処理を行う機能を一定の周波数に限定することができ、測定の安定化に更に貢献する。 According to the present invention, it is possible to passively compensate for signal fluctuation caused by refractive index fluctuation for each polarization plane of the optical path and to stabilize the received signal. Further, in the electric field or magnetic field measurement probe device using the above-described modulated light analysis device, the measurement deterioration due to the fluctuation of the PMF generated when the measurement terminal and the modulated light analysis device transmit light using the PMF is guaranteed. can do. Furthermore, in the electric field or magnetic field measurement probe apparatus using the heterodyne method, the ellipsometer can limit the function of performing signal detection and processing to a certain frequency, which further contributes to measurement stabilization.

本発明の偏光解析装置20の構成例を示すブロック図である。入射光は互いに直交する偏波面において、その一方は搬送波で、他方は側帯波で変調された偏光であって(図4(c)参照)、第1の光分岐手段5に入射して略等しい第1、第2の偏光に分岐される。第1の偏光は第1の偏光分岐手段7によって前記入射光の側帯波または搬送波の偏波面に対して±π/4ラジアンのいずれかの方位を有して互いに直交する2つの偏光、即ち第3、第4の偏光に分離される。第3の偏光は第1の光電変換手段9、第4の偏光は第2の光電変換手段10によって光電変換されて信号処理回路14に入力される。第1の光分岐手段5の他方の出力である第2の偏光は、λ/4板6を介して第2の偏光分岐手段8によって±π/4ラジアンのいずれかの方位を有して互いに直交する2つの偏光、即ち第5、第6の偏光に分岐される。第5の偏光は第3の光電変換手段11によって、第6の偏は第4の光電変換手段12によって光電変換されて、信号処理回路14に入力される。図中13は第1の信号発生手段であって、信号処理回路14に、解析しようとする周波数の第1の参照信号を供給する。It is a block diagram which shows the structural example of the ellipsometer 20 of this invention. Incident light has polarization planes orthogonal to each other, one of which is a carrier wave and the other is a polarization modulated by a sideband (see FIG. 4C), and is incident on the first optical branching means 5 and substantially equal. The light is branched into first and second polarized light. The first polarized light is supplied by the first polarization branching means 7 with two polarizations orthogonal to each other having an orientation of ± π / 4 radians with respect to the sideband of the incident light or the plane of polarization of the carrier. 3. Separated into fourth and fourth polarized light. The third polarization is photoelectrically converted by the first photoelectric conversion means 9, and the fourth polarization is photoelectrically converted by the second photoelectric conversion means 10 and input to the signal processing circuit 14. The second polarized light, which is the other output of the first light branching means 5, has a direction of ± π / 4 radians by the second polarization branching means 8 through the λ / 4 plate 6 and has a direction of ± π / 4 radians. The light is branched into two orthogonal polarizations, that is, fifth and sixth polarizations. The fifth polarized light is photoelectrically converted by the third photoelectric conversion means 11 and the sixth polarized light is photoelectrically converted by the fourth photoelectric conversion means 12 and input to the signal processing circuit 14. In the figure, reference numeral 13 denotes first signal generating means for supplying the signal processing circuit 14 with a first reference signal having a frequency to be analyzed. 本発明の電気または磁気光学プローブ装置の第1の実施例の構成を示すブロック図である。偏光を出力する光源1の発する偏光は、第2の光分岐手段2を介して偏波面保存光ファイバー(PMF)を含む光路3に入射し、電気または磁気光学結晶4の照射へ導くとともに、前記電気または磁気光学結晶4を透過あるいは反射した出力を偏光解析装置20へ導く。偏光解析装置20はその入射光から電気または磁気光学結晶に印加された電界あるいは磁界の周波数、強度、参照信号と搬送波の相対位相を解析して測定する。第2の光分岐手段2と偏光解析装置の間20には、その入射光の偏光の方位を調整するための手段、例えばλ/2板が具備されていると好ましい。1 is a block diagram showing a configuration of a first embodiment of an electric or magneto-optical probe apparatus of the present invention. The polarized light emitted from the light source 1 that outputs the polarized light is incident on the optical path 3 including the polarization-preserving optical fiber (PMF) via the second optical branching unit 2 and is guided to the irradiation of the electric or magneto-optical crystal 4. Alternatively, the output transmitted or reflected by the magneto-optical crystal 4 is guided to the ellipsometer 20. The ellipsometer 20 analyzes and measures the frequency and intensity of the electric field or magnetic field applied to the electric or magneto-optical crystal from the incident light, and the relative phase of the reference signal and the carrier wave. It is preferable that a means for adjusting the direction of polarization of the incident light, for example, a λ / 2 plate, is provided between the second light branching means 2 and the ellipsometer. 本発明の電気あるは磁気光学プローブ装置の第2の実施例を示すブロック図である。第1の実施例に対して、偏光を変調するための変調装置16と、その信号を供給する第2の信号発手段15を加えた構成である。FIG. 5 is a block diagram showing a second embodiment of the electrical or magneto-optical probe apparatus of the present invention. In contrast to the first embodiment, a modulation device 16 for modulating polarized light and a second signal generating means 15 for supplying the signal are added. 本発明の偏光解析装置における、偏光の状態を示す図である。(A)は光源1の偏光を示した図で、図面上で上下方向(以下Y軸と記す)の直線偏光である。(B)は電気或いは磁気光学結晶4を出た直後の偏光を示している。電気または磁気光学結晶4において電界あるいは磁界によって変調されて、図面上水平方向(以下X軸と記す)の偏光成分に側帯波が発生していることを示す。搬送波はY軸成分である。(C)は電気または磁気光学結晶4を出射した光が、伝送路によってX軸、Y軸成分間に位相差φを生じたときの偏光を示す。(D)は第1の偏光分岐手段7によって分離された第3の偏光、(E)は同様に第1の偏光分岐手段7によって分離された第4の偏光25を示す図であって、X軸とπ/4の角度で交差する(D)u−u'と(E)v−v'成分の偏光を示す図である。