JP5641007B2 - Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances - Google Patents

Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances Download PDF

Info

Publication number
JP5641007B2
JP5641007B2 JP2012082755A JP2012082755A JP5641007B2 JP 5641007 B2 JP5641007 B2 JP 5641007B2 JP 2012082755 A JP2012082755 A JP 2012082755A JP 2012082755 A JP2012082755 A JP 2012082755A JP 5641007 B2 JP5641007 B2 JP 5641007B2
Authority
JP
Japan
Prior art keywords
turbidity
white water
concentration
ash
insoluble suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012082755A
Other languages
Japanese (ja)
Other versions
JP2013213290A (en
Inventor
仁樹 桂
仁樹 桂
要 原田
要 原田
優一 山根
優一 山根
隆 三枝
隆 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012082755A priority Critical patent/JP5641007B2/en
Priority to KR1020147025517A priority patent/KR101474264B1/en
Priority to PCT/JP2013/059757 priority patent/WO2013147269A1/en
Priority to CN201380017602.1A priority patent/CN104220672B/en
Publication of JP2013213290A publication Critical patent/JP2013213290A/en
Application granted granted Critical
Publication of JP5641007B2 publication Critical patent/JP5641007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/66Pulp catching, de-watering, or recovering; Re-use of pulp-water
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • D21H23/06Controlling the addition

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)

Description

本発明は、パルプスラリーから紙を製造する製紙工程における内添薬品の添加量制御方法及び懸濁性物質の濃度測定方法に関する。   The present invention relates to a method for controlling the amount of internally added chemicals and a method for measuring the concentration of suspending substances in a papermaking process for producing paper from pulp slurry.

一般に、抄紙に際して、パルプは漂白、叩解、混合、稀釈等の工程を経て、最終的にパルプスラリーの状態に調製された後、抄紙機のワイヤパートに送り込まれ脱水される。パルプスラリーがワイヤ上で脱水される際、ワイヤ下へ濾過された水を通常白水と呼んでいる。この白水は抄紙系、原料系を循環し、回収原料として或いは稀釈水として再利用されるが、白水中にはワイヤで捕捉されなかった微細繊維や填料、パルプからの溶出物、漂白工程の際使用された薬品の残存物等が含まれている。   In general, when making paper, the pulp is subjected to processes such as bleaching, beating, mixing, and dilution, and finally prepared into a pulp slurry state, and then sent to a wire part of a paper machine to be dehydrated. When the pulp slurry is dewatered on the wire, the water filtered under the wire is usually called white water. This white water circulates in the papermaking system and raw material system, and is reused as a recovered raw material or as dilution water. However, fine fibers and fillers not captured by the wire in white water, eluate from pulp, and bleaching process Contains the residues of used chemicals.

抄紙機のワイヤパートにおける原料の歩留りが低下すると、ワイヤで捕捉されずに通過した白水を回収する白水ピット中の白水の濁度が上昇する。ここで、白水の濁度は、主として不溶性懸濁物(SS)、すなわち長さ20μm以上のパルプ繊維の分散量に依存する。白水の濁度が上昇すると、白水の流れる配管で流動性が低下しスライム粕が発生し易くなる。これが成長して白水サイロや配管内部に付着して剥離したときに製品欠陥や粕穴欠点を発生させる。   When the yield of the raw material in the wire part of the paper machine decreases, the turbidity of white water in the white water pit that collects white water that has passed without being captured by the wire increases. Here, the turbidity of white water mainly depends on the amount of dispersion of insoluble suspension (SS), that is, pulp fibers having a length of 20 μm or more. When the turbidity of white water increases, the fluidity decreases in the piping through which the white water flows, and slime soot is easily generated. When this grows up and adheres to the inside of the white water silo or pipe and peels off, a product defect or a hole defect occurs.

この点に関して、不溶性懸濁物(SS)の歩留りを一定にするために、抄紙機のワイヤパートにて生成する白水の濃度を検出し、検出された白水の濃度が所定の操業条件での操業を開始してから所定時間経過後に安定状態にあると判断した場合、安定状態にある白水の濃度を目標濃度として設定し、その後に検出される白水の濃度が目標濃度になるように歩留り向上剤の添加量を調整する技術が提案されている(特許文献1参照)。   In this regard, in order to make the yield of insoluble suspension (SS) constant, the concentration of white water generated in the wire part of the paper machine is detected, and the detected white water concentration is operated under a predetermined operating condition. If the white water concentration in the stable state is determined to be the target concentration when it is determined that the stable state has elapsed after the elapse of a predetermined time from the start of the process, the yield improver is set so that the concentration of white water detected thereafter becomes the target concentration There has been proposed a technique for adjusting the amount of addition (see Patent Document 1).

一方、パルプスラリー中に含まれる懸濁性物質としては、不溶性懸濁物(SS)の他に、填料として加えられている炭酸カルシウムやタルクなどの微細な灰分(長さ20μm未満の懸濁性物質)も存在する。この灰分の歩留りが上昇し過ぎる場合、製品中に灰分が多量に抄き込まれる事となり、次工程のドライヤーパートで紙面より灰分がドライヤーシリンダの表面に付着する割合が増加する。その結果、ドライヤーシリンダ表面汚れが短時間で発生し、製品の汚れや乾燥度合いの不均一を発生させる。また、ドライヤーシリンダ清掃による抄紙機停止によって稼働率が低下することもある。従って、灰分に関しても不溶性懸濁物(SS)同様に歩留りを一定にする必要があるが、従来、灰分に関してはそれを測定する方法がなく、制御は困難であった。   On the other hand, as the suspending substance contained in the pulp slurry, in addition to the insoluble suspension (SS), fine ash such as calcium carbonate and talc added as a filler (suspension of less than 20 μm in length) Substance). When the yield of ash increases too much, a large amount of ash is incorporated into the product, and the ratio of ash adhering to the surface of the dryer cylinder from the paper surface increases in the dryer part of the next process. As a result, the surface of the dryer cylinder is contaminated in a short time, resulting in product contamination and unevenness in the degree of drying. In addition, the operation rate may be lowered by stopping the paper machine by cleaning the dryer cylinder. Therefore, it is necessary to make the yield constant with respect to the ash as well as the insoluble suspension (SS), but conventionally, there is no method for measuring the ash and it has been difficult to control.

特開平10−325092号公報Japanese Patent Laid-Open No. 10-325092

前述の通り、原料中に含まれる懸濁性物質としては、不溶性懸濁物(SS)の他に、灰分も存在するため、白水の濃度、すなわち不溶性懸濁物(SS)の濃度に応じて歩留り向上剤等の内添薬品添加量を調整する方法では灰分の歩留りを制御することができないという問題がある。しかも製紙工場では複数銘柄の製品を短時間で切り替えて製造しており、最適な灰分の歩留りも製品銘柄毎に異なるため、その品質管理が容易でない上、製造する銘柄の変更に対して速やかに追従させることができないと言う問題がある。   As described above, the suspending substance contained in the raw material contains ash in addition to the insoluble suspension (SS), so depending on the concentration of white water, that is, the concentration of the insoluble suspension (SS). There is a problem that the yield of ash cannot be controlled by the method of adjusting the amount of internal chemicals added such as a yield improver. In addition, paper mills produce products by switching between multiple brands in a short time, and the optimum yield of ash varies from one brand to another, so quality control is not easy and promptly responds to changes in brands to be manufactured. There is a problem that it cannot be followed.

本発明は、以上の実情に鑑みてなされたものであり、不溶性懸濁物(SS)及び灰分それぞれの濃度を把握し、それぞれの歩留りを各製品銘柄に応じて適正に調整し、製品の品質安定化及び生産性向上を図ることのできる内添薬品の添加量制御方法及び懸濁性物質の濃度測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, grasps the concentration of each of the insoluble suspension (SS) and ash, adjusts each yield appropriately according to each product brand, product quality An object of the present invention is to provide a method for controlling the amount of internally added chemicals and a method for measuring the concentration of suspending substances that can stabilize and improve productivity.

本発明者らは、攪拌時における白水の濁度が不溶性懸濁物の濃度に相関し、静止時における白水の濁度が灰分の濃度に相関することを見出し、本発明を完成するに至った。具体的に、本発明は以下を提供する。   The present inventors have found that the turbidity of white water at the time of stirring correlates with the concentration of the insoluble suspension, and the turbidity of white water at the time of stationary correlates with the concentration of ash, which led to the completion of the present invention. . Specifically, the present invention provides the following.

(1) パルプスラリーから紙を製造する製紙工程における内添薬品の添加量制御方法であって、所定の操業条件において前記製紙工程にて生成する白水を採取するステップと、前記採取された白水の濁度を不溶性懸濁物相当濁度として攪拌時に測定するステップと、前記採取された白水の濁度を灰分相当濁度として静止時に測定するステップと、測定された前記不溶性懸濁物相当濁度及び灰分相当濁度に基づき、前記内添薬品の添加量を調節するステップと、を含む方法。   (1) A method for controlling the amount of internal additive added in a papermaking process for producing paper from pulp slurry, the step of collecting white water generated in the papermaking process under a predetermined operating condition, and the collected white water Measuring the turbidity as an insoluble suspension equivalent turbidity during stirring, measuring the turbidity of the collected white water as an ash equivalent turbidity at rest, and measuring the insoluble suspension equivalent turbidity And adjusting the addition amount of the internal additive based on the ash equivalent turbidity.

(2) 前記採取された白水において測定された前記不溶性懸濁物相当濁度に基づき前記採取された白水の不溶性懸濁物濃度を算出するステップと、前記採取された白水において測定された前記灰分相当濁度に基づき前記採取された白水の灰分濃度を算出するステップと、を更に含む(1)に記載の方法。   (2) calculating an insoluble suspension concentration of the collected white water based on the turbidity equivalent to the insoluble suspension measured in the collected white water; and the ash content measured in the collected white water Calculating the ash concentration of the collected white water based on the corresponding turbidity, and further comprising (1).

