JP5631788B2 - Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same - Google Patents

Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same Download PDF

Info

Publication number
JP5631788B2
JP5631788B2 JP2011065203A JP2011065203A JP5631788B2 JP 5631788 B2 JP5631788 B2 JP 5631788B2 JP 2011065203 A JP2011065203 A JP 2011065203A JP 2011065203 A JP2011065203 A JP 2011065203A JP 5631788 B2 JP5631788 B2 JP 5631788B2
Authority
JP
Japan
Prior art keywords
chemical species
concrete
concentration
predicting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011065203A
Other languages
Japanese (ja)
Other versions
JP2012202731A (en
Inventor
佳史 細川
佳史 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011065203A priority Critical patent/JP5631788B2/en
Publication of JP2012202731A publication Critical patent/JP2012202731A/en
Application granted granted Critical
Publication of JP5631788B2 publication Critical patent/JP5631788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、外部からコンクリート中に浸透する塩化物イオンなどの化学種の、コンクリート中における拡散状態を予測する方法と、これを用いたコンクリート中の鋼材の腐食発生時期を予測する方法に関する。   The present invention relates to a method for predicting the diffusion state of chemical species such as chloride ions penetrating into concrete from the outside, and a method for predicting the corrosion occurrence time of steel in concrete using the same.

コンクリート中の鉄筋などの鋼材は、アルカリ性雰囲気下にある間は不動態被膜に覆われているため、腐食し難くなっている。しかし、二酸化炭素の浸透によりコンクリートが中性化したり、塩化物イオンや硫酸イオンなどがコンクリート中に浸透して鋼材に接すると、鋼材表面の不動態被膜は破壊され、鋼材が腐食し易くなる。これらの化学種の中でも、塩化物イオンは鉄筋の腐食作用が最も強いことが知られている。
したがって、塩化物イオンによる鋼材の腐食(塩害)が懸念される環境下において、所要の期間、耐久性が要求される鉄筋コンクリート構造物を設計・建設しようとする場合には、鋼材の適切なかぶり深さを決めるために、該構造物中の鋼材の腐食発生時期を予測することが必要となる。
Steel materials such as reinforcing steel in concrete are not easily corroded because they are covered with a passive film while in an alkaline atmosphere. However, when the concrete is neutralized by the penetration of carbon dioxide, or chloride ions or sulfate ions penetrate into the concrete and come into contact with the steel material, the passive film on the surface of the steel material is destroyed and the steel material is easily corroded. Among these chemical species, chloride ions are known to have the strongest corrosive action of reinforcing bars.
Therefore, when an attempt is made to design and construct a reinforced concrete structure that requires durability for a certain period of time in an environment where corrosion (salt damage) of the steel due to chloride ions is a concern, an appropriate cover depth of the steel is required. In order to determine the thickness, it is necessary to predict the corrosion occurrence time of the steel material in the structure.

この鋼材の腐食発生時期の予測方法には、フィックの第2法則に基づく拡散方程式の解(期間と距離を変数とし、見掛けの拡散係数を含む関数)を用いる方法が知られている。すなわち、この方法は、塩化ナトリウム水溶液中に短期間浸せきしたコンクリート中の塩化物イオン濃度の分布を測定し、該測定値と前記関数から見掛けの拡散係数を求める工程と、該拡散係数と該関数を用いて、鋼材の埋設位置における塩化物イオン濃度を計算し、該計算値が、鋼材を腐食させる塩化物イオンの下限濃度(以下「腐食下限濃度」という。)に達する時期を、腐食発生時期として予測する工程とを含むものである。
見掛けの拡散係数を求める方法として、例えば、非特許文献1には、セメント硬化体を、塩化ナトリウム水溶液に、所定期間、浸せきさせた後、該硬化体中の距離xにおける塩化物イオン濃度Cを測定した後、C/(2C)とxを正規確率紙上にプロットして、下記(1)式の直線の傾きを求め、該傾きから、見掛けの拡散係数Dを算出する方法が記載されている。
As a method for predicting the corrosion occurrence time of the steel material, a method is known that uses a solution of a diffusion equation based on Fick's second law (a function including a period and a distance as variables and an apparent diffusion coefficient). That is, this method measures the distribution of chloride ion concentration in concrete immersed in an aqueous solution of sodium chloride for a short period of time, obtains an apparent diffusion coefficient from the measured value and the function, and the diffusion coefficient and the function. Is used to calculate the chloride ion concentration at the position where the steel material is buried, and the time when the calculated value reaches the lower limit concentration of chloride ion that corrodes the steel material (hereinafter referred to as the “corrosion lower limit concentration”). The process of predicting as follows.
As a method for obtaining the apparent diffusion coefficient, for example, Non-Patent Document 1 discloses that a cement hardened body is immersed in an aqueous sodium chloride solution for a predetermined period, and then the chloride ion concentration C at a distance x in the hardened body is set. After the measurement, C / (2C 0 ) and x are plotted on the normal probability paper, the slope of the straight line of the following equation (1) is obtained, and the method of calculating the apparent diffusion coefficient D from the slope is described. Yes.

Figure 0005631788
Figure 0005631788

前記非特許文献1には、塩化物イオンの分布を測定する方法として、塩化物イオンの濃度を測定する方法と、塩化物イオンの浸透距離を測定する方法が併記されている。これらのうち、塩化物イオンの濃度を測定する方法は、塩化ナトリウム水溶液に、所定期間、浸せきさせたセメント硬化体を、硬化体表面から約0.05cm間隔に金のこで削り取り、その粉末を錠剤状に加圧成形して、蛍光X線分析により定量する方法である(128頁)。
また、塩化物イオンの浸透距離を測定する方法は、前記セメント硬化体の側面を切断した後、その切断面に、フルオレッセンナトリウム水溶液と硝酸銀水溶液を塗布して塩化物イオンを発色させ、硬化体表面から発色した境界までの距離を測定する方法である(128頁、129頁)。
In Non-Patent Document 1, as a method for measuring the distribution of chloride ions, a method for measuring the concentration of chloride ions and a method for measuring the penetration distance of chloride ions are described. Among these methods, the method for measuring the concentration of chloride ions is to scrape a hardened cement body soaked in a sodium chloride aqueous solution for a predetermined period of time with a metal saw at intervals of about 0.05 cm from the surface of the hardened body. This is a method of pressing into a tablet and quantifying by fluorescent X-ray analysis (page 128).
Further, the method for measuring the penetration distance of chloride ions is to cut the side surface of the hardened cement body, and then apply a fluorescein sodium aqueous solution and a silver nitrate aqueous solution to the cut surface to develop chloride ions, This is a method of measuring the distance from the surface to the colored boundary (pages 128 and 129).