It is a figure which shows the state of polarized light in the ellipsometer of this invention. (A) is a diagram showing the polarization of the light source 1, which is linearly polarized light in the vertical direction (hereinafter referred to as the Y axis) on the drawing. (B) shows the polarized light immediately after leaving the electric or magneto-optical crystal 4. It shows that sidebands are generated in the polarization component in the horizontal direction (hereinafter referred to as the X axis) modulated in the electro- or magneto-optical crystal 4 by an electric field or a magnetic field. The carrier wave is a Y-axis component. (C) shows the polarized light when the light emitted from the electro-optic or magneto-optic crystal 4 causes a phase difference φ between the X-axis and Y-axis components through the transmission path. (D) is a diagram showing the third polarized light separated by the first polarization splitting means 7, and (E) is a diagram showing the fourth polarized light 25 similarly separated by the first polarization splitting means 7, It is a figure which shows the polarized light of the (D) u-u 'and (E) vv' component which cross | intersects an axis | shaft with the angle of (pi) / 4. 本発明の偏光解析装置における、偏光の状態を示す図であり、(F)は、λ/4板6を通過した後の第2の偏光23の偏波面を示す電界ベクトル図、(G)は第2の偏光分岐手段8出力の第5の偏光の座標軸をπ/4ラジアン傾けた場合の電界ベクトル図、(H)は第2の偏光分岐手段8出力の第4の偏光である。It is a figure which shows the state of polarization in the ellipsometer of this invention, (F) is an electric field vector figure which shows the polarization plane of the 2nd polarization | polarized-light 23 after passing the (lambda) / 4 board 6, (G). The electric field vector diagram when the coordinate axis of the fifth polarization of the second polarization branching unit 8 output is tilted by π / 4 radians, (H) is the fourth polarization of the second polarization branching unit 8 output. 図3の実施例における、第1の信号発生手段13からの第1の参照信号33、第2の信号発生手段15からの第2の参照信号30、および被測定信号となる被測定物の発する電界あるいは磁界31の周波数の関係を示す模式図である。第2の参照信号30で変調された偏光は電気または磁気光学結晶4に入射し被測定物の発する電界あるいは磁界31によって更に変調される。その結果被測定物の発する電界あるいは磁界31は周波数変換されて中間周波数信号32を生ずる。偏光解析装置20は中間周波数信号32中の第1の参照信号33に等しい周波数成分を解析する。このことは被測定物の発する電界あるいは磁界31を解析することと等価である。第1の参照信号33の周波数と第2の参照信号30の周波数の和である測定する周波数が実際に解析される電界あるいは磁界の周波数位置である。被測定周波数は第1の参照信号33の周波数と第2の参照信号30の周波数の差であってもよい。In the embodiment of FIG. 3, the first reference signal 33 from the first signal generating means 13, the second reference signal 30 from the second signal generating means 15, and the object to be measured that is the signal under measurement are emitted. FIG. 4 is a schematic diagram showing a relationship between frequencies of an electric field or a magnetic field 31. The polarized light modulated by the second reference signal 30 is further modulated by an electric field or magnetic field 31 incident on the electro-optic or magneto-optical crystal 4 and emitted from the object to be measured. As a result, the electric field or magnetic field 31 generated by the device under test is frequency converted to produce an intermediate frequency signal 32. The ellipsometer 20 analyzes a frequency component equal to the first reference signal 33 in the intermediate frequency signal 32. This is equivalent to analyzing the electric field or magnetic field 31 generated by the object to be measured. The frequency to be measured, which is the sum of the frequency of the first reference signal 33 and the frequency of the second reference signal 30, is the frequency position of the electric field or magnetic field that is actually analyzed. The measured frequency may be a difference between the frequency of the first reference signal 33 and the frequency of the second reference signal 30. 図1に示した偏光解析装置20の光学部分の実施例を示す図である。入射光28は第1の光分岐手段5によって第1の偏光22、第2の偏光23に分岐し、第1の偏光22は第1の偏光分岐手段7に入射し、互いに偏光面が直交する第3の偏光24と第4の偏光25に分離して、第1の光電変換手段9と第2の光電変換手段10に入射する。第2の偏光23は反射鏡21によって曲げられてλ/4板6によって偏光面成分間に位相差を加えられた後、第2の偏光分岐手段8に入射して互いに直交する第5の偏光26と第6の偏光27に分離し、第3の光電変換手段11と第4の光電検出手段12に入射する。4つの光電変換手段の出力は信号処理回路に入力し解析が行われる。It is a figure which shows the Example of the optical part of the ellipsometer 20 shown in FIG. The incident light 28 is branched into the first polarized light 22 and the second polarized light 23 by the first light branching means 5, and the first polarized light 22 is incident on the first polarization branching means 7, and the polarization planes are orthogonal to each other. The light is separated into the third polarized light 24 and the fourth polarized light 25 and is incident on the first photoelectric conversion means 9 and the second photoelectric conversion means 10. The second polarized light 23 is bent by the reflecting mirror 21 and a phase difference is added between the polarization plane components by the λ / 4 plate 6. Then, the second polarized light 23 enters the second polarization branching unit 8 and is orthogonal to each other. 26 and the sixth polarized light 27, and enters the third photoelectric conversion means 11 and the fourth photoelectric detection means 12. The outputs of the four photoelectric conversion means are input to a signal processing circuit for analysis.