(3) 算出された前記不溶性懸濁物濃度及び前記灰分濃度に基づき、前記製紙工程における不溶性懸濁物歩留り及び灰分歩留りを調整できる内添薬品の薬注制御を行うステップを更に含む(2)に記載の方法。   (3) The method further includes a step of performing chemical injection control of an internally added chemical capable of adjusting the insoluble suspension yield and the ash content yield in the papermaking process based on the calculated insoluble suspension concentration and the ash content concentration (2). The method described in 1.

(4) 算出された前記不溶性懸濁物濃度が目標不溶性懸濁物濃度になり、かつ前記灰分濃度が目標灰分濃度になるように、前記内添薬品の添加量をフィードバック的に調節するステップを更に含む(3)に記載の方法。   (4) adjusting the amount of the internal additive added in a feedback manner so that the calculated insoluble suspension concentration becomes the target insoluble suspension concentration and the ash concentration becomes the target ash concentration. Furthermore, the method as described in (3).

(5) パルプスラリーから紙を製造する製紙工程における懸濁性物質の濃度測定方法であって、前記製紙工程にて生成する白水を採取するステップと、前記採取された白水の濁度を不溶性懸濁物相当濁度として攪拌時に測定するステップと、前記測定された不溶性懸濁物相当濁度に基づき前記採取された白水の不溶性懸濁物濃度を算出するステップと、前記採取された白水の濁度を灰分相当濁度として静止時に測定するステップと、前記測定された灰分相当濁度に基づき前記採取された白水の灰分濃度を算出するステップと、を含む懸濁性物質の濃度測定方法。   (5) A method for measuring the concentration of a suspending substance in a papermaking process for producing paper from a pulp slurry, the step of collecting white water produced in the papermaking process, and the turbidity of the collected white water in an insoluble suspension. A step of measuring as turbidity equivalent turbidity at the time of stirring; a step of calculating an insoluble suspension concentration of the collected white water based on the measured insoluble suspension equivalent turbidity; and a turbidity of the collected white water A method for measuring the concentration of a suspending substance, comprising: measuring the degree of ash equivalent turbidity at rest, and calculating the ash concentration of the collected white water based on the measured ash equivalent turbidity.

本発明によれば、不溶性懸濁物(SS)濃度及び灰分濃度をそれぞれ把握し、不溶性懸濁物(SS)及び灰分のそれぞれの歩留りを各製品銘柄に応じて適正に調整し、製品の品質安定化及び薬液コスト低減を行うことができる。しかも1つの濁度ユニットを有効に用いて、採取した白水の濁度を攪拌時及び静止時と異なる条件で測定することも可能であり、この場合には、不溶性懸濁物(SS)濃度及び灰分濃度をそれぞれ適切に把握することができ、その測定系の構成の簡素化を図ることができる等の実用上多大なる効果が奏せられる。   According to the present invention, the insoluble suspension (SS) concentration and the ash concentration are grasped respectively, the yields of the insoluble suspension (SS) and the ash are appropriately adjusted according to each product brand, and the product quality Stabilization and chemical cost reduction can be performed. Moreover, it is possible to measure the turbidity of the collected white water under conditions different from those at the time of stirring and at rest by effectively using one turbidity unit. In this case, the concentration of insoluble suspension (SS) and The ash content concentration can be properly grasped, and the practical effects such as simplification of the configuration of the measurement system can be achieved.

本発明の実施形態に係る内添薬品の添加量制御方法が適用される製紙工程の一例を示す模式図である。It is a schematic diagram which shows an example of the paper manufacturing process to which the addition amount control method of the internal medicine which concerns on embodiment of this invention is applied. 図1に示す製紙工程に組み込まれた薬注系の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of the chemical injection system integrated in the papermaking process shown in FIG. 本発明の実施形態に係る内添薬品の添加量制御方法の概略的な処理手順を示す図である。It is a figure which shows the rough process sequence of the addition amount control method of the internal medicine which concerns on embodiment of this invention. 本発明の実施形態に係る内添薬品の添加量制御方法による攪拌時濁度と分析機器を用いた不溶性懸濁物(SS)濃度の相関関係を示す図である。It is a figure which shows the correlation of the turbidity at the time of stirring by the addition amount control method of the internal medicine which concerns on embodiment of this invention, and the concentration of insoluble suspension (SS) using an analytical instrument. 本発明の実施形態に係る内添薬品の添加量制御方法による静止時濁度と分析機器を用いた灰分濃度の相関関係を示す図である。It is a figure which shows the correlation of the turbidity at rest by the addition amount control method of the internal medicine which concerns on embodiment of this invention, and the ash content density | concentration using an analytical instrument. 本発明の実施形態に係る内添薬品の添加量制御方法による不溶性懸濁物(SS)相当濁度と不溶性懸濁物(SS)歩留率の相関関係、及び灰分相当濁度と灰分歩留率の相関関係を示す図である。Correlation between Insoluble Suspension (SS) Equivalent Turbidity and Insoluble Suspension (SS) Yield Rate, and Ash Equivalent Turbidity and Ash Content Yield by the Addition Control Method of Internal Additives According to an Embodiment of the Present Invention It is a figure which shows the correlation of a rate. 本発明の実施形態に係る内添薬品の添加量制御方法による各製品銘柄における灰分相当濁度と灰分濃度の相関関係を示す図である。It is a figure which shows the correlation of ash content equivalent turbidity in each product brand by the amount control method of the internal additive which concerns on embodiment of this invention, and ash concentration.

以下、本発明の実施形態について説明するが、本発明はこれに特に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not specifically limited to this.

図1は、本発明に係る方法が実施される一例に係る製紙工程10の模式図である。製紙工程10は、原料系40、調成・抄紙系50、回収系60、薬注系20を備える。   FIG. 1 is a schematic diagram of a paper making process 10 according to an example in which the method according to the present invention is implemented. The papermaking process 10 includes a raw material system 40, a preparation / papermaking system 50, a recovery system 60, and a chemical injection system 20.

原料系40は、製紙原料を貯留するタンク41、42、43及び44と、ミキシングチェスト47と、マシンチェスト48と、種箱49と、を含んで構成される。一方、調成・抄紙系50は、原料系40から供給されたパルプスラリーを送出するファンポンプ51と、スクリーン52と、クリーナ53と、インレット54と、ワイヤパート55と、プレスパート56と、を含んで構成される。また、調成・抄紙系50には後述する白水を貯留する白水サイロ58が設けられている。また、回収系60は、シールピット61と、回収装置62と、回収水タンク63と、離解水ポンプ64と、濃調水ポンプ65と、を含んで構成される。   The raw material system 40 includes tanks 41, 42, 43 and 44 for storing papermaking raw materials, a mixing chest 47, a machine chest 48, and a seed box 49. On the other hand, the preparation / papermaking system 50 includes a fan pump 51 for sending pulp slurry supplied from the raw material system 40, a screen 52, a cleaner 53, an inlet 54, a wire part 55, and a press part 56. Consists of including. The preparation / papermaking system 50 is provided with a white water silo 58 for storing white water, which will be described later. The recovery system 60 includes a seal pit 61, a recovery device 62, a recovered water tank 63, a disaggregation water pump 64, and a concentrated water pump 65.

また、薬注系20は、白水の濁度を測定する濁度測定ユニット30と、パルプスラリーへの内添薬品の添加量を制御する演算処理部21と、内添薬品タンク22a、22bと、薬注ポンプ23a、23bと、を含んで構成される。   The chemical injection system 20 includes a turbidity measurement unit 30 that measures the turbidity of white water, an arithmetic processing unit 21 that controls the amount of internal chemicals added to the pulp slurry, internal chemical tanks 22a and 22b, Medicine injection pumps 23a and 23b.

原料系40は、化学パルプタンク41、再生パルプタンク42、ブロークタンク43及び回収原料タンク44を有し、化学パルプタンク41には針葉樹晒クラフトパルプ(LBKP)、広葉樹晒クラフトパルプ(NBKP)などの化学パルプ、再生パルプタンク42には脱墨系から移送された脱墨パルプ(DIP)や段ボール古紙などの古紙を古紙パルパ45によりスラリーとした再生パルプ、ブロークタンク43にはブロークパルパ46によりスラリーとしたパルプ、回収原料タンク44は白水を回収装置62で固液分離したパルプがそれぞれ紙原料として収容されている。   The raw material system 40 includes a chemical pulp tank 41, a recycled pulp tank 42, a broke tank 43, and a recovered raw material tank 44. The chemical pulp tank 41 includes softwood bleached kraft pulp (LBKP), hardwood bleached kraft pulp (NBKP), and the like. Chemical pulp and recycled pulp tank 42 are recycled pulp made from waste paper such as deinked pulp (DIP) and corrugated cardboard transported from the deinking system by used paper pulper 45, and broke tank 43 is slurried by broke pulper 46. The recovered pulp / recovered raw material tank 44 accommodates the pulp obtained by solid-liquid separation of white water by the recovery device 62 as a paper raw material.

化学パルプタンク41の上流には、紙原料を製造し供給する装置が設けられていてもよい。すなわち、化学パルプタンク41の上流には、木材チップを蒸解する蒸解釜、パルプを漂白する装置、異物を除去するスクリーンなどが設けられてよい。なお、ブロークタンク43には、プレスパート56以降で生じたブロークパルプが供給される。   An apparatus for producing and supplying a paper raw material may be provided upstream of the chemical pulp tank 41. That is, upstream of the chemical pulp tank 41, a digester for digesting wood chips, a device for bleaching pulp, a screen for removing foreign matter, and the like may be provided. The broke tank 43 is supplied with broke pulp generated after the press part 56.