また、非特許文献2には、塩化ナトリウム水溶液に、所定期間、浸せきしたコンクリート供試体中の各深さ位置において、コンクリート単位質量あたりの全塩化物イオン濃度を測定し、下記(2)式に基づき回帰分析を行って、見掛けの拡散係数を算出する方法が記載されている。   In Non-Patent Document 2, the total chloride ion concentration per unit mass of concrete is measured at each depth position in a concrete specimen immersed in an aqueous sodium chloride solution for a predetermined period, and the following equation (2) is obtained. A method of calculating an apparent diffusion coefficient by performing a regression analysis based on this is described.

Figure 0005631788
Figure 0005631788

前記非特許文献2では、塩化物イオン濃度の分布を測定する方法は、JIS A 1154によるか、JSCE G 574によるものとされている(321頁)。
具体的には、JIS A 1154による方法は、供試体の5箇所以上(原則)から切り出した試験片を0.15mm以下に微粉砕した後、硝酸を用いて塩化物イオンを抽出して塩化物イオン量を測定するものである。また、JSCE G 574による方法は、供試体から切り出した分析試料の分析面を平坦にした後、粗粒から細粒へと、順次、研磨材を代えて表面を研磨し、次に、その表面に導電性材料を蒸着して、EPMA等の各種装置による面分析により、塩化物イオン量を測定するものである。いずれの方法も、煩雑で手間のかかる作業を必要としている。
In Non-Patent Document 2, the method for measuring the distribution of chloride ion concentration is based on JIS A 1154 or JSCE G 574 (page 321).
Specifically, in the method according to JIS A 1154, test pieces cut out from five or more (principle) specimens are pulverized to 0.15 mm or less, and then chloride ions are extracted using nitric acid. It measures the amount of ions. Further, the method according to JSCE G 574 is to flatten the analysis surface of the analysis sample cut out from the specimen, and then polish the surface sequentially from coarse to fine, changing the abrasive, and then the surface. A conductive material is deposited on the surface, and the amount of chloride ions is measured by surface analysis using various apparatuses such as EPMA. Both methods require complicated and time-consuming work.

ところで、見掛けの拡散係数は、表1(非特許文献1の131頁に掲載のTable3)に示すように、時間(硬化体の材齢)とともに減少する変数であって、定数ではない。したがって、非特許文献1や非特許文献2に記載の方法(以下「従来の方法」という。)により、鋼材の腐食発生時期を精度よく予測するためには、硬化体の材齢ごとに見掛けの拡散係数を求めなければならない。特に、鋼材の腐食発生時期を長期に亘って予測しようとする場合、化学種の分布を求めるために、上記のような手間のかかる測定作業を、長期に亘って行う必要があった。
したがって、従来の方法を用いて、長期間の化学種の分布を高い精度で予測することは、極めて困難であった。
By the way, as shown in Table 1 (Table 3 published on page 131 of Non-Patent Document 1), the apparent diffusion coefficient is a variable that decreases with time (the age of the cured body), and is not a constant. Therefore, in order to accurately predict the corrosion occurrence time of the steel material by the method described in Non-Patent Document 1 or Non-Patent Document 2 (hereinafter referred to as “conventional method”), the apparent age of each hardened body is apparent. The diffusion coefficient must be determined. In particular, when it is intended to predict the corrosion occurrence time of a steel material over a long period of time, in order to obtain the distribution of chemical species, it is necessary to perform the above-described time-consuming measurement work over a long period of time.
Therefore, it has been extremely difficult to predict the distribution of chemical species over a long period of time with high accuracy using conventional methods.

Figure 0005631788
Figure 0005631788

後藤誠史ほか「セメント硬化体中の塩素イオンの拡散」、窯業協会誌、Vol.87,No.3,pp.126-133,1979Goto Seishi et al. “Diffusion of chlorine ions in hardened cement paste”, Journal of Ceramic Industry Association, Vol.87, No.3, pp.126-133, 1979 「浸せきによるコンクリート中の塩化物イオンの見掛けの拡散係数試験方法(案)(JSCE-G 572-2010)」、コンクリート標準示方書[基準編]、土木学会、2010年制定"Test method for apparent diffusion coefficient of chloride ions in concrete by immersion (draft) (JSCE-G 572-2010)", concrete standard specification [standards], Japan Society of Civil Engineers, 2010

したがって、本発明は、これらの課題に鑑みなされたもので、化学種の濃度を測定することなく、コンクリート中の化学種の長期に亘る分布を、高い精度で予測することができる方法等を提供することを目的とする。   Therefore, the present invention has been made in view of these problems, and provides a method and the like that can predict the long-term distribution of chemical species in concrete with high accuracy without measuring the concentration of the chemical species. The purpose is to do.

本発明者は、前記課題を解決するために、鋭意研究した結果、(1)化学種と呈色剤とが反応して呈色した呈色境界から、コンクリート表面までの距離(以下「浸透距離」という。)を測定し、次に(2)該距離等を用いて回帰式の係数を求め、さらに(3)該係数を含みかつ時間を変数とする拡散係数関連式を、項の一つに有する予測式を求めることにより、該予測式を用いれば、コンクリート中の化学種の濃度を測定することなく、コンクリート中の化学種の長期に亘る分布を、高い精度で予測することができることを見い出し、本発明を完成させた。   As a result of earnest research to solve the above problems, the present inventor has (1) the distance from the color boundary where the chemical species and the colorant have reacted to the surface of the concrete (hereinafter referred to as “penetration distance”). ), And then (2) find the coefficient of the regression equation using the distance, etc., and (3) express the diffusion coefficient related expression that includes the coefficient and uses time as a variable. By using the prediction formula, the long-term distribution of the chemical species in the concrete can be predicted with high accuracy without measuring the concentration of the chemical species in the concrete. Discovered and completed the present invention.