以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いるものとする。   Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.

図1に本発明の実施例である偏光解析装置20のブロック図を示す。入射光は、互いに直交する偏波面において、その一方は搬送波で、他方は側帯波で変調された偏光であって、第1の光分岐手段5に入射して略等しい第1、第2の偏光22、23に2分岐される。第1の偏光22は第1の偏光分岐手段7によって前記入射光の側帯波または搬送波の偏波面に対して±π/4ラジアンのいずれかの方位を有して互いに直交する2つの偏光、つまり第3、第4の偏光24、25に分離される。第3の偏光24は第1の光電変換手段9、第4の偏光25は第2の光電変換手段10によって光電変換されて信号処理回路14に入力される。第1の光分岐手段5の他方の出力である第2の偏光23は、λ/4板6を介して第2の偏光分岐手段8によって第5、第6の偏光26、27に分岐され、それぞれ第3の光電変換手段11、第4光電変換手段12によって光電変換されて信号処理回路14に入力される。第1の信号発生手段13は、信号処理回路14に解析しようとする周波数の第1の参照信号を供給する。   FIG. 1 shows a block diagram of an ellipsometer 20 that is an embodiment of the present invention. The incident light is polarized light that is modulated by a carrier wave and the other by a sideband in the planes of polarization orthogonal to each other. The incident light is incident on the first optical branching means 5 and is substantially equal to the first and second polarized light. Branches into 22 and 23. The first polarized light 22 is obtained by the first polarization branching means 7 so as to have two polarizations orthogonal to each other with an orientation of ± π / 4 radians with respect to the sideband of the incident light or the polarization plane of the carrier wave, that is, Separated into third and fourth polarizations 24 and 25. The third polarization 24 is photoelectrically converted by the first photoelectric conversion means 9, and the fourth polarization 25 is photoelectrically converted by the second photoelectric conversion means 10 and input to the signal processing circuit 14. The second polarized light 23 which is the other output of the first light branching means 5 is branched into the fifth and sixth polarized lights 26 and 27 by the second polarization branching means 8 through the λ / 4 plate 6, The signals are photoelectrically converted by the third photoelectric conversion means 11 and the fourth photoelectric conversion means 12 and input to the signal processing circuit 14. The first signal generation means 13 supplies the signal processing circuit 14 with a first reference signal having a frequency to be analyzed.

信号処理回路14は、第1の光電変換手段9と第2の光電変換手段10出力間の差から第1の差信号の指定された上記周波数における強度と、第3の光電変換手段11と第4光電変換手段12の出力間の差である第2の差信号の指定された上記周波数における強度を判定し、更に第1の差信号の上記強度と第2の差信号の上記強度との第1の比から、解析対象の上記入射光の搬送波と側帯波の位相差を算出する。
さらに、第1の差信号と、第1の参照信号の周波数成分のπ/2または−π/2ラジアンに相当する移相を施した第2の差信号、との和信号を生成し、更に前記和信号と前記第1の参照信号との積を前記参照信号の整数周期にわたり積算して得られる第1の積算値と、上記和信号と、第1の参照信号をπ/2または−π/2ラジアン移相した信号との積を上記周期にわたり積算して得られる第2の積算値とを求め、
第1の積算値の平方値と第2の積算値の平方値との和から解析対象の上記搬送波の強度と上記側帯波の強度の積を求め、
上記信号処理回路14は、第1の比と、第1の積算値と第2の積算値との比とから、第1の参照信号と解析対象の上記入射光の側帯波に含まれ第1の参照信号と同じ周波数の信号との位相差を算出する。信号処理回路14の処理は、アナログ演算回路で行うことも、光電変換手段入力を数値化してデジタル信号処理で行う事も可能である。
The signal processing circuit 14 determines the intensity of the first difference signal at the specified frequency from the difference between the outputs of the first photoelectric conversion unit 9 and the second photoelectric conversion unit 10, the third photoelectric conversion unit 11, and the first photoelectric conversion unit 11. 4. Determine the intensity of the second difference signal, which is the difference between the outputs of the four photoelectric conversion means 12, at the designated frequency, and further determine the intensity of the intensity of the first difference signal and the intensity of the second difference signal. From the ratio of 1, the phase difference between the carrier wave of the incident light to be analyzed and the sideband is calculated.
Furthermore, a sum signal of the first difference signal and a second difference signal subjected to phase shift corresponding to π / 2 or −π / 2 radians of the frequency component of the first reference signal is generated, and A first integrated value obtained by integrating the product of the sum signal and the first reference signal over an integer period of the reference signal, the sum signal, and the first reference signal by π / 2 or −π A second integrated value obtained by integrating the product of the signal with a / 2 radian phase shift over the above period,
From the sum of the square value of the first integrated value and the square value of the second integrated value, the product of the intensity of the carrier wave to be analyzed and the intensity of the sideband is obtained.
The signal processing circuit 14 is included in the first reference signal and the sideband of the incident light to be analyzed, based on the first ratio and the ratio between the first integrated value and the second integrated value. The phase difference between the reference signal and the signal having the same frequency is calculated. The processing of the signal processing circuit 14 can be performed by an analog arithmetic circuit, or can be performed by digital signal processing by digitizing the photoelectric conversion means input.

図4は本発明の信号処理過程を示す。図4(A)は光源1から発する偏光を示すもので、図4(B)は例えば電気または磁気光学結晶4に印加された電界あるいは磁界によって変調された結果生じた側帯波と搬送波の偏波面を示す。これを行列で記載すると、図4(B)は次の数1の様になる。   FIG. 4 shows the signal processing process of the present invention. 4A shows the polarized light emitted from the light source 1, and FIG. 4B shows, for example, the polarization planes of the sideband and the carrier generated as a result of modulation by an electric field or magnetic field applied to the electro-optic or magneto-optic crystal 4. Indicates. When this is described in a matrix, FIG.

Figure 0005645011
Figure 0005645011

この光が、伝送路の歪等によって、相対的に位相差が加えられて偏光解析装置20に入力する。このときの偏波面の様子を図4(C)で示す。ここでは搬送波にφの位相差として記述すると、次の数2となる。   This light is input to the ellipsometer 20 with a relative phase difference due to distortion of the transmission path or the like. The state of the polarization plane at this time is shown in FIG. Here, when described as a phase difference of φ in the carrier wave, the following equation 2 is obtained.

Figure 0005645011
ここで、iは虚数単位である。
Figure 0005645011
Here, i is an imaginary unit.

図4(D)は第1の偏光分岐手段7出力の第3の偏光である。
u−u’方向の偏光成分の電界は以下の式に示す。
FIG. 4D shows the third polarized light output from the first polarization splitting means 7.
The electric field of the polarization component in the uu ′ direction is shown in the following equation.