古紙パルパ45及びブロークパルパ46には、古紙及びブロークを離解するための離解水が離解水ポンプ64から供給される。パルパ45,46で離解された後の再生パルプ及びブロークパルプ、化学パルプ及び回収原料は、濃調水ポンプ65からの、濃度を調整する濃調水と合流し、各タンクに貯留される。離解水及び濃調水としては、本実施形態では、濾過白水の回収水を用いているが、無処理の濾過白水、清水、原料系40のスラリーを脱水した濾液や絞水、他工程の余剰水を用いてもよい。   The waste paper pulper 45 and the broke pulper 46 are supplied from the disaggregation water pump 64 with disaggregation water for disaggregating the waste paper and broke. The recycled pulp, broke pulp, chemical pulp, and recovered raw material after being separated by the pulpers 45 and 46 are combined with concentrated water for adjusting the concentration from the concentrated water pump 65 and stored in each tank. As the disaggregation water and concentrated water, in this embodiment, recovered white water is used. However, untreated filtered white water, fresh water, filtrate or squeezed water obtained by dehydrating the slurry of the raw material system 40, surplus in other processes Water may be used.

化学パルプタンク41、再生パルプタンク42、ブロークタンク43及び回収原料タンク44に収容されたパルプは、製造しようとする銘柄に応じて適切な比率でミキシングチェスト47へと供給され、このミキシングチェスト47で混合される。混合されたパルプはマシンチェスト48で抄紙薬品が添加された後、種箱49へと移送される。   The pulp accommodated in the chemical pulp tank 41, the recycled pulp tank 42, the broke tank 43 and the recovered raw material tank 44 is supplied to the mixing chest 47 at an appropriate ratio according to the brand to be manufactured. Mixed. The mixed pulp is transferred to the seed box 49 after the papermaking chemicals are added by the machine chest 48.

種箱49に収容されたパルプは、後述の白水サイロ58からの濾過白水と共に、調成・抄紙系50のファンポンプ51によってスクリーン52、クリーナ53へと順次供給され、ここで異物を除去された後、インレット54へと供給される。インレット54は、ワイヤパート55のワイヤに、パルプを適正な濃度、速度、角度で供給する。供給されたパルプは、ワイヤパート55、プレスパート56で水を脱水され、図示しないリール・ワインダーを経て、紙へと製造される。   The pulp accommodated in the seed box 49 is sequentially supplied to the screen 52 and the cleaner 53 by the fan pump 51 of the preparation / papermaking system 50 together with the filtered white water from the white water silo 58 to be described later, where foreign matter is removed. Thereafter, it is supplied to the inlet 54. The inlet 54 supplies pulp to the wire of the wire part 55 at an appropriate concentration, speed, and angle. The supplied pulp is dewatered by the wire part 55 and the press part 56, and is produced into paper through a reel winder (not shown).

ワイヤパート55及びプレスパート56でパルプから脱水された水は、白水としてワイヤパート55及びプレスパート56の下部に配置された白水ピット57に受容される。白水ピット57に受容された白水は、導管59を介して白水サイロ58に導入され、そこで貯留される。白水サイロ58に貯留された白水は、その一部がファンポンプ51へと供給され、残りがシールピット61へと供給される。ファンポンプ51に供給された白水は、調成・抄紙系50においてパルプスラリーを希釈する。シールピット61に供給された白水は、回収装置62へと移送され、回収装置62で濾過されて固液分離され、濾液が回収水タンク63へと回収される。   The water dehydrated from the pulp by the wire part 55 and the press part 56 is received as white water in the white water pits 57 arranged below the wire part 55 and the press part 56. White water received in the white water pit 57 is introduced into the white water silo 58 through the conduit 59 and stored there. Part of the white water stored in the white water silo 58 is supplied to the fan pump 51 and the rest is supplied to the seal pit 61. The white water supplied to the fan pump 51 dilutes the pulp slurry in the preparation / papermaking system 50. The white water supplied to the seal pit 61 is transferred to the recovery device 62, filtered and solid-liquid separated by the recovery device 62, and the filtrate is recovered to the recovery water tank 63.

ここで、インレット54よりワイヤパート55に供給されるパルプスラリーは、懸濁性物質として、不溶性懸濁物(SS)、すなわち長さ20μm以上のパルプ繊維の他、填料として加えられている炭酸カルシウムやタルクなどの微細な灰分(長さ20μm未満の懸濁性物質)を含む。これらの不溶性懸濁物(SS)及び灰分は、それぞれワイヤパート55によって捕捉されて、それぞれ残りがワイヤ下へ濾過され白水中に分散する。従って、白水は、懸濁性物質として、不溶性懸濁物(SS)、すなわち長さ20μm以上のパルプ繊維の他、填料として加えられている炭酸カルシウムやタルクなどの微細な灰分(長さ20μm未満の懸濁性物質)を含む。   Here, the pulp slurry supplied to the wire part 55 from the inlet 54 is an insoluble suspension (SS) as a suspending substance, that is, calcium carbonate added as a filler in addition to pulp fibers having a length of 20 μm or more. It contains fine ash (suspension material with a length of less than 20 μm) such as talc and talc. These insoluble suspension (SS) and ash are each captured by the wire part 55, and the remainder is filtered under the wire and dispersed in white water. Accordingly, white water is an insoluble suspension (SS) as a suspending substance, that is, pulp fibers having a length of 20 μm or more, and fine ash such as calcium carbonate and talc added as a filler (less than 20 μm in length). Of suspended substances).

以下、薬注系20について説明する。   Hereinafter, the drug injection system 20 will be described.

ファンポンプ51の下流には、内添薬品Aを収容した内添薬品タンク22aが薬注ポンプ23aを介して、内添薬品Bを収容した内添薬品タンク22bが薬注ポンプ23bを介して、それぞれ接続されている。薬注ポンプ23a、23bは、後述する制御部をなす演算処理部21の出力側に電気的に接続されており、演算処理部21の入力側には濁度測定ユニット30が電気的に接続されている。   Downstream of the fan pump 51, the internal medicine tank 22a containing the internal medicine A is supplied via the chemical injection pump 23a, and the internal medicine tank 22b containing the internal medicine B is supplied via the chemical injection pump 23b. Each is connected. The medicinal pumps 23 a and 23 b are electrically connected to the output side of the arithmetic processing unit 21 that constitutes a control unit described later, and the turbidity measuring unit 30 is electrically connected to the input side of the arithmetic processing unit 21. ing.

濁度測定ユニット30は、白水ピット57に接続された導管59から白水を採取して白水の濁度を測定し、その測定結果を演算処理部21に伝達する。演算処理部21は、伝達された測定結果に応じて薬注ポンプ23a、23bを作動させることによって、パルプスラリーへの、内添薬品タンク22a内の内添薬品Aの注入量及び内添薬品タンク22b内の内添薬品Bの注入量を、それぞれ制御する。   The turbidity measurement unit 30 collects white water from the conduit 59 connected to the white water pit 57, measures the turbidity of white water, and transmits the measurement result to the arithmetic processing unit 21. The arithmetic processing unit 21 operates the chemical injection pumps 23a and 23b in accordance with the transmitted measurement results, thereby injecting the internal additive chemical A into the internal slurry tank 22a and the internal additive chemical tank into the pulp slurry. The injection amount of the internal additive B in 22b is controlled.

製紙工程では、歩留向上剤、凝結剤、紙力剤等が内添薬品として用いられている。これらの添加量を変化させるとワイヤパート55における懸濁性物質の歩留りが変化する。すなわち、例えば、歩留向上剤の添加量を増加させると、不溶性懸濁物(SS)の歩留りは向上し、灰分の歩留りはやや向上する。一方、凝結剤の添加量を増加させると、不溶性懸濁物(SS)の歩留り及び灰分の歩留りはともに向上する。(ただし、凝結剤の過度の使用は製品の地合いを悪化させる。)また、紙力剤の添加量を増加させると、不溶性懸濁物(SS)の歩留り及び灰分の歩留りはともにやや向上する。
内添薬品Aは、内添薬品Aの注入量を調整することによってワイヤパート55における不溶性懸濁物(SS)の歩留りを調整できる薬剤の中から適宜選択され、歩留向上剤であってよい。内添薬品Bは、内添薬品Bの注入量を調整することによってワイヤパート55における灰分の歩留りを調整できる薬剤の中から適宜選択され、凝結剤であってよい。
In the papermaking process, a yield improver, a coagulant, a paper strength agent and the like are used as internal additives. When these addition amounts are changed, the yield of the suspending substance in the wire part 55 changes. That is, for example, when the addition amount of the yield improver is increased, the yield of the insoluble suspension (SS) is improved, and the yield of ash is slightly improved. On the other hand, when the addition amount of the coagulant is increased, both the yield of insoluble suspension (SS) and the yield of ash are improved. (However, excessive use of the coagulant deteriorates the texture of the product.) In addition, when the amount of the paper strength agent is increased, both the yield of insoluble suspension (SS) and the yield of ash are slightly improved.
The internal additive A is appropriately selected from agents capable of adjusting the yield of the insoluble suspension (SS) in the wire part 55 by adjusting the injection amount of the internal additive A, and may be a yield improver. . The internal additive B is appropriately selected from agents that can adjust the yield of ash in the wire part 55 by adjusting the injection amount of the internal additive B, and may be a coagulant.

尚、ここでは内添薬品A、Bをパルプスラリーに添加する際、ファンポンプ51の下流の調成・抄紙系50に注入するものとして示してあるが、これらの内添薬品を原料系40(例えばマシンチェスト48)に注入することも、原料系40から調成・抄紙系50の何れかの箇所に注入することも、これらの複数個所に注入することも可能である。   Here, the internal chemicals A and B are shown as being injected into the preparation / papermaking system 50 downstream of the fan pump 51 when they are added to the pulp slurry. For example, it can be injected into the machine chest 48), can be injected from the raw material system 40 into any of the preparation / papermaking systems 50, or can be injected into a plurality of these.

図2は、図1に示す製紙工程10に組み込まれた薬注系20の概要を示す概要図である。   FIG. 2 is a schematic diagram showing an outline of the chemical injection system 20 incorporated in the papermaking process 10 shown in FIG.