すなわち、本発明は、以下の[1]〜[4]を提供する。
[1]コンクリート中の化学種の、短期における拡散状態に基づき、長期に亘る拡散状態を予測する方法であって、少なくとも、下記(A)および(B)の工程を含む、コンクリート中における化学種の拡散状態の予測方法。
(A)コンクリートを化学種に短期間さらして、化学種をコンクリートに浸透させた後、該コンクリート中の化学種を呈色反応により呈色させて、該コンクリート中の化学種の浸透距離を測定する、化学種の浸透距離測定工程
(B)少なくとも、下記(B1)、(B2)および(B3)の工程を含む、化学種の濃度算出工程
(B1)化学種の浸透期間Tを説明変数に、化学種の浸透距離Xを目的変数に用い、下記(1)式を回帰式に用いて回帰分析を行い、A、b、cおよびnの値を決定する、係数A、b、c、n決定工程
(B2)下記(2)式とA値からE値を算出する、係数E算出工程
(B3)下記(3)式に、前記E、b、cおよびnの値を代入して、化学種の濃度の予測式を求め、該予測式に基づき、任意の距離xおよび時間tにおける化学種の濃度C(x、t)を算出する、濃度C算出工程

Figure 0005631788
Figure 0005631788
Figure 0005631788
That is, the present invention provides the following [1] to [4].
[1] A method for predicting a long-term diffusion state of a chemical species in concrete based on a short-term diffusion state, including at least the following steps (A) and (B): Of predicting diffusion state
(A) After exposing concrete to chemical species for a short period of time and allowing chemical species to penetrate into concrete, the chemical species in the concrete are colored by a color reaction, and the penetration distance of the chemical species in the concrete is measured. Chemical species penetration distance measurement step (B) Chemical species concentration calculation step including at least the following steps ( B1), (B2) and (B3)
(B1) The infiltration period T of the chemical species is used as an explanatory variable, the infiltration distance X of the chemical species is used as an objective variable, and regression analysis is performed using the following equation (1) as a regression equation, and A, b, c, and n Coefficient A, b, c, n determining process for determining values
(B2) Coefficient E calculation step of calculating E value from the following equation (2) and A value
(B3) Substituting the values of E, b, c, and n into the following formula (3) to obtain a prediction formula for the concentration of chemical species, and based on the prediction formula, chemistry at an arbitrary distance x and time t A concentration C calculating step for calculating the concentration C (x, t) of the seed;
Figure 0005631788
Figure 0005631788
Figure 0005631788

[2]前記[1]記載の化学種が塩化物イオンである、コンクリート中における化学種の拡散状態の予測方法。
[3]コンクリート中の化学種の、短期間における拡散状態に基づき、コンクリート中における鋼材の腐食発生時期を予測する方法であって、前記[1]記載の予測方法を用いて予測した、鋼材の埋設場所における化学種の濃度が、鋼材を腐食させる化学種の下限濃度(以下「腐食下限濃度」という。)と同一になる時間を、鋼材の腐食発生時期として予測する、コンクリート中における鋼材の腐食発生時期の予測方法。
[4]前記[]に記載の化学種が塩化物イオンである、コンクリート中における鋼材の腐食発生時期の予測方法。
[2] A method for predicting the diffusion state of chemical species in concrete, wherein the chemical species according to [1] is chloride ions.
[3] the species in the concrete, on the basis of the diffusion condition in a short period of time, a method of predicting the corrosion occurrence time of the steel in the concrete, was predicted using a prediction method according to [1], steel The time at which the concentration of the chemical species at the burial site is the same as the lower limit concentration of the chemical species that corrodes the steel (hereinafter referred to as the “corrosion lower limit concentration”) is predicted as the corrosion occurrence time of the steel. How to predict when corrosion will occur.
[4] A method for predicting the corrosion occurrence time of a steel material in concrete, wherein the chemical species according to [ 3 ] is chloride ion.

本発明によれば、コンクリート中の化学種の濃度を測定することなく、従来よりも簡便な方法と、拡散係数の経時変化を反映した予測式とを用いることにより、コンクリート中の化学種の長期に亘る拡散状態と、コンクリート中の鋼材の腐食発生時期を、高い精度で予測することができる。   According to the present invention, without measuring the concentration of the chemical species in the concrete, by using a simpler method than the conventional method and a prediction formula that reflects the change over time of the diffusion coefficient, It is possible to predict the diffusion state over the time and the corrosion occurrence time of the steel material in the concrete with high accuracy.

塩化物イオンの浸透距離と浸透期間の実測値のプロットと、予測式((3)式)により表される曲線との、フィッティングの状態を示す図である。It is a figure which shows the state of fitting of the plot of the measured value of the osmosis | permeation distance of a chloride ion, and an osmosis | permeation period, and the curve represented by a prediction formula ((3) Formula). コンクリート中に塩化物イオンが浸透し始めてから100年間の、鉄筋の所定の位置における塩化物イオンの濃度を予測した図であって、(a)は本発明に係る予測式((5)式)を用いて予測した場合の図であり、(b)は拡散係数が定数である予測式((15)式)を用いて予測した場合の図である。It is the figure which predicted the density | concentration of the chloride ion in the predetermined position of a reinforcing bar for 100 years after chloride ion began to infiltrate into concrete, (a) is a prediction formula (Formula (5)) concerning the present invention. (B) is a diagram in the case of prediction using a prediction formula (Equation (15)) in which the diffusion coefficient is a constant.

本発明は、上記のとおり、少なくとも、(A)化学種の浸透距離測定工程と、(B)化学種の濃度算出工程とを含む、コンクリート中における化学種の拡散状態の予測方法と、該方法を用いたコンクリート中における鋼材の腐食発生時期の予測方法である。
以下に、本発明について説明する。
As described above, the present invention includes at least (A) a chemical species penetration distance measuring step and (B) a chemical species concentration calculation step, and a method for predicting the diffusion state of chemical species in concrete, and the method This is a method for predicting the corrosion occurrence time of steel materials in concrete.
The present invention will be described below.

(A)化学種の浸透距離測定工程
該工程は、上記のとおり、コンクリート供試体を化学種に短期間さらして、化学種をコンクリートに浸透させた後に、該コンクリート中の化学種を呈色反応により呈色させて、該コンクリート中の化学種の浸透距離を測定する工程である。
(1)コンクリート供試体
該供試体に用いるセメントは、特に限定させず、例えば、普通ポルトランドセメントなどのポルトランドセメント、高炉セメントやフライアッシュセメントなどの混合セメント、および、普通エコセメント等が挙げられる。
また、前記供試体に用いる骨材は、特に限定されず、例えば、砂利、砕石、スラグ粗骨材、軽量粗骨材などの粗骨材や、川砂、山砂、陸砂、海砂、砕砂、硅砂、スラグ細骨材、軽量細骨材などの細骨材が挙げられる。かかる粗骨材や細骨材は、天然骨材のほか再生骨材も用いることができる。
また、供試体の養生方法は、標準養生、湿空養生、封緘養生などが挙げられる。
なお、拡散係数は、コンクリート材料の種類、配合、および、養生方法などの条件によっても変わるため、供試体は実際に使用するコンクリートと同じ条件で作製することが好ましい。
(A) Chemical species permeation distance measuring step As described above, this step involves exposing the concrete specimen to the chemical species for a short period of time, allowing the chemical species to permeate the concrete, and then coloring the chemical species in the concrete. This is a step of measuring the permeation distance of chemical species in the concrete.
(1) Concrete specimen The cement used for the specimen is not particularly limited, and examples thereof include Portland cement such as ordinary Portland cement, mixed cement such as blast furnace cement and fly ash cement, and ordinary ecocement.
Moreover, the aggregate used for the specimen is not particularly limited. For example, coarse aggregate such as gravel, crushed stone, slag coarse aggregate, lightweight coarse aggregate, river sand, mountain sand, land sand, sea sand, crushed sand, etc. , Fine aggregates such as cinnabar, slag fine aggregate, lightweight fine aggregate. Such coarse aggregates and fine aggregates can use natural aggregates as well as recycled aggregates.
Examples of the curing method for the specimen include standard curing, wet air curing, and sealed curing.
In addition, since a diffusion coefficient changes also with conditions, such as a kind of concrete material, a mixing | blending, and a curing method, it is preferable to produce a test piece on the same conditions as the concrete actually used.