Figure 0005645011
Figure 0005645011

図4(E)は第2の偏光分岐手段8出力の第4の偏光である。
v−v'方向の偏光成分の電界は、次の数4になる。
FIG. 4E shows the fourth polarized light output from the second polarization splitting means 8.
The electric field of the polarization component in the vv ′ direction is expressed by the following equation (4).

Figure 0005645011
Figure 0005645011

図5(F)は、λ/4板6を通過した後の第2偏光の偏波面を示す電界ベクトル図であり、以下のように表わせる。   FIG. 5F is an electric field vector diagram showing the polarization plane of the second polarized light after passing through the λ / 4 plate 6 and can be expressed as follows.

Figure 0005645011
Figure 0005645011

図5(G)は第2の偏光分岐手段8出力の第5の偏光である。
u−u'方向の偏光成分の電界は、次のようになる。
FIG. 5G shows the fifth polarized light output from the second polarization splitting means 8.
The electric field of the polarization component in the uu ′ direction is as follows.

Figure 0005645011
Figure 0005645011

図5(H)は第2の偏光分岐手段8出力の第の偏光である。
v−v'方向の偏光成分の電界は、次のようになる。
FIG. 5H shows the sixth polarized light output from the second polarization splitting means 8.
The electric field of the polarization component in the vv ′ direction is as follows.

Figure 0005645011
Figure 0005645011

偏光3、4、5、6の電界を表わす数3、数4、数6、数7から、指数関数にオイラーの公式を適用した後、共役複素数を乗じて光の強度、すなわち上記第1から第4の光電変換手段9から12の出力を計算すると以下のようになる。   After applying Euler's formula to the exponential function from Equations 3, 4, 6, and 6 representing the electric fields of polarized light 3, 4, 5, and 6, the complex intensity is multiplied by the conjugate complex number, that is, from the first. Calculation of the outputs of the fourth photoelectric conversion means 9 to 12 is as follows.

第1の光電変換手段の出力;

Figure 0005645011
The output of the first photoelectric conversion means;
Figure 0005645011

第2の光電変換手段の出力;

Figure 0005645011
The output of the second photoelectric conversion means;
Figure 0005645011

第3の光電変換手段の出力;

Figure 0005645011
The output of the third photoelectric conversion means;
Figure 0005645011

第4の光電変換手段の出力;

Figure 0005645011
The output of the fourth photoelectric conversion means;
Figure 0005645011

第1の差信号は、第1の光電変換手段の出力から第2の光電変換手段の出力を差し引くことで得られる。従って、数8から数9を引くと、次を得る。   The first difference signal is obtained by subtracting the output of the second photoelectric conversion means from the output of the first photoelectric conversion means. Therefore, subtracting Equation 9 from Equation 8 yields:

Figure 0005645011
Figure 0005645011

第2の差信号は、第3の光電変換手段の出力から第4の光電変換手段の出力を差し引くことで得られる。従って、数10から数11をひくと、次を得る。   The second difference signal is obtained by subtracting the output of the fourth photoelectric conversion means from the output of the third photoelectric conversion means. Accordingly, subtracting Equation 10 to Equation 11 yields the following:

Figure 0005645011
Figure 0005645011

搬送波と側帯波の位相差φは、数12と数13の比から以下のように求める事が出来る。   The phase difference φ between the carrier wave and the sideband can be obtained as follows from the ratio of Equations 12 and 13.

Figure 0005645011
Figure 0005645011

さらに、数12の結果をπ/2または−π/2ラジアン移相して数13と加算することにより、次式を得る。   Further, the following expression is obtained by adding the result of Expression 12 to Expression 13 by performing π / 2 or −π / 2 radian phase shift.

Figure 0005645011
Figure 0005645011

この結果に参照信号として、sin(θ±δ)あるいはcos(θ±δ)を乗じて、参照信号周期(2π)の整数(n)倍の時間にわたり積分すると、次のようになる。但し積分時間にわたりφが一定と見なせるようにするため、積分時間はφの変化時間よりも十分短いものとする。また、δについては、解析対象の上記入射光の側帯波に含まれ第1の参照信号33と同じ周波数の信号の位相、つまり測定時の信号(sin(θ))の位相と、上記第1の参照信号33の位相、つまり計算処理時の信号(sin(θ+δ))の位相の違いを反映するものである。   When this result is multiplied by sin (θ ± δ) or cos (θ ± δ) as a reference signal and integrated over an integer (n) times the reference signal period (2π), the result is as follows. However, the integration time is sufficiently shorter than the change time of φ so that φ can be regarded as constant over the integration time. For δ, the phase of the signal having the same frequency as that of the first reference signal 33 included in the sideband of the incident light to be analyzed, that is, the phase of the signal (sin (θ)) at the time of measurement, and the first This reflects the difference in the phase of the reference signal 33, that is, the phase of the signal (sin (θ + δ)) during the calculation process.

Figure 0005645011
Figure 0005645011

Figure 0005645011
Figure 0005645011

Figure 0005645011
となるので、積abを求めることができる。
Figure 0005645011
Therefore, the product ab can be obtained.

結局、数7から得られる位相差φと上記の積abを数13または数14に適用して、sin(θ)、つまり、測定対象となる電磁界の強度に比例する位相θを得ることができる。また、基準となる電磁界強度との比較から、測定した電磁界強度に換算する。このように、偏波保持光ファイバーの曲げの等で引き起こされる位相の揺らぎを、光学系の調整を行うことなく、電気信号を演算することで補正することができ、上記の揺らぎに影響されない安定な測定を実現することができる。   Eventually, by applying the phase difference φ obtained from Equation 7 and the product ab to Equation 13 or Equation 14, sin (θ), that is, the phase θ proportional to the intensity of the electromagnetic field to be measured can be obtained. it can. Moreover, it converts into the measured electromagnetic field intensity | strength from the comparison with the electromagnetic field intensity used as a reference | standard. In this way, phase fluctuations caused by bending of the polarization-maintaining optical fiber can be corrected by calculating the electric signal without adjusting the optical system, and stable without being affected by the fluctuations described above. Measurement can be realized.