濁度測定ユニット30は、白水を導管59から所定の手順で採取して測定容器31に貯留し、その濁度を測定するように構成されている。具体的には、濁度測定ユニット30は、導管59を流れる白水を汲み上げて測定容器31に供給するためのサンプリングポンプ33を備えた供給系37と、測定容器31の容量以上の白水を測定容器31から流出させ導管59に戻す循環系38とを備える。これらの供給系37及び循環系38には、演算処理部21によりそれぞれ選択的に開閉制御される供給バルブ34及び循環バルブ35が設けられており、濁度測定ユニット30は、これらの供給バルブ34及び循環バルブ35の開閉制御とサンプリングポンプ33の運転制御とを行うことで、導管59を流れる白水を測定容器31に採取できる。   The turbidity measuring unit 30 is configured to collect white water from the conduit 59 according to a predetermined procedure, store the white water in the measuring container 31, and measure the turbidity. Specifically, the turbidity measurement unit 30 includes a supply system 37 including a sampling pump 33 for pumping white water flowing through the conduit 59 and supplying the white water to the measurement container 31, and white water having a capacity equal to or greater than the capacity of the measurement container 31. And a circulatory system 38 that flows out of 31 and returns to the conduit 59. The supply system 37 and the circulation system 38 are provided with a supply valve 34 and a circulation valve 35 that are selectively opened and closed by the arithmetic processing unit 21. The turbidity measurement unit 30 is provided with these supply valves 34. The white water flowing through the conduit 59 can be collected in the measurement container 31 by performing the opening / closing control of the circulation valve 35 and the operation control of the sampling pump 33.

サンプリングポンプ33が容積式のものである場合には供給バルブ34は不要であり、また測定容器31を開放系のものとして採取液をオーバーフローさせる構造のものとすれば、循環バルブ35も不要となる。また、ここでは白水を導管59から採取するとしているが、白水を白水ピット57から直接採取する構成としてもよい。   When the sampling pump 33 is of the positive displacement type, the supply valve 34 is unnecessary, and if the measurement container 31 is of an open system and has a structure for overflowing the collected liquid, the circulation valve 35 is also unnecessary. . Here, white water is collected from the conduit 59, but white water may be collected directly from the white water pit 57.

濁度測定ユニットは、本実施形態のように1つであることがシステム構成の簡素化の点で好ましいが、複数であってもよい。複数の濁度測定ユニットを採用する場合、攪拌時の濁度と、静止時の濁度とが別々の容器で測定されるため、静止までの時間を待たずに、両濁度を並行して測定することができる。   The number of turbidity measurement units is preferably one as in this embodiment from the viewpoint of simplification of the system configuration, but may be plural. When using multiple turbidity measurement units, the turbidity at the time of stirring and the turbidity at rest are measured in separate containers, so both turbidities can be measured in parallel without waiting for the time to stand still. Can be measured.

測定容器31は、例えば0.3〜1.5m程度の深さを有して白水を20〜1000L、好ましくは30〜50L程度貯留する容積を有するもので、その底部に排水系をなす排水バルブ36を備えている。また測定容器31の内壁面の上部であって、例えば水面から50〜200mm下がった位置には測定容器31に貯留された白水の上部における濁度を測定する濁度センサ32が設けられている。濁度センサ32は、例えば吸光度センサ、反射光センサ、透過光センサなどを用いることができる。また、測定容器31の内壁面の満水位置に、白水の水面が満水位置に達したことを検知するための水面センサ(図示せず)が設けられていてもよい。   The measuring vessel 31 has a depth of, for example, about 0.3 to 1.5 m and a volume for storing white water of 20 to 1000 L, preferably about 30 to 50 L, and a drainage valve that forms a drainage system at the bottom thereof. 36. Further, a turbidity sensor 32 for measuring turbidity in the upper part of white water stored in the measurement container 31 is provided at an upper part of the inner wall surface of the measurement container 31, for example, at a position 50 to 200 mm below the water surface. As the turbidity sensor 32, for example, an absorbance sensor, a reflected light sensor, a transmitted light sensor, or the like can be used. Further, a water surface sensor (not shown) for detecting that the white water surface has reached the full water position may be provided at the full water position on the inner wall surface of the measurement container 31.

濁度センサ32の近傍には、濁度センサ32の周囲やそのセンサ面を洗浄する水ジェットノズルやワイパー(図示せず)等を備えた洗浄機構39が設けられている。この洗浄機構39は、測定容器31に採取した白水の濁度を濁度センサ32によって測定し、その後、排水バルブ36を開けて白水を排水した後に選択的に作動して、濁度センサ32のセンサ面やその周囲を洗浄し、測定容器31の内部を清浄に保つ役割を担う。   In the vicinity of the turbidity sensor 32, a cleaning mechanism 39 including a water jet nozzle and a wiper (not shown) for cleaning the periphery of the turbidity sensor 32 and its sensor surface is provided. This cleaning mechanism 39 measures the turbidity of white water collected in the measurement container 31 by the turbidity sensor 32, and then operates selectively after opening the drain valve 36 to drain the white water. The sensor surface and its surroundings are cleaned, and the inside of the measurement container 31 is kept clean.

ここで、供給系37の供給速度(及び循環系38の排出速度)[L/sec]及び 測定容器31の容量[L]は、測定容器31内の白水が供給系37から流入する白水の水流によって十分攪拌されるように設定されている。   Here, the supply speed of the supply system 37 (and the discharge speed of the circulation system 38) [L / sec] and the capacity [L] of the measurement container 31 are the white water flow into which the white water in the measurement container 31 flows from the supply system 37. Is set to be sufficiently stirred.

演算処理部21は、前述の通り、測定容器31に採取され濁度センサ32によって測定される白水の濁度に基づきパルプスラリーに対する内添薬品A、Bの注入量を求めている。そして、演算処理部21は、内添薬品タンク22a内の内添薬品Aの注入量及び内添薬品タンク22b内の内添薬品Bの注入量を、それぞれ最適化制御するものとなっている。   As described above, the arithmetic processing unit 21 obtains the injection amounts of the internal additives A and B into the pulp slurry based on the turbidity of white water collected in the measurement container 31 and measured by the turbidity sensor 32. The arithmetic processing unit 21 optimizes and controls the injection amount of the internal medicine A in the internal medicine tank 22a and the injection amount of the internal medicine B in the internal medicine tank 22b.

図3は、本発明の実施形態に係る内添薬品の添加量制御方法の概略的な処理手順を示す図である。以下、図3に基づき、演算処理部21による内添薬品の注入量制御について説明する。   FIG. 3 is a diagram showing a schematic processing procedure of the method for controlling the amount of internally added chemical according to the embodiment of the present invention. Hereinafter, the injection amount control of the internal medicine by the arithmetic processing unit 21 will be described with reference to FIG.

このような内添薬品の注入量制御のための処理は、測定容器31、供給バルブ34及び循環バルブ35、及び排水バルブ36が「測定容器31:空、排水バルブ36:開、供給バルブ34及び循環バルブ35:閉」であるときを初期状態として、先ず、排水バルブ36を閉じ、供給バルブ34及び循環バルブ35を開き[ステップS1]、サンプリングポンプ33を作動させ[ステップS2]、白水を供給系37を介して導管59から汲み上げ、測定容器31に供給することから開始される。同時に測定容器31への白水の供給開始に伴い、演算処理部21が備える図示しないタイマーを起動してその供給時間を計測する。   The processing for controlling the injection amount of the internal chemicals is performed by the measurement container 31, the supply valve 34 and the circulation valve 35, and the drain valve 36 as “measurement container 31: empty, drain valve 36: open, supply valve 34 and First, the drain valve 36 is closed, the supply valve 34 and the circulation valve 35 are opened [Step S1], the sampling pump 33 is operated [Step S2], and white water is supplied. It begins by pumping from the conduit 59 via the system 37 and supplying it to the measuring vessel 31. At the same time, when the supply of white water to the measurement container 31 is started, a timer (not shown) provided in the arithmetic processing unit 21 is activated to measure the supply time.

白水を供給することによって測定容器31内における白水の貯留量は増加し、測定容器31内に貯留された白水が満水に達すると測定容器31の容量以上の白水は循環系38を介して導管59に流出する。この状態になると、測定容器31に供給される白水の供給量と測定容器31から流出する白水の流出量とが等しくなり、測定容器31内における白水の水面位置は満水位置に保たれる。このとき、測定容器31内に貯留された白水は、白水が連続的に測定容器31に供給されることによって攪拌状態にある。   By supplying white water, the amount of white water stored in the measurement container 31 increases. When the white water stored in the measurement container 31 reaches full capacity, white water exceeding the capacity of the measurement container 31 passes through the circulation system 38 through the conduit 59. To leak. If it will be in this state, the supply amount of the white water supplied to the measurement container 31 and the outflow amount of the white water flowing out of the measurement container 31 will become equal, and the water surface position of the white water in the measurement container 31 will be maintained at a full water position. At this time, the white water stored in the measurement container 31 is in a stirring state as white water is continuously supplied to the measurement container 31.

そして上記供給時間が、予め設定した所定時間t1に達したとき、つまり白水が時間t1に亘って供給され、測定容器31内の白水が満水になったとき[ステップS3]、濁度センサ32を用いて白水の濁度(好ましくは、白水の吸光度)を測定する[ステップS4]。
前述の通り、このとき測定容器31内に貯留された白水は白水の連続的な供給によって攪拌状態にあるので、測定される濁度は、白水の「攪拌時濁度」であり、後述の通り、不溶性懸濁物(SS)相当濁度として白水の不溶性懸濁物(SS)濃度との相関関係を有する。
When the supply time reaches a preset time t1, that is, when white water is supplied over the time t1 and the white water in the measurement container 31 is full [Step S3], the turbidity sensor 32 is turned on. The turbidity of white water (preferably, the absorbance of white water) is measured [Step S4].
As described above, since the white water stored in the measurement container 31 at this time is in a stirring state by continuous supply of white water, the measured turbidity is the “turbidity at the time of stirring”, as described later. Insoluble suspension (SS) has a correlation with white water insoluble suspension (SS) concentration as turbidity.