(2)化学種の浸透
該化学種として、例えば、塩化物イオン、硫酸イオン、二酸化炭素などが挙げられる。
また、化学種を供試体に浸透させる方法は、例えば、化学種が(i)塩化物イオンの場合では、非特許文献2に記載されているJSCE−G 572−2010の方法が挙げられ、(ii)硫酸イオンの場合では、JIS原案「コンクリートの溶液浸せきによる耐薬品性試験方法(案)」が挙げられ、(iii)二酸化炭素の場合では、JIS A 1152「コンクリートの中性化深さの測定方法」が挙げられる。
(2) Penetration of chemical species Examples of the chemical species include chloride ions, sulfate ions, carbon dioxide, and the like.
Moreover, the method of making a chemical species penetrate | invade a specimen, for example, when chemical species is (i) chloride ion, the method of JSCE-G 572-2010 described in the nonpatent literature 2 is mentioned, ( ii) In the case of sulfate ions, the JIS draft “Testing method for chemical resistance by solution immersion of concrete (draft)” can be cited. (iii) In the case of carbon dioxide, JIS A 1152 “Concrete neutralization depth Measurement method ".

(3)化学種の呈色と浸透距離の測定
化学種の呈色方法は、例えば、供試体を割裂してその割裂面に、化学種が(i)塩化物イオンの場合では、フルオレセインナトリウム水溶液を噴霧または塗布した後、硝酸銀水溶液を噴霧または塗布して呈色させ、(ii)硫酸イオンの場合では、クロロホスホナゾIII水溶液を噴霧または塗布した後、塩化バリウム水溶液を噴霧または塗布して呈色させ、(iii)二酸化炭素の場合では、フェノールフタレイン溶液を噴霧または塗布して呈色させる方法が挙げられる。
そして、呈色部分の境界から供試体表面までの長さを測定して、化学種の浸透距離を求める。該浸透距離の測定は、後記の(B1)工程において、浸透距離と浸透期間を変数に含む回帰式の係数を精度よく定めるため、複数の浸透期間において行うことが必要であり、4以上の浸透期間で行うのが好ましい。
化学種が呈色する濃度には、一般に化学種固有の下限値(以下「呈色下限濃度」という。)が存在し、前記呈色部分の境界における化学種の濃度が該下限値と考えられる。そうすると、前記浸透距離を測定することは、すなわち、その地点での化学種の濃度を測定することにもなる。したがって、浸透距離の測定により、従来の手間のかかる化学種濃度の測定作業を省略できるという利点がある。ちなみに、硝酸銀による塩化物イオンの呈色下限濃度は、単位セメント質量あたり0.15質量%である。
(3) Coloring of chemical species and measurement of penetration distance The chemical coloration method is, for example, by splitting the specimen and, on the splitting surface, when the chemical species is (i) chloride ion, an aqueous solution of sodium fluorescein. (Ii) In the case of sulfate ions, spray or apply a chlorophosphonazo III aqueous solution and then spray or apply an aqueous barium chloride solution. (Iii) In the case of carbon dioxide, there is a method in which a phenolphthalein solution is sprayed or applied to cause coloration.
Then, the length from the boundary of the colored portion to the surface of the specimen is measured to determine the penetration distance of the chemical species. The measurement of the penetration distance needs to be performed in a plurality of penetration periods in order to accurately determine the coefficient of the regression equation including the penetration distance and the penetration period as variables in the step (B1) described later. It is preferable to carry out in a period.
The density at which a chemical species is colored generally has a lower limit value specific to the chemical species (hereinafter referred to as “coloring lower limit density”), and the concentration of the chemical species at the boundary of the colored portion is considered to be the lower limit value. . Then, measuring the penetration distance also means measuring the concentration of the chemical species at that point. Therefore, there is an advantage that the conventional laborious measurement of the concentration of chemical species can be omitted by measuring the penetration distance. Incidentally, the minimum coloration concentration of chloride ion by silver nitrate is 0.15% by mass per unit cement mass.

上記(3)〜(5)式の誘導
見掛けの拡散係数は経時変化する点を考慮して、拡散係数を化学種の浸透期間tのみを変数とする関数D(t)で表すと、フィックの拡散方程式は下記(6)式で表される。
Considering the fact that the apparent diffusion coefficient in the above equations (3) to (5) changes with time, the diffusion coefficient is expressed by a function D (t) whose variable is only the infiltration period t of chemical species. The diffusion equation is expressed by the following equation (6).

Figure 0005631788
次に、変数tを下記(7)式により変数変換する。
dT = D(t)dt ……(7)
該変数変換により、上記(6)式は下記(8)式に変形される。
Figure 0005631788
Next, the variable t is converted into a variable by the following equation (7).
dT = D (t) dt (7)
By the variable conversion, the above equation (6) is transformed into the following equation (8).

Figure 0005631788
ここで、境界条件として、コンクリート表面における化学種の濃度をCs(一定)とし、初期条件として、コンクリートに初めから含まれている化学種の濃度をCi(一定)とすると、上記(8)式の解析解は下記(9)式になる。
Figure 0005631788
Here, if the concentration of chemical species on the concrete surface is C s (constant) as the boundary condition, and the concentration of chemical species contained in the concrete from the beginning is C i (constant), the above (8 The analytical solution of equation (9) is the following equation (9).

Figure 0005631788
上記(9)式において、x=X(化学種の呈色境界とコンクリート表面との距離)、C=CNS(呈色部分の境界における化学種の濃度)を代入した後、Xを表す式に変形すると、下記(10)式になる。
Figure 0005631788
In the above equation (9), after substituting x = X (distance between the color boundary of the chemical species and the concrete surface) and C = C NS (the concentration of the chemical species at the boundary of the colored portion), an equation representing X Is transformed into the following equation (10).