ここで、4分の1波長板6としては、16分の1波長程度の製造誤差があっても用いることができる。また、信号処理回路14としては、アナログ演算器でも構成することができるが、入力信号をデジタル信号に変換してデジタル処理するデジタル演算器であることが、安定動作の点で望ましい。   Here, the quarter-wave plate 6 can be used even if there is a manufacturing error of about 1/16 wavelength. In addition, the signal processing circuit 14 can be configured by an analog arithmetic unit, but a digital arithmetic unit that converts an input signal into a digital signal and performs digital processing is desirable in terms of stable operation.

図2は、本発明の偏光の偏光解析装置20を用い、電界あるいは磁界測定用プローブ装置の実施例を示すブロック図である。電界あるいは磁界は、被測定物19の発する電界あるいは磁界中に設置された電気または磁気光学結晶4における電気または磁気カー効果等によって屈折率が変化する現象を応用して、屈折率の変化量から電界あるいは磁界の大きさを測定するものである。   FIG. 2 is a block diagram showing an embodiment of a probe device for measuring an electric field or a magnetic field using the polarization analyzer 20 for polarized light according to the present invention. The electric field or magnetic field is obtained by applying a phenomenon in which the refractive index changes due to the electric or magnetic Kerr effect in the electric or magneto-optical crystal 4 installed in the electric field or magnetic field generated by the object to be measured 19 and from the amount of change in the refractive index. It measures the magnitude of an electric or magnetic field.

偏光を出力する光源1の発する偏光は、第2の光分岐手段2を介して偏波面保存光ファイバーを含む光路3に入射し、電気または磁気光学結晶4の照射へ導かれる。また、前記電気または磁気光学結晶4を透過あるいは反射した出力は、偏光解析装置20へ導かれる。偏光解析装置20はその入射光から電気または磁気光学結晶4に印加された電界あるいは磁界の参照信号と同じ周波数成分の強度、参照信号と搬送波の相対位相を解析して測定する。第2の光分岐手段2と偏光解析装置20の間には、その入射光の偏光の方位を調整するための手段、例えばλ/2板が具備されていると好ましい。   Polarized light emitted from the light source 1 that outputs polarized light enters the optical path 3 including the polarization-preserving optical fiber via the second optical branching means 2 and is guided to the irradiation of the electric or magneto-optical crystal 4. The output transmitted or reflected by the electric or magneto-optical crystal 4 is guided to the ellipsometer 20. The ellipsometer 20 analyzes and measures the intensity of the same frequency component as the reference signal of the electric field or magnetic field applied to the electro- or magneto-optic crystal 4 from the incident light, and the relative phase of the reference signal and the carrier wave. It is preferable that a means for adjusting the direction of polarization of the incident light, for example, a λ / 2 plate is provided between the second light branching means 2 and the ellipsometer 20.

図3は光ヘテロダイン法を用いた電気または磁気プローブ装置20の実施例を示すブロック図である。光源1から出た偏光は変調装置16によって第2の信号発生手段15からの第2の参照信号で変調されて第2の光分岐手段2と光路3を介して電気または磁気光学結晶4に入射する。入射した偏光は被測定物19の発する電界あるいは磁界の影響によって入射光を変調されて、再度光路3を遡行して第2の光分岐手段2によって偏光解析装置20に入射して偏光の解析を受ける。偏光解析装置20は偏光の解析結果から電気または磁気光学結晶4に影響を及ぼした電界あるいは磁界の信号成分で第1の信号発生手段13からの第1の参照信号と同じ周波数成分の強度と、前記第2の参照信号と電界あるいは磁界の前記周波数成分との位相差を測定する。第2の参照信号を発する第2の信号発生器15はヘテロダイン検出法のために本実施例において加えられたものである。   FIG. 3 is a block diagram showing an embodiment of the electric or magnetic probe apparatus 20 using the optical heterodyne method. The polarized light emitted from the light source 1 is modulated by the modulation device 16 with the second reference signal from the second signal generating means 15 and is incident on the electric or magneto-optical crystal 4 via the second light branching means 2 and the optical path 3. To do. The incident polarized light is modulated by the influence of the electric field or magnetic field generated by the object to be measured 19, travels back along the optical path 3, and enters the polarization analyzer 20 by the second light branching unit 2 to analyze the polarization. receive. The ellipsometer 20 has the same frequency component intensity as the first reference signal from the first signal generating means 13 in the signal component of the electric field or magnetic field that has influenced the electric or magneto-optic crystal 4 from the analysis result of the polarization, A phase difference between the second reference signal and the frequency component of the electric field or magnetic field is measured. A second signal generator 15 for generating a second reference signal is added in this embodiment for the heterodyne detection method.

図6に、上記第1の信号発生手段13からの第1の参照信号33、第2の信号発生手段15からの第2の参照信号30、および被測定信号となる被測定物の発する電界あるいは磁界31の周波数の関係を示す。第2の参照信号30で変調された偏光は電気または磁気光学結晶4に入射し被測定物の発する電界あるいは磁界31によって変調される。その結果被測定物の発する電界あるいは磁界31は周波数変換されて中間周波数信号32を生ずる。偏光解析装置20は中間周波数信号32中の第1の参照信号33に等しい周波数成分を解析する。このことは被測定物の発する電界あるいは磁界31を解析することと等価である。第1の参照信号33の周波数と第2の参照信号30の周波数の和である測定する周波数が実際に解析される電界あるいは磁界の周波数位置である。   FIG. 6 shows the first reference signal 33 from the first signal generating means 13, the second reference signal 30 from the second signal generating means 15, and the electric field generated by the object to be measured that becomes the signal to be measured. The relationship of the frequency of the magnetic field 31 is shown. The polarized light modulated by the second reference signal 30 is incident on the electric or magneto-optical crystal 4 and is modulated by the electric field or magnetic field 31 generated by the object to be measured. As a result, the electric field or magnetic field 31 generated by the device under test is frequency converted to produce an intermediate frequency signal 32. The ellipsometer 20 analyzes a frequency component equal to the first reference signal 33 in the intermediate frequency signal 32. This is equivalent to analyzing the electric field or magnetic field 31 generated by the object to be measured. The frequency to be measured, which is the sum of the frequency of the first reference signal 33 and the frequency of the second reference signal 30, is the frequency position of the electric field or magnetic field that is actually analyzed.