ここで、所定時間t1は、測定容器31の容積と白水の供給速度に基づき、測定容器31内における白水の水面位置が所定の満水高さに達するまでに要する時間に予め設定されている。また、ここでは白水の供給開始と共にタイマーを起動し所定の時間t1が経過することによって白水の水面位置が満水高さに達したことを検知しているが、タイマーに代えて、又はタイマーと併用して、測定容器31の満水位置に設けられた水面センサ(図示せず)によって白水の水面位置が満水高さに達したことを検知してもよい。   Here, the predetermined time t1 is set in advance to a time required for the white water surface position in the measurement container 31 to reach a predetermined full water height based on the volume of the measurement container 31 and the white water supply speed. Also, here, the timer is started at the same time as the supply of white water is started, and it is detected that the surface level of the white water has reached the full water height when a predetermined time t1 has elapsed, but instead of the timer or in combination with the timer Then, the water level sensor (not shown) provided at the full water position of the measurement container 31 may detect that the water surface position of the white water has reached the full water height.

白水の「攪拌時濁度」の測定が終了すると、次に、サンプリングポンプ33を停止させ[ステップS5]、排水バルブ36を閉じた状態で供給バルブ34及び循環バルブ35を閉じ[ステップS6]、これによって、白水の測定容器31への供給と測定容器31からの流出を停止させる。そして白水の供給と流出の停止によって、測定容器31に貯留された白水を静置させる。   When the measurement of “turbidity during stirring” of the white water is completed, the sampling pump 33 is then stopped [Step S5], and the supply valve 34 and the circulation valve 35 are closed with the drain valve 36 closed [Step S6]. As a result, the supply of white water to the measurement container 31 and the outflow from the measurement container 31 are stopped. Then, the white water stored in the measurement container 31 is allowed to stand by stopping the supply and outflow of the white water.

測定容器31に貯留された白水の静置開始と同時に、前述の通り、測定容器31に貯留された白水の上部における濁度を測定する位置に配置されている濁度センサ32を用いて白水の濁度(好ましくは、白水の吸光度)の連続的な測定を開始する[ステップS7]。この白水の濁度の連続的な測定は、濁度センサ32の計測値を所定のサンプリング周波数(例えば、サンプリング周波数=0.1〜5Hz)でサンプリングすることによって行うものであってよい。   Simultaneously with the start of standing of the white water stored in the measurement container 31, as described above, the white water is used by using the turbidity sensor 32 disposed at the position for measuring the turbidity in the upper part of the white water stored in the measurement container 31. Continuous measurement of turbidity (preferably, absorbance of white water) is started [Step S7]. This continuous measurement of white water turbidity may be performed by sampling the measurement value of the turbidity sensor 32 at a predetermined sampling frequency (for example, sampling frequency = 0.1 to 5 Hz).

そして測定を開始した後十分な時間が経過して白水の濁度の連続的な測定値が安定した場合(例えば連続的な測定値の変化率が所定値以下になった場合)に終点とし[ステップS8]、当該安定した測定値を、白水の「静止時濁度」とする[ステップS9]。後述の通り、白水の「静止時濁度」は、灰分相当濁度として白水の灰分濃度との相関関係を有する。なお、静止時を画定する変化率の所定値は、低い方が灰分濃度とより高く相関した濁度が得られやすいが、過剰に低くても、相関性の上昇は飽和する一方で、静止時濁度を測定するまでの待機時間が長期化する。このため、具体的な所定値は、求められる制御の正確性と効率とのバランスに基づき適宜設定されてよいが、例えば1NTU/分以下の低下率になった時点を終点としてよい。   And when sufficient time has passed after the start of measurement and the continuous measurement value of white water turbidity is stable (for example, when the rate of change of the continuous measurement value is below a predetermined value), Step S8], the stable measurement value is set as the “turbidity at rest” of white water [Step S9]. As will be described later, the “turbidity at rest” of white water has a correlation with the ash concentration of white water as ash equivalent turbidity. Note that the turbidity that correlates with the ash concentration is more likely to be obtained when the predetermined rate of change that defines the resting time is lower, but even if it is too low, the increase in correlation is saturated, The waiting time for measuring turbidity is prolonged. For this reason, the specific predetermined value may be set as appropriate based on the balance between the accuracy and efficiency of the required control, but the end point may be, for example, the time point when the rate of decrease is 1 NTU / min or less.

その後排水バルブ36を開けて測定容器31に貯留させた白水の全てを排水し[ステップS10]、更に洗浄機構39を作動させて濁度センサ32のセンサ面やその周囲を洗浄し、測定容器31の内部を清浄化することによって[ステップS11]、前述の初期状態に戻すことができる。   Thereafter, the drain valve 36 is opened to drain all the white water stored in the measurement container 31 [Step S10], and the cleaning mechanism 39 is further operated to clean the sensor surface of the turbidity sensor 32 and its surroundings. [Step S11] can be restored to the initial state described above.

その後、以上説明したステップをバッチ連続的に繰り返すことによって、白水の「攪拌時濁度」及び「静止時濁度」を連続的に測定する制御としてよい。すなわち、薬注系20は、ワイヤパート55、プレスパート56で生成する白水の「攪拌時濁度」及び「静止時濁度」を連続的にリアルタイムに測定することができる。   Thereafter, the steps described above may be repeated batchwise to control the “turbidity when stirring” and “turbidity when stationary” continuously. That is, the medicinal injection system 20 can continuously measure “turbidity at the time of stirring” and “turbidity at the time of static” generated in the wire part 55 and the press part 56 in real time.

演算処理部21は、濁度センサ32を用いて白水の「攪拌時濁度」を測定したとき、その測定値M1を白水の不溶性懸濁物(SS)濃度を把握する情報として求めているが、これは以下の理由に基づくものである。   When the turbidity sensor 32 is used to measure the “turbidity during stirring” of the white water, the arithmetic processing unit 21 obtains the measured value M1 as information for grasping the concentration of insoluble suspension (SS) of white water. This is based on the following reason.

すなわち、測定容器31内で白水を十分に攪拌すると、不溶性懸濁物(SS)及び灰分は、共に、沈降することなく白水中に分散する。不溶性懸濁物(SS)の粒子サイズは灰分の粒子サイズより大きいため、攪拌状態で白水の濁度を測定すると、測定された濁度に対して、不溶性懸濁物(SS)の分散量(濃度)の影響が支配的であり、灰分の分散量(濃度)の影響は小さい。従って、白水の「攪拌時濁度」は、その不溶性懸濁物(SS)濃度との相関関係を有するので、濁度センサ32を用いて測定した白水の「攪拌時濁度」の測定値M1を、「不溶性懸濁物(SS)相当濁度」として白水の不溶性懸濁物(SS)濃度を把握する情報として求めることが可能である。   That is, when the white water is sufficiently stirred in the measurement container 31, both the insoluble suspension (SS) and the ash are dispersed in the white water without settling. Since the particle size of the insoluble suspension (SS) is larger than the particle size of ash, when the turbidity of white water is measured with stirring, the amount of dispersion of the insoluble suspension (SS) (with respect to the measured turbidity) Concentration) is dominant, and the amount of ash dispersion (concentration) is small. Accordingly, since the “turbidity during stirring” of white water has a correlation with the concentration of the insoluble suspension (SS), the measured value M1 of “turbidity during stirring” measured using the turbidity sensor 32. Can be obtained as information for grasping the concentration of insoluble suspension (SS) in white water as “insoluble suspension (SS) equivalent turbidity”.

ここで、白水の「攪拌時濁度」[NTU]は、後述する通り、白水の不溶性懸濁物(SS)濃度[mg/L]との正の相関関係を有する。そこで、演算処理部21では、濁度センサ32を用いて測定した白水の「攪拌時濁度」の測定値M1[NTU]に基づき、演算処理部21の図示しないメモリに記憶されている検量線に従って、対応する不溶性懸濁物(SS)濃度D1[mg/L]を算出する。更に、算出された不溶性懸濁物(SS)濃度D1[mg/L]に従い、不溶性懸濁物(SS)濃度D1[mg/L]が所定の不溶性懸濁物(SS)濃度目標値T1[NTU]となるように、その注入量を調整することによって不溶性懸濁物(SS)の歩留りを調整できる内添薬品Aの最適注入量をフィードバック的に求めている[ステップS12]。ここで、所定の不溶性懸濁物(SS)濃度目標値T1[NTU]は、所定の数値であるとしたが、所定の数値範囲であってもよい。そしてこの最適注入量に従って、薬注ポンプ23aを制御することでパルプスラリーに注入する内添薬品Aの注入量を調整している[ステップS13]。   Here, “turbidity during stirring” [NTU] of white water has a positive correlation with the insoluble suspension (SS) concentration [mg / L] of white water, as will be described later. Therefore, in the arithmetic processing unit 21, a calibration curve stored in a memory (not shown) of the arithmetic processing unit 21 based on the measured value M1 [NTU] of “turbidity during stirring” measured using the turbidity sensor 32. To calculate the corresponding insoluble suspension (SS) concentration D1 [mg / L]. Further, according to the calculated insoluble suspension (SS) concentration D1 [mg / L], the insoluble suspension (SS) concentration D1 [mg / L] is a predetermined insoluble suspension (SS) concentration target value T1 [ The optimum injection amount of the internal medicine A that can adjust the yield of the insoluble suspension (SS) by adjusting the injection amount so as to be NTU] is obtained in a feedback manner (step S12). Here, the predetermined insoluble suspension (SS) concentration target value T1 [NTU] is a predetermined numerical value, but may be a predetermined numerical range. And according to this optimal injection quantity, the injection quantity of the internal additive A inject | poured into a pulp slurry is adjusted by controlling the chemical injection pump 23a [step S13].