Figure 0005631788
ここで、浸透期間tを変数とする前記の関数D(t)を、見掛けの拡散係数と浸透期間との関係から経験的に新規に得られた下記(11)式を用いて表す。
Figure 0005631788
Here, the function D (t) with the permeation period t as a variable is expressed using the following equation (11) newly obtained empirically from the relationship between the apparent diffusion coefficient and the permeation period.

Figure 0005631788
次に、上記(11)式を前記(7)式に代入して積分すると、下記(12)式が得られる。
Figure 0005631788
Next, when the above equation (11) is substituted into the equation (7) and integrated, the following equation (12) is obtained.

Figure 0005631788
さらに、上記(12)式を上記(10)式に代入すると、下記(3)式が得られる。
Figure 0005631788
Further, when the formula (12) is substituted into the formula (10), the following formula (3) is obtained.

Figure 0005631788
ここで、上記(3)式中のAは下記(4)式で表される定数である。
Figure 0005631788
Here, A in the above formula (3) is a constant represented by the following formula (4).

Figure 0005631788
また、上記(12)式を上記(9)式に代入すると、下記(5)式が得られる。
Figure 0005631788
Further, when the formula (12) is substituted into the formula (9), the following formula (5) is obtained.

Figure 0005631788
Figure 0005631788

(B)化学種の濃度算出工程
該工程は、上記のとおり、前記浸透距離および浸透期間を用いて回帰式の係数を求めた後、フィックの第2法則に基づく拡散方程式の解を用いた化学種の濃度の予測式であって、該係数を含みかつ時間を変数とする拡散係数関連式を、項の一つとして有する予測式を求め、さらに、該予測式を用いて、任意の距離および時間における化学種の濃度を算出する工程である。
該工程は、好ましくは、
(B1)化学種の浸透期間Tを説明変数に、化学種の浸透距離Xを目的変数に用い、上記(3)式を回帰式に用いて回帰分析(フィッティング)を行い、A、b、cおよびnの値を決定する、係数A、b、c、n決定工程と、
(B2)上記(4)式とA値からE値を算出する、係数E算出工程と、
(B3)上記(5)式に、前記E、b、cおよびnの値を代入して、化学種の濃度の予測式を求め、該予測式に基づき、任意の距離xおよび時間tにおける化学種の濃度C(x、t)を算出する、濃度C算出工程とを含むものである。
以下に、各工程について説明する。
(B) Chemical Species Concentration Calculation Step As described above, after calculating the regression equation coefficient using the infiltration distance and infiltration period, the step uses the solution of the diffusion equation based on Fick's second law. A formula for predicting the concentration of a species, which includes a coefficient related to a diffusion coefficient including the coefficient and having time as a variable, is obtained as one of the terms, and further using the prediction formula, an arbitrary distance and This is a step of calculating the concentration of chemical species over time.
The step is preferably
(B1) Regression analysis (fitting) is performed using the chemical species permeation period T as an explanatory variable, the chemical species permeation distance X as a target variable, and the above equation (3) as a regression equation, and A, b, c And a coefficient A, b, c, n determining step for determining the value of n.
(B2) a coefficient E calculation step of calculating an E value from the above equation (4) and the A value;
(B3) Substituting the values of E, b, c and n into the above equation (5) to obtain a prediction formula for the concentration of chemical species, and based on the prediction formula, the chemistry at an arbitrary distance x and time t And a concentration C calculating step for calculating the concentration C (x, t) of the seed.
Below, each process is demonstrated.

(B1)係数A、b、c、n決定工程
該工程は、浸透期間T(説明変数)を横軸(または縦軸)に、浸透距離X(目的変数)を縦軸(または横軸)にとり、先に実測して得た(T,X)を座標上にプロットした後、これに上記(3)式により表される曲線をフィッティングすることによって、(3)式の係数A、b、cおよびnの値を決定する工程である。ここで、前記フィッティングとは、下記(13)式で表される目的関数F(A,b,c,n)が最小になるように、A、b、cおよびnの値を定める操作である。
(B1) Coefficient A, b, c, n determining step This step takes the penetration period T (explanatory variable) on the horizontal axis (or vertical axis) and the penetration distance X (target variable) on the vertical axis (or horizontal axis). After plotting (T, X) obtained by actual measurement on the coordinates, fitting the curve represented by the above equation (3) to this, the coefficients A, b, c of the equation (3) And determining the value of n. Here, the fitting is an operation for determining the values of A, b, c, and n so that the objective function F (A, b, c, n) represented by the following equation (13) is minimized. .

Figure 0005631788
Figure 0005631788

(B2)係数E算出工程
該工程は、上記(4)式に、供試体表面における化学種の濃度C、化学種の呈色下限濃度CNS、該供試体に初めから含まれている化学種の濃度C、および、前記(B1)工程で求めた係数Aを代入して、係数Eを算出する工程である。
(B2) Coefficient E calculation step In this step, the chemical species concentration C s on the surface of the specimen, the coloration lower limit concentration C NS of the chemical species, and the chemical contained in the specimen from the beginning are expressed in the above equation (4). This is a step of calculating the coefficient E by substituting the seed concentration C i and the coefficient A obtained in the step (B1).

(B3)濃度C算出工程
該工程は、上記(5)式に、供試体表面における化学種の濃度C、該供試体に初めから含まれている化学種の濃度C、前記(B2)工程で算出した係数Eと、係数b、cおよびnを代入して、距離xおよび時間tを変数とする化学種の濃度C(x、t)についての予測式を求め、任意の浸透距離xおよび浸透期間tにおける化学種の濃度C(x、t)を算出する工程である。
以上の工程を経て、任意の浸透距離および浸透期間におけるコンクリート中の化学種の拡散状態を、簡易かつ精度よく予測することができる。
(B3) Concentration C Calculation Step In this step, the concentration C s of the chemical species on the surface of the specimen, the concentration C i of the chemical species contained in the specimen from the beginning, (B2) Substituting the coefficient E calculated in the process and the coefficients b, c, and n, a prediction formula for the concentration C (x, t) of the chemical species with the distance x and the time t as variables is obtained, and an arbitrary penetration distance x And calculating the concentration C (x, t) of the chemical species in the infiltration period t.
Through the above steps, it is possible to easily and accurately predict the diffusion state of chemical species in the concrete at any penetration distance and penetration period.