本実施例においては第1参照信号の周波数は例えば1MHz程度の比較的低い周波数に設定し、第2の参照信号の周波数を被測定物の動作周波数に近傍に設定することが望ましい。このことによって本発明の偏光解析装置は概ね第1の参照信号の周波数に応答すればよいので、処理速度は遅い物で良く、更に第1の参照信号を周波数を固定することによって特定の周波数に応答することで十分であるので狭帯域で高性能のフィルタを導入することができる。   In the present embodiment, it is desirable to set the frequency of the first reference signal to a relatively low frequency, for example, about 1 MHz, and to set the frequency of the second reference signal close to the operating frequency of the device under test. As a result, the ellipsometer of the present invention only needs to respond to the frequency of the first reference signal, so that the processing speed may be slow, and the frequency of the first reference signal is fixed to a specific frequency by fixing the frequency. Since it is sufficient to respond, a narrow band and high performance filter can be introduced.

図7は図1に示した偏光解析装置20の光学部分の実施例である。入射光28は第1の光分岐手段5によって第1の偏光22、第2の偏光23に分岐され、第1の偏光22は第1の偏光分岐手段7に入射し、互いに偏光面が直交する第3の偏光24と第4の偏光25に分岐されて、第1の光電変換手段9と第2の光電変換手段10に入射する。第2の偏光は反射鏡21によって曲げられてλ/4板6によって偏光面成分間に位相差を加えられた後、第2の偏光分岐手段8に入射して互いに偏光面が直交する第5の偏光26と第6の偏光27に分岐され、第3の光電変換手段11と第4の光電検出手段12に入射する。上記第1から第4の4つの光電変換手段の出力は信号処理回路14に入力し解析が行われる。第1の光分岐手段5としては、単なる半透鏡でもよいが、本実施例ではキューブビームスプリッターを用いている。第1および第2の偏光分岐手段は、偏光分離、ローション・プリズム、ウオラトムソン・プリズム、サバール板、グランレーザ・プリズム、偏光分離板、偏光ビームスプリッタなどが使用可能である。本実施例ではサバール板を用いた図である。第1から第4の光電変換手段は、例えば光電管、光電子増倍管、フォトダイオード、フォトトランジスタ、アバランシェフォトダイオード等を用いることができる。 FIG. 7 shows an embodiment of the optical portion of the ellipsometer 20 shown in FIG. The incident light 28 is branched into the first polarized light 22 and the second polarized light 23 by the first light branching means 5, and the first polarized light 22 enters the first polarized light branching means 7, and the polarization planes are orthogonal to each other. The light is branched into the third polarized light 24 and the fourth polarized light 25 and is incident on the first photoelectric conversion means 9 and the second photoelectric conversion means 10. The second polarized light is bent by the reflecting mirror 21 and a phase difference is added between the polarization plane components by the λ / 4 plate 6, and then enters the second polarization branching unit 8 and the polarization planes are orthogonal to each other. The polarized light 26 and the sixth polarized light 27 are branched into the third photoelectric conversion means 11 and the fourth photoelectric detection means 12. The outputs of the first to fourth photoelectric conversion means are input to the signal processing circuit 14 for analysis. The first light branching means 5 may be a simple semi-transparent mirror, but in this embodiment, a cube beam splitter is used. As the first and second polarization branching means, a polarization separation plate , a lotion prism, a Woratomson prism, a Savart plate, a Glan laser prism, a polarization separation plate, a polarization beam splitter, or the like can be used. In this embodiment, a Savart plate is used. As the first to fourth photoelectric conversion means, for example, a photoelectric tube, a photomultiplier tube, a photodiode, a phototransistor, an avalanche photodiode, or the like can be used.

本発明の偏光解析装置は光の伝送路における媒質の複屈折率の変化を解析して相殺する機能を有するので、媒質の複屈折率の変動を測定することもできる。従ってレーザレーダにおける解析法などにも応用できる。   Since the ellipsometer of the present invention has a function of analyzing and canceling the change in the birefringence of the medium in the light transmission path, it is also possible to measure the change in the birefringence of the medium. Therefore, it can be applied to an analysis method in a laser radar.

1 光源
2 第2の光分岐手段
3 光路または双方向性光路
4 電気または磁気光学結晶
5 第1の光分岐手段
6 λ/4板
7 第1の偏光分岐手段
8 第2の偏分岐手段
9 第1の光電変換手段
10 第2の光電変換手段
11 第3の光電変換手段
12 第4の光電変換手段
13 第1の信号発生手段
14 信号処理回路
15 第2の信号発生手段
16 変調装置
19 被測定物
20 偏光解析装置
21 反射鏡
22 第1の偏光
23 第2の偏光
24 第3の偏光
25 第4の偏光
26 第5の偏光
27 第6の偏光
28 入射光
30 第2の参照信号
31 電界あるいは磁界
32 中間周波数信号
33 第1の参照信号
1 light source 2 the second light branching means 3 optical path or bidirectional optical path 4 electrical or magneto-optical crystal 5 first optical branching unit 6 lambda / 4 plate 7 first polarization splitting means 8 second polarization splitting means 9 1st photoelectric conversion means 10 2nd photoelectric conversion means 11 3rd photoelectric conversion means 12 4th photoelectric conversion means 13 1st signal generation means 14 Signal processing circuit 15 2nd signal generation means 16 Modulator 19 Measurement object 20 Ellipsometer 21 Reflector 22 First polarization 23 Second polarization 24 Third polarization 25 Fourth polarization 26 Fifth polarization 27 Sixth polarization 28 Incident light 30 Second reference signal 31 Electric field Or magnetic field 32 intermediate frequency signal 33 first reference signal

Claims (5)