一方、演算処理部21は、濁度センサ32を用いて白水の「静止時濁度」を測定したとき、その測定値M2を白水の灰分濃度を把握する情報として求めているが、これは以下の理由に基づくものである。   On the other hand, when the turbidity sensor 32 is used to measure the “still-time turbidity” of the white water, the arithmetic processing unit 21 obtains the measured value M2 as information for grasping the white water ash concentration. This is based on the reason.

すなわち、白水を静置すると、白水中に分散している粒子サイズの比較的大きい不溶性懸濁物(SS)は急速に沈降するが、一方、粒子サイズの比較的小さい灰分は殆ど沈降せず、白水は、徐々に固液分離する。従って、前述の通り、測定容器31に貯留された白水を静置しながら濁度センサ32によって白水(上澄み液部分)の濁度を連続的に測定すると、不溶性懸濁物(SS)の沈降によって濁度の測定値は減少して行く。そして、測定を開始した後十分な時間が経過して濁度の測定値が安定した場合(例えば連続的な測定値の変化率が所定値以下になった場合)を終点として、当該安定した測定値を、白水の「静止時濁度」とする。従って、白水の「静止時濁度」は、不溶性懸濁物(SS)濃度の影響を殆ど受けず、その灰分濃度との相関関係を有するので、濁度センサ32を用いて測定した白水の「静止時濁度」の測定値M2を、「灰分相当濁度」として白水の灰分濃度を把握する情報として求めることが可能である。   That is, when white water is allowed to stand, an insoluble suspension (SS) having a relatively large particle size dispersed in the white water quickly settles, while an ash having a relatively small particle size hardly settles. White water is gradually separated into solid and liquid. Therefore, as described above, when the turbidity of the white water (supernatant liquid portion) is continuously measured by the turbidity sensor 32 while the white water stored in the measurement container 31 is left still, the sedimentation of the insoluble suspension (SS) occurs. Turbidity measurements are decreasing. Then, when a sufficient amount of time has elapsed after the start of measurement and the measured value of turbidity is stable (for example, when the rate of change of the continuous measured value falls below a predetermined value), the stable measurement is taken as the end point. The value is the “turbidity at rest” of white water. Accordingly, the “still-time turbidity” of white water is hardly affected by the concentration of insoluble suspension (SS) and has a correlation with the ash concentration. Therefore, the “white turbidity” measured using the turbidity sensor 32 is “ The measured value M2 of “turbidity at rest” can be obtained as information for grasping the ash concentration of white water as “ash equivalent turbidity”.

ここで、白水の「静止時濁度」[NTU]は、後述する通り、白水の灰分濃度[mg/L]との正の相関関係を有する。そこで、演算処理部21では、濁度センサ32を用いて測定した白水の「静止時濁度」の測定値M2[NTU]に基づき、演算処理部21の図示しないメモリに記憶されている検量線に従って、対応する灰分濃度D2[mg/L]を算出する。更に、算出された灰分濃度D2[mg/L]に従い、灰分濃度D2[mg/L]が所定の灰分濃度目標値T2[NTU]となるように、その注入量を調整することによって灰分の歩留りを調整できる内添薬品Bの最適注入量をフィードバック的に求めている[ステップS14]。ここで、所定の灰分濃度目標値T2[NTU]は、所定の数値であるとしたが、所定の数値範囲であってもよい。そしてこの最適注入量に従って、薬注ポンプ23bを制御することでパルプスラリーに注入する内添薬品Bの注入量を調整している[ステップS15]。   Here, the “turbidity at rest” [NTU] of white water has a positive correlation with the ash concentration [mg / L] of white water, as will be described later. Therefore, in the arithmetic processing unit 21, a calibration curve stored in a memory (not shown) of the arithmetic processing unit 21 based on the measured value M2 [NTU] of “still-time turbidity” measured using the turbidity sensor 32. Accordingly, the corresponding ash concentration D2 [mg / L] is calculated. Further, according to the calculated ash concentration D2 [mg / L], the ash content yield is adjusted by adjusting the injection amount so that the ash concentration D2 [mg / L] becomes the predetermined ash concentration target value T2 [NTU]. The optimum amount of the internal additive B that can be adjusted is determined in a feedback manner [step S14]. Here, the predetermined ash concentration target value T2 [NTU] is a predetermined numerical value, but may be a predetermined numerical range. And according to this optimal injection amount, the injection amount of the internal chemical | medical agent B inject | poured into a pulp slurry is adjusted by controlling the chemical injection pump 23b [step S15].

ところで、前述の通り、ワイヤパート55における原料の歩留りを一定に制御して製造される紙の品質を所望の値に維持することが望まれている。このワイヤパート55における原料の歩留率R(%)は、以下の式により近似的に表される。
<式1> R=[1−(白水濃度/インレット原料濃度)]×100
この式から、インレット54におけるインレット原料濃度が一定に制御されていると仮定した場合、白水の不溶性懸濁物(SS)濃度及び灰分濃度をそれぞれ調整することで、ワイヤパート55における不溶性懸濁物(SS)の歩留率R1(%)、及び灰分の歩留率R2(%)をそれぞれ一定に制御することができる。つまり、白水の不溶性懸濁物(SS)濃度及び灰分濃度の変動幅を小さくして安定化することにより、ワイヤ上に抄き上げられるパルプ及び灰分が一定量に保たれる結果、製造される紙の坪量やパルプ繊維及び灰分の構成が安定化し、製造される紙の品質のばらつきを小さくすることが期待できる。
By the way, as described above, it is desired to maintain the quality of the paper manufactured by controlling the yield of the raw material in the wire part 55 at a desired value. The raw material yield rate R (%) in the wire part 55 is approximately expressed by the following equation.
<Formula 1> R = [1- (white water concentration / inlet raw material concentration)] × 100
From this equation, when it is assumed that the inlet raw material concentration in the inlet 54 is controlled to be constant, the insoluble suspension in the wire part 55 is adjusted by adjusting the insoluble suspension (SS) concentration and the ash concentration in white water, respectively. The yield rate R1 (%) of (SS) and the yield rate R2 (%) of ash can be controlled to be constant. That is, it is produced as a result of maintaining a constant amount of pulp and ash that are made up on the wire by stabilizing the insoluble suspension (SS) concentration and ash concentration variation of white water by reducing the fluctuation range. It can be expected that the basis weight of the paper, the pulp fiber and the ash content are stabilized, and the quality of the produced paper is reduced.

従って、不溶性懸濁物(SS)濃度目標値T1[NTU]及び灰分濃度目標値T2[NTU]は、ワイヤパート55における不溶性懸濁物(SS)の歩留率R1(%)及び灰分の歩留率R2(%)の適正値に基づきそれぞれ設定されていることが好ましい。また、製造しようとする製品銘柄を含めた操業条件によってワイヤパート55における不溶性懸濁物(SS)の歩留率R1(%)及び灰分の歩留率R2(%)の適正値は異なるので、製造しようとする製品銘柄を含めた操業条件の変更に応じて、不溶性懸濁物(SS)濃度目標値T1[NTU]及び灰分濃度目標値T2[NTU]を適宜修正することが好ましい。   Therefore, the insoluble suspension (SS) concentration target value T1 [NTU] and the ash concentration target value T2 [NTU] are the insoluble suspension (SS) yield rate R1 (%) and the ash content in the wire part 55. It is preferable that each is set based on an appropriate value of the distillation rate R2 (%). In addition, the appropriate values of the insoluble suspension (SS) yield rate R1 (%) and the ash content rate R2 (%) in the wire part 55 differ depending on the operating conditions including the product brand to be manufactured. It is preferable to appropriately correct the insoluble suspension (SS) concentration target value T1 [NTU] and the ash concentration target value T2 [NTU] according to changes in operating conditions including the product brand to be manufactured.

尚、インレット54におけるインレット原料濃度や流量が変動する場合、その濃度や流量の変動に合わせて不溶性懸濁物(SS)濃度目標値T1[NTU]を変えたり、或いは求めた最適注入量に補正係数を乗じたりすることで、算出された不溶性懸濁物(SS)濃度D1[mg/L]に基づく薬注ポンプ23aの作動制御の条件を補正するようにすればよい。   In addition, when the inlet raw material concentration and flow rate in the inlet 54 fluctuate, the insoluble suspension (SS) concentration target value T1 [NTU] is changed according to the fluctuation of the concentration and flow rate, or is corrected to the optimum injection amount obtained. By multiplying by a coefficient, the condition of the operation control of the medicinal pump 23a based on the calculated insoluble suspension (SS) concentration D1 [mg / L] may be corrected.

また、同様に、インレット54におけるインレット原料濃度や流量の変動に合わせて灰分濃度目標値T2[NTU]を変えたり、或いは求めた最適注入量に補正係数を乗じたりすることで、算出された灰分濃度D2[mg/L]に基づく薬注ポンプ23bの作動制御の条件を補正するようにすればよい。   Similarly, the calculated ash content is obtained by changing the ash concentration target value T2 [NTU] in accordance with the variation of the inlet raw material concentration and flow rate in the inlet 54, or by multiplying the obtained optimum injection amount by a correction coefficient. What is necessary is just to correct | amend the conditions of the action | operation control of the chemical injection pump 23b based on density | concentration D2 [mg / L].

内添薬品Aを過剰に注入してもその効果が飽和する場合があるので、例えば内添薬品Aの注入量に上限値を設定しておくことが望ましい。また、同様に、内添薬品Bを過剰に注入してもその効果が飽和する場合があるので、例えば内添薬品Bの注入量に上限値を設定しておくことが望ましい。   Since the effect may be saturated even if the internal additive A is excessively injected, it is desirable to set an upper limit value for the injection amount of the internal additive A, for example. Similarly, since the effect may be saturated even if the internal additive B is excessively injected, it is desirable to set an upper limit for the injection amount of the internal additive B, for example.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1>
本実施形態に基づく濁度測定ユニット30を用いて、白水濃度をバッチ連続的に計測し、白水の「攪拌時濁度」及び「静止時濁度」を測定した。それと同時に、分析機器を用いて、その白水の不溶性懸濁物(SS)濃度及び灰分濃度を測定した。
<Example 1>
Using the turbidity measurement unit 30 based on this embodiment, the white water concentration was continuously measured batchwise, and the “turbidity at stirring” and “turbidity at rest” were measured. At the same time, the white water insoluble suspension (SS) concentration and ash concentration were measured using an analytical instrument.

図4は、本発明の実施形態に係る内添薬品の添加量制御方法による「攪拌時濁度」と分析機器を用いた不溶性懸濁物(SS)濃度の相関関係を示す図である。   FIG. 4 is a diagram showing a correlation between “turbidity during stirring” and an insoluble suspension (SS) concentration using an analytical instrument according to the method for controlling the amount of internally added chemicals according to an embodiment of the present invention.

この結果によって、本発明の実施形態に基づき白水を攪拌状態で測定した「攪拌時濁度」は、実際の不溶性懸濁物(SS)濃度との正の相関関係を有することが確認できた。また、図4に示す線形を検量線として用いて、「攪拌時濁度」に基づき不溶性懸濁物(SS)濃度を算出できることが確認できた。従って、この検量線をデータ化して演算処理部21の図示しないメモリに記憶しておけば、当該検量線を用いて、測定した「攪拌時濁度」の測定値M1[NTU]から不溶性懸濁物(SS)濃度D1[mg/L]を算出できる。   From this result, it was confirmed that the “turbidity during stirring” measured in the stirring state of white water based on the embodiment of the present invention has a positive correlation with the actual insoluble suspension (SS) concentration. In addition, it was confirmed that the concentration of insoluble suspension (SS) can be calculated based on “turbidity during stirring” using the linearity shown in FIG. 4 as a calibration curve. Therefore, if this calibration curve is converted into data and stored in a memory (not shown) of the arithmetic processing unit 21, an insoluble suspension is obtained from the measured value M1 [NTU] of “turbidity during stirring” using the calibration curve. The substance (SS) concentration D1 [mg / L] can be calculated.

図5は、本発明の実施形態に係る内添薬品の添加量制御方法による「静止時濁度」と分析機器を用いた灰分濃度の相関関係を示す図である。ここで、「静止時濁度」は、白水を静置して連続的に測定した濁度測定値の低下率が1NTU/分以下になったときの濁度測定値である。   FIG. 5 is a diagram showing the correlation between the “turbidity at rest” and the ash concentration using an analytical instrument by the method for controlling the amount of internally added chemicals according to the embodiment of the present invention. Here, the “turbidity at rest” is a turbidity measurement value when the decreasing rate of the turbidity measurement value continuously measured by leaving white water standing is 1 NTU / min or less.

この結果によって、本発明の実施形態に基づき白水を十分な時間静置後に測定した「静止時濁度」は、実際の灰分濃度との正の相関関係を有することが確認できた。また、図5に示す線形を検量線として用いて、「静止時濁度」に基づいて灰分濃度を算出できることが確認できた。従って、この検量線をデータ化して演算処理部21の図示しないメモリに記憶しておけば、当該検量線を用いて、測定した「静止時濁度」の測定値M2[NTU]から灰分濃度D2[mg/L]を算出できる。   From this result, it was confirmed that the “turbidity at rest” measured after leaving white water for a sufficient time based on the embodiment of the present invention has a positive correlation with the actual ash concentration. Further, it was confirmed that the ash concentration can be calculated based on the “turbidity at rest” using the linearity shown in FIG. 5 as a calibration curve. Therefore, if the calibration curve is converted into data and stored in a memory (not shown) of the arithmetic processing unit 21, the ash concentration D2 is calculated from the measured value M2 [NTU] of the “static turbidity” using the calibration curve. [Mg / L] can be calculated.

図6は、図4及び図5に基づき、インレット濃度が一定に制御されている前提で作成した「攪拌時濁度」、すなわち不溶性懸濁物(SS)相当濁度と不溶性懸濁物(SS)歩留率の相関関係、及び「静止時濁度」、すなわち灰分相当濁度と灰分歩留率の相関関係を示す図である。   FIG. 6 shows the “turbidity during stirring” based on FIGS. 4 and 5, which was prepared on the assumption that the inlet concentration was kept constant, that is, the turbidity equivalent to the insoluble suspension (SS) and the insoluble suspension (SS). FIG. 4 is a diagram showing the correlation between yield rates and “resting turbidity”, that is, the correlation between ash equivalent turbidity and ash yield.

この結果によって、インレット濃度が一定に制御されている場合、「攪拌時濁度」、すなわち不溶性懸濁物(SS)相当濁度は、不溶性懸濁物(SS)歩留率と、「静止時濁度」、すなわち灰分相当濁度は、灰分歩留率とそれぞれ相関関係を有することが確認された。従って、「攪拌時濁度」(不溶性懸濁物(SS)濃度)を調整することによって不溶性懸濁物(SS)歩留率を、また「静止時濁度」(灰分濃度)を調整することによって灰分歩留率を、それぞれ調整できることが分かる。   According to this result, when the inlet concentration is controlled to be constant, the “turbidity during stirring”, that is, the turbidity equivalent to insoluble suspension (SS), It was confirmed that “turbidity”, that is, ash equivalent turbidity has a correlation with the ash yield. Therefore, adjusting the turbidity at stirring (insoluble suspension (SS) concentration) to adjust the insoluble suspension (SS) yield and adjusting the turbidity at rest (ash concentration). It can be seen that the ash yield can be adjusted individually.

<実施例2>
本実施形態に基づく濁度測定ユニット30を用いて、白水濃度をバッチ連続的に計測し、白水の「静止時濁度」を測定した。それと同時に、分析機器を用いて、白水の灰分濃度を測定した。
<Example 2>
Using the turbidity measuring unit 30 based on this embodiment, the white water concentration was continuously measured batchwise, and the “turbidity at rest” of white water was measured. At the same time, the ash concentration of white water was measured using an analytical instrument.

図7は、本発明の実施形態に係る内添薬品の添加量制御方法による各製品銘柄における灰分相当濁度と灰分濃度の相関関係を示す図である。   FIG. 7 is a diagram showing a correlation between ash equivalent turbidity and ash concentration in each product brand by the method for controlling the amount of internally added chemicals according to the embodiment of the present invention.

この結果によって、本発明の実施形態に基づき白水を十分な時間静置後に測定した「静止時濁度」、すなわち灰分相当濁度は、各製品銘柄において、実際の灰分濃度との正の相関関係を有することが確認できた。また、図7に示す各製品銘柄における線形をそれぞれ検量線として用いて、各製品銘柄において、「静止時濁度」に基づいて灰分濃度を算出できることが確認できた。従って、これらの各製品銘柄における検量線をデータ化して演算処理部21の図示しないメモリに記憶しておけば、各製品銘柄において、対応する検量線を用いて、測定した「静止時濁度」の測定値M2[NTU]から灰分濃度D2[mg/L]を算出できる。   According to this result, `` static turbidity '' measured after leaving white water for a sufficient period of time based on the embodiment of the present invention, that is, ash equivalent turbidity is positively correlated with actual ash concentration in each product brand. It was confirmed that the Moreover, it was confirmed that the ash concentration can be calculated based on the “turbidity at rest” in each product brand by using the linearity in each product brand shown in FIG. 7 as a calibration curve. Accordingly, if the calibration curves for each of the product brands are converted into data and stored in a memory (not shown) of the arithmetic processing unit 21, the “turbidity at rest” measured using the corresponding calibration curve for each product brand. The ash concentration D2 [mg / L] can be calculated from the measured value M2 [NTU].

このように、本実施形態に基づく薬注系20によれば、白水を採取し、その白水を攪拌状態で測定した「攪拌時濁度」から不溶性懸濁物(SS)濃度を求めて、その濃度に基づき、その注入量を調整することによって不溶性懸濁物(SS)の歩留りを調整できる内添薬品Aの最適注入量をフィードバック的に求めている。また白水を十分な時間静置後に測定した「静止時濁度」から灰分濃度を求めて、その濃度に基づき、その注入量を調整することによって灰分の歩留りを調整できる内添薬品Bの最適注入量をフィードバック的に求めている。従って、これらの内添薬品の注入量をそれぞれ最適化してその薬液コストを必要最小限に抑えることが可能となる。   Thus, according to the drug injection system 20 based on the present embodiment, white water is collected, and the concentration of the insoluble suspension (SS) is obtained from “turbidity during stirring” obtained by measuring the white water in a stirring state. Based on the concentration, the optimal injection amount of the internal additive A that can adjust the yield of the insoluble suspension (SS) by adjusting the injection amount is obtained in a feedback manner. Also, the optimal injection of internal additive B that can adjust the yield of ash by adjusting the injection amount based on the ash concentration obtained from the “turbidity at rest” measured after leaving white water for a sufficient period of time. We ask for quantity in feedback. Therefore, it is possible to optimize the injection amount of these internally added chemicals and minimize the cost of the chemical solution.

また、このように内添薬品A及び内添薬品Bの最適注入量をそれぞれ求めるので、インレット54におけるインレット原料濃度変動や流量変動に追従させることが容易であり、フィードバックのタイムラグのない(少ない)内添薬品の最適化注入制御を実現することができる。特に製造する製品銘柄の切り替え時など不溶性懸濁物(SS)濃度及び灰分濃度が共に大きく変動する状況における内添薬品の最適注入量制御に適した内添薬品注入制御系を構築することができる。   In addition, since the optimum injection amounts of the internal additive A and the internal additive B are obtained in this way, it is easy to follow the inlet raw material concentration fluctuation and flow rate fluctuation in the inlet 54, and there is no feedback time lag (small). Optimized injection control of internal chemicals can be realized. In particular, it is possible to build an internal chemical injection control system suitable for controlling the optimal injection amount of internal additive in situations where both the insoluble suspension (SS) concentration and the ash concentration vary greatly, such as when switching the product brand to be manufactured. .

また、測定容器31に組み込んだ1つの濁度センサ32を有効に活用して、採取した白水を攪拌状態で測定した「攪拌時濁度」から性懸濁物(SS)濃度を求め、また同じ採取した白水を十分な時間静置後に測定した「静止時濁度」から灰分濃度を求めるので、その物理的構成が簡単であり、装置構成の簡素化を図り得る等の効果が奏される。また測定設備の維持管理工数を低減し、簡易にして効率的な運転を実現できる等の利点もある。   Further, by effectively using one turbidity sensor 32 incorporated in the measurement container 31, the concentration of the sex suspension (SS) is obtained from “turbidity during stirring” obtained by measuring the collected white water in a stirring state. Since the ash concentration is determined from the “turbidity at rest” measured after leaving the collected white water for a sufficient period of time, the physical configuration is simple and effects such as simplification of the device configuration can be achieved. In addition, there are advantages such as reducing the maintenance man-hours of the measuring equipment and realizing simple and efficient operation.

10 製紙工程
30 濁度測定ユニット
55 ワイヤパート
M1 攪拌時濁度(不溶性懸濁物相当濁度)
M2 静止時濁度(灰分相当濁度)
D1 不溶性懸濁物濃度
D2 灰分濃度
10 Papermaking process 30 Turbidity measurement unit 55 Wire part M1 Turbidity when stirring (turbidity equivalent to insoluble suspension)
M2 Turbidity at rest (ash equivalent turbidity)
D1 Insoluble suspension concentration D2 Ash content

Claims (5)

パルプスラリーから紙を製造する製紙工程における内添薬品の添加量制御方法であって、
所定の操業条件において前記製紙工程にて生成する白水を採取するステップと、
前記採取された白水の濁度を不溶性懸濁物相当濁度として攪拌時に測定するステップと、
前記採取された白水の濁度を灰分相当濁度として静止時に測定するステップと、
測定された前記不溶性懸濁物相当濁度及び灰分相当濁度に基づき、前記内添薬品の添加量を調節するステップと、を含む方法。
A method for controlling the amount of internally added chemicals in a papermaking process for producing paper from pulp slurry,
Collecting white water produced in the papermaking process under predetermined operating conditions;
Measuring the turbidity of the collected white water as an insoluble suspension equivalent turbidity upon stirring;
Measuring the turbidity of the collected white water as ash equivalent turbidity at rest;
Adjusting the addition amount of the internal additive based on the measured turbidity equivalent to insoluble suspension and ash equivalent turbidity.
前記採取された白水において測定された前記不溶性懸濁物相当濁度に基づき前記採取された白水の不溶性懸濁物濃度を算出するステップと、
前記採取された白水において測定された前記灰分相当濁度に基づき前記採取された白水の灰分濃度を算出するステップと、を更に含む請求項1に記載の方法。
Calculating an insoluble suspension concentration of the collected white water based on the turbidity equivalent to the insoluble suspension measured in the collected white water;
The method according to claim 1, further comprising: calculating an ash concentration of the collected white water based on the ash equivalent turbidity measured in the collected white water.
算出された前記不溶性懸濁物濃度及び前記灰分濃度に基づき、前記製紙工程における不溶性懸濁物歩留り及び灰分歩留りを調整できる内添薬品の薬注制御を行うステップを更に含む請求項2に記載の方法。   The method according to claim 2, further comprising the step of performing chemical injection control of an internally added chemical capable of adjusting the insoluble suspension yield and the ash content yield in the papermaking process based on the calculated insoluble suspension concentration and the ash content concentration. Method. 算出された前記不溶性懸濁物濃度が目標不溶性懸濁物濃度になり、かつ前記灰分濃度が目標灰分濃度になるように、前記内添薬品の添加量をフィードバック的に調節するステップを更に含む請求項3に記載の方法。   The method further includes a step of feedback-adjusting the amount of the internal additive added so that the calculated insoluble suspension concentration becomes a target insoluble suspension concentration and the ash concentration becomes a target ash concentration. Item 4. The method according to Item 3. パルプスラリーから紙を製造する製紙工程における懸濁性物質の濃度測定方法であって、
前記製紙工程にて生成する白水を採取するステップと、
前記採取された白水の濁度を不溶性懸濁物相当濁度として攪拌時に測定するステップと、
前記測定された不溶性懸濁物相当濁度に基づき前記採取された白水の不溶性懸濁物濃度を算出するステップと、
前記採取された白水の濁度を灰分相当濁度として静止時に測定するステップと、
前記測定された灰分相当濁度に基づき前記採取された白水の灰分濃度を算出するステップと、を含む懸濁性物質の濃度測定方法。
A method for measuring the concentration of a suspended substance in a papermaking process for producing paper from pulp slurry,
Collecting white water produced in the papermaking process;
Measuring the turbidity of the collected white water as an insoluble suspension equivalent turbidity upon stirring;
Calculating an insoluble suspension concentration of the collected white water based on the measured insoluble suspension equivalent turbidity;
Measuring the turbidity of the collected white water as ash equivalent turbidity at rest;
Calculating the ash concentration of the collected white water based on the measured ash equivalent turbidity.
JP2012082755A 2012-03-30 2012-03-30 Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances Active JP5641007B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012082755A JP5641007B2 (en) 2012-03-30 2012-03-30 Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances
KR1020147025517A KR101474264B1 (en) 2012-03-30 2013-03-29 Method for controlling addition amount of internal chemical and method for measuring concentration of suspended substances
PCT/JP2013/059757 WO2013147269A1 (en) 2012-03-30 2013-03-29 Method for controlling addition amount of internal chemical and method for measuring concentration of suspended substances
CN201380017602.1A CN104220672B (en) 2012-03-30 2013-03-29 Inside add the addition control method of reagent and the method for measurement of concentration of suspension material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082755A JP5641007B2 (en) 2012-03-30 2012-03-30 Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances

Publications (2)

Publication Number Publication Date
JP2013213290A JP2013213290A (en) 2013-10-17
JP5641007B2 true JP5641007B2 (en) 2014-12-17

Family

ID=49260507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082755A Active JP5641007B2 (en) 2012-03-30 2012-03-30 Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances

Country Status (4)

Country Link
JP (1) JP5641007B2 (en)
KR (1) KR101474264B1 (en)
CN (1) CN104220672B (en)
WO (1) WO2013147269A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126688B (en) * 2014-06-30 2017-03-31 Upm Kymmene Corp Method and apparatus for controlling the quality of nanofibrillar cellulose
CN105862510B (en) * 2015-01-23 2019-01-11 上海东冠纸业有限公司 A kind of automatic dosing control system for papermaking
JP7172153B2 (en) * 2018-06-12 2022-11-16 栗田工業株式会社 Method for estimating amount of accumulated dirt on wire and/or felt in papermaking process
CN111929281A (en) * 2020-08-14 2020-11-13 重庆建峰化工股份有限公司 Method for detecting content of insoluble substances in urea

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518577C2 (en) 2000-12-08 2002-10-29 Real Sverige Ab M Process for making paper with constant filler content
JP4779762B2 (en) 2006-03-30 2011-09-28 栗田工業株式会社 Effect monitoring method and injection amount control method for papermaking chemicals
JP4875940B2 (en) * 2006-07-28 2012-02-15 三晶株式会社 Starch-based paper strength enhancer and paper making method using the same
CN101458206A (en) * 2007-12-14 2009-06-17 朱勇强 Method for rapidly measuring material retention on paper making net

Also Published As

Publication number Publication date
KR101474264B1 (en) 2014-12-18
CN104220672A (en) 2014-12-17
KR20140131357A (en) 2014-11-12
WO2013147269A1 (en) 2013-10-03
CN104220672B (en) 2016-01-20
JP2013213290A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5641007B2 (en) Method for controlling the amount of internally added chemicals and method for measuring the concentration of suspended substances
JP5305878B2 (en) Fiber concentration measuring device, fiber concentration adjusting device, dewatering equipment and dewatering method in sludge
RU2567622C2 (en) Method and system to monitor properties of water flow
WO2012070644A1 (en) Method for producing paper
WO1995028521A9 (en) Use of ultrasonics in connection with paper making
CN111433406A (en) Method for predicting or controlling the microbiological state in a paper or board manufacturing process
AU2015326556B2 (en) A method for processing straw
KR101862636B1 (en) Apparatus for germinating grain and manufacturing method of germinated grain using the same
JP7172153B2 (en) Method for estimating amount of accumulated dirt on wire and/or felt in papermaking process
NO309230B1 (en) Device for controlling the addition of a chemical dewatering modifier in a flowing suspension, device for flocculating a suspension and dewatering the flocculated suspension, and a method for dewatering a suspension
JP3728867B2 (en) Method and apparatus for automatically controlling the concentration of filtered white water in the wire part of a paper machine and a method for setting a target concentration of filtered white water
WO2023203834A1 (en) Estimation device, estimation system, estimation program, and estimation method
US20070158044A1 (en) Method and plant for producing a fibrous web
FI58028C (en) REGLERINGSPROCESS OCH -ANORDNING FOER KOKARE
JP5484122B2 (en) Waste paper processing equipment
KR102652925B1 (en) Method for suppressing sedimentation of suspended substances, method for suppressing pitch disturbance, and method for detecting sedimentation of suspended substances
US1026819A (en) Paper-stock refining and distributing system.
JP7340808B2 (en) Waste paper processing equipment
CN115573191B (en) Device in slurry preparation section
CN103534406B (en) The method and apparatus that treatment fluid is added to cellulosic material in downflow system container
CN219547301U (en) Double-barrel type circulating recovery system for wet tissue liquid
JPH0692966B2 (en) Method of measuring dynamic characteristics of fibrous dispersion
JP5648156B2 (en) Recycled pulp manufacturing equipment and used paper recycling equipment
FI105489B (en) Method and apparatus for pretreating paper pulp
JP3824966B2 (en) Synthetic resin particle cleaning method and cleaning apparatus used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140814

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5641007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250