コンクリート中における鋼材の腐食発生時期の予測方法
該方法は、前記[1]または[2]に記載の予測方法を用いて予測した、鋼材の埋設場所における化学種の濃度が、鋼材の腐食下限濃度と同一になる時間を、鋼材の腐食発生時期として予測する方法である。ちなみに、化学種が塩化物イオンで、セメントが普通ポルトランドセメントの場合は、腐食下限濃度は、単位セメント質量あたり0.4質量%である。
また、上記(5)式を方程式の形に書き換えた下記(14)式に対し、ニュートン・ラフソン法などの数値計算法を用いて、この近似解として鋼材の腐食発生時期を求めてもよい。
Method for predicting corrosion occurrence time of steel in concrete The method is based on the prediction method described in the above [1] or [2], and the concentration of chemical species at the place where steel is buried is the lower limit corrosion concentration of steel. Is a method for predicting the time when the corrosion of the steel material occurs. Incidentally, when the chemical species is chloride ion and the cement is ordinary Portland cement, the lower limit corrosion concentration is 0.4% by mass per unit cement mass.
Further, the corrosion occurrence time of the steel material may be obtained as an approximate solution by using a numerical calculation method such as Newton-Raphson method for the following equation (14) in which the above equation (5) is rewritten into an equation form.

Figure 0005631788
Figure 0005631788

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.浸せき試験用の供試体の作製
高炉セメントB種を用いて、水セメント比(W/C)がそれぞれ74%、63%、53%のコンクリートを練り混ぜ、型枠に打ち込み、材齢1日で脱型して、縦10cm、横10cm、長さ40cmの角柱供試体を得た。引き続き、該供試体を材齢7日まで標準養生した後、20℃、60%RHで、材齢28日まで気中養生した。
次に、該養生後の供試体を、型枠の側面に接していた一側面を除き、エポキシ樹脂で被覆して浸せき試験用の供試体を作製した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
1. Preparation of specimen for immersion test Using blast furnace cement type B, concrete with water-cement ratio (W / C) of 74%, 63% and 53%, respectively, is mixed and poured into a mold, and the material age is 1 day. After demolding, a prismatic specimen having a length of 10 cm, a width of 10 cm, and a length of 40 cm was obtained. Subsequently, the specimens were subjected to standard curing until the material age of 7 days, and then subjected to air curing at 20 ° C. and 60% RH until the material age of 28 days.
Next, the specimen after curing was coated with an epoxy resin except for one side that was in contact with the side of the mold, to prepare a specimen for immersion test.

2.浸せき試験
前記浸せき試験用の供試体を、液温20℃、濃度3質量%の塩化ナトリウム水溶液に3日間浸せきした後、20℃、60%RHの恒温恒湿槽内に載置して4日間乾燥させた。
この浸せきと乾燥の合計7日間(1週間)の操作を1サイクルとして、浸せき・乾燥操作を1、4、8、13および26サイクル(週)行って、塩化物イオンが浸透した供試体を得た。
次に、該供試体を割裂して得た割裂面に、0.1質量%のフルオレセインナトリウム水溶液を噴霧した後、0.01Mの硝酸銀水溶液を噴霧して、塩化物イオンが浸透した領域を呈色(発光)させた。
該供試体の表面から、塩化物イオンが浸透した境界までの距離を、5点、ノギスで測定し、該測定値を平均して塩化物イオンの浸透距離を得た。その結果を表2に示す。
2. Immersion test The specimen for immersion test was immersed in an aqueous sodium chloride solution having a liquid temperature of 20 ° C. and a concentration of 3% by mass for 3 days, and then placed in a constant temperature and humidity chamber at 20 ° C. and 60% RH for 4 days. Dried.
This immersion and drying operation for a total of 7 days (1 week) is taken as 1 cycle, and immersion, drying operations are carried out for 1, 4, 8, 13 and 26 cycles (weeks) to obtain a specimen infiltrated with chloride ions. It was.
Next, a 0.1 mass% sodium fluorescein aqueous solution is sprayed on the splitting surface obtained by splitting the specimen, and then a 0.01 M silver nitrate aqueous solution is sprayed to present a region in which chloride ions have permeated. Colored (light emission).
The distance from the surface of the specimen to the boundary through which chloride ions permeated was measured with five calipers, and the measured values were averaged to obtain the chloride ion penetration distance. The results are shown in Table 2.

Figure 0005631788
Figure 0005631788

3.回帰分析(フィッティング)
塩化物イオンの浸透期間を横軸に、塩化物イオンの浸透距離を縦軸にして、表2の浸透期間と浸透距離を座標上にプロットした。該プロットに対し、(3)式で表される曲線を、(13)式の目的関数F(A,b,c,n)が最小になるようにフィッティングして、A、b、cおよびnの値を定めた。その結果を表3に示す。
また、すべての水セメント比の供試体における浸透距離と浸透期間のプロットと、表3に示すA、b、cおよびnの値を代入した(3)式により表される曲線との、フィッティングの状態を図1に示す。図1に示すように、すべての水セメント比の供試体において、フィッティングの状態は極めて良好であった。
3. Regression analysis (fitting)
The penetration period and penetration distance in Table 2 were plotted on the coordinates, with the penetration period of chloride ions on the horizontal axis and the penetration distance of chloride ions on the vertical axis. A curve represented by the equation (3) is fitted to the plot so that the objective function F (A, b, c, n) of the equation (13) is minimized, and A, b, c and n The value of was determined. The results are shown in Table 3.
Moreover, the plot of the penetration distance and penetration period in the specimens of all water cement ratios, and the curve represented by the equation (3) substituted with the values of A, b, c and n shown in Table 3 The state is shown in FIG. As shown in FIG. 1, the fitting state was very good in the specimens of all water cement ratios.

Figure 0005631788
Figure 0005631788

4.鉄筋の腐食発生時期の予測方法
前記A値を(4)式に代入してE値を求め、さらに、このE値と前記b、cおよびnの値を(5)式に代入して、コンクリート中における化学種の拡散状態の予測式C(x、t)を求めた。この予測式C(x,t)を用いれば、任意の距離xおよび時間tにおける塩化物イオンの分布を予測することができる。
したがって、この予測式C(x、t)に、一例として、鉄筋のかぶり深さx=4cm、C=3質量%、および、C=0質量%を代入し、コンクリート中に塩化物イオンが浸透し始めてから100年間の、塩化物イオンの濃度を計算して、鉄筋の腐食発生時期を予測した。その結果を図2の(a)に示す。
4). A method for predicting the corrosion occurrence time of reinforcing bars Substituting the A value into the equation (4) to obtain the E value, and further substituting the E value and the values of b, c and n into the equation (5), The prediction formula C (x, t) of the diffusion state of the chemical species in the inside was obtained. By using this prediction formula C (x, t), the distribution of chloride ions at an arbitrary distance x and time t can be predicted.
Accordingly, as an example, substituting depth of the reinforcing bar x = 4 cm, C s = 3 mass%, and C i = 0 mass% is substituted into the prediction formula C (x, t), and chloride ions are added to the concrete. The concentration of chloride ions was calculated for 100 years from the beginning of the penetration of steel, and the corrosion occurrence time of the reinforcing bars was predicted. The result is shown in FIG.

ここで、鉄筋の腐食下限濃度を単位セメント質量あたり0.4質量%とすると、図2の(a)の曲線から、鉄筋の腐食発生時期は、水セメント比が74%の供試体の場合は7.5年、該比が63%の場合は54.6年、該比が53%の場合は88.9年となり、水セメント比が低いコンクリートほど、鉄筋の腐食発生時期は遅れるとの予測結果になった。
一般に、同一のコンクリート材料からなるコンクリートでは、水セメント比が低いほど,塩化物イオンの浸透抵抗性が高く、高耐久性であることが知られており、本予測結果は、かかる一般的な知見と整合している。
Here, assuming that the lower corrosion limit concentration of reinforcing steel bars is 0.4% by mass per unit cement mass, from the curve of FIG. 2 (a), the corrosion occurrence time of reinforcing steel bars is in the case of a specimen with a water-cement ratio of 74%. In 7.5 years, if the ratio is 63%, it will be 54.6 years, if the ratio is 53%, it will be 88.9 years. The result was.
In general, it is known that concrete made of the same concrete material has a higher resistance to chloride ion penetration and higher durability as the water-cement ratio is lower. Is consistent with

ここで、比較例として、拡散係数の経時変化を考慮しない例を示す。すなわち、表2の塩化物イオンの浸透距離と浸透期間とのプロットに対し、拡散係数が定数である下記(15)式で表される曲線をフィッティングして得られた見掛けの拡散係数Dと、前記CおよびCの値と、下記(16)式とを用いて、コンクリート中に塩化物イオンが浸透し始めてから100年間の、鉄筋のかぶり深さd=4cmの位置における塩化物イオンの濃度を計算して、鉄筋の腐食発生時期を予測した。その結果を図2の(b)に示す。
なお、下記(15)式は、上記(1)式や上記(2)式の逆関数に相当し、下記(16)式は上記(1)式や上記(2)式と実質的に同じ式である。
Here, as a comparative example, an example in which a change with time of the diffusion coefficient is not considered is shown. That is, the apparent diffusion coefficient D a obtained by fitting a curve represented by the following formula ( 15 ) where the diffusion coefficient is a constant against the plot of the chloride ion penetration distance and the penetration period in Table 2 Using the values of C s and C i and the following equation ( 16 ), chloride ions at a position where the depth of the reinforcing steel cover is d = 4 cm for 100 years from the start of penetration of chloride ions into the concrete The concentration of steel was calculated to predict the corrosion occurrence time of the reinforcing bars. The result is shown in FIG.
The following equation (15) corresponds to the inverse function of the above equation (1) and the above equation (2), and the following equation (16) is substantially the same as the above equation (1) and the above equation (2). It is.

Figure 0005631788
Figure 0005631788

Figure 0005631788
Figure 0005631788

鉄筋の腐食下限濃度を、実施例と同一とした場合、図2の(b)の曲線から、鉄筋の腐食発生時期は、水セメント比が74%の供試体の場合は7.1年、該比が63%の場合は20.7年、該比が53%の場合は14.2年となった。
本来、時間の経過とともに減少する見掛けの拡散係数を、比較例では、一定値としたため、比較例において以下の矛盾等が生じた。すなわち、
(1)供試体の水セメント比が63%から53%と減少しているにもかかわらず、腐食発生時期は20.7年から14.2年に早まるという結果は、上記の一般的な知見と、明らかに矛盾する。
(2)比較例における塩化物イオンの浸透速度が、実施例における該速度よりも速くなった結果、腐食発生時期は実施例よりも早まった。
このように、比較例の方法では、見掛けの拡散係数の経時変化を考慮しないため、上記のように現実と異なる結果となったことから、本発明の方法と比べ予測の信頼性は著しく低いといえる。
When the corrosion lower limit concentration of the reinforcing bar is the same as that of the example, from the curve of FIG. 2 (b), the corrosion occurrence time of the reinforcing bar is 7.1 years in the case of a specimen having a water-cement ratio of 74%. When the ratio was 63%, it was 20.7 years, and when the ratio was 53%, it was 14.2 years.
Originally, the apparent diffusion coefficient, which decreases with the passage of time, was set to a constant value in the comparative example, so the following contradiction occurred in the comparative example. That is,
(1) Despite the fact that the water-cement ratio of the specimen decreased from 63% to 53%, the result that the corrosion occurs earlier from 20.7 to 14.2 Clearly contradicts.
(2) As a result of the chloride ion permeation rate in the comparative example becoming faster than that in the example, the corrosion occurrence time was earlier than in the example.
As described above, the method of the comparative example does not take into account the temporal change of the apparent diffusion coefficient, and thus the result is different from the actual result as described above. Therefore, the reliability of the prediction is significantly lower than the method of the present invention. I can say that.

本発明の方法は、コンクリート中の化学種の長期に亘る拡散状態の予測と、コンクリート中の鋼材の腐食発生時期の予測に適用することができる。   The method of the present invention can be applied to the prediction of the long-term diffusion state of chemical species in concrete and the prediction of the corrosion occurrence time of steel in concrete.

Claims (4)

コンクリート中の化学種の、短期における拡散状態に基づき、長期に亘る拡散状態を予測する方法であって、少なくとも、下記(A)および(B)の工程を含む、コンクリート中における化学種の拡散状態の予測方法。
(A)コンクリートを化学種に短期間さらして、化学種をコンクリートに浸透させた後、該コンクリート中の化学種を呈色反応により呈色させて、該コンクリート中の化学種の浸透距離を測定する、化学種の浸透距離測定工程
(B)少なくとも、下記(B1)、(B2)および(B3)の工程を含む、化学種の濃度算出工程
(B1)化学種の浸透期間Tを説明変数に、化学種の浸透距離Xを目的変数に用い、下記(1)式を回帰式に用いて回帰分析を行い、A、b、cおよびnの値を決定する、係数A、b、c、n決定工程
(B2)下記(2)式とA値からE値を算出する、係数E算出工程
(B3)下記(3)式に、前記E、b、cおよびnの値を代入して、化学種の濃度の予測式を求め、該予測式に基づき、任意の距離xおよび時間tにおける化学種の濃度C(x、t)を算出する、濃度C算出工程
Figure 0005631788
Figure 0005631788
Figure 0005631788
A method for predicting a long-term diffusion state of a chemical species in concrete based on a short-term diffusion state, comprising at least the following steps (A) and (B): Prediction method.
(A) After exposing concrete to chemical species for a short period of time and allowing chemical species to penetrate into concrete, the chemical species in the concrete are colored by a color reaction, and the penetration distance of the chemical species in the concrete is measured. Chemical species penetration distance measurement step (B) Chemical species concentration calculation step including at least the following steps ( B1), (B2) and (B3)
(B1) The infiltration period T of the chemical species is used as an explanatory variable, the infiltration distance X of the chemical species is used as an objective variable, and regression analysis is performed using the following equation (1) as a regression equation, and A, b, c, and n Coefficient A, b, c, n determining process for determining values
(B2) Coefficient E calculation step of calculating E value from the following equation (2) and A value
(B3) Substituting the values of E, b, c, and n into the following formula (3) to obtain a prediction formula for the concentration of chemical species, and based on the prediction formula, chemistry at an arbitrary distance x and time t A concentration C calculating step for calculating the concentration C (x, t) of the seed;
Figure 0005631788
Figure 0005631788
Figure 0005631788
請求項1記載の化学種が塩化物イオンである、コンクリート中における化学種の拡散状態の予測方法。 A method for predicting a diffusion state of chemical species in concrete, wherein the chemical species according to claim 1 is chloride ion. コンクリート中の化学種の、短期間における拡散状態に基づき、コンクリート中における鋼材の腐食発生時期を予測する方法であって、請求項1記載の予測方法を用いて予測した、鋼材の埋設場所における化学種の濃度が、鋼材を腐食させる化学種の下限濃度と同一になる時間を、鋼材の腐食発生時期として予測する、コンクリート中における鋼材の腐食発生時期の予測方法。 A method for predicting the corrosion occurrence time of steel in concrete based on the diffusion state of chemical species in concrete in a short period, which is predicted using the prediction method according to claim 1 , A method for predicting the corrosion occurrence time of steel in concrete, in which the time when the concentration of the chemical species is the same as the lower limit concentration of the chemical species that corrodes the steel is predicted as the corrosion occurrence time of the steel. 請求項に記載の化学種が塩化物イオンである、コンクリート中における鋼材の腐食発生時期の予測方法。 A method for predicting the occurrence of corrosion of steel in concrete, wherein the chemical species according to claim 3 is chloride ion.
JP2011065203A 2011-03-24 2011-03-24 Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same Active JP5631788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065203A JP5631788B2 (en) 2011-03-24 2011-03-24 Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065203A JP5631788B2 (en) 2011-03-24 2011-03-24 Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same

Publications (2)

Publication Number Publication Date
JP2012202731A JP2012202731A (en) 2012-10-22
JP5631788B2 true JP5631788B2 (en) 2014-11-26

Family

ID=47183913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065203A Active JP5631788B2 (en) 2011-03-24 2011-03-24 Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same

Country Status (1)

Country Link
JP (1) JP5631788B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153367B2 (en) * 2013-03-30 2017-06-28 太平洋セメント株式会社 A sensor for evaluating the neutralization environment of concrete and a method for evaluating the neutralization environment of concrete.
JP6202966B2 (en) * 2013-09-30 2017-09-27 太平洋セメント株式会社 Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete
JP6289216B2 (en) * 2014-03-31 2018-03-07 太平洋セメント株式会社 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete
JP6898164B2 (en) * 2017-07-06 2021-07-07 大成建設株式会社 Porous medium evaluation method
JP6403857B2 (en) * 2017-11-07 2018-10-10 一般財団法人電力中央研究所 Method, apparatus and program for estimating diffusion coefficient of target element in concrete
CN108680469A (en) * 2018-04-28 2018-10-19 皖西学院 A kind of ion penetration resistance of concrete measurement method
JP7427987B2 (en) 2020-02-05 2024-02-06 株式会社大林組 Test method for cement composition and test specimen
CN114279901B (en) * 2021-12-31 2023-07-21 金陵科技学院 Quick assessment method for chloride ion diffusion coefficients of concrete at different curing ages

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482044B2 (en) * 1995-08-26 2003-12-22 日本下水道事業団 Concrete soundness evaluation method and deterioration concrete repair method
US6959270B2 (en) * 2001-05-24 2005-10-25 UNIVERSITé LAVAL Method for modeling the transport of ions in hydrated cement systems
JP2006329961A (en) * 2005-05-30 2006-12-07 Taiheiyo Cement Corp Method for analyzing concentration distribution of element diffused in concrete
JP2008224649A (en) * 2007-03-15 2008-09-25 Taiheiyo Consultant:Kk System for diagnosing concrete degradation

Also Published As

Publication number Publication date
JP2012202731A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5631788B2 (en) Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same
Nguyen et al. Reinforcement corrosion in limestone flash calcined clay cement-based concrete
Stefanoni et al. Kinetics of electrochemical dissolution of metals in porous media
AL-Ameeri et al. Combined impact of carbonation and crack width on the Chloride Penetration and Corrosion Resistance of Concrete Structures
Angst et al. Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values
Neves et al. Field assessment of the relationship between natural and accelerated concrete carbonation resistance
Shi et al. Strength and corrosion properties of Portland cement mortar and concrete with mineral admixtures
Rodriguez Influence of cracks on chloride ingress into concrete
Bouteiller et al. Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time
Baroghel-Bouny et al. AgNO 3 spray tests: Advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: Non-steady-state diffusion tests and exposure to natural conditions
Dousti et al. Binding of externally supplied chlorides in micro silica concrete under field exposure conditions
Güneyisi et al. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements
Ryan et al. Probabilistic analysis of the time to chloride induced corrosion for different self-compacting concretes
Paul et al. Corrosion deterioration of steel in cracked SHCC
Jin et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete
Li et al. The effect of crack width on chloride-induced corrosion of steel in concrete
Liu et al. Stochastic modeling of service life of concrete structures in chloride-laden environments
Liu et al. Numerical and experimental research on the effect of rainfall on the transporting behavior of chloride ions in concrete
Mi et al. The effect of carbonation on chloride redistribution and corrosion of steel reinforcement
Pérez et al. Durability of self-healing ultra-high-strength reinforced micro-concrete under freeze–thaw or chloride attack
Han et al. X-ray microtomography of the carbonation front shape evolution of cement mortar and modeling of accelerated carbonation reaction
Melara et al. Contribution to the service-life modeling of concrete exposed to sulfate attack by the inclusion of electrical resistivity data
Sirivivatnanon et al. Long-term reinforcement corrosion in low carbon concrete with a high volume of SCMs exposed to NaCl solutions and field marine environment
Zhao et al. Seasonal variation of surface chloride ion content and chloride diffusion coefficient in a concrete dock
Topcu et al. Experimental investigation of utilizing chemical additives and new generation corrosion inhibitors on reinforced concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R150 Certificate of patent or registration of utility model

Ref document number: 5631788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250