搬送波とそれに直交する偏波面をもつ側帯波とを含む楕円偏光を解析対象の入射光とし、
上記入射光を第1、第2の偏光に分岐するための第1の光分岐手段と、
第1の偏光を入射光とし、その搬送波および側帯波の各々の偏波面に対して±π/4ラジアンのいずれかの方位で交叉し、2つの互いに直交する偏光成分に分離するための第1の偏光分岐手段と、
上記の互いに直交する2つの偏光成分の其々の強度を測定するための第1、第2の光電変換手段と、
第2の偏光に適用してその偏光成分間に位相差を与える1/4波長板と、
前記1/4波長板を出た第2の偏光を入射光とし、その搬送波および側帯波偏波面に対して±π/4ラジアンのいずれかの方位で交叉し、互いに直交する2つの偏光成分に分離するための第2の偏光分岐手段と、
第2の偏光分岐手段で分離され互いに直交する2つの上記偏光成分の其々の強度を測定するための第3、第4の光電変換手段と、
第1、第2、第3、第4の光電変換手段の全ての出力を入力して、前記入射光の搬送波または側帯波のそれぞれの強度、または、その位相の一部またはすべてを算出する信号処理回路と、
解析対象の上記入射光を解析する周波数を指定するための第1の参照信号を発生する第1の信号発生器と、を具備し、
前記信号処理回路は、第1、第2の光電変換手段の各々の出力間の差である第1の差信号の指定された上記周波数における強度と、第3、第4の光電変換手段の出力間の差である第2の差信号の指定された上記周波数における強度との第1の比から、解析対象の上記入射光の搬送波と側帯波の位相差を算出するものであることを特徴とする変調光解析装置。
The elliptically polarized light including the carrier wave and the sideband having the plane of polarization orthogonal to the carrier wave is set as the incident light to be analyzed.
First light branching means for branching the incident light into first and second polarized light;
The first polarized light is incident light, crosses in any direction of ± π / 4 radians with respect to the polarization planes of the carrier wave and the sideband wave, and is separated into two mutually orthogonal polarization components. Polarization splitting means of
First and second photoelectric conversion means for measuring the respective intensities of the two polarization components orthogonal to each other;
A quarter-wave plate that applies to the second polarization and provides a phase difference between the polarization components;
The second polarized light exiting the ¼ wavelength plate is made incident light, crossed in any direction of ± π / 4 radians with respect to the carrier wave and the sideband polarization plane, and converted into two polarization components orthogonal to each other. A second polarization splitting means for separating;
Third and fourth photoelectric conversion means for measuring the intensity of each of the two polarization components separated by the second polarization branching means and orthogonal to each other;
A signal for inputting all the outputs of the first, second, third and fourth photoelectric conversion means and calculating the intensity of each carrier wave or sideband of the incident light, or a part or all of the phase thereof. A processing circuit;
A first signal generator for generating a first reference signal for designating a frequency for analyzing the incident light to be analyzed;
The signal processing circuit includes the intensity at the specified frequency of the first difference signal, which is the difference between the outputs of the first and second photoelectric conversion means, and the outputs of the third and fourth photoelectric conversion means. The phase difference between the carrier wave of the incident light to be analyzed and the sideband is calculated from the first ratio of the second difference signal, which is the difference between them, to the intensity at the designated frequency. Modulated light analyzer.
第1の差信号と、第1の参照信号の周波数成分のπ/2または−π/2ラジアンに相当する移相を施した第2の差信号、との和信号を生成し、更に前記和信号と前記第1の参照信号との積を前記参照信号の整数周期にわたり積算して得られる第1の積算値と、上記和信号と、第1の参照信号をπ/2または−π/2ラジアン移相した信号との積を上記周期にわたり積算して得られる第2の積算値とを求め、
第1の積算値の平方値と第2の積算値の平方値との和から解析対象の上記搬送波の強度と上記側帯波の強度の積を求め、
上記信号処理回路は、第1の比と、第1の積算値と第2の積算値との比とから、第1の参照信号と解析対象の上記入射光の側帯波に含まれ第1の参照信号と同じ周波数の信号との位相差を算出するものであることを特徴とする請求項1に記載の変調光解析装置。
Generating a sum signal of the first difference signal and a second difference signal having a phase shift corresponding to π / 2 or −π / 2 radians of the frequency component of the first reference signal; A first integrated value obtained by integrating a product of the signal and the first reference signal over an integer period of the reference signal, the sum signal, and the first reference signal by π / 2 or −π / 2. A second integrated value obtained by integrating the product with the signal shifted in radians over the above period, and
From the sum of the square value of the first integrated value and the square value of the second integrated value, the product of the intensity of the carrier wave to be analyzed and the intensity of the sideband is obtained.
The signal processing circuit is included in the first reference signal and the sideband of the incident light to be analyzed based on the first ratio and the ratio between the first integrated value and the second integrated value. The modulated light analyzing apparatus according to claim 1, wherein a phase difference between the reference signal and a signal having the same frequency is calculated.
直線偏光を出力する光源と、
電界あるいは磁界によって屈折率の変化する電気あるいは磁気光学結晶と、
請求項1記載の変調光解析装置と、
前記直線偏光を前記電気あるいは磁気光学結晶へ導くとともに前記電気あるいは磁気光学結晶を透過あるいは反射した出力を上記変調光解析装置へ導くための偏波面保存光ファイバーを含む光路と、
を具備し、
上記電気あるいは磁気光学結晶に印加された電界あるいは磁界の周波数、強度、参照信号と搬送波の相対位相の少なくとも1つを測定する機能を有することを特徴とする電界あるいは磁界検出プローブ装置。
A light source that outputs linearly polarized light;
An electric or magneto-optic crystal whose refractive index changes with an electric or magnetic field;
The modulated light analyzer according to claim 1;
An optical path including a polarization-preserving optical fiber for guiding the linearly polarized light to the electric or magneto-optical crystal and guiding an output transmitted or reflected by the electric or magneto-optical crystal to the modulated light analyzer;
Comprising
An electric field or magnetic field detection probe apparatus having a function of measuring at least one of a frequency and intensity of an electric field or a magnetic field applied to the electric or magneto-optical crystal, and a relative phase of a reference signal and a carrier wave.
請求項3に記載の構成に加えて、
上記光源からの直線偏光を変調する手段と、
第2の参照信号を発生する第1の信号発生器と、
を具備し、
上記直線偏光は第2の信号参照によって変調されて上記電気あるいは磁気光学結晶への入射光であり、
上記電気あるいは磁気光学結晶は、上記入射光に含まれる前記第2の参照信号による変調成分と、被測定電界または磁界との周波数混合を行ってその出力光に第1の周波数に相当する中間周波数成分を発生し、変調光解析装置は第1の周波数成分に対して解析処理を行う光ヘテロダイン法を用いることを特徴とする請求項3に記載の電界あるいは磁界検出プローブ装置。
In addition to the configuration of claim 3,
Means for modulating linearly polarized light from the light source;
A first signal generator for generating a second reference signal;
Comprising
The linearly polarized light is incident on the electro- or magneto-optic crystal modulated by a second signal reference;
The electro-optic or magneto-optic crystal performs frequency mixing of the modulation component of the second reference signal included in the incident light and the electric field or magnetic field to be measured, and outputs an intermediate frequency corresponding to the first frequency. 4. The electric field or magnetic field detection probe apparatus according to claim 3, wherein the modulated light analyzing apparatus uses an optical heterodyne method for generating a component and performing an analysis process on the first frequency component.
上記光路は、
第2の光分岐手段と、
双方向性光路を備え、
第2の光分岐手段は、上記光源から入射する上記直線偏光を上記双方向性光路を介して上記電気あるいは磁気光学結晶に送り、前記電気あるいは磁気光学結晶からのからの戻り光を上記双方向性光路を介して上記偏光解析装置に出射するものであって、
上記双方向性光路は偏波面保持光ファイバーを含むことを特徴とする請求項3あるいは請求項4に記載の電界あるいは磁界検出プローブ装置。
The optical path is
A second light branching means;
With a bidirectional light path,
The second light branching means sends the linearly polarized light incident from the light source to the electric or magneto-optical crystal through the bidirectional optical path, and returns light from the electric or magneto-optical crystal to the bidirectional light. Exiting to the ellipsometer through the optical path,
5. The electric field or magnetic field detection probe device according to claim 3, wherein the bidirectional optical path includes a polarization maintaining optical fiber.
JP2010253919A 2010-11-12 2010-11-12 Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer Expired - Fee Related JP5645011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253919A JP5645011B2 (en) 2010-11-12 2010-11-12 Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253919A JP5645011B2 (en) 2010-11-12 2010-11-12 Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer

Publications (2)

Publication Number Publication Date
JP2012103200A JP2012103200A (en) 2012-05-31
JP5645011B2 true JP5645011B2 (en) 2014-12-24

Family

ID=46393764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253919A Expired - Fee Related JP5645011B2 (en) 2010-11-12 2010-11-12 Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer

Country Status (1)

Country Link
JP (1) JP5645011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383086A (en) * 2017-03-06 2019-10-25 国立大学法人大阪大学 Electromagnetic wave measuring device and electromagnetic wave measurement method
US20220146600A1 (en) * 2019-02-05 2022-05-12 Citizen Finedevice Co., Ltd. Magnetic field sensor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297702B (en) * 2014-10-27 2017-04-12 北京航空航天大学 Measurement method and device of Bell-Bloom self-modulation three-axis magnetic field
IT201700040531A1 (en) * 2017-04-12 2018-10-12 Ricerca Sul Sist Energetico Rse S P A Method for vectorial measurement of electric fields and related equipment.
CN115327244A (en) * 2022-08-24 2022-11-11 西北核技术研究所 Bias-independent double-color optical waveguide electromagnetic pulse measuring device and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383086A (en) * 2017-03-06 2019-10-25 国立大学法人大阪大学 Electromagnetic wave measuring device and electromagnetic wave measurement method
CN110383086B (en) * 2017-03-06 2021-08-24 国立大学法人大阪大学 Electromagnetic wave measuring apparatus and electromagnetic wave measuring method
US20220146600A1 (en) * 2019-02-05 2022-05-12 Citizen Finedevice Co., Ltd. Magnetic field sensor device

Also Published As

Publication number Publication date
JP2012103200A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US7786719B2 (en) Optical sensor, optical current sensor and optical voltage sensor
EP2010925B1 (en) Fiber-optic current sensor with polarimetric detection scheme
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
JP5645011B2 (en) Modulated light analyzer and electric field or magnetic field measuring probe device using the modulated light analyzer
US20100253320A1 (en) Optical fiber electric current sensor and electric current measurement method
KR101094363B1 (en) Optical fiber current sensor and sensing method thereof
JPH0123067B2 (en)
US4480916A (en) Phase-modulated polarizing interferometer
CN103162836B (en) Device and method for detecting optical interference of light polarization tiny corner
US20100194379A1 (en) Optical fiber electric current measurement apparatus and electric current measurement method
CN111492252B (en) Device for measuring an electric and/or magnetic field in an electrical energy transmission conductor
US5227715A (en) Apparatus for measuring electromagnetic field intensity using dual polarized light beams
JP2007057324A (en) Fiber optic measuring system
US20040070766A1 (en) Method and apparatus for a Jones vector based heterodyne optical polarimeter
JP2006266696A (en) Wavelength dispersion measuring apparatus
JPH02118416A (en) Optical sensor
JPS63241440A (en) Method and device for measuring frequency response of optical detector
US20230288247A1 (en) Sound measurement method
JP3549813B2 (en) High frequency electromagnetic wave detection system and high frequency electromagnetic wave detection method
JPH07181211A (en) Surface potential measuring apparatus
WO2022130587A1 (en) Light measurement device and light measurement method
JP2005283466A (en) Vibration measuring apparatus
JP2011017676A (en) Optical fiber current sensor
CN115184661A (en) All-fiber current transformer based on fiber ring cavity and current measuring method
JP2023027875A (en) Vibration meter and vibration measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

R150 Certificate of patent or registration of utility model

Ref document number: 5645011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees